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Abstract

Background: As a major health hazard, the incidence of coronary heart disease has been increasing year by year. Although
coronary revascularization, mainly percutaneous coronary intervention, has played an important role in the treatment of coronary
heart disease, major adverse cardiovascular events (MACE) such as recurrent or persistent angina pectoris after coronary
revascularization remain a very difficult problem in clinical practice.

Objective: Given the high probability of MACE after coronary revascularization, the aim of this study was to develop and
validate a predictive model for MACE occurrence within 6 months based on machine learning algorithms.

Methods: A retrospective study was performed including 1004 patients who had undergone coronary revascularization at The
People’s Hospital of Liaoning Province and Affiliated Hospital of Liaoning University of Traditional Chinese Medicine from
June 2019 to December 2020. According to the characteristics of available data, an oversampling strategy was adopted for initial
preprocessing. We then employed six machine learning algorithms, including decision tree, random forest, logistic regression,
naïve Bayes, support vector machine, and extreme gradient boosting (XGBoost), to develop prediction models for MACE
depending on clinical information and 6-month follow-up information. Among all samples, 70% were randomly selected for
training and the remaining 30% were used for model validation. Model performance was assessed based on accuracy, precision,
recall, F1-score, confusion matrix, area under the receiver operating characteristic (ROC) curve (AUC), and visualization of the
ROC curve.

Results: Univariate analysis showed that 21 patient characteristic variables were statistically significant (P<.05) between the
groups without and with MACE. Coupled with these significant factors, among the six machine learning algorithms, XGBoost
stood out with an accuracy of 0.7788, precision of 0.8058, recall of 0.7345, F1-score of 0.7685, and AUC of 0.8599. Further
exploration of the models to identify factors affecting the occurrence of MACE revealed that use of anticoagulant drugs and
course of the disease consistently ranked in the top two predictive factors in three developed models.

Conclusions: The machine learning risk models constructed in this study can achieve acceptable performance of MACE
prediction, with XGBoost performing the best, providing a valuable reference for pointed intervention and clinical decision-making
in MACE prevention.
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Introduction

The treatment of coronary heart disease has experienced major
advances with respect to thrombolysis [1], percutaneous
coronary intervention (PCI) [2], coronary artery bypass grafting
(CABG) [3], and other modalities, which have significantly
reduced the disability and mortality rate of coronary heart
disease with increased efficacy and safety. Despite the mature
use of coronary revascularization, the possible concomitant
postoperative complications, including stent restenosis, stent
thrombosis, coronary microvascular dysfunction, myocardium
ischemic/reperfusion injury, depression/anxiety before and after
surgery, and procedure-related vascular complications, have
led to a high rate of major adverse cardiovascular events
(MACE), with an incidence of approximately 15% to 25%,
mainly occurring within 6 months or 12-18 months after the
operation [4,5]. The occurrence of MACE is a serious issue that
markedly affects the prognosis of patients; thus, developing
methods to reduce or even avoid MACE has been a
long-standing and imperative clinical challenge. Faced with
these needs, a reliable risk prediction model of MACE after
coronary revascularization can effectively predict the severity
of disease to help clinicians and patients in the shared
decision-making process of treatment and rehabilitation plans,
which is of practical significance to take early measures so that
interventions can be delivered early to reduce the probability
of adverse events.

In recent years, there has been an explosion of studies on MACE
risk assessment, which can be divided into rule-based expert
systems, statistical-based analysis techniques, and machine
learning (ML)-based prediction models [6]. As a representative
expert system, the assistive diagnostic system MYCIN,
developed by Shortliffe et al [7], uses predicate logic and
first-order logic to imitate the reasoning process of an expert to
identify bacterial infections and provide available treatment
options. However, this medical expert system requires a manual
summarization of a large number of expert rules, which leads
to high maintenance costs and poor expansibility. In response
to these problems, statistical analysis has been incorporated into
medical data processing to aid clinical decision-making by
exploring the relationship between target and explanatory
variables [8,9]. With the continuous development of data mining,
ML algorithms [10] have been gradually applied in the field of
clinical medical research [11,12] by virtue of the powerful data
processing and knowledge representation capabilities, achieving
better predictive performance by deeply mining the inherent
laws of data to obtain insight into the tendency of future
development. Disease identification and prediction are often
regarded by ML as a classification problem with clinical
manifestations as feature variables and the corresponding
diagnostic results as targeted labels. For example, Zhu et al [13]
constructed a model for predicting the risk of central lymph
node metastasis utilizing available preoperative characteristics

and intraoperative frozen section information. Patel et al [14]
developed a fast and efficient detection technique for heart
disease based on 303 records with 76 attributes. Duan et al [15]
proposed a novel approach of MACE prediction for patients
with acute coronary syndrome using not only static patient
features but also dynamic treatment information during their
hospitalization, which appeared to boost the performance and
readily meet the clinical prediction demand.

These studies have indicated that ML has better predictive
performance over conventional statistical approaches. Hence,
it might be a better choice to develop a predictive model by
capitalizing on the strong generalization and robustness of ML
methods. However, in clinical reality, a nonnegligible problem
is that the distribution of data is often imbalanced and can even
be severely imbalanced in some cases [16]; that is, the number
of samples with MACE occurrence is significantly smaller than
that without MACE occurrence. In such a case, poor risk models
may be obtained because the decision boundary is likely biased
in response to the unbalanced data [17].

Data imbalance is a common clinical occurrence [18]. For
example, in early cancer screening, the general population is
much larger than the population of cancer patients [19]. In the
identification of frailty in the elderly, the number of subjects
from the negative sample far exceeds that of the positive sample
[20]. Similarly, in considering risk prediction of MACE
occurrence after coronary revascularization, there are relatively
fewer patients with MACE occurrence than without. The
challenge with using imbalanced data sets is that most ML
techniques, which aim for overall classification accuracy, will
ignore the minority class in model training, making the minority
perform poorly [21]. In such a case, although high overall
accuracy can be achieved, the recognition rate of the minority
class is extremely low, which is usually more important. Sample
reconstruction is a commonly used intervention for imbalanced
classification to balance the positive and negative classes, mainly
including undersampling and oversampling [22]. Undersampling
aims to balance uneven data sets by removing data from the
majority class and keeping all of the data in the minority class.
Although it is a common and important approach, undersampling
can somewhat affect the model performance as some potentially
important information can be lost. Conversely, oversampling
extends the size of the minority class by duplicating or
synthesizing. This approach is appropriate when the original
sample set does not contain sufficient information. The most
frequently employed oversampling approach is the synthetic
minority oversampling technique (SMOTE) [23], which has
been successfully applied in imbalanced learning in various
fields [24,25], including clinical research [26,27]. For example,
Ishaq et al [27] proved that their model achieved the best
performance on a data set that was balanced with the SMOTE
technique in the prediction of survival for patients with heart
disease. In addition to direct employment of the original SMOTE
technique, some improved versions have been developed to
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synthesize higher-quality samples [28,29]. For example, Prusty
et al [28] proposed the weighted-SMOTE approach, in which
oversampling of each minority data sample is carried out based
on an assigned weight.

Accordingly, to achieve risk prediction of MACE after coronary
revascularization, the aim of this study was to establish
prediction models using ML algorithms based on sufficient data
processing. First, the SMOTE technique was adopted to balance
the initial imbalanced data set. For model construction, six
algorithms were respectively employed to build six predictive
models, and then the optimal model was determined according
to systematic comparison and evaluation. The models were then
further explored to identify factors affecting the occurrence of
MACE. This study can therefore provide a valuable reference
for pointed intervention and clinical decision-making in MACE
prevention.

Methods

Study Participants
We retrospectively collected the medical records of patients
who underwent coronary revascularization at The People’s
Hospital of Liaoning Province and Affiliated Hospital of
Liaoning University of Traditional Chinese Medicine from June
2019 to December 2020, including clinical information and
follow-up information within 6 months of surgery.

Inclusion and Exclusion Criteria
The general inclusion criteria were as follows: (1) age ≥18 years
and ≤85 years; (2) patients with previous coronary
revascularization (including CABG and/or PCI).

Exclusion criteria were as follows: (1) patients with incomplete
medical records and unable to provide original surgical
information; (2) patients who had not undergone coronary
revascularization or for whom the surgery failed; (3) patients
who required mechanical assistive therapy with an intraaortic
balloon pump (IABP) after successful coronary revascularization
treatment, since these patients are critically ill, requiring IABP
treatment to maintain vital signs and do not have indications
for discharge or follow-up; (4) combined with other heart
diseases such as malignant arrhythmia, cardiac insufficiency
before and after surgery (ie, patients with New York Heart
Association class IV or Killip class IV), or severe
cardiopulmonary insufficiency, as these patients are in a severe
condition and have underlying diseases resulting in a poor
prognosis or even surgical intervention, leading to lack of
follow-up or are already at the endpoint before enrollment; and
(5) patients with neuropathy or those who may not be able to
participate in the study due to literacy, language, or other
communication barriers.

Data Exploration
Before data modeling, data analysis and preprocessing are
indispensable [30]. We used the occurrence of MACE within
6 months after coronary revascularization as the study endpoint.
For this study, MACE was defined to involve all-cause deaths,
nonfatal myocardial infarction, recurrent angina, repeat
revascularization, stroke, and readmission within 6 months after

coronary revascularization. The total number of characteristic
variables in the raw data set was 49, which mainly involved
five aspects: subject characteristics, medical history, drug
prescriptions, clinical events, and clinical psychiatric
evaluations. Initially, removing the records with null clinical
endpoints and those with more than 80% missing features, we
obtained a data set containing 1004 records, including 753
without MACE and 251 with MACE. Subsequently, eight
unimportant characteristic variables with high missing rates
(over 60%) were deleted through communication with clinical
experts, and the missing values of the remaining 41
characteristic variables, if any, were filled in. The specific
data-filling approach was as follows. First, we logged into the
Data Management Center of Jiangsu Famous Medical
Technology Co Ltd, the cloud storage platform for the data, to
search for missing values, because there may have been a system
failure during the data export process. If not available, we would
continue to search for paper copies of the original information
and records. If these were not found, data-filling methods were
employed [31] using the expectation-maximization algorithms
for continuous variables and the mode for filling in missing data
of discrete variables.

The preliminary exploratory analysis revealed that the original
data set had a category imbalance problem; that is, the ratio of
the number of samples with and without MACE was
approximately 1:3, which would affect the performance of the
final risk prediction model to a certain extent. Therefore, we
determined that the original data set should first be processed
by equalization. Currently, the main strategies to solve the
imbalanced classification problem include oversampling and
undersampling [32], among which the former, represented by
SMOTE [23,33], is widely believed to be an effective strategy
for resolving class imbalance. Therefore, we adopted SMOTE
for sample reconstruction in this study.

SMOTE Technique
SMOTE is a novel oversampling technique proposed by Chawla
et al [23], which has become an effective preprocessing
technique for uneven data sets. In contrast to many traditional
oversampling methods, SMOTE does not simply duplicate the
samples but rather increases the number in the minority class
by creating new synthetic samples. This reduces the likelihood
of overfitting and improves the generalization performance of
the classifier on the test set. The algorithm flow is as follows
[23]:

(1) For each sample x in the minority class, calculate the
Euclidean distance between x and all samples in the minority
class and obtain its k-nearest neighbors.

(2) Select several samples from the k-nearest neighbors of x at
random.

(3) For each randomly selected neighbor xn, a new sample is
synthesized according to the formula:

xnew= x+rand(0,1)×(xn–x)

Depending on the sampling rate, we set the execution time and
repeated the above process. Finally, we obtained the final
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minority class by combining the synthetic samples with the
original samples.

Research Technique
All data were statistically analyzed with SPSS 26.0 software.
The enumeration data are expressed as count (percentage),

processed with a χ2 test, whereas the measurement data are
presented as means (SD) and analyzed by t tests. A P value less
than .05 was accepted to indicate statistical significance.

ML algorithms are characterized by better performance
compared with traditional statistical methods in risk prediction,
which were selected for modeling in MACE prediction in this
study. We randomly separated the entire data set into a training
set and validation set with an approximate ratio of 7:3, in which
the training set was used to construct the prediction model and
the validation set was used to verify and evaluate the model
performance. Six ML algorithms were employed to construct
risk prediction models: decision tree (DT), random forest (RF),
logistic regression (LR), naïve Bayes (NB), support vector
machine (SVM), and extreme gradient boosting (XGBoost).
Among them, RF and XGBoost are ensemble ML classifiers
and the others are single classifiers. Throughout the experiment,
we implemented modeling and evaluation using Python 3.8
with open-source Python libraries. During the training process,
the optimal parameters were determined by 10-fold

cross-validation to prevent overfitting, and then we obtained
the final ML-based risk models of MACE prediction.

Evaluation Metrics
The performance of ML models is often assessed with certain
evaluation metrics [34]. The blend of various evaluation metrics
is expected to facilitate analytical research [35]. In this study,
the indicators accuracy, precision, recall, F1-score, and area
under the receiver operating characteristic (ROC) curve (AUC)
were all employed for model evaluation. Values closer to 1 for
these metrics indicate better performance of the predictive
models. We also used the ROC curve as a common measure to
graphically visualize the discriminative power of models.

For classification tasks, the confusion matrix [34] is also a
critical index in model evaluation. The confusion matrix for
binary classification is shown in Table 1.

Based on the confusion matrix, the values of the other evaluation
metrics can be readily calculated, as follows:

Accuracy=(TP+TN)/(TP+FP+TN+FN)

Precision=TP/(TP+FP)

Recall=TP/(TP+FN)

F1-score=2×TP/(2×TP+FP+FN)=2×precision×recall
/(precision+recall)

Where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

Table 1. The confusion matrix for binary classification.

Predicted as positivePredicted as negativeLabeled

False positiveTrue negativeNegative

True positiveFalse negativePositive

Ethics Approval
This study was approved by the Institutional Review Board of
The Affiliated Hospital of Liaoning University of Traditional
Chinese Medicine (2019034FS(KT)-016-02).

Results

Univariate Analysis
Based on expert experience, a total of 1004 samples with 41
characteristic variables were finally adopted for model
construction after data preprocessing, including 251 cases with
MACE and 753 cases without MACE. The detailed statistical
information of the feature variables and results of the univariate

analysis of MACE are shown in Table 2. Due to space
limitations, only the statistically significant characteristic
variables are presented, and the complete information of the 41
variables is provided in Multimedia Appendix 1. The results
revealed that 21 characteristics were significantly different
(P<.05) between the groups without and with MACE, namely
age, smoking, work, course of the disease, family history,
seasonal onset, previous myocardial infarction, dyslipidemia,
brain infarction, cardiac insufficiency, traditional Chinese
medicine (TCM) treatment, anticoagulant drugs, antiarrhythmic
drugs, diuretic, lansoprazole injection, bleeding events, left
atrial diameter (LAD), left ventricular ejection fraction (LVEF),
bypass surgery, Hamilton anxiety scale (HAMA), and Hamilton
depression scale (HAMD).
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Table 2. Significant variables in univariate analysis.

P valuedfStatisticbWith MACE (n=251)Without MACEa (n=753)Characteristics

<.0011002–4.18066.82 (11.10)63.47 (10.98)Age (years), mean (SD)

.0414.360Smoking, n (%)

124 (49.4)429 (57.0)No

127 (50.6)324 (43.0)Yes

.01316.213Type of work, n (%)

95 (37.8)353 (46.9)Physical work

156 (62.2)400 (53.1)Mental work

<.001387.17–4.9305.43 (5.81)3.41 (5.11)Course of disease (years since diagnosis), mean (SD)

.0414.387Family history, n (%)

220 (87.6)693 (92.0)No

31 (12.4)60 (8.0)Yes

<.001117.920Seasonal onset, n (%)

199 (79.3)675 (89.6)No obvious seasonality

52 (20.7)78 (10.4)Obvious seasonality

<.001180.775Previous myocardial infarction, n (%)

147 (58.6)643 (85.4)No

104 (41.4)110 (14.6)Yes

.0116.659Dyslipidemia, n (%)

240 (95.6)681 (90.4)No

11 (4.4)72 (9.6)Yes

<.001124.822Brain infarction, n (%)

192 (76.5)671 (89.1)No

59 (23.5)82 (10.9)Yes

.0116.249Cardiac insufficiency, n (%)

226 (90.0)712 (94.6)No

25 (10.0)41 (5.4)Yes

.0314.489TCM c treatment, n (%)

173 (68.9)570 (75.7)No

78 (31.1)183 (24.3)Yes

<.001147.408Anticoagulant drugs, n (%)

185 (73.7)367 (48.7)No

66 (26.3)386 (51.3)Yes

.0414.123Antiarrhythmic drugs, n (%)

243 (96.8)703 (93.4)No

8 (3.2)50 (6.6)Yes

.0116.055Diuretic, n (%)

195 (77.7)636 (84.5)No

56 (22.3)117 (15.5)Yes

<.001114.381Lansoprazole injection, n (%)

235 (93.6)634 (84.2)No

16 (6.4)119 (15.8)Yes
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P valuedfStatisticbWith MACE (n=251)Without MACEa (n=753)Characteristics

<.001112.446Bleeding events, n (%)

233 (92.8)735 (97.6)No

18 (7.2)18 (2.4)Yes

.0031002–2.98837.70 (5.54)36.59 (4.91)LADd (mm), mean (SD)

.04395.972.11351.31 (8.91)52.65 (8.08)LVEFe (%), mean (SD)

.00717.200Bypass surgery, n (%)

242 (96.4)745 (98.9)No

9 (3.6)8 (1.1)Yes

<.001392.12–4.8779.27 (5.87)7.23 (5.26)HAMDf, mean (SD)

<.0011002–5.97911.13 (6.83)8.23 (6.59)HAMAg, mean (SD)

aMACE: major adverse cardiovascular events.
bt statistics for continuous variable comparisons and χ2 statistics for categorical variables.
cTCM: traditional Chinese medicine.
dLAD: left atrial diameter.
eLVEF: left ventricular ejection fraction.
fHAMD: Hamilton depression scale.
gHAMA: Hamilton anxiety scale.

Oversampling
To cope with data imbalances in the original data sets, the
SMOTE algorithm was employed. The sample distribution

before and after oversampling is shown in Table 3. The ratio of
sample numbers with and without MACE occurrence was 1:1
after oversampling for both the training and validation set.

Table 3. Data distribution before and after oversampling.

Validation setTraining setOversampling

With MACEWithout MACEWith MACEWithout MACEa

75226176527Before

226226527527After

aMACE: major adverse cardiovascular events.

Modeling and Evaluation
Taking whether MACE occurred within 6 months as the label
and 21 statistically significant factors in the univariate analysis
as features, the MACE risk prediction models were constructed
by DT, RF, LR, NB, SVM, and XGBoost, respectively. As the
central aspect, model evaluation is quite essential. First, we
comprehensively compared ML algorithms before and after
oversampling to test the effectiveness of the SMOTE strategy,
with specific results presented Table 4. The performance of the
ML models based on the oversampled data set was significantly
better than that of models based on the original imbalanced
dataset, thus demonstrating the rationality of the oversampling
strategy. It is worth noting that although the accuracy before
oversampling was slightly higher than that obtained after
oversampling, other indicators such as precision, recall,
F1-score, and AUC were significantly lower than those obtained
after oversampling, especially precision, recall, and F1-score.
The reason for the high accuracy before oversampling is that
this comes at the expense of the accuracy of minority samples
to improve the overall accuracy, which is of little significance

for the imbalanced classification problem [36], whereas the
evaluation indicators such as precision, recall, F1-score, and
AUC should be more relevant than the overall accuracy on
imbalanced issues.

The ROC curves for the six ML algorithms based on balanced
data sets are detailed in Figure 1. Combined with the results of
Table 4, it is clear that XGBoost and RF had better performance
with respect to accuracy, precision, F1-score, and AUC, with
XGBoost having the best effect. This is likely because both
XGBoost and RF belong to ensemble learning methods, with
the advantages of integrating the performance of multiple weak
classifiers. However, NB outperformed the other models in
terms of recall. From the definition, as detailed above, recall is
the proportion of correctly identified positive samples among
all positive samples, which indicates that NB is more sensitive
to positive samples than other models. However, as previously
explained, no single indicator exists that can comprehensively
evaluate a model’s performance. NB had the lowest values for
all metrics except for recall. Therefore, it is clear that XGBoost
achieved optimal performance in MACE prediction from an
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overall perspective, with an accuracy of 0.7788, precision of
0.8058, recall of 0.7345, F1-score of 0.7685, and AUC of
0.8599.

As another method to assess the effectiveness of classification,
the confusion matrices of all methods are illustrated in Figure
2. Specifically, 0 stands for the negative samples (ie, patients
without MACE occurrence) and 1 represents the positive
samples (ie, patients with MACE occurrence). It can be
intuitively seen that DT, RF, SVM, and XGBoost had higher
recognition rates for negative samples, with XGBoost
performing the best. The fact that XGBoost had only 100
misclassified samples, which was the lowest among all models,
further proving its superiority. In contrast, LR and NB had
higher identification rates for positive samples, with NB
accurately identifying 192 positive samples, confirming that
NB is more sensitive to the minority class. However, NB only
identified 127 negative samples, which was the lowest
recognition rate of negative samples among all models. In
addition, there were 133 misclassified samples with NB, which
was second only to DT. Combining these results with those
shown in Table 4, we can infer that NB is poor at identifying
negative samples despite its high recall, which suggests that the
classification boundary is biased toward the minority class (ie,
patients with MACE).

For a deeper exploration and interpretation of the constructed
models, the relative importance of feature variables in each
MACE-predicting model is shown in descending order in Figure
3. Since the SVM prediction model used in this study adopted
the radial basis function—a complex Gaussian kernel function
that makes the SVM model a black box—the direct influence
of each feature variable on the SVM model could not be
obtained. Similarly, the algorithm of NB used in this study was
Gaussian NB. Therefore, only the results of the other ML
prediction models are shown.

As shown in Figure 3, the overall trends of DT, RF, and
XGBoost demonstrated similar performance, although the
relative importance rankings of the three ML models were not
completely consistent. More specifically, anticoagulant drugs
and the course of disease consistently ranked in the top 2 for
all three prediction models. In contrast, the top 2 important
features of LR were previous myocardial infarction and HAMA.
The relative importance of high-ranking features of XGBoost,
the optimal model as a whole, was as follows (in descending
order): anticoagulant drugs, course of the disease, smoking,
lansoprazole injection, dyslipidemia, HAMA, diuretic, LAD,
seasonal onset, bleeding events, HAMD, LVEF, age,
antiarrhythmic drugs, TCM treatment, previous myocardial
infarction, brain infarction, work, and cardiac insufficiency.

Table 4. Comparisons of machine learning algorithms before and after oversampling.

AUCaF1-scoreRecallPrecisionAccuracyAlgorithms

Before oversampling

0.72960.39670.32000.52170.7575DTb

0.78880.29170.18670.66670.7741RFc

0.75340.35710.26670.54050.7608LRd

0.72240.46890.45330.48570.7442NBe

0.74310.16470.09330.70.7641SVMf

0.78730.46770.38670.59180.7807XGBoostg

After oversampling

0.77480.68540.64600.730.7035DT

0.84340.74310.71680.77140.7522RF

0.78410.75320.78320.72540.7434LR

0.74630.74210.84950.65980.7058NB

0.80750.74210.72570.75930.7478SVM

0.85990.76850.73450.80580.7788XGBoost

aAUC: area under the curve.
bDT: decision tree.
cRF: random forest.
dLR: logistic regression.
eNB: naïve Bayes.
fSVM: support vector machine.
gXGBoost: extreme gradient boosting.
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Figure 1. ROC curves of machine learning algorithms after oversampling. ROC: receiver operating characteristic; DT: decision tree; RF: random
forest; LR: logistic regression; NB: naïve Bayes; SVM: support vector machine; XGBoost: extreme gradient boosting; TPR: true positive rate; FPR:
false positive rate.

Figure 2. Confusion matrix of the risk prediction models with machine learning algorithms: (A) decision tree (DT), (B) random forest (RF), (C) logistic
regression (LR), (D) naïve Bayes (NB), (E) support vector machine (SVM), (F) extreme gradient boosting (XGBoost).
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Figure 3. The relative importance of feature variables of the risk prediction models with machine learning algorithms: (A) decision tree (DT), (B)
random forest (RF), (C) logistic regression (LR), (D) extreme gradient boosting (XGBoost). TCM: traditional Chinese medicine; LAD: left atrial
diameter; LVEF: left ventricular ejection fraction; HAMD: Hamilton depression scale; HAMA: Hamilton anxiety scale.

Discussion

Principal Results
MACE such as recurrent angina can still occur after coronary
revascularization, thus affecting the efficacy and prognosis of
surgery. Detecting the postoperative characteristics of patients
and combining them with preoperative information to establish
a risk assessment model can provide timely warning of the risk
of MACE occurrence, thereby helping medical staff and patients
to intervene in a timely manner and achieve the purpose of
treating the disease before it occurs [37]. In this study, we
constructed and evaluated multiple risk models with ML
algorithms for MACE prediction in patients within 6 months
after coronary revascularization. Performance comparisons of
the ML models demonstrated that the XGBoost model
performed the best from an overall perspective. Moreover, a
deeper exploration of the relative importance of feature variables
of the constructed ML models was performed, which is valuable
to provide a reference for the pointed intervention and clinical
decision-making in MACE prevention.

According to existing studies, the risk factors of MACE after
coronary revascularization can be roughly divided into two
categories [38]: (1) uncontrollable factors such as gender, age,
and family history; and (2) controllable factors such as
environment and personal undesirable lifestyle habits. The
finding that the risk of MACE occurrence increases with age is

similar to that of previous studies [39]. The American Heart
Association lists seven major controllable risk factors for
coronary heart disease [40]: smoking, physical inactivity, diet,
being overweight or obese, abnormal cholesterol levels, high
blood pressure, and diabetes. Ritchie et al [41] demonstrated
that environment and personal habits contribute to a higher risk
of MACE occurrence. Likewise, we found that smokers had a
5.8% higher MACE incidence than that of nonsmokers and
mental workers had a 6.9% higher rate than that of manual
workers, possibly due to lack of exercise. In addition, we
discovered that the occurrence of MACE was correlated with
the course of the disease and seasonal changes, which is in line
with previous studies [42]. The longer the course of the disease,
the higher the incidence of MACE. In addition, the seasonal
onset is a reminder of the importance of being proactive in
disease prevention according to the seasonal changes in clinical
practice.

The secondary prevention of coronary heart disease consists of
two main measures: (1) identification and control of risk factors
and (2) appropriate drug therapy [43]. For drug therapy, the use
of antiplatelet and anticoagulant drugs after coronary
revascularization can reduce the incidence of cardiovascular
events [44]. The Chinese expert consensus on the clinical
application of perioperative nonoral anticoagulants for PCI
published in 2018 [45] states that the perioperative period
(before, during, and after PCI) is associated with a high
incidence of thrombotic events and therefore anticoagulant
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treatment is important. In this study, the incidence of MACE
was lower in patients who were taking anticoagulants than for
those without anticoagulants, which was consistent with the
findings of Song et al [46] showing that routine anticoagulation
treatment after surgery may help to reduce the risk of MACE
occurrence. However, anticoagulants can also increase the risk
of bleeding [47], especially upper gastrointestinal (UGI)
bleeding. It is now generally accepted that proton pump
inhibitors have a significant protective effect against UGI
bleeding caused by antiplatelet and anticoagulant drugs, with
omeprazole and lansoprazole being the most potent inhibitors
of CYP2C19 [48], which partly explains the lower incidence
of MACE in patients using lansoprazole in our study.
Additionally, the univariate analysis showed that the incidence
of MACE in patients taking diuretics was 8.9% higher than that
of patients who were not taking diuretics, which is consistent
with previous research [49,50], and is likely related to the fact
that diuretics reduce renal blood flow and increase blood
concentrations. Therefore, the use of diuretics should be
cautiously considered with a full assessment of the fluid status
of patients.

Coronary heart disease belongs to the category of “chest pain”
or “heartache” in TCM. The main purpose of treatment is to
reduce the incidence of angina pectoris, heart failure, myocardial
infarction, and other adverse cardiovascular events [51]. In
recent years, clinical practice and related studies have confirmed
that TCM treatment has some advantages in relieving angina
pectoris, intervening restenosis after PCI, preventing and
controlling coronary no-reflow after reperfusion, improving
quality of life, increasing exercise tolerance, and reducing the
incidence of cardiovascular events and adverse reactions [52,53].
Similarly, we found that the variable of TCM treatment was an
important feature in the constructed XGBoost model. Therefore,
a combination of TCM and western medicine should be
considered to provide more beneficial treatment for MACE
prevention in practical clinical decision-making, thereby
improving the prevention of MACE after coronary
revascularization.

With establishment of the bio-psycho-social medical model,
the important role of psychological factors on the occurrence
and development of diseases is becoming more widely
recognized [54]. A large number of evidence-based medical
studies have demonstrated the strong relationship between
psychological status and the risk of diseases. Barth et al [55]
and Roest et al [56] found that depression and anxiety were
important risk factors for morbidity and mortality of patients
with coronary heart disease, and Taylor et al [57] suggested that
depression, social isolation, and emotional abnormalities were
closely associated with the occurrence of cardiovascular disease.
Patients with coronary revascularization are more likely to suffer
from depression and anxiety due to the dual psychological stress
of surgery and underlying diseases, and these adverse

psychological responses will directly affect prognosis and
eventually become risk factors of MACE. For example, by
following up 817 patients undergoing CABG for 5.2 years,
Blumenthal et al [58] detected that the mortality of patients with
moderate to severe depression was 2 to 3 times higher than that
of others within 6 months after surgery. Consistent with these
findings, we observed that patients with MACE after coronary
revascularization had higher HAMA and HAMD scores,
indicating greater levels of anxiety and depression.
Consequently, it is important to pay more attention to the mental
and psychological state of postoperative patients and provide
timely psychological guidance and comfort as needed.

Limitations
There are several practical deficiencies and limitations of this
study. First, the amount of data available for analysis was
limited. It is well known that the performance of ML algorithms
depends to a certain extent on the sample size and that the model
constructed cannot achieve the best performance, and may even
be overfitted, with a small data set. In the future, with data
supplementation and further research, we will consider more
complex ML algorithms, including deep-learning algorithms,
to obtain more accurate and efficient prediction models for
clinical observation and research. Second, this was a
retrospective study from two centers (ie, The People’s Hospital
of Liaoning Province and Affiliated Hospital of Liaoning
University of Traditional Chinese Medicine). There is a lack of
follow-up data on clinical factors and relevant disease
progression; thus, a large multicenter sample study is desired
for further generalizability and reliability of the results. Last
but not least, in addition to numerical structured data such as
vital signs and laboratory tests, clinical electronic medical
records also contain a massive amount of unstructured data in
the form of text such as patients’complaints, diagnostic records,
and medication information; thus, determining the best ways
to use such unstructured information for data analysis and
modeling will be the focus of future research. Moreover, we
plan to integrate structured and unstructured data
comprehensively to develop a risk assessment model to predict
the risk probability of MACE in patients with coronary heart
disease after revascularization.

Conclusions
In this study, we developed and evaluated risk prediction models
for MACE within 6 months after coronary revascularization by
utilizing available clinical variables and postoperative follow-up
information with ML algorithms. The constructed model can
effectively identify high-risk patients with good performance,
and the factors that may be associated with MACE were also
explored and analyzed in-depth, which is of great significance
to provide a reference for medical staff to carry out risk
management.
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