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Abstract

In the United States, ~9% of people have asthma. Each year, asthma incurs high health care cost and many hospital encounters
covering 1.8 million emergency room visits and 439,000 hospitalizations. A small percentage of patients with asthma use most
health care resources. To improve outcomes and cut resource use, many health care systems use predictive models to prospectively
find high-risk patients and enroll them in care management for preventive care. For maximal benefit from costly care management
with limited service capacity, only patients at the highest risk should be enrolled. However, prior models built by others miss
>50% of true highest-risk patients and mislabel many low-risk patients as high risk, leading to suboptimal care and wasted
resources. To address this issue, 3 site-specific models were recently built to predict hospital encounters for asthma, gaining up
to >11% better performance. However, these models do not generalize well across sites and patient subgroups, creating 2 gaps
before translating these models into clinical use. This paper points out these 2 gaps and outlines 2 corresponding solutions: (1) a
new machine learning technique to create cross-site generalizable predictive models to accurately find high-risk patients and (2)
a new machine learning technique to automatically raise model performance for poorly performing subgroups while maintaining
model performance on other subgroups. This gives a roadmap for future research.

(JMIR Med Inform 2022;10(3):e33044) doi: 10.2196/33044
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Introduction

Asthma Care Management and Our Prior Work on
Predictive Modeling
In the United States, ~9% of people have asthma [1-3]. Each
year, asthma incurs US$ 56 billion of health care cost [4] and
many hospital encounters covering 1.8 million emergency room
visits and 439,000 hospitalizations [1]. As is the case with many
chronic diseases, a small percentage of patients with asthma
use most health care resources [5,6]. The top 1% of patients
spend 25% of the health care costs. The top 20% spend 80%
[5,7]. An effective approach is urgently in need to prospectively
identify high-risk patients and intervene early to avoid health

decline, improve outcomes, and cut resource use. Most major
employers purchase and nearly all private health plans offer
care management services for preventive care [8-10]. Care
management is a collaborative process to assess, coordinate,
plan, implement, evaluate, and monitor the services and options
to meet the health and service needs of a patient [11]. A care
management program employs care managers to call patients
regularly to assess their status, arrange doctor appointments,
and coordinate health-related services. Proper use of care
management can cut down hospital encounters by up to 40%
[10,12-17]; lower health care cost by up to 15% [13-18]; and
improve patient satisfaction, quality of life, and adherence to
treatment by 30%-60% [12]. Care management can cost >US$
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5000 per patient per year [13] and normally enrolls no more
than 3% of patients [7] owing to resource limits.

Correctly finding high-risk patients to enroll is crucial for
effective care management. Currently, the best method to
identify high-risk patients is to use models to predict each
patient’s risk [19]. Many health plans such as those in 9 of 12
metropolitan communities [20] and many health care systems
[21] use this method for care management. For patients predicted
to have the highest risk, care managers manually review
patients’ medical records, consider factors such as social
dimensions, and make enrollment decisions. However, prior
models built by others miss >50% of true highest-risk patients
and mislabel many low-risk patients as high risk [5,12,22-36].
This makes enrollment align poorly with patients who would
benefit most from care management [12], leading to suboptimal
care and higher costs. As the patient population is large, a small
boost in model performance will benefit many patients and
produce a large positive impact. Of the top 1% patients with
asthma who would incur the highest costs, for every 1% more
whom one could find and enroll, one could save up to US$ 21
million more in asthma care every year as well as improve
outcomes [5,26,27].

To address the issue of low model performance, we recently
built 3 site-specific models to predict whether a patient with
asthma would incur any hospital encounter for asthma in the
subsequent 12 months, 1 model for each of the 3 health care
systems—the University of Washington Medicine (UWM),
Intermountain Healthcare (IH), and Kaiser Permanente Southern
California (KPSC) [21,37,38]. Each prior model that others
built for a comparable outcome [5,26-34] had an area under the
receiver operating characteristic curve (AUC) that was ≤0.79
and a sensitivity that was ≤49%. Our models raised the AUC
to 0.9 and the sensitivity to 70% on UWM data [21], the AUC
to 0.86 and the sensitivity to 54% on IH data [37], and the AUC
to 0.82 and the sensitivity to 52% on KPSC data [38].

Our eventual goal is to translate our models into clinical use.
However, despite major progress, our models do not generalize
well across sites and patient subgroups, and 2 gaps remain.

Gap 1: The Site-Specific Models Have Suboptimal
Generalizability When Applied to the Other Sites
Each of our models was built for 1 site. As is typical in
predictive modelling [39,40], when applied to the other sites,
the site-specific model had AUC drops of up to 4.1% [38],
potentially degrading care management enrollment decisions.
One can do transfer learning using other source health care
systems' raw data to boost model performance for the target
health care system [41-45], but health care systems are seldom
willing to share raw data. Research networks [46-48] mitigate
the problem but do not solve it. Many health care systems are
not in any network. Health care systems in the network share
raw data of finite attributes. Our prior model-based transfer
learning approach [49] requires no raw data from other health
care systems. However, it does not control the number of
features (independent variables) used in the final model for the
target site, creating difficulty to build the final model for the
target site for clinical use. Consequently, it is never implemented
in computer code.

Gap 2: The Models Exhibit Large Performance Gaps
When Applied to Specific Patient Subgroups
Our models performed up to 8% worse on Black patients. This
is a typical barrier in machine learning, where many models
exhibit large subgroup performance gaps, for example, of up to
38% [50-57]. No existing tool for auditing model bias and
fairness [58,59] has been applied to our models. Currently, it
is unknown how our models perform on key patient subgroups
defined by independent variables such as race, ethnicity, and
insurance type. In other words, it is unknown how our models
perform for different races, different ethnicities, and patients
using different types of insurance. Large performance gaps
among patient subgroups can lead to care inequity and should
be avoided.

Many methods to improve fairness in machine learning exist
[50-52]. These methods usually boost model performance on
some subgroups at the price of lowering both model performance
on others and the overall model performance [50-52]. Lowering
the overall model performance is undesired [51,57]. Owing to
the large patient population, even a 1% drop in the overall model
performance could potentially degrade many patients’outcomes.
Chen et al [57] cut model performance gaps among subgroups
by collecting more training data and adding additional features,
both of which are often difficult or infeasible to do. For
classifying images via machine learning, Goel et al’s method
[55] raised the overall model performance and cut model
performance gaps among subgroups of a value of the dependent
variable—not among subgroups defined by independent
variables. The dependent variable is also known as the outcome
or the prediction target. An example of the dependent variable
is whether a patient with asthma will incur any hospital
encounter for asthma in the subsequent 12 months. The
independent variables are also known as features. Race,
ethnicity, and insurance type are 3 examples of independent
variables. Many machine learning techniques to handle
imbalanced classes exist [60,61]. In these techniques, subgroups
are defined by the dependent variable rather than by independent
variables.

Contributions of This Paper
To fill the 2 gaps on suboptimal model generalizability and let
more high-risk patients obtain appropriate and equitable
preventive care, the paper makes 2 contributions, thereby giving
a roadmap for future research.

1. To address the first gap, a new machine learning technique
is outlined to create cross-site generalizable predictive
models to accurately find high-risk patients. This is to cut
model performance drop across sites.

2. To address the second gap, a new machine learning
technique is outlined to automatically raise model
performance for poorly performing subgroups while
maintaining model performance on other subgroups. This
is to cut model performance gaps among patient subgroups
and to reduce care inequity.

The following sections describe the main ideas of the proposed
new machine learning techniques.
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Machine Learning Technique for Creating
Cross-Site Generalizable Predictive
Models to Accurately Find High-risk
Patients

Our Prior Models
In our prior work [21,37,38], for each of the 3 health care
systems (sites), namely, KPSC, IH, and UWM, >200 candidate
features were checked and the site’s data were used to build a
full site-specific extreme gradient boosting (XGBoost) model
to predict hospital encounters for asthma. XGBoost [62]
automatically chose the features to be used in the model from
the candidate features, computed their importance values, and
ranked them in the descending order of these values. The top
(~20) features with importance values ≥1% have nearly all of
the predictive power of all (on average ~140) features used in
the model [21,37,38]. Although some lower-ranked features are
unavailable at other sites, each top feature such as the number
of patient’s asthma-related emergency room visits in the prior
12 months is computed using (eg, diagnosis, encounter)
attributes routinely collected by almost every American health
care system that uses electronic medical records. Using the top
features and the site’s data, a simplified XGBoost model was
built. It, but not the full model, can be applied to other sites.
The simplified model performed similarly to the full model at
the site. However, when applied to another site, even after being
retrained on its data, the simplified model performed up to 4.1%
worse than the full model built specifically for it, as distinct
sites have only partially overlapping top features [21,37,38].

Building Cross-Site Generalizable Models
To ensure that the same variable is called the same name at
different sites and the variable’s content is recorded in the same
way across these sites, the data sets at all source sites and the
target site are converted into the Observational Medical
Outcomes Partnership (OMOP) common data model [63] and
its linked standardized terminologies [64]. If needed, the data
model is extended to cover the variables that are not included
in the original data model but exist in the data sets.

Our goal is to build cross-site generalizable models fulfilling 2
conditions. First, the model uses a moderate number of features.
Controlling the number of features used in the model would
ease the future clinical deployment of the model. Second, a
separate component or copy of the model is initially built at
each source site. When applied to the target site and possibly
after being retrained on its data, the model performs similarly
to the full model built specifically for it. To reach our goal for
the case of IH and UWM being the source sites and KPSC being
the target site, we proceed in 2 steps (Figure 1). In step 1, the
top features found at each source site are combined. For each
source site, the combined top features, its data, and the machine
learning algorithm adopted to build its full model are used to
build an expanded simplified model. Compared with the original
simplified model built for the site, the expanded simplified
model uses more features with predictive power and tends to
generalize better across sites. In step 2, model-based transfer
learning is conducted to further boost model performance. For

each data instance of the target site, each source site’s expanded
simplified model is applied to the data instance, a prediction
result is computed, and the prediction result is used as a new
feature. For the target site, its data, the combined top features
found at the source sites, and the new features are used to build
its final model.

To reach our goal for the case that IH or UWM is the target site
and KPSC is one of the source sites, we need to address the
issue that the claim-based features used at KPSC [38] are
unavailable at IH, UWM, and many other health care systems
with no claim data. At KPSC, these features are dropped and
the other candidate features are used to build a site-specific
model and recompute the top features. This helps reach the
effect that the top features found at each of KPSC, IH, and
UWM are available at all 3 sites and almost every other
American health care system that uses electronic medical record
systems. In the unlikely case that any recomputed top feature
at KPSC violates this, the feature is skipped when building
cross-site generalizable models.

Our method to build cross-site generalizable models can handle
all kinds of prediction targets, features, and models used at the
source and target sites. Given a distinct prediction target, if
some top features found at a source site are unavailable at many
American health care systems using electronic medical record
systems, the drop→recompute→skip approach shown above
can be used to handle these features. Moreover, at any source
site, if the machine learning algorithm used to build the full
site-specific model is like XGBoost [62] or random forest that
automatically computes feature importance values, the top
features with the highest importance values can be used.
Otherwise, if the algorithm used to build the full model does
not automatically compute feature importance values, an
automatic feature selection method [65] like the information
gain method can be used to choose the top features.
Alternatively, XGBoost or random forest can be used to build
a model, automatically compute feature importance values, and
choose the top features with the highest importance values.

Our new model-based transfer learning approach waives the
need for source sites’ raw data. Health care systems are more
willing to share with others trained models than raw data. A
model trained using the data of a source site contains much
information that is useful for the prediction task at the target
site. This information offers much value when the target site
has insufficient data for model training. If the target site is large,
this information can still be valuable. Distinct sites have
differing data pattern distributions. A pattern that matches a
small percentage of patients and is difficult to identify at the
target site could match a larger percentage of patients and be
easier to identify at one of the source sites. In this case, its
expanded simplified model could incorporate the pattern through
model training to better predict the outcomes of certain types
of patients, which is difficult to do using only the information
from the target site but no information from the source sites.
Thus, we expect that compared with just retraining a source
site’s expanded simplified model on the target site’s data, doing
model-based transfer learning in step 2 could lead to a better
performing final model for the target site.
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When the target site goes beyond IH, UWM, and KPSC, IH,
UWM, and KPSC can be used as the source sites to have more

top features to combine. This would make our cross-site models
generalize even better.

Figure 1. The method used in this study to build cross-site generalizable models. IH: Intermountain Healthcare. KPSC: Kaiser Permanente Southern
California. UWM: University of Washington Medicine.

Machine Learning Technique for
Automatically Raising Model Performance
for Poorly Performing Patient Subgroups
While Maintaining Model Performance on
Other Subgroups to Reduce Care Inequity

Several clinical experts are asked to identify several patient
subgroups of great interest to clinicians (eg, by race, ethnicity,
insurance type) through discussion. These subgroups are not
necessarily mutually exclusive of each other. Each subgroup is
defined by one or more attribute values. Given a predictive
model built on a training set, model performance on each
subgroup on the test set is computed and shown [58,59].
Machine learning needs enough training data to work well.
Often, the model performs much worse on a small subgroup
than on a large subgroup [50,52]. After identifying 1 or more
target subgroups where the model performs much worse than
on other subgroups [51], a new dual-model approach is used to
raise model performance on the target subgroups while
maintaining model performance on other subgroups.

More specifically, given n target patient subgroups, they are
sorted as Gi (1≤i≤n) in ascending order of size and oversampled
based on n integers ri (1≤i≤n) satisfying r1≥r2≥…≥rn>1. As
Figure 2 shows, for each training instance in G1, r1 copies of it
including itself are made. For each training instance in

 (2≤j≤n), rj copies of it, including itself, are made.
Intuitively, the smaller the i (1≤i≤n) and thus Gi, the more
aggressive oversampling is needed on Gi for machine learning
to work well on it. The sorting ensures that if a training instance
appears in ≥2 target subgroups, copies are made for it based on
the largest ri of these subgroups. If needed, 1 set of ri’s could
be used for training instances with bad outcomes, and another
set of ri’s could be used for training instances with good

outcomes [66]. is the union of the n target subgroups.
Using the training instances outside G, the copies made for the
training instances in G and an automatic machine learning model
selection method like our formerly developed one [67], the AUC
on G is optimized, the values of ri (1≤i≤n) are automatically
selected, and a second model is trained. As is typical in using
oversampling to improve fairness in machine learning, compared
with the original model, the second model tends to perform
better on G and worse on the patients outside G [51,66] because
oversampling increases the percentage of training instances in
G and decreases the percentage of training instances outside G.
To avoid running into the case of having insufficient data for
model training, no undersampling is performed on the training
instances outside G. The original model is used to make
predictions on the patients outside G. The second model is used
to make predictions on the patients in G. In this way, model
performance on G can be raised without lowering either model
performance on the patients outside G or the overall model
performance. All patients’ data instead of only the training
instances in G are used to train the second model. Otherwise,
the second model may perform poorly on G owing to insufficient
training data in G [51]. For a similar reason, we choose to not
use decoupled classifiers, where a separate classifier is trained
for each subgroup by using only that subgroup’s data [51] on
the target subgroups [57].

The above discussion focuses on the case that the original model
is built on 1 site’s data without using any other site’s
information. When the original model is a cross-site
generalizable model built for the target site using the method
in the “Building cross-site generalizable models” section and
models trained at the source sites, to raise model performance
on the target patient subgroups, we change the way to build the
second model for the target site by proceeding in 2 steps (Figure
3). In step 1, the top features found at each source site are
combined. Recall that G is the union of the n target subgroups.
For each source site, the target subgroups are oversampled in
the way mentioned above; the AUC on G at the source site is
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optimized; and its data both in and outside G, the combined top
features, and the machine learning algorithm adopted to build
its full model are used to build a second expanded simplified
model. In step 2, model-based transfer learning is conducted to
incorporate useful information from the source sites. For each
data instance of the target site, each source site’s second
expanded simplified model is applied to the data instance, a
prediction result is computed, and the prediction result is used

as a new feature. For the target site, the target subgroups are
oversampled in the way mentioned above, the AUC on G at the
target site is optimized, and its data both in and outside G, the
combined top features found at the source sites, and the new
features are used to build the second model for it. For each i
(1≤i≤n), each of the source and target sites could use a distinct
oversampling ratio ri.

Figure 2. Oversampling for 3 target patient subgroups G1, G2, and G3.

Figure 3. The method used in this study to boost a cross-site generalizable model’s performance on the target patient subgroups. IH: Intermountain
Healthcare. KPSC: Kaiser Permanente Southern California. UWM: University of Washington Medicine.

Discussion

Predictive models differ by diseases and other factors. However,
our proposed machine learning techniques are general and
depend on no specific disease, patient cohort, or health care
system. Given a new data set with a differing prediction target,
disease, patient cohort, set of health care systems, or set of
variables, one can use our proposed machine learning techniques
to improve model generalizability across sites, as well as to
boost model performance on poorly performing patient
subgroups while maintaining model performance on others. For
instance, our proposed machine learning techniques can be used
to improve model performance for predicting other outcomes
such as adherence to treatment [68] and no-shows [69]. This
will help target resources such as interventions to improve
adherence to treatment [68] and reminders by phone calls to
reduce no-shows [69]. Care management is widely adopted to
manage patients with chronic obstructive pulmonary disease,
patients with diabetes, and patients with heart disease [6], where

our proposed machine learning techniques can also be used.
Our proposed predictive models are based on the OMOP
common data model [63] and its linked standardized
terminologies [64], which standardize administrative and clinical
variables from at least 10 large health care systems in the United
States [47,70]. Our proposed predictive models apply to those
health care systems and others using OMOP.

Conclusions

To better identify patients likely to benefit most from asthma
care management, we recently built the most accurate models
to date to predict hospital encounters for asthma. However,
these models do not generalize well across sites and patient
subgroups, creating 2 gaps before translating these models into
clinical use. This paper points out these 2 gaps and outlines 2
corresponding solutions, giving a roadmap for future research.
The principles of our proposed machine learning techniques
generalize to many other clinical predictive modeling tasks.
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