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Abstract

Background: In the United States, national guidelines suggest that aggressive cancer care should be avoided in the final months
of life. However, guideline compliance currently requires clinicians to make judgments based on their experience as to when a
patient is nearing the end of their life. Machine learning (ML) algorithms may facilitate improved end-of-life care provision for
patients with cancer by identifying patients at risk of short-term mortality.

Objective: This study aims to summarize the evidence for applying ML in ≤1-year cancer mortality prediction to assist with
the transition to end-of-life care for patients with cancer.

Methods: We searched MEDLINE, Embase, Scopus, Web of Science, and IEEE to identify relevant articles. We included
studies describing ML algorithms predicting ≤1-year mortality in patients of oncology. We used the prediction model risk of bias
assessment tool to assess the quality of the included studies.

Results: We included 15 articles involving 110,058 patients in the final synthesis. Of the 15 studies, 12 (80%) had a high or
unclear risk of bias. The model performance was good: the area under the receiver operating characteristic curve ranged from
0.72 to 0.92. We identified common issues leading to biased models, including using a single performance metric, incomplete
reporting of or inappropriate modeling practice, and small sample size.

Conclusions: We found encouraging signs of ML performance in predicting short-term cancer mortality. Nevertheless, no
included ML algorithms are suitable for clinical practice at the current stage because of the high risk of bias and uncertainty
regarding real-world performance. Further research is needed to develop ML models using the modern standards of algorithm
development and reporting.

(JMIR Med Inform 2022;10(3):e33182) doi: 10.2196/33182
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Introduction

Background
Cancer therapies, including chemotherapy, immunotherapy,
radiation, and surgery, aim to cure and reduce the risk of
recurrence in early-stage disease and improve survival and
quality of life for late-stage disease. However, cancer therapy
is invariably associated with negative effects, including toxicity,
comorbidities, financial burden, and social disruption. There is
growing recognition that therapies are sometimes started too
late, and many patients die while receiving active therapy [1-3].
For instance, a systematic review summarized that the
percentage of patients with lung cancer receiving aggressive
treatments during the last month of their life ranged from 6.4%
to >50% [4]. Another retrospective comparison study revealed
that the proportion of patients with gynecologic cancer
undergoing chemotherapy or invasive procedures in their last
3 months was significantly higher in 2011 to 2015 than in 2006
to 2010 [5]. Research has shown that the aggressiveness of care
at the end of life in patients with advanced cancers is associated
with extra costs and a reduction in the quality of life for patients
and their families [4,6].

In the United States, national guidelines state that gold standard
cancer care should avoid the provision of aggressive care in the
final months of life [7]. Avoiding aggressive care at the end of
life currently requires clinicians to make judgments based on
their experience as to when a patient is nearing the end of their
life [8]. Research has shown that these decisions are difficult
to make because of a lack of scientific, objective evidence to
support the clinicians’ judgment in palliative or related
discussion initiation [2,9,10]. Thus, a decision support tool
enabling the early identification of patients of oncology who
may not benefit from aggressive care is needed to support better
palliative care management and reduce clinicians’ burden [2].

In recent years, there have been substantial changes in both the
type and quantity of patient data collected using electronic health
records (EHR) and the sophistication and availability of the
techniques used to learn the complex patterns within that data.
By learning these patterns, it is possible to make predictions for
individual patients’ future health states [11]. The process of
creating accurate predictions from evident patterns in past data
is referred to as machine learning (ML), a branch of artificial
intelligence research [12]. There has been growing enthusiasm
for the development of ML algorithms to guide clinical
problems. Using ML to create robust, individualized predictions
of clinical outcomes, such as the risk of short-term mortality
[13,14], may improve care by allowing clinical teams to adjust
care plans in anticipation of a forecasted event. Such predictions
have been shown to be acceptable for use in clinical practice
[15] and may one day become a fundamental aspect of clinical
practice.

ML applications have been developed to support mortality
predictions for a variety of populations, including but not limited
to patients with traumatic brain injury, COVID-19 disease of
2019, and cancers, as well as patients admitted to emergency
departments and intensive care units. These applications have
consistently demonstrated promising performances across

studies [16-19]. Researchers have also applied ML techniques
to create tools supporting various clinical tasks involved in the
care of patients of oncology, with most applications focusing
on the prediction of cancer susceptibility, recurrence, treatment
response, and survival [14,19,20]. However, the performance
of ML applications in supporting mortality predictions for
patients of oncology has not yet been systematically examined
and synthesized.

In addition, as the popularity of ML in clinical medicine has
risen, so too has the realization that applying complex algorithms
to big data sets does not in itself result in high-quality models
[11,21]. For example, subtle temporal-regional nuances in data
can cause models to learn relationships that are not repeated
over time and space. This can lead to poor future performance
and misleading predictions [22]. Algorithms may also learn to
replicate human biases in data and, as a result, could produce
predictions that negatively affect disadvantaged groups [23,24].
Recent commentary has drawn attention to various issues in the
transparency, performance, and reproducibility of ML tools
[25-27]. A comparison of 511 scientific papers describing the
development of ML algorithms found that, in terms of
reproducibility, ML for health care compared poorly to other
fields [28]. Issues of algorithmic fairness and performance are
especially pertinent when predicting patient mortality. If done
correctly, these predictions could help patients and their families
receive gold standard care at the end of life; if done incorrectly,
there is a risk of causing unnecessary harm and distress at a
deeply sensitive time.

Another aspect of mortality affecting the algorithm performance
is its rare occurrence in most populations. There are known
issues that are commonly encountered when trying to predict
events from data sets in which there are far fewer events than
nonevents, which is known as class imbalance. One such issue
is known as the accuracy paradox—the case in which an ML
algorithm presents with high accuracy but a failure to identify
occurrences of the rare outcome it was tasked to predict [29,30].
During the model training process, many algorithms seek to
maximize their accuracy across the entire data set. In the case
of a data set in which only 10% of patients experienced a rare
outcome—as is often the case with data sets containing
mortality—an algorithm could achieve an apparently excellent
accuracy of 0.90 by simply predicting that every patient would
live. The resulting algorithm would be clinically useless on
account of its failure to identify patients who are at risk of dying.
If handled incorrectly, the class imbalance problem can lead
algorithms to prioritize the predictions of the majority class.
For this reason, it is especially important to evaluate multiple
performance metrics when assessing algorithms that predict
rare events.

Objective
The purpose of this systematic review is to critically evaluate
the current evidence to (1) summarize ML-based model
performance in predicting ≤1-year mortality for patients with
cancer, (2) evaluate the practice and reporting of ML modeling,
and (3) provide suggestions to guide future work in the area. In
this study, we seek to evaluate models identifying patients with
cancer who are near the end of their life and may benefit from
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end-of-life care to facilitate the better provision of care. As the
definitions of aggressive care at the end of life vary from
initiation of chemotherapy or invasive procedures or admission
to the emergency department or intensive care unit within 14
days to 6 months [1,4,5], we focused on ≤1-year mortality of
patients with cancer to ensure that we include all ML models
that have the potential to reduce the aggressiveness of care and
support the better provision of palliative care for cancer
populations.

Methods

Overview
We conducted this systematic review following the Joanna
Briggs Institute guidelines for systematic reviews [31]. To
facilitate reproducible reporting, we present our results following
the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) statement [32]. This review was
prospectively registered in PROSPERO (International
Prospective Register of Systematic Reviews; PROSPERO ID:
CRD42021246233). The protocol for this review has not been
published.

Search Strategy
We searched Ovid MEDLINE, Ovid Embase, Clarivate
Analytics Web of Science, Elsevier Scopus, and IEEE Xplore
databases from the date of inception to October 2020. The
following concepts were searched using subject headings
keywords as needed: cancer, tumor, oncology, machine learning,
artificial intelligence, performancemetrics, mortality, cancer
death, survival rate, and prognosis. The terms were combined
using AND/OR Boolean statements. A full list of search terms
along with a complete search strategy for each database used
is provided in Multimedia Appendix 1. In addition, we reviewed
the reference lists of each included study for relevant studies.

Study Selection
A total of 2 team members screened all the titles and abstracts
of the articles identified in the search for studies. A senior ML
researcher (CSG) resolved the discrepancies between the 2
reviewers. We then examined the full text of the remaining
articles using the same approach but resolved disagreements
via consensus. Studies were included if they (1) developed or
validated ML-based models predicting ≤1-year mortality for

patients of oncology, (2) made predictions using EHR data, (3)
reported model performance, and (4) were original research
published through a peer-reviewed process in English. We
excluded studies if they (1) focused on risk factor investigation;
(2) implemented existing models; (3) were not specific to
patients with cancer; (4) used only image, genomic, clinical
trial, or publicly available data; (5) predicted long-term (>1
year) mortality or survival probability; (6) created survival
stratification using unsupervised ML approaches; and (7) were
not peer-reviewed full papers. We defined short-term mortality
as death happening within ≤1 year after receiving cancer
diagnostics or certain treatments for this review.

Critical Appraisal
We evaluated the risk of bias (ROB) of each included study
using the prediction model ROB assessment tool [33]. A total
of 2 reviewers independently conducted the assessment for all
the included studies and resolved conflicts by consensus.

Data Extraction and Synthesis
For data extraction, we developed a spreadsheet based on the
items in the transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis (TRIPOD) [34]
through iterative discussions. A total of 4 reviewers
independently extracted information about sampling, data
sources, predictive and outcome variables, modeling and
evaluation approaches, model performance, and model
interpretations using the spreadsheet from the included studies,
with each study extracted by 2 reviewers. Discrepancies were
discussed among all reviewers to reach a consensus. The
collected data items are available in Multimedia Appendix 2
[35]. To summarize the evidence, we grouped the studies using
TRIPOD’s classification for prediction model studies (Textbox
1) and summarized the data narratively and descriptively by
group. To estimate the performance of each ML algorithm, we
averaged the area under the receiver operating characteristic
curve (AUROC) for each type of ML algorithm across the
included studies and estimated SE for 95% CI calculation using
the averaged AUROC and pooled validation sample size for
each type of ML algorithm. In addition, we conducted a
sensitivity analysis to assess the impact of studies that were
outliers either on the basis of their sample size or their risk of
bias.
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Textbox 1. Types of prediction model studies.

Study type and definition

Type 1a

Studies develop prediction model or models and evaluate model performance using the same data used for model development.

Type 1b

Studies develop prediction model or models and evaluate the model or models using the same data used for model development with resampling
techniques (eg, bootstrapping and cross-validation) to avoid an optimistic performance estimate.

Type 2a

Studies randomly split data into two subsets: one for model development and another for model performance estimate.

Type 2b

Studies nonrandomly split data into two subsets: one for model development and another for model performance estimate. The splitting rule can be
by institute, location, and time.

Type 3

Studies develop and evaluate prediction model or models using 2 different data sets (eg, from different studies).

Type 4

Studies evaluate existing prediction models with new data sets not used in model development.

Note: The types of prediction model studies were summarized from Collins et al [34].

Results

Summary of Included Studies
Our search resulted in 970 unduplicated references, of which
we excluded 771 (79.5%) articles because of various reasons,

such as no ML involvement, not using EHR data, or no patient
with cancer involvement, based on the title and abstract screen.
After the full-text review, we included 1.5% (15/970) of articles
involving a total of 110,058 patients with cancer (Figure 1). We
have provided a detailed record of the selection process in
Multimedia Appendix 3 [36,37].

Figure 1. PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) flowchart diagram for the study selection process. ML:
machine learning.
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We present a characteristic summary of the included articles in
Table 1 [36-49]. Of the 15 included articles, 13 (87%) were
model development and internal validations, and 2 (13%) were
external validations of existing models. The median sample size
was 783 (range 173-26,946), with a median of 21 predictors
considered (range 9-5390). The target populations of the 15
articles included 5 (33%) with all types of cancer, 3 (20%) with
spinal metastatic diseases, 2 (13%) with liver cancer, and 1 (7%)
each with gastric cancer, colon and rectum cancer, stomach
cancer, lung cancer, and bladder cancer. Several algorithms
have been examined in many studies. The most commonly used
ML algorithms were artificial neural networks (8/15, 53%).
Other algorithms included gradient-boosted trees (4/15, 27%),
decision trees (4/15, 27%), regularized logistic regression (LR;
4/15, 27%), stochastic gradient boosting (2/15, 13%), naive

Bayes classifier (1/15, 7%), Bayes point machine (1/15, 7%),
and random forest (RF; 1/15, 7%). Of the 15 studies, 2 (13%)
tested their models in their training data sets by resampling
(type 1b), 9 (60%) examined their models using randomly split
holdout internal validation data sets (type 2a), 2 (13%) examined
with nonrandomly split holdout validation data sets (type 2b),
and 2 (13%) validated existing models using external data sets
(type 4). The frequent candidate predictors were demographic
(12/15, 80%), clinicopathologic (12/15, 80%), tumor entity
(7/15, 47%), laboratory (7/15, 47%), comorbidity (5/15, 33%),
and prior treatment information (5/15, 33%). The event of
interest varied across the studies, with 47% (7/15) for 1-year
mortality, 33% (5/15) for 180-day mortality, 13% (2/15) for
90-day mortality, and 7% (1/15) for 30-day mortality.
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Table 1. Characteristics of the included studies (N=15).

OutcomeInput features (total
number of features)

AlgorithmsSample sizeTreatmentStudy
type

CountryType of cancer
and study

ValidatingTestingTraining

All cancer

180-day
death

Comorbidity and

PROe for physical and
DTb, ANNc,

and NBd

N/AN/Aa543All1bBrazilSena et al
[38]

mental status assess-
ments (9)

180-day
death

Demographic, clinico-
pathologic, laboratory,
comorbidity, and

GBTf and RFgN/A795818,567All2aUnited
States

Parikh et al
[39]

electrocardiogram da-
ta (599)

180-day
death

Same as Parikh et al
[39]

GBT24,582N/AN/AAll4United
States

Manz et al
[37]

180-day
death

Demographic, clinico-
pathologic, gene muta-
tions, prior treatment,

DT, regular-

ized LRh, and
GBT

N/A955614,427All2aUnited
States

Bertsimas et
al [50]

comorbidity, use of
health care resources,
vital signs, and labora-
tory data (401)

180-day
death

Demographic, clinico-
pathologic, prescrip-
tion, comorbidity, lab-

GBTN/A911417,832All2bUnited
States

Elfiky et al
[43]

oratory, vital sign, and
use of health care re-
sources data and
physician notes
(5390)

Non–small cell lung cancer

1-year
death

Demographic, clinico-
pathologic, and tumor
entity data (17)

ANNN/A48125Curative
resection

2bJapanHanai et al
[44]

Gastric cancer

1-year
death

Demographic, clinico-
pathologic, tumor enti-
ty, and prior treatment
(20)

ANNN/AN/A452Surgery1bIranNilsaz-Dez-
fouli et al
[45]

Colon and rectum cancer

1-year
death

Demographic, clinico-
pathologic, tumor enti-

ty, comorbidity, ASAi

DT and regu-
larized LR

N/A964981Curative or
palliative
surgery

2aSpainArostegui et
al [46]

prior treatment, labora-
tory, operational data,
postoperational com-
plication, and use of
health care resources
data (32)

Stomach cancer

1-year
death

Demographic, clinico-
pathologic, and symp-

tom data (NRj)

ANNN/A136300Surgery2aIranBiglarian et
al [47]

Bladder cancer
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OutcomeInput features (total
number of features)

AlgorithmsSample sizeTreatmentStudy
type

CountryType of cancer
and study

ValidatingTestingTraining

90-day
death

Demographic, clinico-
pathologic, ASA, co-
morbidity, laboratory,
prior treatment, tomog-
raphy, and operational
data (NR)

Regularized
LR

N/A366733Radical
cystectomy

2aTurkeyKlén et al
[48]

Hepatocellular carcinoma

1-year
death

Demographic, clinico-
pathologic, tumor enti-
ty, comorbidity, ASA,
laboratory, opera-
tional, and postopera-
tional data (21)

ANNN/A87347Liver resec-
tion

2aTaiwanChiu et al
[49]

1-year
death

Donor demographic
data and recipient lab-
oratory, clinicopatho-
logic, and image data
(14)

ANNN/A60230Liver trans-
plant

2aChinaZhang et al
[40]

Spinal metastatic

30-day
death

Demographic, clinico-
pathologic, tumor enti-
ty, ASA, laboratory,
and operational data
(23)

ANN, SVMk,

DT, and BPMl

N/A3581432Surgery2aUnited
States

Karhade et
al [41]

90-day
death

Demographic, clinico-
pathologic, tumor enti-
ty, laboratory, opera-

tional, ECOGn,

ASIAo, and prior
treatment data (29)

SGBm, RF,
ANN, SVM,
and regular-
ized LR

N/A145587Surgery2aUnited
States

Karhade et
al [42]

1-year
death

ECOG, demographic,
clinicopathologic, tu-
mor entity, laboratory,
prior treatment, and
ASIA data (23)

SGB176N/AN/ACurative
surgery

4United
States

Karhade et
al [36]

aN/A: not applicable.
bDT: decision tree.
cANN: artificial neural network.
dNB: naive Bayes.
ePRO: patient-reported outcome.
fGBT: gradient-boosted tree.
gRF: random forest.
hLR: logistic regression.
iASA: American Sociological Association.
jNR: not reported.
kSVM: support vector machine.
lBPM: Bayes point machine.
mSGB: stochastic gradient boosting.
nECOG: Eastern Cooperative Oncology Group.
oASIA: American Spinal Injury Association.

ROB Evaluation
Of the 15 studies, 12 (80%) were deemed to have a high or
unclear ROB. The analysis domain was the major source of bias

(Figure 2). Of the 12 model development studies, 8 (67%)
provided insufficient or no information on data preprocessing
and model optimization (tuning) methods. Approximately 33%
(5/15) of studies did not report how they addressed missing
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data, and 13% (2/15) potentially introduced selection bias by
excluding patients with missing data. All studies clearly defined
their study populations and data sources, although none justified
their sample size. Predictors and outcomes of interest were also

well-defined in all studies, except for 20% (3/15) of studies that
did not specify their outcome measure definition and whether
the definition was consistently used.

Figure 2. Risk of bias assessment for the included studies. Risk of bias assessment result for each included study using prediction model risk of bias
assessment tool [15,35-49].

Model Performance
We summarize the performance of the best models from the
type 2, 3, and 4 studies (12/15,80%) in Table 2. We excluded
1 type 2b study as the authors did not report their performance
results in a holdout validation set. Model performance across
the studies ranged from acceptable to good, based on AUROC
ranging from 0.72 to 0.92. Approximately 40% (6/15) of studies
reported only the AUROC values, therefore, leaving some
uncertainty about model performance in correctly identifying
patients at risk of short-term mortality. Other performance
metrics were less reported and were sometimes indicative of
poor performance. Studies reported median accuracy 0.91 (range

0.86-0.96; 2/15, 13%), sensitivity 0.85 (range 0.27-0.91; 4/15,
27%), specificity 0.90 (0.50-0.99; 5/15, 33%), as well as the
positive predictive value (PPV) and the negative predictive
value of 0.52 (range 0.45-0.83; 4/15, 27%) and 0.92 (range
0.86-0.97; 2/15, 13%), respectively.

Among the ML algorithms examined, all algorithms were
similarly performed, with RF slightly better than the other
algorithms (Figure 3). Approximately 33% (5/15) of studies
compared their ML algorithms with statistical models
[39,47,48,50,51]. Differences in AUROC between the ML and
statistical models ranged from 0.01 to 0.11, with one of the
studies reporting a significant difference (Table 2).
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Table 2. Predicting performance for the best model for each study in a holdout internal or external validation data set (N=12).

Bench-
mark,
model (Δ
AUROC)

Calibra-
tion

NPVcPPVbSpeci-
ficity

Sensitiv-
ity

Accura-
cy

AU-

ROCa
Algo-
rithm

Mortali-
ty rate
(%)

Valida-
tion
sample

Train-
ing sam-
ple

Out-
come

Type of can-
cer and study

All cancer

—Well-fit0.970.450.990.27—f0.89GBTe4.224,582N/Ad180-day
death

Manz et
al [37]

LRh

(0.01)

Well-fit
at the
low-risk
group

—0.510.99—0.960.87RFg4.0795818,567180-day
death

Parikh et
al [39]

LR (0.11)——0.53—.600.870.87GBT5.6955614,427180-day
death

Bertsimas
et al [50]

—Well-fit—————0.83GBT18.4911417,832180-day
death

Elfiky et
al [43]

Gastrointestinal cancer

—Well-fit—————0.84DTi5.19649811-year
death

Arostegui
et al [46]

CPHk

(0.04)l

———0.850.80—0.92ANNj37.51363001-year
death

Biglarian
et al [47]

Patients with bladder cancer

ACCIm

univariate
model
(0.05)

——————0.72Regular-
ized LR

4.436673390-day
death

Klén et al
[48]

Patients with liver cancer

LR (0.08)———0.500.89—0.88ANN17873471-year
death

Chiu et al
[49]

——0.860.830.900.91—0.91ANN23.9602301-year
death

Zhang et
al [40]

Patients with spinal metastasis

—Well-fit—————0.78BPMn8.5358143230-day
death

Karhade
et al [41]

—Well-fit—————0.89SGBo54.31455861-year
death

Karhade
et al [42]

—Fairly
well-fit

—————0.77SGB56.2176N/A1-year
death

Karhade
et al [36]

aAUROC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dN/A: not applicable.
eGBT: gradient-boosted tree.
fNo data available
gRF: random forest.
hLR: logistic regression.
iDT: decision tree.
jANN: artificial neural network.
kCPH: Cox proportional hazard.
lSignificant at the α level defined by the study.
mACCI: adjusted Charlson comorbidity index.
nBPM: Bayes point machine
oSGB: stochastic gradient boosting.
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Figure 3. Pooled AUROC by machine learning (ML) algorithm. ANN: artificial neural network; AUROC: area under the receiver operating characteristic
curve; BPM: Bayes point machine; DT: decision tree; GBT: gradient-boosted tree; LR: logistic regression; RF: random forest; SGB: stochastic gradient
boosting; SVM: support vector machine.

Model Development and Evaluation Processes
Most articles (11/15, 73%) did not report how their training
data were preprocessed (Table 3). Authors of 27% (4/15) of
articles reported their methods for preparing numeric variables,
with 75% (3/4) using normalization, 25% (1/4) using
standardization, and 25% (1/4) using discretization.
Approximately 13% (2/15) of articles used one-hot encoding
for their categorical variables. Various techniques were used to
address missing data, including constant value imputation (3/15,
20%), multiple imputation (3/15, 20%), complete cases only
(2/15, 13%), probabilistic imputation (1/15, 7%), and the optimal
impute algorithm (1/15, 7%).

Of the 13 model development studies, 9 (69%) reported their
approaches for feature selection. The approaches, including 3
model-based variable importance, between-variable correlation,
zero variance, univariate Cox proportional hazard, forward
stepwise selection algorithm, recursive feature selection, and

parameter-increasing method, were used alone or in
combination. Concerning hyperparameter selection, 33% (5/15)
reported their methods to determine hyperparameters, with 60%
(3/5) using grid search and 2 (40%) using the default values of
the modeling software. Finally, 47% (7/15) used various
resampling approaches to ensure the generalizability of their
models. The N-fold cross-validation approach was the primary
strategy. Varying fold numbers were used, such as 10 (3/15,
20%), 5 (2/15, 13%), 4 (1/15, 7%), 3 repeats 10 (1/15, 7%), and
5 repeats 5-fold (1/15, 7%). One of the studies used the
bootstrapping method. Approximately 27% (4/15) of studies
did not report whether resampling was performed.

Of the 15 studies, 12 (80%) used variable importance plots to
interpret their models, 3 (20%) included decision tree rules, and
2 (13%) included coefficients to explain their models in terms
of prediction generation. Other model interpretation approaches,
including local interpretable model-agnostic explanations and
partial dependence plots, were used in 7% (1/15) of studies.
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Table 3. The Model development processes and evaluations used in the included studies.

InterpretationModel optimizationData preprocessingType and study

Generalizability

consideration

Hyperparameter

value selection

Feature

selection

Missing dataCategorical

variables

Numeric variables

Type 1b

VId10-fold CVcSoftware defaultNoneNRbN/AaNormalizationSena et al
[38]

VI5×5-fold CVGrid searchVINRNRNRNilsaz-Dez-
fouli et al
[45]

Type 2a

VI and coeffi-
cient

5-fold CVGrid searchZero variance
and between-
variable corre-
lation

Constant value
imputation

NRNRParikh et al
[39]

VINRNRLASSOe LRfComplete cases
only

NRNRKlén et al
[48]

VI, PDPh, and

LIMEi

3×10-fold CVNRRFgmissForest mul-
tiple imputation

NRNRKarhade et
al [42]

NR10-fold CVNRRecursive fea-
ture selection

Multiple imputa-
tion

NRNRKarhade et
al [41]

VI and decision
tree rules

BootstrappingSoftware defaultRF variable
importance

Constant value
imputation

One-hot en-
coding

DiscretizationArostegui et
al [46]

VI and decision
tree rules

NRNRNoneOptimal impute
algorithm

NRNRBertsimas et
al [50]

VINRNRUnivariate
Cox propor-

Complete cases
only

NRNRChiu et al
[49]

tional hazard
model

VI10-fold CVNRForward step-
wise selection
algorithm

NROne-hot en-
coding

NormalizationZhang et al
[40]

NRNRNRNoneNRNRNRBiglarian et
al [47]

Type 2b

VI4-fold CVGrid searchNoneProbabilistic
imputation

NRNRElfiky et al
[43]

VI5-fold CVNRBetween-vari-
able correla-

tion and PIMj

NRNRStandardizationHanai et al
[44]

Type 4

VI and coeffi-
cient

N/AN/AN/AConstant value
imputation

NRNRManz et al
[37]

NRN/AN/AN/AmissForest mul-
tiple imputation

NRNRKarhade et
al [36]

aN/A: not applicable.
bNR: not reported.
cCV: cross-validation.
dVI: variable importance.
eLASSO: least absolute shrinkage and selection operator.
fLR: logistic regression.
gRF: random forest.
hPDP: partial dependence plot.
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iLIME: local interpretable model-agnostic explanation.
jPIM: parameter-increasing method.

Solutions for Class Imbalance
All included studies reported that the mortality rate of their
samples experienced some degree of class imbalance (Table 3).
The median mortality rate was 20.0% (range 4%-56.2%), with
2.8 deaths in training samples per candidate predictor (range
0.5-12.3) in training samples. A type 1 study discussed the
potential disadvantage of the issue and used a downsampling
approach to handle imbalanced data. No information was
provided on how the downsampling approach was conducted
and its effectiveness on model performance in an unseen data
set.

Sensitivity Analysis
Owing to the small number of included studies, we conducted
a sensitivity analysis by including 1 study per research group
to avoid the disproportionate effects of studies from a single
group on our model performance and modeling practice
evaluation. We observed similar issues concerning model
development and evaluation practice after removing the studies
by Manz et al [37] and Karhade et al [36,41]. For model
performance, all algorithms still demonstrated good
performance, with a median AUROC of 0.88 ranging from 0.81
to 0.89 (Multimedia Appendix 4 [36,37,41]). We detected
changes in AUROC for all algorithms except RF and regularized
LR (ranging from −0.008 to 0.065). Stochastic gradient boosting
and support vector machine algorithms had the greatest changes
in AUROC (ΔAUROC=0.06 and 0.065, respectively). However,
the performance of these models in the sensitivity analysis may
not be reliable as both algorithms were examined in the same
study using a small sample (n=145).

Discussion

Principal Findings
Mortality prediction is a sensitive topic that, if done correctly,
could assist with the provision of appropriate end-of-life care
for patients with cancer. ML-based models have been developed
to support the prediction; however, the current evidence has not
yet been systematically examined. To fill this gap, we performed
a systematic review evaluating 15 studies to summarize the
evidence quality and the performance of ML-based models
predicting short-term mortality for the identification of patients
with cancer who may benefit from palliative care. Our findings
suggest that the algorithms appeared to have promising overall
discriminatory performance with respect to AUROC values,
consistent with previous studies summarizing the performance
of ML-based models supporting mortality predictions for other
populations [16-19]. However, the results must be interpreted
with caution because of the high ROB across the studies, as
well as some evidence of the selective reporting of important
performance metrics such as sensitivity and PPV, supporting
previous studies reporting poor adherence to TRIPOD reporting
items in ML studies [52]. We identified several common issues
that could lead to biased models and misleading model
performance estimates in the methods used to develop and

evaluate the algorithms. The issues included the use of a single
performance metric, incomplete reporting of or inappropriate
data preprocessing and modeling, and small sample size. Further
research is needed to establish a guideline for ML modeling,
evaluation, and reporting to enhance the evidence quality in this
area.

We found that the AUROC was predominantly used as the
primary metric for model selection. Other performance metrics
have been less discussed. However, the AUROC provides less
information for determining whether the model is clinically
beneficial, as it equally weighs sensitivity and specificity
[53,54]. For instance, Manz et al [37] reported a model
predicting 180-day mortality for patients with cancer with an
AUROC of 0.89, showing the superior performance of the model
[37]. However, their model demonstrated a low sensitivity of
0.27, indicating poor performance in identifying individuals at
high risk of 180-day death. In practice, whether to stress
sensitivity or specificity depends on the model’s purpose. In
the case of rare event prediction, we believe that sensitivity will
usually be prioritized. Therefore, we strongly suggest that future
studies report multiple discrimination metrics, including
sensitivity, specificity, PPV, negative predictive value, F1 score,
and the area under the precision–recall curve, to allow for a
comprehensive evaluation [53-55].

We found no clear difference in performance between general
and cancer-specific ML models for short-term mortality
predictions (AUROC 0.87 for general models vs 0.86 for
cancer-specific models). This finding aligns with a study
reporting no performance benefit of disease-specific ML models
over general ML models for hospital readmission predictions
[56]. However, among the 15 included studies, 10 (67%)
examined ML performance in short-term mortality for only a
few types of cancer, which resulted in the ML in most cancer
types remaining unexplored and compromising the comparison.
In fact, a few disease-specific models examined in this review
demonstrated exceptional performance and have the potential
to provide disease-specific information to better guide clinical
practice [40,47]. As such, we recommend that more research
test ML models using various oncology-specific patient cohorts
to predict short-term mortality to enable a full understanding
of whether disease-specific ML models can bring advantages
over limitations, such as higher development and
implementation cost.

Only 33% (5/15) of the included studies compared their model
with a traditional statistical model, such as univariate or
multivariate LR [39,47,48,50,51]. Of the 15 studies, 1 (7%)
reported that ML models were statistically more accurate,
although all studies reported a superior AUROC of their ML
models compared with statistical predictive models. This finding
supports previous studies that reported that the performance
benefit of ML over conventional modeling approaches is unclear
at the current stage [57]. Thus, although we argue that the
capacity of ML algorithms in dealing with nonlinear,
high-dimensional data could benefit clinical practice by
identifying additional risk factors for intervening to improve
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patient outcomes beyond predictive performance, we encourage
researchers to benchmark their ML models against conventional
approaches to highlight the performance benefit of ML.

Our review suggests that the sample size consideration is
missing for ML studies in the field, which is consistent with a
previous review [58]. In fact, none of the included studies
justified the appropriateness of their sample size, given the
number of candidate predictors used in model development.
Simulation studies have suggested that most ML modeling
approaches require >200 data points related to the outcome per
candidate predictor to reach a stable performance and mitigate
optimistic models [59]. Unfortunately, none of the included
studies met this criterion. Thus, we recommend that future
studies justify the appropriateness of their sample size and use
feature selection and dimensional reduction techniques before
modeling to reduce the number of candidate predictors if a small
sample is inevitably used.

Most studies used imbalanced data sets without additional
procedures to address the issue, such as over- or downsampling.
The effects of class-imbalanced data sets are unclear as
sensitivity was often unreported and widely varied when it was
reported. A study used a downsampling technique to balance
their data set [38]. However, the authors did not report their
model performance in a holdout validation data set. Thus, the
effectiveness of this approach is unknown. Moreover, the
effectiveness of other approaches, such as the synthetic minority
oversampling technique [60], remains unexamined in this
context. Further research is needed to examine whether these
approaches can further improve the performance of ML models
in predicting cancer mortality.

Most ML models predicting short-term cancer mortality were
reported without intuitive interpretations of the prediction
processes. It has been well-documented that ML acceptance by
the larger medical community is limited because of the limited
interpretability of ML-based models [53]. Despite the
widespread use of variable importance analysis to reveal
essential factors for the models in the included studies, it is
unknown how the models used the factors to generate the
predictions [61]. As the field progresses, global and local model
interpretation approaches have been developed to explain ML
models intuitively and visually at a data set and instance level
[61]. The inclusion of these analyses to provide an intuitive
model explanation may not only gain medical professionals’
trust but also provide information guiding individualized care

plans and future investigations [62]. Therefore, we highly
recommend that future studies unbox their models using various
explanation analyses in addition to model performance.

Limitations
This review has several limitations. First, we did not
quantitatively synthesize the model performance because of the
clinical and methodological heterogeneity of the included
studies. We believe that a meta-analysis of the model
performance would provide clear evidence but should be
conducted with enough homogeneous studies [63]. Second, the
ROB of the studies may be inappropriately estimated because
of the use of the prediction model ROB assessment tool
checklist, which was developed for appraising predictive
modeling studies using multivariable analysis. Some items may
not apply, or additional items may be needed because of the
differences in terminology, theoretical foundations, and
procedures between ML-based and regression-based studies.
Finally, the results of this review may be affected by reporting
bias as we did not consider studies published outside of scientific
journals or in non-English languages. Furthermore, our results
could be compromised by the small number of included studies
and the inclusion of studies by the same group (eg, 3 studies
from Karhade et al [36,41,42]). However, we observed similar
issues with model development and performance in our
sensitivity analysis, suggesting that our evaluation likely reflects
the current evidence in the literature. Despite these limitations,
this review provides an overview of ML-based model
performance in predicting short-term cancer mortality and leads
to recommendations concerning model development and
reporting.

Conclusions
In conclusion, we found signs of encouraging performance but
also highlighted several issues concerning the way algorithms
were trained, evaluated, and reported in the current literature.
The overall ROB was high, and there was substantial uncertainty
regarding the development and performance of the models in
the real world because of incomplete reporting. Although some
models are potentially clinically beneficial, we must conclude
that none of the included studies produced an ML model that
we considered suitable for clinical practice to support palliative
care initiation and provision. We encourage further efforts to
develop safe and effective ML models using modern standards
of development and reporting.
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