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Abstract

Background: For the noninvasive assessment of arterial stiffness, a well-known indicator of arterial aging, various features
based on the photoplethysmogram and regression methods have been proposed. However, whether because of the existing
characteristics not accurately reflecting the characteristics of the incident and reflected waveforms of the photoplethysmogram
or because of the lack of expressive power of the regression model, a reliable arterial stiffness assessment technique based on a
single photoplethysmogram has not yet been proposed.

Objective: The purpose of this study is to discover highly correlated features from the incident and reflected waves decomposed
from a photoplethysmogram waveform and to develop an artificial neural network-based regression model for the assessment of
vascular aging using newly derived features.

Methods: We obtained photoplethysmograms from 757 participants. All recorded photoplethysmograms were segmented for
each beat, and each waveform was decomposed into incident and reflected waves by the Gaussian mixture model. The 26 basic
features and 52 combined features were defined from the morphological characteristics of the incident and reflected waves. The
regression model of the artificial neural network was developed using the defined features.

Results: In correlation analysis, the features from the amplitude of the reflected wave and the skewness of the photoplethysmogram
showed a relatively strong correlation with the participant’s real age. In the estimation of real age, the artificial neural network
model showed 10.0 years of root mean square error. Its estimated age and real age had a strong correlation of 0.63 (P<.001).

Conclusions: This study proved that the features defined from the reflected wave and skewness of the photoplethysmogram
are useful to assess vascular aging. Moreover, the regression model of artificial neural network using these features shows the
feasibility for the estimation of vascular aging.

(JMIR Med Inform 2022;10(3):e33439) doi: 10.2196/33439
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Introduction

Arterial stiffness is one of the major factors to clinically assess
the risk of cardiovascular disease [1]. Hemodynamically, it is

known that arterial stiffness increases with aging because of the
change of arterial composition and the reduction of arterial
elasticity [2]. Therefore, it is possible to objectively grasp the
aging status of arteries through arterial stiffness. An increase
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in arterial stiffness indicates the aging of blood vessels, while
a decrease in arterial stiffness indicates the health of blood
vessels [3,4]. In previous studies, the assessment of arterial
stiffness was conducted with features or blood pressure values
extracted from continuous blood pressure waveforms [5-9].
Murgo et al [5] observed continuous changes in arterial stiffness
with age using the augmentation index (AIx), which is defined
as the percentage of central augmented pressure to central pulse
pressure of the blood pressure waveform. According to a study
by McEniery et al [7], it is possible to accurately measure
arterial stiffness using the AIx calculated from aortic blood
pressure waveforms, but it is reported that AIx is a sensitive
marker only for those under 50 years of age. In the assessment
of arterial stiffness with AIx, continuous blood pressure
waveforms must be measured in an invasive way. Thus, it puts
a burden on the patients and is difficult to measure in daily life.
Antza et al [9] classified the presence or absence of early
vascular aging from the blood pressure data using the machine
learning method of random forest. However, Antza et al [9]
only determined the presence or absence of vascular aging but
could not explain the continuous process of vascular aging.

Photoplethysmogram (PPG), which is a noninvasive optical
measuring technique of blood volume changes in microvessels,
was also used to assess arterial stiffness. In the PPG waveform,
the systolic phase and the diastolic phase repeatedly appear,
corresponding to the cardiac systole and the cardiac diastole.
The systolic phase indicates an increase in vascular blood
volume, and the diastolic phase indicates a decrease in vascular
blood volume [10]. Millasseau et al [11,12]addressed that the
PPG waveform is formed by the superposition of the incident
wave and the reflected wave of the blood pressure. The incident
wave is generated by cardiac systole, and the reflected wave is
generated by impedance mismatch at arterial bifurcation points.
Dawber et al [13]also analyzed how the shape of PPG waveform
changes according to the increase in arterial stiffness due to
aging. They found that as aging progresses, the diacritic notch
of the PPG waveform gradually disappears and the returning
time of the reflected wave is shortened. Therefore, their study
showed that changes of the PPG waveform could be used to
evaluate arterial stiffness. Millasseau et al [14,15] derived the
stiffness index (SI) based on the time difference between the
systolic and diastolic peaks of PPG, and reported that SI has a
significant difference according to vascular aging. Further,
Yousef et al [16] calculated the reflection index (RI) as the ratio
of PPG’s systolic amplitude to diastolic amplitude and showed
that RI significantly increased with age. However, the RI and
SI introduced in both studies are obtained from the summed
waveform of the incident and reflected waves of the PPG,
despite the concept being derived from the individual incident
and reflected waves of the PPG. Therefore, these features cannot
be said to accurately reflect the incident and reflected wave
characteristics of the PPG and may be influenced by other
external factors. Park et al [17] used the wave decomposition

method to define features and develop the vascular assessment
model in their study. They decomposed a PPG waveform into
an incident wave and a reflected wave and defined features from
the waves, directly reflecting the incident and reflected
characteristics of PPG. They then confirmed that the defined
features had a higher correlation with age than RI and SI and
developed a regression model for vascular aging assessment.

In recent studies, machine learning techniques have been
introduced to evaluate arterial stiffness. Dall’Olio et al [18]
created a convolutional neural network (CNN)-based vascular
aging assessment model, which used the PPG raw signal
measured by smartphone as an input. Their CNN-based model
showed similar performance to the existing PPG feature-based
model, and it verified that the machine learning models have
the possibility of vascular aging assessment with input data
measured from a wearable device. Chiarelli et al [19] estimated
the actual age of participants from PPG and electrocardiogram
(ECG) measurement, using a deep convolutional neural network
(DCNN) model. Their DCNN model showed the result of
7-year-old root mean squared error (RMSE), which has a higher
performance in vascular aging estimation than the
PPG-feature-based multiple regression and artificial neural
network (ANN) models.

The purpose of this study is to develop a new vascular aging
assessment model using the PPG, which could be noninvasively
and easily measured in daily life. In particular, unlike the
existing PPG-based vascular aging estimation studies, we
decompose the incident and reflected waves of the PPG
waveform. New highly correlated features are then explored
for vascular aging assessment from the decomposed PPG waves.
Lastly, an ANN-based regression model with excellent nonlinear
estimation performance is applied to estimate vascular aging.

Methods

Data and Ethical Considerations
Data were obtained from a total of 1000 patients who were
scheduled for elective surgery (thyroid, breast, or abdominal)
from July to September 2015 at Asan Medical Center. Through
cross-checking of two researchers, 17 participants with loss of
signal and 226 participants with indistinguishable PPG
waveforms were excluded from the analysis. As a result, data
from a total of 757 participants were used. Table 1 shows the
summarized characteristics of 757 participants included in the
analysis. The PPG waveform was obtained using a pulse

oximeter (E2-KIT; KTMED, Co Ltd), and the PPG Probe was
placed between the nasal column and the nasal septum as a
transmit type. Signals were recorded at 125 or 250 Hz sampling
frequency for 5 min. Data acquisition was performed after
obtaining approval from the Asan Medical Center (Songpa-gu,
Seoul, South Korea) Research Ethics Committee (IRB
No.2015-0104).
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Table 1. Characteristics of patients included in the analysis (N=757).

ValuesCategory

Sex, n (%)

348 (46.0)Male

409 (54.0)Female

ASA PSa, n (%)

450 (59.4)PS 1

277 (36.6)PS 2

30 (4.0)PS 3

61.8 (54.1-69.4)Weight (kg), median (range)

161.6 (155.7-168.0)Height (cm), median (range)

23.5 (21.3-25.9)BMI (kg/m2), median (range)

Age (years)b, n (%)

10 (1.3)0-29

61 (8.1)30-39

168 (22.2)40-49

215 (28.4)50-59

177 (23.4)60-69

108 (14.3)70-79

18 (2.4)80-89

Social characteristics

111 (14.7)Smoking

240 (31.7)Alcohol

Medical history (multiple answers possible) , n (%)

213 (28.1)Hypertension

90 (11.9)Diabetes mellitus

15 (2.0)Pulmonary diseasec

5 (0.7)Renal diseased

23 (3.0)Hepatic diseasee

8 (1.1)Neurologic diseasef

16 (2.1)Othersg

aASA PS: American Society of Anesthesiologists Physical Status((1) a normal healthy patient, (2) a patient with mild systemic disease, and (3) a patient
with severe systemic disease).
bThe median age is 56 years, with a range of 46-65 years.
cPulmonary disease: asthma (7), emphysema (1), bronchiectasis (1), chronic obstructive pulmonary disease (5), and old tuberculosis (1).
dRenal disease: chronic kidney disease (2) and end stage renal disease (3).
eHepatic disease: hepatitis B virus (11), hepatitis C virus (2), and liver cirrhosis (10).
fNeurologic disease: stroke (1) and cardiovascular accident (7).
gOthers: angina (12), carotid artery stenosis (1), iron deficiency anemia (1), hyponatremia (1), and intracranial hemorrhage (1).

Preprocessing
The measured signal was filtered using a finite impulse response
bandpass filter having a 0.5-10 Hz passband, and then the pulse
onset (ie, the start point of the waveform for each pulse) was
detected (Figure 1). Based on the detected pulse onset, each

participant’s PPG was divided into pulses to generate segments.
At that time, an arrhythmic waveform with an irregular PPG
interval or amplitude, or an abnormal waveform with a
maximum diastolic amplitude (DIApeak-amp) greater than the
systolic maximum amplitude (SYSpeak-amp), was excluded from
the analysis. Since the number of samples for each segment was
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different due to the nonuniform heartbeat interval for each
participant, linear interpolation was performed so that each
segment had the same number of samples (ie, 1000). Since the

PPG amplitude measured from each participant has an arbitrary
value, it was converted to the value between 0 and 1 using the
min-max normalization method.

Figure 1. Characteristics of the original PPG, incident and reflected waves, and reconstructed PPG for deriving candidate features. DIA: diastolic;
INC: incident wave; INF: inflection point; OPPG: original photoplethysmogram; PPG: photoplethysmogram; REF: reflected wave; RPPG: reconstructed
photoplethysmogram; SYS: systolic.

Features
The features for vascular aging assessment consist of a basic
feature defined from the specific points of the waveform before
and after the decomposition of the incident and reflected waves
of the PPG and a combined feature generated by combining the
basic feature. Gaussian mixture model [20] was used for PPG
waveform decomposition. Figure 1 shows that through
waveform decomposition, each PPG segment was divided into
two partial waveforms, one incident wave, and one reflected
wave. The evaluation of the appropriateness of the PPG
waveform decomposition was performed by calculating the
correlation coefficient between the reconstructed PPG and the
original PPG and comparing the decomposed waveform feature
points. In the verification process, only those segments in which
the correlation coefficient between the PPG waveform
reconstructed from the decomposed incident and reflected waves
and the original PPG was 0.9 or more, and the amplitude of the
peak of the incident wave (INCpeak-amp) was greater than the
amplitude of the peak of the reflected wave (REFpeak-amp), were
used for analysis.

From the waveforms before and after the decomposition of the
incident and reflected waves of the PPG, 26 basic features were
generated for the development of the vascular aging estimation
model. Table 2 shows the features that are defined as follows:
12 features from the amplitude and time of the maximum peak,
and total area, total time, skewness, and kurtosis in each
waveform of the incident and reflected waves; 3 features from
the amplitude, time, and area under the inflection point where
the incident wave and the reflected wave intersect; and 3 features
from the area, skewness, and kurtosis of the PPG reconstructed
by combining the incident and reflected waves. In addition, 8
features were defined from the feature points indicating the
amplitude and time of the systolic and diastolic peaks, the total
area and time, and the skewness and kurtosis of the original
PPG before the decomposition of the incident and reflected
waves. Textbox 1 shows 52 combined features, which were
defined as ratios or differences of the 26 basic features after
dividing them into time-related features and amplitude-related
features. A total of 78 candidate features were generated to
develop a regression model for ANN-based vascular aging
estimation. All preprocessing and feature extraction processes
were performed using Matlab 2018b (Mathworks).

JMIR Med Inform 2022 | vol. 10 | iss. 3 | e33439 | p. 4https://medinform.jmir.org/2022/3/e33439
(page number not for citation purposes)

Park & ShinJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Basic features defined from incident and reflected waves, first inflection point, reconstructed PPGa, and original PPG.

DefinitionPulse type and feature

Incident wave

Amplitude of incident wave’s peakINC b
peak-amp

Area of incident waveINC area

Time of incident wave’s peakINC peak-time

Time period of incident waveINC time

Skewness of incident waveINC skew

Kurtosis of incident waveINC kurt

Reflected wave

Amplitude of reflected wave’s peakREF c
peak-amp

Area of reflected waveREF area

Time of reflected wave’s peakREF peak-time

Time period of reflected waveREF time

Skewness of reflected waveREF skew

Kurtosis of reflected waveREF kurt

First inflection point

Amplitude of first inflection pointINF d
peak-amp

Time of first inflection pointINF peak-time

Area of first inflectionINF area

Reconstructed PPG

Area of reconstructed PPGRPPG e
area

Skewness of reconstructed PPGRPPG skew

Kurtosis of reconstructed PPGRPPG kurt

Original PPG

Amplitude of systolic peakSYS f
peak-amp

Time of systolic peakSYS peak-time

Amplitude of diastolic peakDIA g
peak-amp

Time of diastolic peakDIA peak-time

Area of original PPGOPPG h
area

Time period of original PPGOPPG time

Skewness of original PPGOPPG skew

Kurtosis of original PPGOPPG kurt

aPPG: photoplethysmogram.
bINC: incident wave.
cREF: reflected wave.
dINF: inflection point.
eRPPG: reconstructed photoplethysmogram.
fSYS: systolic.
gDIA: diastolic.
hOPPG: original photoplethysmogram.
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Textbox 1. Combined features derived from the basic features in the spatial, temporal, and spatiotemporal domains. INC: incident wave; REF: reflected
wave; RPPG: reconstructed photoplethysmogram; SYS: systolic; OPPG: original photoplethysmogram.

Domain and feature

Spatial

• INCa
peak-amp/INCarea

• INCpeak-amp/REFb
peak-amp

• INCpeak-amp/REFarea

• INCpeak-amp/RPPGc
area

• INCarea/REFpeak-amp

• INCarea/REFarea

• INCarea/RPPGarea

• REFpeak-amp/REFarea

• REFpeak-amp/RPPGarea

• REFarea/RPPGarea

• INCpeak-amp–REFpeak-amp

• INCarea–REFarea

• SYSd
peak-amp–INCpeak-amp

• SYSpeak-amp–REFpeak-amp

Temporal

• INCpeak-time/INCtime

• INCpeak-time/REFpeak-time

• INCpeak-time/REFtime

• INCpeak-time/OPPGe
time

• INCtime/REFpeak-time

• INCtime/REFtime

• INCtime/OPPGtime

• REFpeak-time/REFtime

• REFpeak-time/OPPGtime

• REFtime/OPPGtime

• REFpeak-time–INCpeak-time

• OPPGtime–INCpeak-time

• OPPGtime–REFpeak-time

Spatiotemporal

• INCpeak-amp/INCpeak-time

• INCpeak-amp/INCtime

• INCpeak-amp/REFpeak-time

• INCpeak-amp/REFtime

• INCpeak-amp/OPPGtime

• INCarea/INCpeak-time
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INCarea/INCtime•

• INCarea/REFpeak-time

• INCarea/REFtime

• INCarea/OPPGtime

• REFpeak-amp/INCpeak-time

• REFpeak-amp/INCtime

• REFpeak-amp/REFpeak-time

• REFpeak-amp/REFtime

• REFpeak-amp/OPPGtime

• REFarea/INCpeak-time

• REFarea/INCtime

• REFarea/REFpeak-time

• REFarea/REFtime

• REFarea/OPPGtime

• RPPGarea/INCpeak-time

• RPPGarea/INCtime

• RPPGarea/REFpeak-time

• RPPGarea/REFtime

• RPPGarea/OPPGtime

Artificial Neural Network Regression Model
In this study, since the actual age of participants is estimated
based on various features extracted from their PPG, we used
the ANN model, which is frequently used for nonlinear
regression with independent features. Table 3 shows that an
ANN-based regression model for estimating vascular aging was
developed and evaluated using the parameters of various
conditions. As a result, the model showing the optimal
performance was found as indicated in bold. Figure 2 shows
that the developed ANN-based regression model consists of an
input layer, a hidden layer, and an output layer. The input layer
consists of 78 nodes that receive the features defined by the
PPG as inputs. The hidden layer consists of a single layer with
128 nodes. The output layer consists of a single node that
outputs the age of the participants estimated through calculation
in the hidden layer. Rectified linear unit was used as the
activation function [21]. Dropout, which removes hidden layer
nodes at a certain rate, was applied with the dropout rate of 0.5.

Adam optimizer and learning rate of 0.001 were applied to train
the model.

A leave-one-out cross-validation (LOOCV) was used for the
development and testing of the ANN-based regression model.
In LOOCV, the entire data was divided into one test set and the
rest assigned to the model development set. The model
development set was divided into a training set and a validation
set at a ratio of 8:2 with the same age distribution of participants.
After training the model with the development set, the model
was evaluated with the test set, and this process was repeated
as many times as the number of data, so that all data were used
for the model evaluation. The final performance of the model
was obtained by averaging each evaluation result. The regression
performance of the developed model was represented as RMSE.
The ANN-based regression model proposed in this study was
developed using 2.90 GHz Intel Core i7-10700 processor, 64
GB 1,333 MHz DDR4 RAM, NVIDIA Geforce RTX 2070
Super, Python 3.6.7: Anaconda, and Tensorflow 2.3.0.
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Table 3. Different values of hyperparameters for ANNa-based regression model for the estimation of vascular aging. Bold type indicates the
hyperparameters for the optimal model.

ValueParameter

78Input Layer Nodes

1Output Layer Nodes

1 2 3 4Hidden Layers Number

64 128 256 512 1024Hidden Layer Nodes

ReLUbActivation Function

0 0.1 0.3 0.5Dropout Probability

He_uniformKernel Initializer

MAEcLoss Function

0.01 0.005 0.001 0.0005 0.0001Learning Rate

SGDdAdamOptimizer

30 50Early Stopping Patience

Standard RobustInput Data Scaler

aANN: artificial neural network.
bReLU: rectified linear unit.
cMAE: mean absolute error.
dSGD: stochastic gradient descent.

Figure 2. Architecture of the optimal version of the ANN-based regression model developed in this study. ANN: artificial neural network; INC: incident
wave; OPPG: original photoplethysmogram; RPPG: reconstructed photoplethysmogram.

Statistical Analysis
The Pearson correlation coefficient was calculated to investigate
the relationship between the participants’ actual age and each
feature, which was defined from the waveforms before and after
the decomposition of PPG into the incident and reflected wave.
The RMSE and coefficient of determination of the age estimated
by the ANN-based vascular aging estimation model, which was
developed with all the PPG features defined in this study, were
calculated. In addition, using the estimated age and the actual
age, a scatter plot and a Bland-Altman plot were made and used
to analyze the model's estimation performance.

Results

Correlation Analysis
The results of the correlation analysis between the actual age
and the PPG features are as follows. The correlation coefficient
between the actual age and the basic features, which is defined
from the original PPG, the incident and reflected waves
decomposed from PPG, and the reconstructed PPG, is shown
in Table 4. The reflected wave and the reconstructed
PPG-related features showed a high correlation with the actual
age. Among the reflected wave and reconstructed PPG features,
REFpeak-amp, REFarea, RPPGarea, and RPPGskew showed a
correlation greater than a weak correlation (|R|>0.3), and their
correlation coefficients were –0.42, –0.45, and –0.45,
respectively. However, most of the features defined from the
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incident wave and the first inflection point showed a very weak
correlation or did not have significant correlation with age.
Among the features defined from the original PPG signal, the
features using the diastolic peak or skewness feature of the PPG
waveform showed a high correlation with age. The features
showing the highest correlation in each type of pulse were
SYSpeak-time, DIApeak-amp, and OPPGskew, and their correlation
coefficients were 0.27, –0.39, and 0.41, respectively. Individual
features showed a high correlation with age in the order of
REFarea, REFpeak-amp, and OPPGskew, and their correlation
coefficient values were –0.45, –0.42, and 0.41, respectively.
However, INCpeak-amp, REFtime, INFarea, RPPGkurt, SYSpeak-amp,
OPPGarea, and OPPGkurt showed no statistically significant
correlation with the actual age, and their P values were .10, .51,

.28, .23, .52, .12, and .05, respectively. Table 5 shows the
correlation between the actual age and the combined features
created by the combination of the basic features. In comparing
the amplitude domain feature and the temporal domain feature,
some features in the spatial domain feature showed more than
a weak correlation (|R|>0.3) with the actual age, but most of the
temporal domain feature showed no correlation or only a very
weak correlation (|R|<0.3) with the actual age. As a result, it
was found that the combined feature in the spatial domain has
a higher correlation with age than the combined feature in the
temporal domain. Among the spatial domain features,
INCarea/REFpeak-amp, INCarea/REFarea, and SYSpeak-amp

–REFpeak-amp showed high correlation with age, and their
correlation coefficients were 0.38, 0.37, and 0.42.
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Table 4. Correlation coefficient and P value of basic features defined from the incident and reflected waves, first inflection point, reconstructed PPGa,
and original PPG.

P valueRbPulse type and feature

Incident wave

P=.1040.06INC c
peak-amp

P<.0010.15INC area

P<.0010.23INC peak-time

P<.0010.18INC time

P<.001–0.16INC skew

P<.001–0.18INC kurt

Reflected wave

P<.001–0.42REF d
peak-amp

P<.001–0.45REF area

P=.0080.10REF peak-time

P=.5140.02REF time

P<.0010.19REF skew

P<.0010.18REF kurt

First inflection point

P=.022–0.08INF e
peak-amp

P<.0010.18INF peak-time

P=.275–0.04INF area

Reconstructed PPG

P<.001–0.39RPPG f
area

P<.0010.40RPPG skew

P=.2300.04RPPG kurt

Original PPG

P=.5250.02SYS g
peak-amp

P<.0010.27SYS peak-time

P<.001–0.39DIA h
peak-amp

P<.0010.24DIA peak-time

P=.1180.06OPPG i
area

P<.0270.08OPPG time

P<.0010.41OPPG skew

P=.051–0.07OPPG kurt

aPPG: photoplethysmogram.
bR: Pearson correlation coefficient.
cINC: incident wave.
dREF: reflected wave.
eINF: inflection point.
fRPPG: reconstructed photoplethysmogram.
gSYS: systolic.
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hDIA: diastolic.
iOPPG: original photoplethysmogram.
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Table 5. Correlation coefficient and P value of combined features created from the basic features.

P valueRaDomain and feature

Spatial

P<.001–0.18INCb
peak-amp/INCarea

P<.0010.32INCpeak-amp/REFc
peak-amp

P<.0010.32INCpeak-amp/REFarea

P<.0010.28INCpeak-amp/RPPGd
area

P<.0010.38INCarea/REFpeak-amp

P<.0010.37INCarea/REFarea

P<.0010.34INCarea/RPPGarea

P<.0010.19REFpeak-amp/REFarea

P<.001–0.34REFpeak-amp/RPPGarea

P<.001–0.34REFarea/RPPGarea

P<.0010.31INCpeak-amp–REFpeak-amp

P<.0010.34INCarea–REFarea

P=.104–0.06SYSe
peak-amp–INCpeak-amp

P<.0010.42SYSpeak-amp–REFpeak-amp

Temporal

P<.0010.20INCpeak-time/INCtime

P<.0010.15INCpeak-time/REFpeak-time

P<.0010.23INCpeak-time/REFtime

P<.0010.22INCpeak-time/OPPGf
time

P<.0010.12INCtime/REFpeak-time

P<.0010.24INCtime/REFtime

P<.0010.19INCtime/OPPGtime

P<.0010.16REFpeak-time/REFtime

P<.0010.12REFpeak-time/OPPGtime

P<.001–0.19REFtime/OPPGtime

P=.3900.03REFpeak-time–INCpeak-time

P=.3690.03OPPGtime–INCpeak-time

P=.3990.03OPPGtime–REFpeak-time

Spatiotemporal

P<.001–0.28INCpeak-amp/INCpeak-time

P<.001–0.22INCpeak-amp/INCtime

P=.002–0.11INCpeak-amp/REFpeak-time

P=.615–0.02INCpeak-amp/REFtime

P=.015–0.09INCpeak-amp/OPPGtime

P<.001–0.15INCarea/INCpeak-time

P=.002–0.11INCarea/INCtime
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P valueRaDomain and feature

P=.213-0.05INCarea/REFpeak-time

P=.4960.02INCarea/REFtime

P=.542–0.02INCarea/OPPGtime

P<.001–0.36REFpeak-amp/INCpeak-time

P<.001–0.32REFpeak-amp/INCtime

P<.001–0.22REFpeak-amp/REFpeak-time

P<.001–0.17REFpeak-amp/REFtime

P<.001–0.22REFpeak-amp/OPPGtime

P<.001–0.40REFarea/INCpeak-time

P<.001–0.36REFarea/INCtime

P<.001–0.27REFarea/REFpeak-time

P<.001–0.25REFarea/REFtime

P<.001–0.28REFarea/OPPGtime

P<.001–0.33RPPGarea/INCpeak-time

P<.001–0.28RPPGarea/INCtime

P<.001–0.17RPPGarea/REFpeak-time

P=.005–0.10RPPGarea/REFtime

P<.001–0.16RPPGarea/OPPGtime

aR: Pearson’s correlation coefficient.
bINC: incident wave.
cREF: reflected wave.
dRPPG: reconstructed photoplethysmogram.
eSYS: systolic.
fOPPG: original photoplethysmogram.

Statistical Results of Vascular Aging Assessment
The RMSE for the age estimation of the ANN-based regression
model developed in this study was 10.0 years. Figure 3 shows
the scatter plot of the participant’s age estimated through the
ANN-based regression model corresponding to the actual age
and the coefficient of determination of the model. The estimated

age and actual age of the ANN-based regression model showed
a high correlation of 0.63 (P<.001), and the coefficient of
determination of the model was 0.4. Figure 4 shows the
Bland-Altman plot for the estimated age and the actual age
through the ANN-based regression model developed in this
study. The upper and lower limits of 95 % agreement were 18.2
and –20.6 years, respectively.

Figure 3. Scatter plot and coefficient of determination for the ANN-based regression model developed for the estimation of vascular aging in this
study. ANN: artificial neural network.
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Figure 4. Bland-Altman plot for the ANN-based regression model developed for the estimation of vascular aging in this study. ANN: artificial neural
network.

Discussion

In this study, a highly correlated feature for assessing vascular
aging was explored using features before and after
decomposition of the incident and reflected waves of the PPG,
and an ANN-based vascular aging estimation model was
developed with the features derived. The ANN-based regression
model showed the RMSE of 10.0 years in the age estimation.
In comparing the correlation analysis before and after
decomposition of the PPG incident and reflected waves, the
feature defined after decomposition rather than before
decomposition of the incident and reflected waves is useful for
assessing vascular aging. In addition, in the comparison of all
individual features, the feature defined from the reflected wave
was confirmed as the best feature for assessing vascular aging.
This reconfirms that changes in arterial stiffness due to vascular
aging are reflected very well in the reflected wave characteristics
of PPG, as Dawber et al [13] revealed. In the comparison of the
correlation between the basic features defined from the PPG
original waveform, incident wave, reflected wave, and
reconstructed PPG waveform before and after PPG
decomposition, REFarea and REFpeak-amp showed the highest
correlation. These features are defined from the characteristic
points of the reflected wave. In the results of our study, the
time-related features of the reflected wave, such as REFpeak-time

and REFtime, showed a very weak correlation (P=.01) or no
significant correlation (P=.51) with actual age, respectively.
However, the amplitude-related feature of the reflected wave
of REFpeak-amp and REFarea showed a weak correlation (|R|>0.3)
with the actual age (R=–0.42 and R=–0.45 respectively). This
result suggests that the amplitude-related feature of the reflected
wave is more advantageous in estimating vascular aging than
the time-related feature. The result in this study is different from
the study of Millasseau et al [14,15], which found that SI, an
index related to the temporal characteristic of the reflected wave,
had a higher correlation with age than RI, an index related to
the amplitude of the reflected wave. Also, in contrast to the
results of Millasseau et al and Yousef et al [14-16], the results
of this study showed that the amplitude of the reflected wave
decreased with aging, and the RI decreased accordingly. Unlike
the previous studies that used the PPG measured from the finger,
it is thought that in this study, the use of the PPG measured
from the nose had an effect. In a study by Hartmann et al [22],

which observed changes in the main features of the PPG
depending on the measurement location, it was reported that
features such as RI could have a significant difference depending
on the measurement location. Whether the change in the PPG
waveform due to vascular aging has a specific pattern for each
measurement location has yet to be clearly clarified; therefore,
for clarification, additional research needs to be performed.

For the model development, hyperparameter optimization, such
as number of hidden layers, number of nodes, dropout rate,
learning rate, optimizer, early stopping patience, and input data
scaler of the ANN-based regression model, was performed. In
determining the hidden layer, as the number of hidden layers
and the number of nodes in the hidden layer decreased, the age
estimation error of the proposed model tended to decrease. In
addition, as the dropout ratio of the hidden layer increased, the
estimation error decreased. This means that the proposed model
has sufficient expressive power to overfit the training data and
that performance can be improved by suppressing overfitting
[23,24]. For other training conditions used for model training,
the model showed the highest performance when the optimizer
was set to Adam, the learning rate was set to 0.001, and the
early stopping patience was set to 50. In the case of the scaler
that normalizes the input value, it was confirmed that the Robust
scaler showed better performance. This is presumably because
the input data contains many outliers. In comparing the
performance of the model introduced in the previous study and
the ANN-based regression model proposed in this study, the
PPG features proposed by Millasseau et al and Yousef et al
[14-16] weakly correlated with the actual age (R=–0.29 and
R=–0.33 respectively). However, the ANN-based regression
model proposed in this study strongly correlated with the actual
age (R=0.63) and had better performance. In addition, the
ANN-based regression model of this study had better
performance than the previous studies in estimating the actual
age of participants [18,19]. Similar to this study, the existing
CNN model developed by Dall’Olio et al [18] with a single
PPG input showed an estimation error of 12 years in RMSE,
but the ANN-based regression model of this study showed a
low estimation error of 10 years in RMSE. Moreover, our model
has better estimation performance than the linear and ANN
models using multiple inputs of PPG and ECG, showing
estimation errors of 12 and 11 years, respectively [19] (see Table
6).
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Table 6. Comparison of the proposed model to the models of previous studies in root mean squared error, correlation coefficient, and P value.

P valueRRMSEa (years)InputReference and type of regression model

P<.0010.6310Features from raw PPGc and incident and reflected wave
separated from raw PPG

Proposed, ANNb

P<.001–0.29N/AdFeature from raw PPGMillasseau et al [14,15], linear

P<.001–0.33N/AFeature from raw PPGYousef et al [16], linear

N/AN/A12Raw PPGDall’Olio et al [18], CNNe

Chiarelli et al [19]

P<.0010.6412Feature from raw PPG and ECGfLinear

P<.0010.7411Feature from raw PPG and ECGANN

P<.0010.927Raw PPG and ECGDCNNg

aRMSE: root mean squared error.
bANN: artificial neural network.
cPPG: photoplethysmogram.
dN/A: not applicable.
eCNN: convolutional neural network.
fECG: electrocardiogram.
gDCNN: deep convolutional neural network.

This study has some limitations. Most of the previous studies
that performed vascular aging evaluation used finger PPG.
However, in this study, vascular aging was evaluated based on
nasal PPG. Therefore, it is difficult to generalize the results of
this study to a vascular aging evaluation technique using PPG
regardless of the measurement location. Therefore, it is
necessary to analyze the aging-related waveform change
characteristics of PPG obtained from various measuring sites
through additional studies. In addition, the ANN-based
regression model developed in this study for estimating vascular
aging is a relatively simple machine learning model with one
hidden layer. Therefore, in future studies, it is necessary to
improve the vascular aging estimation performance by applying
a more sophisticated machine learning technique with increased
model complexity. Moreover, this study did not investigate
various risk factors that can accelerate vascular disease, such
as atherosclerosis; therefore, it is necessary to evaluate the model
performance and examine the possibility of application
according to various subject characteristics.

Conclusion
In this study, we derived various features from the decomposed
PPG waveforms before and after decomposition of the waveform
into incident and reflected waves to explore features highly
correlated with vascular aging, and it was confirmed that the
reflected wave-related features had a strong correlation with
participant’s age. In addition, the ANN-based regression model
developed using the derived feature had 10 years of RMSE in
estimating the participants’actual age and showed the improved
vascular aging estimation performance in comparison with the
models introduced in previous studies. These results suggest
that the developed technology can be applied to a wearable
device and used to assess vascular health in real-life situations.
However, this study was performed based on nasal PPG, not
finger PPG, which is not frequently used in vascular aging
evaluation studies. Since it is not clear whether the change in
the PPG waveform due to vascular aging has a specific pattern
for each measurement location, additional research needs to be
performed for clarification.
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AIx: augmentation index
ANN: artificial neural network
CNN: convolutional neural network
DCNN: deep convolutional neural network
DIA: diastolic
ECG: electrocardiogram
INC: incident wave
INF: inflection point
LOOCV: leave-one-out cross-validation
MAE: mean absolute error
OPPG: original photoplethysmogram
PPG: photoplethysmogram
REF: reflected wave
ReLU: rectified linear unit
RI: reflection index
RMSE: root mean squared error
RPPG: reconstructed photoplethysmogram
SI: stiffness index
SYS: systolic
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