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Abstract

Background: A small proportion of high-need patients persistently use the bulk of health care services and incur disproportionate
costs. Population health management (PHM) programs often refer to these patients as persistent high utilizers (PHUs). Accurate
PHU prediction enables PHM programs to better align scarce health care resources with high-need PHUs while generally improving
outcomes. While prior research in PHU prediction has shown promise, traditional regression methods used in these studies have
yielded limited accuracy.

Objective: We are seeking to improve PHU predictions with an ensemble approach in a retrospective observational study design
using insurance claim records.

Methods: We defined a PHU as a patient with health care costs in the top 20% of all patients for 4 consecutive 6-month periods.
We used 2013 claims data to predict PHU status in next 24 months. Our study population included 165,595 patients in the Johns
Hopkins Health Care plan, with 8359 (5.1%) patients identified as PHUs in 2014 and 2015. We assessed the performance of
several standalone machine learning methods and then an ensemble approach combining multiple models.

Results: The candidate ensemble with complement naïve Bayes and random forest layers produced increased sensitivity and
positive predictive value (PPV; 49.0% and 50.3%, respectively) compared to logistic regression (46.8% and 46.1%, respectively).

Conclusions: Our results suggest that ensemble machine learning can improve prediction of care management needs. Improved
PPV implies reduced incorrect referral of low-risk patients. With the improved sensitivity/PPV balance of this approach, resources
may be directed more efficiently to patients needing them most.

(JMIR Med Inform 2022;10(3):e33212) doi: 10.2196/33212
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Introduction

Population health management (PHM) programs regularly
classify patients by estimated risk of high health care utilization
such as hospitalization [1]. The classification process enables
PHM programs to allocate their limited resources according to
the patients’ anticipated needs [1,2]. Higher-risk patient groups,

if identified correctly, can receive effective interventions such
as care management program enrollment to reduce utilization
and improve outcomes [2]. Additionally, when utilization and
costs are successfully contained for high-need patients by
proactively preventing undesired outcomes, PHM programs can
better allocate the remaining resources to improve the outcomes
of other patients [3].
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The set of high-risk patients frequently changes over time, with
most patients being high-risk for a short term [4,5]. However,
some high-risk patients use health care resources persistently
for an extended period (eg, more than 24 months) [4-6]. These
persistent high utilizer (PHU) patients generally constitute a
small segment of the overall patient population but use a
considerable proportion of resources in long term [4-6]. Despite
the variety of approaches taken to characterize PHUs, such as
adjusting for type of utilization, total costs, number of chronic
conditions, and other factors, predicting who becomes a PHU
has remained an analytical challenge [7-11].

Past studies have applied several analytical approaches to
identify and predict PHUs in different patient populations. These
approaches range from traditional regression methods (eg,
logistic regression) [4-8] to complex machine learning
techniques (eg, gradient boosting and neural networks) [9-11].
Nonetheless, due to the small number of PHUs in a patient
population (often less than 5%), most studies have suffered
from either oversensitive models or excessive false predictions
of high utilization [3,5]. Thus, the challenge of achieving
simultaneously useful levels of sensitivity and positive predictive
value (PPV) in PHU prediction models has limited their
application in practice [12].

To address the methodological challenges in predicting PHUs,
this study tests an ensemble approach to balance the sensitivity
and PPV of PHU forecasting at practical levels. The ensemble
approach uses a mix of machine learning methodologies to
improve both the sensitivity and PPV of PHU predictions at the
same time. Using insurance claims data of a large patient
population, this study compares the ensemble approach to single
models, a baseline model, and a more advanced predictive
model.

Methods

Overall Aims and Definitions
The overall goal of our study was to assess the value of
ensemble methodology for achieving required levels of
sensitivity and PPV for PHU prediction. Our analysis aimed to
provide a methodology to optimize the tradeoff of highly
sensitive and highly specific predictive models of PHUs using
an ensemble approach.

We defined a PHU as an individual who remained in the top
20% of highest health care costs for 4 consecutive 6-month
periods (ie, total of 24 months after the base period) [4]. Health
care costs were defined as the sum of costs covered by the
insurer and the patient’s out-of-pocket costs [4].

Data Source and Preparation
We performed a retrospective analysis of the Johns Hopkins
Health Care insurance claims data collected between 2013 and
2015. We applied the Johns Hopkins Adjusted Clinical Groups
(ACG) software to the claims data to prepare the data for
analysis [13]. We categorized the diagnostic codes into
higher-level diagnosis groupings called expanded diagnostic
clusters (EDCs), and we grouped medication data into
Rx-defined morbidity groups (RxMGs) [4,13]. EDCs and
RxMGs have been substantially validated in past studies and
are routinely used for risk stratification in practice [4,14].

Study Population
Johns Hopkins Health Care claims data included 207,421
patients with at least 1 record in 2013 and at least 2 years of
continuous enrollment between 2013 and 2015 (Figure 1). First,
27,518 patients with missing EDC diagnosis codes were
excluded, since EDCs were used to predict PHU status within
the population. Second, 14,308 patients with EDC codes
indicating pregnancy/newborn status were removed, as the
anticipated high utilization incurred by these patients are
different from PHUs. The final study population included
165,595 patients (Figure 1).

Figure 1. Selection process of the study population. JHHC: Johns Hopkins Health Care; EDC: expanded diagnostic cluster.
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Predictors and Outcome
Predictors (ie, independent variables) included demographics,
EDCs, RxMGs, and other health utilization variables (eg,
hospitalization) generated by the ACG system. Many of these
predictors, including all EDCs and RxMGs, are categorical
variables [13,14].

The outcome of interest, a binary variable, was whether a patient
became a PHU after the base year (ie, incurred health care costs
in the top 20% of all patients over 4 consecutive 6-month
periods).

Statistical Approach

Ensemble Methodology
PHUs constitute a small fraction of the patient population, hence
producing a large class imbalance (ie, most patients are
non-PHUs). A common issue with single model prediction of
highly imbalanced classes is compromising PPV in favor of
higher sensitivity. For example, a single predictive model of
PHUs may result in many false positives (ie, low PPV) if aiming
to capture all PHUs (ie, high sensitivity). However, ensemble
models provide a unique opportunity to increase both PPV and
sensitivity by combining substantially different predictive
models. We hypothesized that an ensemble approach can predict
PHUs with both a manageable PPV and an optimal sensitivity
compared to basic and advanced single model predictions.

We assessed several machine learning algorithms to predict
PHU status among the study population. We also evaluated the
performance of the ACG system, a comprehensive
regression-based risk stratification tool commonly used in PHM

practice [13]. As hypothesized, each of these algorithms yielded
average levels of PPV, and we used an ensemble methodology
to boost the overall PHU prediction performance.

Ensemble methods take inputs from multiple models and
combine the outputs in various ways to strengthen prediction
results [15]. In classification problems with imbalanced classes,
ensemble methods perform well because multiple models can
contribute individual strong features to the overall prediction
[16]. Since PHUs make a fraction of the total population, the
occurrence of a PHU in the data can be considered an anomaly
[4]. Sometimes referred to as anomaly detection, the supervised
machine learning problem of classifying PHUs is known as the
imbalanced class problem, where the majority class (ie,
non-PHUs) is much more prevalent than the minority class (ie,
PHUs).

We chose the stacking ensemble model rather than the voting
ensemble approach. The stacking ensemble model uses a
metaclassifier to aggregate the results, but the voting ensemble
model needs user-specified weights to combine the classifiers,
hence adding an unpractical step [15]. Thus, for this problem
space and our data set, we chose the stacking ensemble. Stacking
ensemble methods often use multiple model layers and a final
prediction model layer. Each layer makes predictions on the
input space given. We also used an additional parameter, feature
propagation. This technique allows the passing of both features
and predictions through each layer of the ensemble [15]. Figure
2 depicts the overall structure of our ensemble methodology
and schematically shows how multiple layers can improve PPV
and sensitivity simultaneously (Figure 2).

Figure 2. Stacking ensemble architecture. F&P: feature selection and predictions; PHU: persistent high utilizer; non-PHU: nonpersistent high utilizer.

Ensemble Component Model Selection
The models selected as the layers in the ensemble method were
chosen using common techniques, namely assessment of
common classification algorithms and random search
cross-validation for parameter tuning. Typically, machine
learning models are assessed for performance and
generalizability. Generalizability is difficult to quantify without
large unseen data sets available for testing, but a common
technique to test for overfitting is k cross-fold validation. This
technique tests the machine learning model against many
different subsets of data and then calculates an average of all
tests. For classifying PHUs, generalizability is fundamentally
important because future populations tested through these
algorithms will have a large variety of differences, including
demographic profiles and medical conditions. Accordingly, we

employed several techniques to tune the performance and
generalizability of individual models before constructing the
layers of the stacking ensemble [15-17].

First, we incorporated an algorithm known as complement naïve
Bayes (CNB), which often produces highly sensitive predictions
when classes are imbalanced [18]. The CNB model is derived
from standard multinomial naïve Bayes [18]. This model has 3
main parameters, alpha, fit prior, and norm [18]. Alpha is a
Laplace smoothing parameter that adjusts the shape and fit of
the multinomial distribution. This parameter shifts and forms
the training distribution to characterize the multidimensional
space of the data. Fit prior refines class identification when only
a single class is found in the training set, which can easily occur
since PHUs occur infrequently in the data set. Fitting the priors
of the classifier ensures that the majority class (ie, non-PHUs)
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still has some probability of not occurring, even though no other
class is present in the training data. The norm parameter
determines whether the training involves a second normalization
of weights, an additional measure to bolster the performance
on imbalanced class problems like PHU detection. Naïve Bayes
models are very easy to train, so a fine-tuned parameter search
was performed to find more than 1 robust CNB for use in the
stacking ensemble [18].

Second, we integrated a random forest (RF) classifier in the
ensemble model. An RF model is a meta-estimator that fits
numerous decision tree classifiers on subsets of data features
and averages results (ie, polls) to improve performance [19].
Decision trees, and by association RFs, are useful in several
applications due to their explainability and ease of training.
Decision trees do not require normalization and can accept
categorical and numerical variables; however, a shortcoming
of decision trees is their difficulty with generalization. Imprecise
selection of hyperparameters will make the RF tree overly
complex resulting in poor performance when facing unseen
patterns [19]. Since RFs are an estimator built by decision trees,
many of the parameters are carried over, although additional
parameters are available for the sampling and final averaging
with the RF [19].

All applicable parameters of an RF were varied through a
random cross-validated grid search, but a few most notably
contributed to overall performance and generalizability. These
parameters include number of estimators, maximum depth,
minimum samples to split, minimum samples at leaf, maximum
number of features, and class weight. The number of estimators
is the count of how many decision trees should be fitted to make
up the RF [19]. Increasing the number of estimators typically
increases generalizability but must be monitored for
computational complexity. Maximum depth fixes the maximum
number of levels that each tree can have, which is critical in
generalizability [19]. If not set, the tree is continued until each
leaf is pure, meaning the tree could learn the pattern of a single
person in this population, which is not extensible to unseen
populations. Minimum samples to split sets the minimum
number of samples at the time of a split, ensuring that each leaf
has at least n–1 samples. Minimum samples at leaf is very
similar to minimum samples to split but controls samples at the
leaf level. In this study, minimum samples at leaf was used to
ensure edge cases (ie, unique PHU patterns) were still
appropriately populated with training samples. Maximum
number of features describes the method used to generate each
tree which in certain use cases, taking the square root or log of
the total number of features, can increase an RF’s performance
[19].

Class weight is the most important RF parameter for
performance, although setting it can negatively impact
generalizability [19]. This parameter adjusts the prior weight
on the positive class, which is important for imbalanced classes,
and it pushes the decision tree fits to focus more closely on the
minority class, making it more robust to edge cases. Since this
model was designed to detect PHUs, favoring minority instead
of majority class performance was key. Using specific class
weights forced the decision trees to allow for a degradation in
classifying non-PHUs in favor of an increase in PHU

classification. Two RF models were selected from a random
search cross-validation of parameters for use in the stacking
ensemble. The final stacking ensemble model integrated the
CNB and RF models into one predictive model.

The final ensemble model used an 80/20 split for training and
testing of the data. We performed a 5-fold cross-validation on
hyperparameter search and recursive feature elimination.

Performance Metrics
Typically, positive and negative class performance are assessed
equally using a metric such as F1 score. In this study, as the
PHU versus non-PHU classes are unequal and the positive class
would constitute an infrequent occurrence, only the positive
class metrics were considered key for performance
improvement. Therefore, we measured PPV and sensitivity
metrics to assess performance of all models (ie, individual
models and ensemble model). Both performance metrics
describe the classification results for the positive class (ie,
PHUs). PPV is the proportion of positive classifications that
are truly PHUs. Sensitivity is the proportion of PHUs who were
classified as positive.

An important consideration in any machine learning algorithm
evaluation is the balance among metrics. A simple way to find
an appropriate balance is to change the threshold for
classification. Choosing the appropriate threshold can be
difficult for health care scenarios due to the risk of incorrect
classification for an individual who needs treatment (ie, false
negatives). Conversely, classifying too many healthy individuals
at risk could overwhelm the resources available for interventions
(ie, false positives). To address this issue, we calculated and
then plotted sensitivity and PPV for 50 trials at thresholds spaced
evenly .05 apart. We then calculated the discrimination threshold
for the ensemble model to choose the optimal threshold of the
PPV versus sensitivity metrics.

Finally, we compared the PPV and sensitivity of select
individual models, which achieved at least 40% performance
in both metrics, with the ensemble methodology. The individual
models included a logistic regression, the Johns Hopkins ACG
model (out-of-box and with no further training) [13], and a
standalone RF model. The ensemble model included a stacking
ensemble with multiple layers combining CNB and RF models.

All analyses, including descriptive analysis, individual modeling,
and ensemble approach, were performed in R (version 3.5.1, R
Foundation for Statistical Computing). We used Python pandas
and scikit-learn for all modeling pipeline efforts (eg, data
cleaning, filtering, hyperparameter search, feature selection,
and RF model). We used Python ML Ensemble for the ensemble
model [20]. We used Python Yellowbrick library to visualize
the classification threshold of sensitivity versus positive
predictive values. We used the Johns Hopkins ACG system to
produce the ACG output and measure the ACG model’s
performance [13].
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Results

Descriptive Analyses
The study population comprised 165,595 unique patients
including 8359 (5.1%) PHUs (Table 1). The PHU population’s
average age was more than twice that of the non-PHU

population (38.51 years vs 18.79 years). PHUs included fewer
males (2735/8359, 32.7%) than non-PHUs (69,683/155,862,
44.7%). As expected, PHUs had more utilization than non-PHUs
(1567/8359, 18.7% vs 3891/155,862, 2.5% for inpatient visits
and 8332/8359, 99.7% vs 152,199/155,862, 97.3% for outpatient
visits, respectively).

Table 1. Specification of the study populations (n=165,595).

PHU population (n=8359)Non-PHUa population (n=155,862)Overall study population (n=165,595)

38.51 (18.01)18.79 (16.82)19.85 (17.45)Age (years), mean (SD)

1459 (17.5)99,352 (63.7)101,264 (61.2)0-17, n (%)

6730 (80.5)55,666 (35.7)63,260 (38.2)18-64, n (%)

170 (2.0)844 (0.5)1037 (0.6)65+, n (%)

2735 (32.7)69,683 (44.7)72,974 (44.1)Sex (male), n (%)

Race, n (%)

2457 (29.4)38,762 (24.9)41,492 (25.1)White

2879 (34.4)50,993 (32.7)54,207 (32.7)Black

6 (<0.1)143 (0.1)149 (0.1)Otherb

3017 (36.1)65,964 (42.3)69,747 (42.1)Missingc

Inpatient visits, n (%)

6792 (81.3)151,971 (97.5)160,035 (96.6)0

1500 (17.9)3866 (2.5)5430 (3.3)1-5

54 (0.6)20 (<0.1)77 (<0.1)6-10

13 (0.2)5 (<0.1)19 (<0.1)11+

Outpatient visits, n (%)

27 (0.3)3663 (2.4)3720 (2.2)0

1234 (14.8)94,138 (60.4)96,122 (58.0)1-5

1428 (17.1)32,317 (20.7)33,996 (20.5)6-10

5670 (67.8)25,744 (16.5)31,723 (19.2)11+

aPHU: persistent high utilizer.
bMembers of known race/ethnicity not equal to Asian, Hispanic, White, or Black.
cMembers with empty values for race.

Ensemble Model
After tuning the ensemble layers, the best-performing ensemble
model included 3 input layers and 1 prediction layer. The final
ensemble model included 2 input layers of CNB and 1 layer of
an RF model. The prediction layer was an RF model. The model
included the following variables: race (ie, Black, White, other),
age (as of 2013), sex, days of inpatient hospitalization in 2013,
emergency department visit count in 2013, psychotherapy
services in 2013, outpatient visit count in 2013, all-cause
inpatient hospitalization count in 2013, frailty flag for older
adults, 87 most frequent Johns Hopkins ACG diagnostic
comorbidities (ie, EDCs [13]), all Johns Hopkins ACG
medication grouping (ie, RxMGs [13]), and ACG-derived care
coordination risk scores [13] (ie, likely coordination issue,
possible coordination issue, unlikely coordination issue). These
variables are generated by and included in the John Hopkins

ACG risk stratification models, which are widely used for PHM
efforts [13]. The stacking ensemble had full feature propagation
throughout the layers to allow each model access to all data
attributes while gaining classification scores from previous
layers. The most performant models were selected for use in
the stacking ensemble.

Model Performance Evaluation
Figure 3 depicts the discrimination threshold plot for a sample
decision tree of the ensemble model. The plot conveys the
importance of the threshold choice and depicts the tradeoff
between PPV and sensitivity. As shown in the figure, patients
A and B, both of whom are PHUs, will be identified differently
by the model depending on the chosen threshold between PPV
and sensitivity. By testing the trained model on these 2 patients,
a risk score is generated for each. These risk scores can be
compared to any classification threshold. Depending on which
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side of the threshold the risk scores lie, the model classified whether patient A, B, or both are PHUs or non-PHUs.

Figure 3. Classification threshold of sensitivity versus positive predictive value (PPV): patient A: incorrectly classified as normal (risk score=82%)
and patient B: correctly classified as a persistent high utilizer (risk score=97%).

The central line in Figure 3 represents the median value for each
metric, and the bands represent the variability from the 10th to
90th percentiles. Two important observations about the threshold
plot are (1) the typical classification threshold of .50 is not ideal
probably due to the imbalanced classes and (2) equally
weighting sensitivity and PPV at a threshold of .85 may not be
appropriate to classify enough PHUs correctly. Patients A and
B in Figure 3 have different classification outcomes and
therefore interventions due in part to an arbitrary threshold.

To replicate the same level of optimality across all models, we
used the 95th percentile threshold limit for each model. The
absolute cutoff points were slightly different across models with
ensemble having an absolute cutoff threshold of .258, RF .224,
logistic regression .230, and the ACG model a cutoff of .226.
Negative predictive value (NPV) and specificity were also
assessed, but performance in these metrics was high (ie,
averaging 97% and 99% for NPV and specificity, respectively)
and did not vary significantly between models due to the large
size and variability of the negative class (ie, non-PHUs).

Performance Comparison
The stacking ensemble method achieved a sensitivity of 49.0%
and PPV of 50.3%. The ensemble model resulted in a 5%+
increase in both PPV and sensitivity for predicting PHUs over
other individual methods such as logistic regression, RF model,
and the ACG model (Table 2). As shown in Table 2, the
individual RF was the highest performing nonensemble
technique. Table 2 also includes the optimal parameters used
in the stacking ensemble (eg, CNB and RF parameters such as
alpha, maximum depth, and minimum sample splits). The final
ensemble model also produced an NPV of 97.4%, specificity
of 97.3%, and F1 of 49.1% for PHUs and 97.4% for non-PHUs
(not shown in Table 2). The area under the curve of the ensemble
model reached .921; however, comparison of areas under the
curve between models was considered not valuable due to the
large imbalance of PHUs versus non-PHUs, hence limiting the
performance measure comparison to PPV and sensitivity of the
models.
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Table 2. Model fit statistics for predicting persistent high utilizer status.

PPVa, %Sensitivity, %Parameter tuningModel

50.349.0CNB1   =.70, fit prior, norm

CNB2   =.15, fit prior

RF1

Stacking ensemble

Layer 1: CNBb

Layer 2: CNB

Layer 3: RFc

Prediction layer: RF

Feature propagation

• 200 estimators
• 400 maxd depth
• 5 mine samples split
• 0.01% min samples

Leaf

• auto max features
• class weight=0.842

RF2

• 100 estimators
• 350 max depth
• 2 min samples split
• 0.01% min samples

Leaf

• class weight=1.0

47.248.4RF • 300 estimators
• 500 max depth
• 20 min samples split
• 0.01% min samples leaf

44.144.7ACGg system probability of PHUhJHU-ACGf

46.146.8Based on 241 parameters (ie, diagnoses and medications)Logistic regression

aPPV: positive predictive value.
bCNB: complement naïve Bayes.
cRF: random forest.
dmax: maximum.
emin: minimum.
fJHU-ACG: ACG predictive model with no local tuning.
gACG: adjusted clinical group.
hPHU: persistent high utilizer.

Discussion

Principal Findings
Persistent high utilizers (PHUs) are defined as patients who
consistently stay in the highest deciles of health care costs or
utilization across multiple years [4-12]. Risk stratification efforts
strive to better identify and manage PHUs so that scarce health
care resources can be better allocated. Nonetheless, predicting
who becomes a PHU is often challenging, partly because PHUs
are uncommon [4,6,9-11]. Past studies have attempted to
improve the prediction of PHUs in various populations;
however, those predictions have either suffered from high false
negative/positive rates or have been limited in scope [4,6,9-11].
In this study, to address the methodological complexity in
predicting PHUs, we evaluated the benefit of an ensemble
approach to balance the sensitivity and specificity of predicting
PHUs.

Our results show that ensemble methodology can be effectively
used to improve both sensitivity and PPV of predicting PHUs.

The ensemble model developed in this study included 2 layers
of CNB and 1 prediction layer of RF, which can be converged
rather quickly. We achieved a sensitivity and PPV of 49.0%
and 50.3%, respectively, using the ensemble model. In
comparison to the best alternative performing model, which
was the standalone RF, the ensemble model improved the
sensitivity by 0.6 and PPV by 3.1 absolute percentage points,
which represents a 1.2% and 6.6% relative improvement in
sensitivity and PPV, respectively. Moreover, standalone RF
models are prone to overfitting and often lack generalizability
to other populations. The ensemble model was also superior
compared to traditional logistic regression and the more
established (ACG) models [13]. The ensemble model improved
the sensitivity and PPV of predicting PHUs by 2.2 and 4.2
absolute percentage points (ie, 4.7% and 9.1% relative
improvement) compared to the traditional logistic regression
and by 4.3 and 6.2 absolute percentage points (ie, 9.6% and
14.1% relative improvement) when compared to the ACG model
[13].
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Several studies have examined the use of traditional methods
in predicting PHUs; however, models developed in these studies
have often generated low PPV rates or showed limited
generalizability. For example, in a study of an employer-based
health plan, using commercial claims data, a logistic regression
model achieved a sensitivity of 80% but PPV of 19% to predict
PHUs among the health plan enrollees [6]. In another study
aiming to predict PHUs, using diagnostic and medication
information extracted from claims data, a regression model
achieved a sensitivity of 46.7% and PPV of 57.2%; however,
the study population was limited to patients aged 18 to 62 years,
hence limiting generalizability to other populations [4]. Several
studies have used regression models to control for underlying
demographic and clinical variables and measure the residual
differences such as cost, behavioral health, and social
determinants of health variables between PHU and non-PHU
populations [7,8]. These studies, however, have not published
the performance of these regression models in predicting PHUs.

A few studies have assessed the value of machine learning
methods in predicting PHUs. In a study of a statewide Medicaid
population, demographics, diagnostics, and medication
information were used to predict costs associated with PHUs.
The study compared multiple models including linear regression,
regularized regression, gradient boosting machine, and recurrent
neural networks, but the study did not generate comparable
predictive measures as these models did not predict PHU status
[9]. Another study applied penalized regression, support vector
machine, and extreme gradient boosting against claims data to
predict PHUs among patients from an academic medical center.
The study achieved high sensitivity rates ranging from 72.7%
to 78.7%; however, the (recalculated) PPV ranged from 18.6%
to 19.8% [10]. Among the machine learning studies targeting
PHUs, only one study compared an ensemble methodology
(using RFs) to other methods (eg, linear regression, decision
tree regression) [11]. This study, however, predicted cost of
PHUs and was limited to patients with schizophrenia, hence
limiting its generalizability to the broader population of patients.

Despite the promising findings of past studies in predicting
PHUs, their results cannot be accurately compared to our
ensemble model as each study used a slightly different definition
of PHU. Some studies have defined PHUs as patients in the top
5% of cost over 2 years [4], while other studies have set the bar
at 10% or 20% of cost over longer periods of time [6,7]. Future
research should attempt to harmonize the definition of PHUs
to make the comparison of PHU populations across different
populations and health plans feasible. Additionally,
harmonization of the PHU definition can facilitate the
performance measurement and comparison of PHU predictive
models across different health care settings.

Balancing the sensitivity and PPV of PHU predictions is key
in operationalizing such models in PHM efforts. Indeed, given
the infrequency of PHUs in the total population of patients, a
balanced sensitivity and PPV ratio will play an important role
in the management of limited resources for PHUs. In our study,
the improvement of model performance compared to the
traditional models corresponds to approximately 84 additional
PHUs being classified correctly in the test set of 1672 true
PHUs. These 84 patients would not have been reviewed for

potential proactive interventions by a care manager if tested by
a traditional method.

In this study, we chose to report classification performance at
the balanced precision and recall scores (50/50) to highlight
optimal performance in both metrics simultaneously. In specific
PHM use cases, it may be desirable to select a lower
classification threshold and more patients for care or intervention
consideration, even if their individual risk score is lower. In
large-scale PHM use cases, cost of considering many patients
may be too high and a higher classification threshold is to be
selected to only manage the most at-risk patients. Hence,
individual population health programs may chose different
balances of precision versus recall for models predicting PHUs.

Our study showed that machine learning has a performance
advantage over traditional statistical models. Ultimately,
improved performance will come from more advanced ensemble
methods coupled with continually improving robustness of
feature analysis, which together are the keys to significantly
increased performance. Model performance could benefit from
subpopulation training by reducing the large and variable
parameter space for classification. Thus, developing custom
groupings of clinical features associate with PHU patients
(versus non-PHUs) can potentially advance predictive models
of PHUs. For example, clinical groupings identified by
unsupervised machine learning techniques (such as latent class
analysis) has shown value in improving predictive models of
PHUs [21].

Value-based health care providers are increasingly using risk
stratification tools to manage their patient populations [22].
Providers often use local electronic health records (EHRs)
instead of insurance claims to risk stratify patients and predict
PHUs [23-25]. Although advances have been made in using
unique EHR data to improve risk prediction using prescription
data [26-28], vital signs [29,30], laboratory results [31], and
free-text analysis [32,33], quality of EHR data remains a major
challenge in this process [34]. Using machine learning models,
such as the ensemble models, can potentially help providers
address some of these deficiencies and improve the prediction
of PHUs using EHR data [35,36]. Future studies should
investigate the usability of machine learning models in
enhancing EHR-based PHU predictions and its implication on
improving the wider population-level health outcomes [37].

Limitations
Our study has several limitations. First, the results of our
ensemble approach and the improvement of the PHU prediction
may not generalize to other populations (eg, older adults),
different settings (eg, inpatient only), or alternative data sources
(eg, EHRs). Future research should explore the use of ensemble
methodology in new populations and settings using alternate
data sources. Second, the current definition of PHU may not be
consistent with the operational definition in all PHM. We used
a specific definition for PHU (ie, percentile of cost and time
period), but that definition may not fit all populations. The risk
stratification research community should harmonize the
definition of PHU so predictive models of PHUs can be
compared accurately to increase their generalizability. Third,
we only used demographics, diagnosis, and medications in our
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prediction models. Past research has shown the value of social
determinants of health in improving the prediction of health
care utilization [38-42]. Future research should investigate the
value of the ensemble model in improving predictive models
of PHU that incorporate social data. Finally, the ensemble
methodology uses an approach that complicates the explanation
of a prediction, and thus the operational use of such models in
clinical and PHM settings should be further studied.

Conclusion
A small segment of the patient population uses most of the
health care services over extended periods. We used an ensemble
model, a machine learning approach that combines multiple
modeling techniques, to simultaneously improve the sensitivity
and PPV of predicting PHUs using claims data. Future studies
should investigate the value of machine learning techniques in
predicting PHUs in other health care settings with potentially
different underlying populations and different data sources (eg,
EHR data).
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