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Abstract

Background: The recognition of medical entities from natural language is a ubiquitous problem in the medical field, with
applications ranging from medical coding to the analysis of electronic health data for public health. It is, however, a complex
task usually requiring human expert intervention, thus making it expansive and time-consuming. Recent advances in artificial
intelligence, specifically the rise of deep learning methods, have enabled computers to make efficient decisions on a number of
complex problems, with the notable example of neural sequence models and their powerful applications in natural language
processing. However, they require a considerable amount of data to learn from, which is typically their main limiting factor. The
Centre for Epidemiology on Medical Causes of Death (CépiDc) stores an exhaustive database of death certificates at the French
national scale, amounting to several millions of natural language examples provided with their associated human-coded medical
entities available to the machine learning practitioner.

Objective: The aim of this paper was to investigate the application of deep neural sequence models to the problem of medical
entity recognition from natural language.

Methods: The investigated data set included every French death certificate from 2011 to 2016. These certificates contain
information such as the subject’s age, the subject’s gender, and the chain of events leading to his or her death, both in French and
encoded as International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) medical
entities, for a total of around 3 million observations in the data set. The task of automatically recognizing ICD-10 medical entities
from the French natural language–based chain of events leading to death was then formulated as a type of predictive modeling
problem known as a sequence-to-sequence modeling problem. A deep neural network–based model, known as the Transformer,
was then slightly adapted and fit to the data set. Its performance was then assessed on an external data set and compared to the
current state-of-the-art approach. CIs for derived measurements were estimated via bootstrapping.

Results: The proposed approach resulted in an F-measure value of 0.952 (95% CI 0.946-0.957), which constitutes a significant
improvement over the current state-of-the-art approach and its previously reported F-measure value of 0.825 as assessed on a
comparable data set. Such an improvement makes possible a whole field of new applications, from nosologist-level automated
coding to temporal harmonization of death statistics.

Conclusions: This paper shows that a deep artificial neural network can directly learn from voluminous data sets in order to
identify complex relationships between natural language and medical entities, without any explicit prior knowledge. Although
not entirely free from mistakes, the derived model constitutes a powerful tool for automated coding of medical entities from
medical language with promising potential applications.
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Introduction

Background
The democratization of electronic health record databases has
created countless opportunities to gain precious insights in fields
ranging from precision medicine to public health and
epidemiology. However, these databases still present many
challenges, both technical and methodological, that make their
exploitation cumbersome. As an example, natural language is
extensively present in some health-related databases, while
being notoriously difficult to handle with traditional statistical
methods and preventing most international comparisons due to
language barriers. In order to counter these undesirable
properties, several approaches have been devised. For instance,
by encapsulating most medical entities in a standardized
hierarchical tree structure, the International Statistical
Classification of Diseases and Related Health Problems, Tenth
Revision (ICD-10) [1] offers a powerful and expressive way of
organizing analytics-compatible health databases. On the other
hand, ICD-10 entities are significantly less intuitive for human
users than natural language and require years of training and
practice to handle fluently. As a consequence, the data
production of classification-based medical data is usually
handmade, expansive, and time-consuming. Several attempts
have been made to design artificial intelligence–based systems
that are able to automatically derive medical entities from natural
language, some with quite promising performance [2-4].
However, all of them fall short in automating the complex
production schemes inherent to medical databases, specifically
in regard to their high data-quality standards.

However, recent innovations in deep artificial neural networks
have achieved significant progress in natural language
processing (NLP) [5,6]. In particular, their applications in the
field of machine translation [7-9], fueled by increases in both
data and computing power, repeatedly bring automated systems
closer and closer to human-level performance. Several attempts
have been made to apply these powerful techniques in an
electronic health database setting, most of them with mitigated
success. As an example, the current state of the art in ICD-10
entity recognition from natural language in death certificates
still remains a combination of expert systems and support vector
machine (SVM)–based classical machine learning [2]. Several
explanations exist for this discrepancy between traditional
machine translation and medical entity recognition. First, deep
artificial neural network–based methods are known to require
huge amounts of data for optimal performance. However, most
experiments were either performed with slightly out-of-date
neural architectures or with data set sizes at least an order of
magnitude below what would be typically required [10]. On the
other hand, the Centre for Epidemiology on Medical Causes of
Death (CépiDc) has been storing French death certificates at
the national scale since 2011 in both natural language and
ICD-10–converted formats. The entire database amounts to just
under 3 million death certificates, thus providing considerably

better settings in which to investigate the potential applications
of deep neural networks in medical entity recognition.

This paper formulates the process of ICD-10 entity recognition
from natural language as a sequence-to-sequence (Seq2Seq)
statistical modeling problem and proposes to solve it with a
variation one of the state-of-the-art machine translation neural
architectures, the Transformer. The Methods section focuses
on describing the aforementioned statistical modeling problem
and overall methodology. The Results section reports the results
of the experiments that were performed on the French CépiDc
data set as well as a comparison with the current state of the art.
The Discussion section presents a discussion on the model’s
potential limitations through an error analysis and describes
potential elements for improvement.

Related Work
The task of identifying ICD-10 medical entities from natural
language, whether in French or in any other language, is a
well-investigated problem, where several promising approaches
have already been proposed. Most of these solutions were
published at the Conference and Labs of the Evaluation Forum
(CLEF) eHealth challenge [2,3,10], a competition held annually
where teams compete to solve NLP tasks on medical textual
data. For instance, the task of recognizing ICD-10 entities from
death certificates, in several languages including French, have
been addressed several times over the years in this competition.
So far, when it comes to the task of extracting ICD-10 entities
from French death certificates, the state of the art is held by the
Laboratoire d'Informatique pour la Mécanique et les Sciences
de l'Ingénieur (LIMSI); they used a hybrid approach that
combined data-based dictionaries for feature engineering and
linear SVMs. However, nowadays, most NLP tasks are typically
better handled by neural network–based architectures. These
deep learning–based approaches have been applied to the
problem at hand in this paper, mainly through a range of
Seq2Seq architectures, as follows:

• Recurrent neural network–based encoder-decoder
architectures, either with or without attention [11]

• Convolutional neural network–based encoder-decoder
architectures [12,13]

• Fully attentional, although pretrained, architectures using
a Bidirectional Encoder Representations from Transformers
(BERT) model and transfer learning [14,15].

However, all those techniques, at least when applied to French
data, failed to outperform the LIMSI’s feature
engineering–based approach. A possible explanation for this
observation might lie in the data set that the teams were given.
Indeed, their sample sizes were generally less than 200,000
observations [2]; this is usually far from enough for proper
training of advanced deep learning models, as modern neural
architectures in the neural translation academic literature usually
train on data sets with up to tens of millions of observations [9].
This might also explain why teams using fully attentional
models, which are the current state-of-the-art models in neural
translation, used pretrained architectures and transfer learning
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with BERT instead of training a full neural architecture end to
end in a purely supervised fashion. The latter is exactly what
this paper sets out to investigate and constitutes, at least to the
authors’ knowledge, the first attempt at training a modern, fully
attentional, end-to-end trained model on a data set with a sample
size compliant with the requirements of modern deep learning
methods.

Methods

Ethical Considerations
The use of the mortality data investigated in this paper aligns
with the mission of Inserm to produce national statistics on the
medical causes of death, as listed in Article L2223-42 of the
general code of local authorities (Code général des collectivités
territoriales), after consulting the French National Commission
for Data Protection and Liberties (Commission Nationale de
l'Informatique et des Libertés).

Materials

Overview
The data set used for this study consists of every available death
certificate found in the CépiDc database for the years 2011 to
2016, representing just under 3 million training examples. These
documents record various types of information about their
subjects, including the chain of events leading to the subject’s
death, written by a medical practitioner.

Causal Chain of Death
The causal chain of death constitutes the main source of
information available on a death certificate in order to devise
mortality statistics. It typically sums up the sequence of events

that led to the subject’s death, starting from immediate causes,
such as cardiac arrest, and progressively expanding into the
individual’s past and to the underlying causes of death. The
World Health Organization (WHO) provides countries with a
standardized causal chain of events format, which France
follows, alongside most developed countries. This WHO
standard asks the medical practitioner in charge of reporting the
events leading to the subject’s passing to fill out a two-part form
in natural language. The first part is comprised of four lines, in
which the practitioner is asked to report the chain of events in
inverse causal order (ie, immediate causes are reported on the
first lines, and underlying causes are reported on the last lines).
Although four lines are available for reporting, they do not all
need to be filled. In fact, the last available lines are rarely used
by the practitioner. The second part is comprised of two lines
in which the practitioner is asked to report “any other significant
conditions contributing to death but not related to the disease
or condition causing it” [16] that the subject may have been
suffering from.

In order to counter the language-dependent variability of death
certificates across countries, a preprocessing step is typically
applied to the causal chain of events leading to the individual’s
death, where each natural language–based line on the certificate
is converted into a sequence of codes defined by the ICD-10
[1]. The ICD-10 is a medical classification created by the WHO
that defines 14,199 medical entities (eg, diseases, signs, and
symptoms) distributed over 22 chapters; entities are encoded
with three or four alphanumeric decimal symbols (ie, one letter
and two or three digits), 5615 of which are present in the
investigated data set. Table 1 shows an example of a causal
chain of events, taken from an American death certificate, in
both natural language and ICD-10 formats.

Table 1. Example of a causal chain of events leading to death as written in natural language and as ICD-10 codes.

ICD-10a,b encodingNatural languagePart of form

Part 1

I64 G819Stroke in September left hemiparesisLine 1

S010 W19 S423Fall scalp laceration fracture humerusLine 2

I251Coronary artery diseaseLine 3

I629Acute intracranial hemorrhageLine 4

F03 F329 I10Dementia depression hypertensionPart 2

aICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision.
bSome natural language lines correspond to several ICD-10 codes, whose orders matter in the overall coding process.

As previously mentioned, the process of converting the natural
language–based causal chain of events leading to death into an
ICD-10 format is the main focus of this paper. Consequently,
the latter will be selected as the target variable and the former
as the main explanatory variable for the neural network–based
predictive model that will be further defined.

For reasons related to the underlying cause of death production
process, the natural language–based chain of events and its
ICD-10–encoded counterpart suffer from alignment errors at
the line level, as shown in Table 2. Although qualitatively
deemed quite rare, this misalignment phenomenon brings
sufficient noise into the data set to prevent model convergence
while fitting models with line-level sentence pairs.
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Table 2. Death certificate from showcasing the misalignment phenomenon.

ICD-10a encodingNatural languagePart of form

Part 1

I64 G819Stroke in September left hemiparesisLine 1

S010 W19 S423Fall scalp laceration fracture humerusLine 2

I629b I251Coronary artery diseaseLine 3

N/AcAcute intracranial hemorrhagebLine 4

F03 F329 I10Dementia depression hypertensionPart 2

aICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision.
bThe ICD-10 code related to line 4 has been moved to line 3 by a human coder. Concatenating lines in a backward fashion restores alignment while
preserving ordering.
cN/A: not applicable; the code that was previously here was moved to line 3, leaving this line blank.

In order to bypass this critical flaw in the investigated data set,
a decision was taken to consider as input and target variables
the certificate lines concatenated in a backward fashion (from
part 2 to line 1 in part 1), as can be seen in Figure 1. This slight
change in data format does not significantly alter the problem
at hand, as the investigated model is still trained to recognize
ICD-10–encoded medical entities from natural language. If

anything, the modified modeling problem can be expected to
be more difficult, as both the variance and dimensionality of
both input and target variables have increased. Several methods
are available to retrieve line-level aligned predictions from a
model trained in such a configuration, for instance, using a
combination of transfer learning and pruned tree search.

Figure 1. The original modeling problem and the modified investigated problem. In the original modeling problem (left), each certificate line is taken
as an input variable to predict its corresponding ICD-10 code line. In the modified investigated problem (right), all certificate lines are concatenated
and taken as an input variable to predict the corresponding concatenated ICD-10 code line. Lines 1-5 are from part 1 of the death certificate, and line 6
is part 2 of the certificate. ICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision.

Miscellaneous Variables
From gender to place of birth, a death certificate contains various
additional types of information on its subject besides the chain
of events leading to death. As some of these items are typically
used by both expert systems and human coders to detect ICD-10
entities in the chain of events, they present an interest as
explanatory variables for the investigated predictive model.
After consultation with expert coders, the following items

available on French death certificates were selected as additional
exogenous variables:

• Gender (two-state categorical variable)
• Year of death (six-state categorical variable)
• Age, categorized into 5-year intervals, with the exception

of subjects less than 1 year of age, who were divided into
two classes depending on whether they were more than 28
days of age
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• Origin of the death certificate (two-state categorical
variable, from either the electronic- or paper-based death
certification pipeline).

Strictly speaking, the subject’s year of passing should only have
a limited effect on the relationship between natural language
and its contained medical entities. However, the WHO-defined
coding rules, as well as their interpretations by human coders,
evolve slightly over the years. As a consequence, the model
should benefit, in terms of predictive performance, from being
able to differentiate between different years.

Similarly, the impact of the certificate’s origin on the model’s
predictive power is not entirely obvious at first sight. However,
the data entry process for the paper-based certificates is handled
by humans through speech recognition technology. In addition,
the data entry clerks are asked to apply a small set of
normalization rules to the natural language. Electronic death
certificates, however, are received directly from the medical
practitioner as is. As a consequence, distribution shifts are to
be expected from the paper- to electronic-based chain of events,
and including this information as an explanatory variable might
be beneficial for the model’s predictive power.

Model Definition
With both the explanatory and target variables well defined, the
investigated modeling problem can be defined as follows:

The elements of equation 1 are defined as follows:

• P(X)) is the probability density of discrete random variable
X

• is the sequence of ICD-10 codes present
on the death certificate concatenated on a single line of
sequence length I

• is the line in natural language, tokenized with
a vocabulary V and of sequence length L

• is the categorized age
• is the year of death
• is the gender
• is the death certificate’s origin
• fθ is a mapping from the problem’s input space to its output

space, parameterized in θ∈Rn, a real-valued vector
(typically a neural network) of dimensionality n∈N, the
model’s dimensionality.

Theoretically, the derived modeling problem is typical of
traditional statistical modeling problems and could be solved
using multinomial logistic regression. In practice, however, this
approach presents a significant drawback. In this setting, the
investigated target variable constitutes a categorical variable

with 561620 distinct states—death certificates in the data set
have, at most, 20 ICD-10 codes in them, each of which can take
5616 distinct values—thus rendering the analysis intractable,
both in terms of computational expanses and sample size
requirements. This type of approach, however, makes no use

of the data’s inherent sequential nature, which allows the
rewriting of the investigated modeling problem as follows:

where is the i-th code present on
the code line.

Factors in the right-hand side of equation 2 can be interpreted
as constituting a distinct predictive modeling problem, all with
an output variable distributed across all ICD-10 codes. Although
still highly dimensional, predicting output variables of such
dimensionality is typically tractable with modern machine
learning techniques [7]. However, they present two significant
drawbacks for traditional modeling techniques: (1) the number
of output variables to predict varies across observations in the
data set (not all death certificates have 20 ICD-10 codes) and
(2) the output variables’ distributions are conditioned on
previous ones.

This particular formulation is known in the deep artificial neural
network community as a Seq2Seq modeling problem [7] and
has been an active area of research for the past few years. As
one of the state-of-the-art neural architectures devised in the
field, the Transformer [9] was chosen as the predictive model
investigated in the following experiments. It was recently
outperformed by the Evolved Transformer [17], a variation on
the former. However, both approaches were investigated and
yielded similar results. The Transformer architecture was
retained due to its availability of official and maintained
implementations, and the final results further displayed were
obtained using an ensemble of seven such models. Each of the
ensemble models’ hyper-parameters and individual
performances are available in Tables S1 and S2 of Multimedia
Appendix 1, respectively.

Several specificities in the previously defined modeling problem
required small adaptations to the Transformer architecture.
However, the authors feel that their complexity falls outside the
scope of this paper. The interested reader will, however, find a
complete description of these modifications as well as a
visualization in Figure S1 of Multimedia Appendix 1.

Finally, the authors are aware that many other approaches to
sequential learning architectures are available, and have already
been used, in order to address the problem investigated in this
paper. The current state of the art on French death certificates,
for instance, uses a multi-label classification approach. The
authors chose not to investigate those methods for several
reasons.

First, the task of extracting ICD-10 codes from natural language
on death certificates is only a preliminary step in the production
of a mortality statistics pipeline. The final task in this process
is to derive the underlying cause of death, from these ICD-10
codes, following a set of rules defined by the WHO. The choice
of the underlying cause of death from this set of rules heavily
depends on the codes’order in the certificate. As a consequence,
it is of paramount importance that the model be able to output
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these codes in the proper order, which is simply unachievable
with a multiclass classification approach; this makes the problem
a sequential learning problem, as our output is, indeed, a
sequence of variable-length tags taken from a set of well-defined
classes. However, several approaches other than Seq2Seq are
still available to solve such problems, such as connectionist
temporal classification, which is typically used in optical
character recognition tasks.

Second, the ICD-10 codes that the model needs to output are
not necessarily independent. For instance, the presence of a
given code in the outputted sequence can significantly alter
other codes present in the sequence. As an example given by
our expert coder, hematoma-related codes can be found in two
ICD-10 chapters: first in chapter 9 of the ICD-10 classification
(ie, codes related to circulatory diseases, beginning with an “I”)
and then in chapter 19 (ie, codes related to injury, poisoning,
and certain other consequences of external causes, beginning
with an “S” or a “T”). The choice of attributing the presence of
the entity “hematoma” on a death certificate to the first or second
possible chapter depends on whether an external
cause—meaning an ICD-10 code from chapter 20—has already
been outputted previously while converting the death certificate
into codes. In order to account for such dependencies, we are
compelled to model the joint distribution of the output sequence
conditioned on the input variables, which is exactly what
Seq2Seq is about. Therefore, the choice of using Seq2Seq
approaches to solve the modeling problem investigated in this
paper becomes not only natural but almost compulsory. In
addition, due to the data-driven tokenization used in order to
make use of the ICD-10 classification’s hierarchical nature,
some tokens that the model is allowed to predict are not valid
ICD-10 codes. For instance, the code “I659” could be
decomposed into a sequence of two codes (ie, “I65” and “9-”
with the “-” character at the end used to keep track of spaces
between codes). It appears clear here that when the model needs
to output an “I659” code, predicting “9-” in itself is not possible
without any conditioning on “I65” appearing earlier.

Training and Evaluation Methodology
The investigated model was trained using all French death
certificates from the year 2011 to 2016. A total of 5000
certificates were randomly excluded from each year; these were
distributed into a validation set for hyper-parameter fine-tuning
and into a test data set for unbiased prediction performance
estimation (2500 certificates each), resulting in three data sets
with following sample sizes: (1) training data set (3,240,109
records), (2) validation data set (30,000 records), and (3) test
data set (30,000 records).

The model was adapted from TensorFlow’s official Transformer
implementation; TensorFlow is a Python-based distributed
machine learning framework. Training was performed on three
NVIDIA RTX 2070 GPUs simultaneously with a mirrored
distribution strategy using a variant of stochastic gradient
descent, the Adam optimization algorithm.

Hyper-parameters were first initialized following the
Transformer’s base setting, according to the architecture’s
authors. Further fine-tuning of a selected number of
hyper-parameters was performed using a random search guided

on the validation set. The interested reader will find a complete
description of the training process and hyper-parameter values
defining this model in Multimedia Appendix 1.

After training, the model’s predictive performance was assessed
on the test data set, which was excluded prior to training, as
mentioned earlier, and compared to the current state of the art,
obtained by the LIMSI during the 2017 CLEF eHealth challenge
[2]. As the CLEF eHealth challenge only provided electronic
certificates to the contestants, and in order to ensure
comparability, the model’s performance was assessed using
paper-based and electronic certificates, separately. For the same
reason, the performance metrics used for model evaluation were
selected as follows:

The elements of equations 4 and 5 are defined as follows:

• True positives: the number of codes predicted by the model
that are present in the test set’s true output target

• False positives: the number of codes predicted by the model
that are not present in the test set’s true output target

• False negatives: the number of codes not predicted by the
model that are present in the test set’s true output.

Note that predictions are considered as true positives only for
exact code matches, up to the fourth character. Table 3 shows
an example of how this can affect the reported performance, by
focusing on a line of the causal chain of events leading to death
reported in Table 1 and fictional examples of predictions, as
follows:

• The first prediction example outputs two incorrect codes.
The number of true positives is, thus, 0, leading to all
metrics being evaluated as 0.

• The second prediction example correctly outputs the first
code (I64: “Stroke”) but fails to correctly output the second
code’s fourth character (G81: “Hemiplegia” is predicted
instead of the ground-truth value G819: “Hemiplegia,
unspecified”). Although the prediction and ground truth
are quite similar (ie, they share the three first characters),
this code is considered incorrect, which leads to counts of
both one false positive (ie, the code was predicted
incorrectly) and one false negative (ie, the correct G819
code was not predicted), leading to all metrics being
evaluated as 0.5.

• The third prediction example correctly outputs the first code
but fails to recognize any additional codes from the textual
input, leading to a precision of 1 (ie, all predicted codes are
indeed true positives) and a recall of 0.5 (ie, one code
present in the ground truth was not predicted). This then
leads to an F-measure of 0.66. Note that in this context, the
F-measure is higher than in the second example.

• The fourth prediction example correctly outputs both codes
but also outputs two additional and completely unrelated
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codes, leading to a precision of 0.5 (ie, only half of the
predicted codes are present in the ground truth) and a recall
of 1 (ie, all codes present in the ground truth were correctly
predicted), leading to an F-measure of 0.66.

• The fifth prediction example correctly outputs both codes
and does not predict any additional codes (ie, perfect
prediction), leading to all metrics being evaluated as 1.

• The sixth prediction example correctly outputs both codes
and does not predict any additional codes. However, the
codes are in the wrong order, but this is not penalized in
any way in the metrics definitions, so this prediction is
associated with metrics all being evaluated as 1.

Table 3. Examples of how the selected performance metrics behave for different predictions. The input text was “stroke in September left hemiparesis”
and the true ICD-10 encoding was I64 and G819.

F-measureRecallPrecisionICD-10a codesPrediction example

0.00.00.0B189 H1551

0.50.50.5I64 G812

0.660.51.0I643

0.661.00.5I64 G819 A338 B874

1.01.01.0I64 G8195

1.01.01.0G819 I646

aICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision.

The informed reader might find that these metrics stray away
from common machine translation system benchmarking
metrics, such as bilingual evaluation understudy (BLEU) or
negative log perplexity scores [7-9,18], but the former were the
only ones used in comparable work. As BLEU and negative log
perplexity have close to no absolute interpretability without
comparisons to alternative methods, their use was discarded
from the experiment. In order to present the reader with a more
comprehensive view of the performance of the proposed
approaches, these accuracy metrics were also derived on a
per-chapter basis, again on the same test set, and 95% CIs were
computed using bootstrapping.

Results

Performance Evaluation
The ensemble of Transformer models were trained as previously
described for approximately 3 weeks; the final ensemble’s
predictive performance and that of the current state-of-the-art
model are reported in Table 4. As previously mentioned, the
performance of the current state-of-the-art model was assessed
based on electronic certificates only and should, as a
consequence, be compared to the performance of the proposed
approach based on a similar situation. Because paper-based
certificates are still more common than their electronic
counterparts in France (ie, approximately 90% of certificates
in the data set are paper based), the performance of the approach
using all certificates and that of the paper-based certificate
approach are also displayed.

Table 4. Assessments of the current state-of-the-art model and the proposed approach.

Recall (95% CI)Precision (95% CI)F-measure (95% CI)aApproach

0.784c0.872c0.825cCurrent state of the art: LIMSIb

0.948 (0.943-0.954)0.955 (0.95-0.96)0.952 (0.946-0.957)Proposed approach: electronic certificates

0.936 (0.934-0.937)0.949 (0.947-0.95)0.942 (0.941-0.944)Proposed approach: paper-based certificates

0.937 (0.935-0.938)0.949 (0.948-0.951)0.943 (0.941-0.944)Proposed approach: all certificates

a95% CIs were derived by bootstrapping.
bLIMSI: Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur.
c95% CIs were not provided in the LIMSI’s publication and are, therefore, not displayed.

The proposed approach shows an F-measure that is 73% closer
to a perfect score when compared to the current state-of-the-art
approach. In addition to its substantial improvement in the
F-measure, the proposed approach displays significantly more
balanced precision and recall scores than the LIMSI’s method:
from 5% relative difference to less than 1%.

A surprising result, however, lies in the model’s lower
performance based on paper-based certificates. Indeed, the
standardization they receive due to their voice-based data
collection process considerably reduces variance and prevents
any misspelled words in the data that are potentially present in
electronic-based certificates. As a consequence, model
performance on the former should be expected to be higher. A
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potential explanation for this phenomenon lies in the potential
for missing data in paper-based certificates. Indeed, when
confronted with poorly written words, data clerks are allowed
to replace them with the “!” symbol when the word is estimated
to be unreadable; this occurs in approximately 10% of
paper-based certificates. Medical coders, however, are usually
more efficient in guessing the words from the written
certificates, typically with the addition of contextual clues. A
purely text-based approach, however, is then limited to pure
guesses for those observations with missing data, logically
leading to poorer performance. Because this phenomenon is
absent from electronic-based certificates, it is a promising
candidate for explaining this unexpected difference in
performance. In addition, the model performance based on
paper-based certificates that did not contain any “!” symbols in
the test set led to an F-measure of 96.2%, thus providing strong
evidence to support this hypothesis.

Per-Chapter Quantitative Analysis
Although the proposed approach significantly outperformed the
current state-of-the-art approach, neural network–based methods
are known to present several drawbacks that can significantly
limit their application in some situations. Typically, the current
lack of systematic methods to interpret and understand neural
network–based models and their decision processes can lead
the former to perform catastrophically on incorrectly predicted
cases, independent from their high predictive performance. As
a consequence, the proposed model behavior in incorrectly
predicted cases requires careful analysis. In addition, such an
investigation can lead to significant insights that are potentially
relevant when applying the derived model in practical
applications.

One simple, straightforward approach to understanding the
model’s weakness lies in assessing its performance on a
finer-grain level, for instance, by identifying false positives and
negatives not only at the global level, but per ICD-10 chapters,
as can be seen in Table 5.

It appears from this table that although the most prevalent
medical entities are associated with low false positive and

negative rates, some rarer chapters are associated with
unreasonably high error rates. Depending on their prevalence
and accuracies, these chapters can be classified into two distinct
categories:

1. Chapters associated with unreasonably high error rates but
extremely low prevalence, such as “Diseases for the ear
and mastoid process” or “Pregnancy, childbirth and the
puerperium.” However, these entity groups remain rare
enough within the data set to allow for alternative
treatments, like manual evaluation, for instance.

2. Chapters associated with high error rates, although lower
than the former, but with significant prevalence, such as
“External causes of morbidity and mortality” or “Injury,
poisoning and certain other consequences of external
causes.”

The task of identifying these potential mistakes, however, is
not entirely trivial depending on whether mistakes are of false
positive or false negative types. Indeed, potential false positive
errors are directly identifiable within the predicted ICD-10 code
sequences. As a consequence, coding quality control for this
type of mistake should be fairly straightforward to implement:
one could, for instance, manually review all code sequences
containing codes related to “Pregnancy, childbirth and the
puerperium” systematically. Potential false negative errors,
however, are inherently significantly harder to identify and
require further investigation, for instance, through association
rules analysis.

A number of promising leads are already available and should
reasonably improve upon the proposed approach:

• Training methods adapted to imbalanced data sets, such as
up-sampling or loss weighting

• Data augmentation for rare medical entities
• Addition of information to the model (ie, prenatal-related

death, for instance, is explicitly defined as such on
certificates)

• A hybrid approach with traditional NLP approaches, which
are typically less expensive in terms of sample size
requirements.
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Table 5. False positive, false negative, and prevalence rates for each ICD-10 chapter, sorted in descending order by prevalence.

Prevalence, %False negatives, %False positives, %ICD-10a chapter

22.44.983.75Diseases of the circulatory system

21.84.123.87Symptoms, signs and abnormal clinical and laboratory
findings, not elsewhere classified

15.95.074.07Neoplasms

8.764.003.02Diseases of the respiratory system

4.833.442.17Endocrine, nutritional and metabolic diseases

3.894.122.70Diseases of the nervous system

3.584.142.88Mental, behavioral and neurodevelopmental disorders

3.538.105.72Diseases of the digestive system

3.0819.619.2Factors influencing health status and contact with health
services

2.717.595.45Diseases of the genitourinary system

2.5723.516.6External causes of morbidity and mortality

2.559.237.98Certain infectious and parasitic diseases

2.0719.814.0Injury, poisoning and certain other consequences of external
causes

0.7712.26.72Diseases of the blood and blood-forming organs and certain
disorders involving the immune mechanism

0.6217.312.2Diseases of the musculoskeletal system and connective
tissue

0.518.168.72Diseases of the skin and subcutaneous tissue

0.1620.514.5Certain conditions originating in the perinatal period

0.1525.622.4Congenital malformations, deformations and chromosomal
abnormalities

0.07613.64.93Diseases of the eye and adnexa

0.04734.024.0Codes for special purposes

0.01733.35.60Diseases of the ear and mastoid process

0.005633.350.0Pregnancy, childbirth and the puerperium

aICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision.

Score Calibration Fitness Assessment
When the model is fit in a similar fashion to multinomial logistic
regression, it not only yields a prediction but an associated score
similar to a confidence probability. If properly calibrated, this
score can offer powerful insights regarding the prediction’s
quality at the individual level. Typically, a “good” score would
be expected to show higher values in cases where the ICD-10
sequence is correctly predicted and lower values when
incorrectly predicted. Such a well-calibrated score could, for
instance, allow for real-world applications of semiautonomous
systems where the following occurs:

• A threshold value for the model’s score is defined.
• All certificates whose predictions are associated with

confidence scores above the threshold level are accepted
without any additional human supervision.

• All certificates whose predictions are associated with
confidence scores below the threshold level are

systematically reviewed by a human expert and modified
manually, if required.

Being able to properly filter the model’s predictions according
to a well-calibrated confidence score would, thus, allow us to
get the best of both worlds. Most of the certificates would be
automatically coded by the autonomous system, leaving human
coders with only the most complex cases.

Efficient assessment of such scores in traditional machine
learning problems is typically done through visualization of
receiver operating characteristic (ROC) curves. However, the
sequential multinomial nature of the investigated problem
renders this approach ill-defined. The plot in Figure 2, while
conceptually similar to an ROC curve, was derived following
a slightly different approach in order to efficiently appreciate
the model score’s quality. This visualization was derived as
follows:

• A grid of score threshold values was defined with a uniform
grid with 0.01 intervals, corresponding to the threshold
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defined above, filtering between model predictions that
would require human examination or not.

• For every given threshold value, we computed the
percentage of predictions with inferior or equal scores,
which were considered as rejected, requiring human
examination due to poor score; we also computed the

F-measure performance on the predictions with high enough
scores that would be accepted without any human
intervention following the above example.

• The percentage of accepted certificates and F-measures
were plotted on a scatterplot against each other, with
threshold values displayed as colored points.

Figure 2. Percentage of rejected predictions versus F-measure for accepted ones. The score threshold values defining the accepted predictions are
displayed as colored points.

By showing a clean, increasing relationship between the number
of rejected predictions and the F-measure evaluated using the
remaining certificates, Figure 2 strongly indicates good score
calibration. As an example, by considering that only predictions
associated with a confidence score lower than 0.5 do not require
any additional human supervision, the system is able to code
approximately 80% of all certificates present in the test set with
an F-measure of 0.98, significantly higher than the value of 0.94
obtained on all test certificates.

Discussion

Principal Findings
The error analysis carried out so far allowed for the assessment
of the model’s strengths and weaknesses on a global level.
However, it failed to yield any interesting insights regarding
potential model biases, for instance, toward specific coding
rules. Indeed, the coding of medical entities from natural
language, especially with regard to mortality statistics, is subject

to a number of coding rules depending on context or pathology,
with a level of specificity oftentimes reaching casuistry [1].

In addition, all results have been presented so far with a model
error defined as a disagreement between the model’s output and
the information contained in the database. However, building
a medical database is a complex, mostly human-based process.
As such, an inevitable amount of noise is to be expected in the
ICD-10 codes present in the database, in two main forms. The
first form is simple human errors in the ICD-10. The second
form is the presence of unreadable text in paper-based
certificates. Unreadable words on paper-based certificates are
denoted as an exclamation point in the textual data that is fed
to the model. However, human coders usually take additional
time to infer these words, for instance, via queries to the medical
certifier or from contextual cues. This leads to death certificates
in the database where the ICD-10 sequences contain additional
codes compared to the textual data available. As such, not
predicting these codes would result in a drop in performance
metrics, while the model has no way of predicting them. An
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example of such a death certificate can be found in Table S3 in
Multimedia Appendix 1. These phenomena have the potential
to negatively bias the proposed model’s performance estimations
and should be the object of further investigation.

One straightforward, although fairly time-consuming, approach
to address these two considerations can be to have an ICD-10
coding expert manually examine some of the death certificates
where the model’s predictions do not match the ICD-10 codes
present in the database. Two experiments were conducted
following this idea.

In the first experiment, 99 certificates where the model’s
predictions did not exactly match with the database’s ICD-10
variables (ie, the ICD-10 sequences differed by at least one
code) were selected at random from the test set and were shown
to the medical practitioner representative and final decision
maker on ICD-10 mortality coding in France, who was asked
to do the following with each certificate:

• Manually recode all the ICD-10 medical entities present
on each death certificate by herself using the information
the proposed model had access to, without access to the
data set or to the model’s proposed ICD-10 sequences.

• Give a qualitative comment on the outputs of the
investigated model and database as compared to hers.

Since the ICD-10 sequences derived from the medical expert
and national representative for ICD-10 coding in France are
significantly more reliable than the ones coming from the
traditional data production process (ie, using a combination of
expert system and human coders), they can be considered as
exempt of any potential human error. As a consequence,
comparing them to both the proposed model’s output and the
ICD-10 values contained in the data set would allow for an
estimation of the potential negative biases described above.
This can be done, for instance, by estimating the performance
metrics selected for the previous experiments, considering both
the model’s predictions and the database’s values as predictions,

and the medical expert’s outputs as the ground truth. Depending
on the resulting values, several interpretations can be made
ranging between two extreme cases:

1. If perfect agreement (ie, an F-measure of 1.0) is reached
between the database’s ICD-10 sequences and the medical
expert’s outputs, suggesting that the database does not have
any coding mistakes, then the performance metrics reported
in the Results section can safely be considered unbiased.

2. If perfect agreement is not reached between the model’s
predictions of ICD-10 sequences and the medical expert’s
outputs, suggesting that the model did not make any
mistakes, then the performance metrics reported in the
Results section should be considered significantly
underestimated.

However, before estimating the performance metrics following
this methodology, a slight preprocessing step is required. Indeed,
on the death certificates sampled for the experiment, the
F-measure estimation between the model’s prediction and the
database’s ICD-10 sequences yielded a value of 0.81. This is
explained by the sampling process, in which death certificates
were selected where at least one code differed in both ICD-10
sequences. As a consequence, and because of the model’s
performance, most ICD-10 codes present on both sequences
were identical, as can be seen with the error examples presented
in Tables S3 to S5 in Multimedia Appendix 1. The authors felt
that this might lead to artificially high values of the estimated
metrics in the experiment; consequently, we decided to delete
all common codes on both the model’s outputs and the
database’s values prior to metrics estimation, as shown in Table
6.

For better comparability, these statistics are reported based on
both (1) certificates without missing data in the natural
language–based causal chain of events leading to death (by
excluding certificates containing the “!” symbol) in Table 7 and
(2) all certificates in Table 8.

Table 6. Example of preprocessing used for the experiment on a real error example. The predicted and database ICD-10 sequences only differ by one
code, while they share five codes. All shared codes were deleted from all ICD-10 sequences prior to estimation of performance metrics.

ICD-10 codes after preprocessingICD-10 codes before preprocessingSource of ICD-10a codes

Z951I259 Z951 I719 C679 I10 R092Predicted by the model

I251I259 I251 I719 C679 I10 R092Present in the database

I251I259 I251 I719 C679 I10 R092Predicted by medical expert

aICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision.

Table 7. F-measure, precision, and recall of both the database ICD-10 codes and the model’s prediction of codes compared to that of the medical expert
for sampled certificates without missing data.

Recall (95% CI)Precision (95% CI)F-measure (95% CI)Source of ICD-10a codes

0.531 (0.425-0.636)0.443 (0.341-0.555)0.483 (0.383-0.589)Presence in database against medical expert prediction

0.407 (0.295-0.519)0.458 (0.338-0.580)0.431 (0.316-0.542)Model prediction against medical expert prediction

aICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision.
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Table 8. F-measure, precision, and recall of both the database ICD-10 codes and the model’s prediction of codes compared to that of the medical expert
for all sampled certificates.

Recall (95% CI)Precision (95% CI)F-measure (95% CI)Source of ICD-10a codes

0.596 (0.471-0.721)0.630 (0.492-0.761)0.613 (0.486-0.733)Presence in database against medical expert prediction

0.351 (0.222-0.482)0.392 (0.250-0.540)0.370 (0.237-0.504)Model prediction against medical expert prediction

aICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision.

Tables 7 and 8 show no significant difference in prediction
performance between the proposed approach and the current
data production process (ie, based on a combination of expert
system and human coders), although the database’s ICD-10
values have better performance metrics in both cases. When
including certificates containing missing text, the proposed
model’s agreement with the medical expert increases
considerably, further confirming the hypothesis that the
performance metrics reported in the Results section were
negatively biased.

From the qualitative comments made by the medical expert,
three major types of model errors could be defined:

1. In 16% (16/99) of cases, disagreement between the current
data production process and the proposed approach was
due to missing information in the input text. On these
specific cases, the F-measure between the model’s output
and medical expert’s decision was determined to be 0.974;
an example of such an error case can be seen in Table S3
in Multimedia Appendix 1.

2. In 14% (14/99) of cases, the correct ICD-10 sequence was
dependent on highly contextual clues or external knowledge
of world behavior (eg, someone found dead at the bottom

of a set of stairs is quite likely to have suffered a fall). An
example of such an error case can be seen in Table S4 in
Multimedia Appendix 1.

3. In 12% (12/99) of cases, the correct ICD-10 sequence was
dependent on highly nonlinear, almost casuistic rules. These
were typical examples of scenarios where a hybridized deep
learning and expert-based system would be beneficial; an
example of such an error case can be seen in Table S5 in
Multimedia Appendix 1.

The remaining cases did not elicit any comment from the
medical expert.

Finally, in the second experiment, the medical expert’s ability
to discriminate between human coding and the proposed
approach was assessed in a Turing test-like approach. To do so,
100 additional certificates where the model’s output differed
from the database’s ICD-10 sequences were sampled at random
from the test set. The medical expert was shown their
corresponding input features (ie, text and auxiliary variables)
as well as the two ICD-10 sequences, with their provenance
from either the model or the database masked, as can be seen
in Table 9.

Table 9. Example of death certificate format given to the medical expert for the second experiment. The medical expert was asked, based on the
information available in the line, to guess which of propositions 1 or 2 was produced by a human coder, with the other being the proposed model’s
output.

Proposition 2 (ICD-10
codes)

Proposition 1 (ICD-10c

codes)
Certificate textbAge of deceased (years)Year of

death
Sexa of de-
ceased

Item

R54 K659 K631 K566
Y839 J189 R092

R54 K566 K659, K631
Y839 J958 R092

90 ans, péritonite, perfora-
tion grêle, occlusion,
chirurgie digestive, infection
pulmonaire, arrêt respira-
toire

9020132Death certifi-
cate

aSex is a two-state categorical variable: 1 (female) or 2 (male).
bThe certificate text was taken from a death certificate in France and is, therefore, written in French.
aICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision.

After exclusion of certificates containing missing text data,
where the human coder was easily identifiable due to the
apparently out-of-context additional codes (Table S3 in
Multimedia Appendix 1), the medical expert was able to
correctly identify the human coder in 63% (62/99; 95% CI
50.7%-73.2%) of cases, which is significantly better than
random guessing, although barely.

Conclusions
In this paper, the task of automatic recognition of ICD-10
medical entities from natural language in French was presented
as a Seq2Seq modeling problem, well known in the deep

artificial neural network academic literature. From this
consideration, the performance of a well-known approach in
the field, consisting of an ensemble of Transformer models,
was investigated using the CépiDc database and was shown to
reach a new state of the art. The derived model’s behavior was
thoroughly assessed following different approaches in order to
identify potential weaknesses and elements for improvements.
Although the proposed approach significantly outperformed
any other existing automated ICD-10 recognition systems based
on French free text, the question of method transferability to
other languages requires more investigation.
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The substantial performance reported in this paper makes
possible a range of promising applications in various
medical-related fields, from automated medical coding to
advanced natural language–based analysis for epidemiology.
However, these interesting opportunities are oftentimes
prohibited by these methods’ massive drawbacks, mostly their
requirement for millions of annotated observations in order to
perform well. Mortality data sets, despite their specificity,

provide researchers with a huge amount of clean, multilingual
medical text data perfectly fit for the application of deep neural
networks. As a consequence, and keeping in mind the strong
transfer learning capability of neural networks, the authors
firmly believe that mortality data constitute one of the most
promising points of entry into modern NLP methods applications
in the biomedical sciences.
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