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Abstract

Background: Automated extraction of symptoms from clinical notes is a challenging task owing to the multidimensional nature
of symptom description. The availability of labeled training data is extremely limited owing to the nature of the data containing
protected health information. Natural language processing and machine learning to process clinical text for such a task have great
potential. However, supervised machine learning requires a great amount of labeled data to train a model, which is at the origin
of the main bottleneck in model development.

Objective: The aim of this study is to address the lack of labeled data by proposing 2 alternatives to manual labeling for the
generation of training labels for supervised machine learning with English clinical text. We aim to demonstrate that using
lower-quality labels for training leads to good classification results.

Methods: We addressed the lack of labels with 2 strategies. The first approach took advantage of the structured part of electronic
health records and used diagnosis codes (International Classification of Disease–10th revision) to derive training labels. The
second approach used weak supervision and data programming principles to derive training labels. We propose to apply the
developed framework to the extraction of symptom information from outpatient visit progress notes of patients with cardiovascular
diseases.

Results: We used >500,000 notes for training our classification model with International Classification of Disease–10th revision
codes as labels and >800,000 notes for training using labels derived from weak supervision. We show that the dependence between
prevalence and recall becomes flat provided a sufficiently large training set is used (>500,000 documents). We further demonstrate
that using weak labels for training rather than the electronic health record codes derived from the patient encounter leads to an
overall improved recall score (10% improvement, on average). Finally, the external validation of our models shows excellent
predictive performance and transferability, with an overall increase of 20% in the recall score.

Conclusions: This work demonstrates the power of using a weak labeling pipeline to annotate and extract symptom mentions
in clinical text, with the prospects to facilitate symptom information integration for a downstream clinical task such as clinical
decision support.

(JMIR Med Inform 2022;10(3):e32903) doi: 10.2196/32903
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Introduction

Background
Unstructured text from electronic health records (EHR) contains
myriads of information that is not encoded in the structured part
of EHRs, such as symptoms experienced by the patient.
Structuring and managing symptom information is a major
challenge for research owing to their complex and
multidimensional nature. Extracting symptom information from
clinical text is critical; for example, for phenotypic classification,
clinical diagnosis, or clinical decision support [1-3]. More
specifically, symptoms are crucial to the assessment and
monitoring of the general state of the patient [1,4] and are
critical indicators of quality of life for chronically ill patients
[5,6]. Their evolution through time can be a string indicator of
the patient’s clinical status change. Finally, in the context of
pandemic prevention, symptoms are used for syndromic
surveillance [7,8] and patient characterization [9,10].

Using natural language processing (NLP) and machine learning
to process and use clinical text for such applications has great
potential [11-14]. Unfortunately, machine learning, and more
specifically supervised machine learning, requires a great
amount of labeled data to train a model, which is at the origin
of the main bottleneck of model development [15]. Manually
labeling data sets is extremely costly and time-consuming as
multiple experts need to manually review and annotate several
hundreds of clinical notes [13,16]. Moreover, the development
of such a resource presents unique challenges as the text contains
personal information, and access to such data is usually
restricted.

Throughout the past years, shared resources such as Informatics
for Integrating Biology and the Bedside (i2b2) have generated
deidentified and annotated data sets for the development of NLP
systems for specific tasks. Such resources remain limited, as
most of the annotated data sets contain only hundreds to a few
thousands of notes. Moreover, these data sets come from a
limited number of institutions, making the development of an
NLP system with such data unlikely to generalize to other
institutions or other tasks.

To develop NLP systems and models that are transferable
between multiple institutions and free of overfitting, a large
amount of data needs to be available for training. To do so,
alternatives to supervised machine learning have been explored,
such as distant supervision, which seeks to include information
from existing knowledge bases [17] or active learning, which
involves human experts in the machine learning process [18-20].
One method in particular, weak supervision, is attracting
increasing attention for the automatic generation of lower-quality
labels for unlabeled data sets [21-25].

Objective
To address the lack of labeled data, we propose 2 alternatives
to manual labeling for the generation of training labels for
supervised machine learning with clinical text. The first
approach takes advantage of the structured part of EHRs and
uses diagnosis codes to derive training labels. The second
approach uses weak supervision and data programming

principles to derive training labels. We propose to apply the
developed framework to the extraction of symptom information
from outpatient visit progress notes of patients with
cardiovascular diseases.

Extracting symptoms from clinical narratives is not a
straightforward task as symptoms are often expressed in an
abstract manner. A straightforward way of deriving labels from
EHR would be to take advantage of their coded part and use
the International Classification of Disease–10th
revision–Clinical Modification (referred to as ICD-10,
henceforth) codes. This approach has challenges, as
demonstrated in multiple studies [2,9,26-30]. This is especially
true if the target information is symptoms, as the corresponding
ICD-10 chapter is typically used when a sign or symptom cannot
be associated with a definitive diagnosis. Thus, their occurrence
in EHR is very scarce and expected to be incomplete. Despite
issues related to inaccuracy in ICD-10 coding, we propose to
use such codes to label our training set, with the assumption
that with sufficient training data, the poor quality of the labels
will be balanced out. Although inaccurate and possibly biased,
the use of ICD-10 data is considered standard in many
classification studies involving clinical text [15,31-41].
Moreover, we propose to complement the use of ICD-10 codes
with a weak supervision approach to derive labels. Weak
supervision has gained a great amount of traction in the past
years [21-25] as a response to the increased need for training
data for machine learning. We used the Snorkel library [42] to
combine a large number of clinical reports with noisy labeling
functions and unsupervised generative modeling techniques to
generate labels for our models. Finally, we test the models on
external cohorts as a way to assess the bias and test the
generalizability of the models.

We successfully demonstrate that by using a large number of
notes for training, we can train a classification model able to
recognize specific classes of symptoms using low-quality labels.
The resulting model is independent of the prevalence of positive
instances and is transferable to a different institution. We show
that training our model on such pseudolabels results in a good
predictive performance when tested on a data set containing
gold labels.

Methods

Cohort Description
Our data set consisted of 20,009,822 notes from January 1,
2000, to December 31, 2016, for 134,000 patients with
cardiovascular diseases from Stanford Health Care (SHC),
collected retrospectively in accordance with the approved
institutional review board protocol (IRB-50033) guidelines.
Progress notes from outpatient office visits were selected. As
the ICD-10 codes for symptoms were chosen for initial labels,
encounters without R codes were discarded. Finally, short notes
(ie, <350 characters) were also discarded. The final cohort
contained 545,468 notes for 93,277 patients (Figure 1).

For prototyping purposes and to evaluate the effect of the
training set size on the performance, subsets of the full cohort
were created, leading to the following three data set sizes: I
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(patients: 717/93,277, 0.77%), II (patients: 5611/93,277, 6.02%),
and III (patients: 93,277/93,277, 100%). Patients were split into
training, validation, and test sets using a 60:20:20 ratio. Table
1 provides a more detailed description of the data sets.

ICD-10 codes describing symptoms and signs involving the
circulatory and respiratory systems were used to label the notes

for the text classification task. The symptoms considered were
only coded at the highest level of the ICD-10 hierarchy. The
prevalence of the R codes was low, between 2% and 10% of
positive instances (see Table S1 in Multimedia Appendix 1 for
details).

Figure 1. CONSORT (Consolidated Standards of Reporting Trials) diagram for Stanford Health Care–electronic health record symptom extraction.
Our full cohort consisted of 20 million notes and 134,000 patients. We selected progress notes from outpatient visits from encounters with International
Classification of Disease–10th revision (ICD-10) codes from the chapter R. Notes <350 characters were discarded, yielding 545,468 notes for 93,277
patients.

Table 1. Patient and note distribution for each data set considered in this study.

Vc (N=75.692)IVb (93,277)III (N=93,277)IIa (N=5611)Ia (N=717)Data set

38,381 (50.71)55,966 (59.99)55,966 (59.99)3360 (59.88)430 (59.9)Train set, n (%)

18,655 (24.65)18,655 (19.99)18,655 (19.99)1123 (20.01)143 (19.9)Validation set, n (%)

18,656 (24.65)18,656 (20)18,656 (20)1128 (20.10)144 (20.1)Test set, n (%)

53 (23)59 (23)59 (23)58 (23)60 (23)Age (years), mean (SD)

Gender, n (%)

43,765 (57.82)51,876 (55.61)51,876 (55.61)2381 (42.43)306 (42.7)Men

31,925 (42.18)41,396 (44.38)41,396 (44.38)3229 (57.55)410 (57.2)Women

2 (0.003)5 (0.005)5 (0.005)1 (0.02)1 (0.1)Unknown

544,907 (100)871,753 (100)545,468 (100)34,368 (100)4245 (100)Total notes, n (%)

326,373 (59.89)653,219 (74.93)326,934 (59.94)20,500 (59.65)2480 (58.42)Train set

109,726 (20.14)109,726 (12.59)109,726 (20.12)6698 (19.49)704 (16.58)Validation set

108,808 (19.97)108,808 (12.48)108,808 (19.95)6494 (18.89)794 (18.70)Test set

aData sets I and II are subsets of data set III.
bData set IV represents the hybrid data set of labeled and unlabeled notes considered for the weak supervision experiment.
cData set V contains the set of unlabeled notes from IV.
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Pipeline
We defined our task of extracting symptom information from
clinical notes as a multi-class classification problem. Machine
learning algorithms were trained to classify whether each input
note contained a specific class of symptoms.

The proposed pipeline used a subset of the ICD-10 chapter
containing symptoms, signs, and abnormal clinical and
laboratory findings. The codes in this chapter are typically used
when a sign or symptom cannot be associated with a definitive
diagnosis. As their occurrence in EHR is expected to be
incomplete, we assumed that the presence of a code is associated
with the observation of the symptom, but the absence of a code
cannot be associated with the absence of the symptom in
question.

The full pipeline developed for this study is depicted in Figure
2. We obtained the raw clinical text and encounter data from
the SHC database. The raw text was first preprocessed for
standardization purposes. Then, the text was transformed into
a numerical format (ie, featurization) so that it can be used as
input features for our model training. Then, ICD-10 codes were
extracted from the structured encounter data to use as labels. A
multi-class classification model was then trained to predict the
presence of symptoms in the text. Next, we propose a weak
supervision labeling pipeline as an additional method for
extracting labels for the downstream prediction task. For that
additional part, notes that were initially discarded because of
the lack of symptom codes in the encounter data were processed
using an entity recognition model with the spaCy library [43]
and labeled using a labeling model generated using the Snorkel
package [42].

Figure 2. End-to-end pipeline developed for extracting pseudolabels out of an electronic health record (EHR) database and training a text classifier
for recognition of presence or absence of symptoms. The approach leverages the structured part of EHR (International Classification of Disease–10th
revision–Clinical Modification [ICD-10–CM] codes) and weak supervision to generate labeled training corpus. Three types of labels are used for the
training: ICD-10–CM codes; noisy labels obtained by a weak supervision pipeline; and hybrid labels, containing both ICD-10–CM codes and noisy
labels. Two machine learning algorithms are considered: random forest and logistic regression. Four featurization methods are considered: bag-of-words
(BOW), term frequency–inverse document frequency (TF-IDF), continuous BOW (CBOW), and paragraph vector–distributed BOW (PV-DBOW). LF:
labeling function.

Preprocessing
To facilitate machine learning techniques, the clinical notes
were standardized in the following manner: special characters
and numbers were removed; the text was transformed into lower
case only; frequent words (eg, the, as, and thus) often denoted
as stop words were removed, except negative attributes such as
no or not; next, each note was standardized using the Porter
stemming algorithm; and finally, the text was tokenized into
individual words. Sectioning of the notes was not performed;
thus, the entire note was included in the featurization step.

Featurization
In this report, we evaluated the following approaches for
featurization of the clinical notes. The first method,
bag-of-words (BOW), is a simple yet effective method to

represent text data for machine learning and acts as a baseline.
In this method, the frequency of each word is counted, yielding
a vector representing the document. As each word represents a
dimension of the document vector, the size of the latter is
proportional to the size of the vocabulary used. As words are
represented by their document frequency, the resulting document
vector does not contain any syntactic or contextual information.

Next, we used term frequency–inverse document frequency
(TF-IDF), a weighting scheme, in addition to BOW whereby
word frequencies from BOW are weighted according to their
IDF. This reweighting of the frequencies dampens the effect of
extremely frequent or rare words.

Next, we used the continuous BOW (CBOW; also referred to
as word2vec) algorithm [44]. CBOW is an algorithm that
generates word vectors based on a prediction task via a neural
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network. The output of such a network is an embedding matrix
that is used to encode each word into a specific vector. The
embedding matrix used in this project was trained on biomedical
text (PubMed and Medical Information Mart for Intensive
Care–III [MIMIC-III]) by Zhang et al [45]. Word vectors were
generated using these pretrained embeddings and then averaged
to yield a single document vector representing the entire note.
As a result, the document embedding vector was of dimension
200.

Finally, the paragraph vector–distributed BOW (PV-DBOW;
also referred to as doc2vec) [46], an extension of CBOW to
paragraphs, was used to add some syntactic knowledge in the
encoding of each document. The vector size for the document
was 300 and was independent of the corpus size.

Weak Labeling
To address the problem of a lack of labels for EHR-based
supervised learning, a weak supervision pipeline using the
Snorkel package [42] was implemented. Weak supervision
allows us to create a set of noisy labels for an unlabeled data
set. The noisy labels are generated using a set of labeling
functions, namely, a set of heuristic rules.

For this project, we implemented labeling functions based on
pattern recognition applied to a 20 token–context window (10
tokens before and 10 tokens after the target term) to determine
the negation, temporality, and experiencer of the target
symptom. We used the publicly available clinical event
recognizer base terminology [47] to match our context window
with negative expressions, historical expressions, and family
mentions. If a mention is matched within the context window
of a given term, it is labeled accordingly: absent if negative
expression is matched, history if historical expression is
matched, and family if family mention is matched. Target
symptoms that were positive, experienced by the patient, and
not part of the past medical history were labeled positive.
Occurrences deviating from this pattern were labeled negative.

Symptom recognition was performed using a ScispaCy [48]
pipeline trained to recognize biomedical entities. The process
of extracting the presence or absence of symptoms belonging
to the R00-R09 categories was implemented as follows: the full
clinical note is processed with spaCy [43] using the entity
recognition model from the ScispaCy library, trained on
BioCreative V Chemical Disease Relation corpus, a corpus of
1500 PubMed articles annotated for chemicals, disease, and
chemical–disease interactions [49] (en_ner_bc5cdr_md [48]).
As we were classifying the notes using only the 3 characters
categories of the ICD-10 codes, each entity that was tagged
needed to be associated to its corresponding category. For that
purpose, we normalized them to the concept unique identifiers
from the unified medical language system with the highest
similarity score. This allowed us to group each entity to their
corresponding ICD-10 category (see Table S2 in Multimedia
Appendix 1 for a list of concept unique identifiers). Then, the
labeling functions defined earlier were used to generate noisy
labels, which can finally be used to train a machine learning
model.

Modeling
The input features were used to predict a set of symptoms related
to abnormalities in the circulatory and respiratory systems
(ICD-10 codes R00-R09). The problem was approached as a
text classification task using a subset of the ICD-10-R codes
for the class labels. The classes are not mutually exclusive;
therefore, a one-versus-all classification was chosen. We
compared two classification algorithms for this task, namely
random forests [50] and logistic regression [51]. We only report
the results obtained with 100 estimators for the random forest
and the limited-memory Broyden–Fletcher–GoldfarbShanno
solver. The detailed parameters used for each model are
provided in the Multimedia Appendix 1.

Performance Evaluation
We used the following classification metrics to evaluate each
model: recall, F1 score, and average precision score. We also
computed the receiver operating characteristic (ROC) curves
and precision-recall curves. Owing to the class imbalance, we
gave more importance to the precision-recall curve. For
example, in the case of hemorrhage from respiratory passages
class of symptoms (R04), the positive instances represent only
approximately 1% of the data points. We also considered
computation time and memory requirements as important
metrics to determine the best classification model. Given the
size of our data set, an efficient implementation was of
paramount importance for the success of our predictive model.

External Validation
To assess the impact of training the model on low-quality labels,
the models were tested on an external data set developed for
symptom extraction by Steinkamp et al [52]. Their work
provides an open-source annotated data set for symptom
extraction. The notes were 1008 deidentified discharge
summaries from the i2b2 2009 Medication Challenge [53]. The
set of notes was annotated by 4 independent annotators for all
symptom mentions, whether positive, negative, or uncertain.
To benchmark our study, we chose three classes of symptoms
that were both present in our study and in the annotated data
set of Steinkamp et al [52], namely cough (R05), abnormalities
of breathing (R06), and pain in throat and chest (R07). As the
annotations were performed at the mention level but our study
was performed at the note level, a majority voting algorithm
was chosen to assess the note-level polarity of the symptom
mention to generate note-level labels. On the basis of the SHC
experiments, only models showing the best promise in terms
of predictive performance were chosen for this step. More
specifically, models trained with the logistic regression
algorithm using TF-IDF and PV-DBOW features were chosen
for the external validation.

Results

Logistic Regression Performs Better Than Random
Forest for Predicting the Presence of Symptoms in
Outpatient Progress Notes
Outpatient progress notes collected from January 1, 2000, to
December 31, 2016, from the SHC EHR database were used to
train a text classifier to extract symptoms related to
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abnormalities in the circulatory and respiratory systems (Figure
1). Two machine learning algorithms were considered, namely
random forest and logistic regression. The models were first
built on a subset of the cohort for prototyping purposes (Table
1: data set I). Random forest showed poor predictive

performance, with no or few positive instances predicted (Figure
3). Without exception, logistic regression outperformed random
forest for all the considered data set sizes (Figure 4). Use of
TF-IDF features to predict the presence of symptoms in the
notes led to the best overall performance (Figure 5).

Figure 3. Histogram of predicted probabilities for the presence of the cough symptom (R05) in the outpatient progress note for data set I, with a
comparison between probabilities predicted by logistic regression (LR) and random forest (RF) for term frequency–inverse document frequency (TF-IDF)
and paragraph vector–distributed bag-of-words (PV-DBOW) feature extraction methods.

Figure 4. Summary of performance metrics averaged over all codes for all four considered feature extraction methods (bag-of-words [BOW], term
frequency–inverse document frequency [TF-IDF], continuous BOW [CBOW], and paragraph vector–distributed BOW [PV-DBOW]). AUROC: area
under the receiver operating characteristic curve; LR: logistic regression model; RF: random forest model.
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Figure 5. Receiver operating characteristic and precision-recall curves for the prediction on the test set (data set I described in Table 1) of presence of
cough (R05) symptoms from outpatient progress notes using logistic regression (LR) with 4 feature extraction methods. BOW: bag-of-words; CBOW:
continuous BOW; lbfgs: limited-memory Broyden–Fletcher–GoldfarbShanno solver; PV-BOW: paragraph vector–distributed BOW; TF-IDF: term
frequency–inverse document frequency.

Embedding-Based Methods Perform Better With
Increasing Data Set Size
To demonstrate that increasing the size of the training set
significantly improves the performance of deep learning–based
embedding methods, the classification task was performed on
3 different data set sizes, ranging from 0.75% (700/93,277) of
patients to 100% (93,277/93,277) of patients (Table 1).

For all codes, the performance (area under the ROC [AUROC]
curves and area under the precision-recall curves) of PV-DBOW
features with logistic regression drastically improved with the

size of the training set. For TF-IDF features also, there was a
slight improvement, but it was less pronounced (Figure 6). More
importantly, we observed that when increasing the size of the
training set, the low prevalence of the symptoms does not affect
the performance of embedding-based features (CBOW and
PV-DBOW; Figure 7). Next, although the performance obtained
with TF-IDF features was high, the computational performance
was drastically affected by the increasing size of the training
set. It takes 2 minutes and 1.6 GB of memory to train the model
with PV-DBOW features, whereas the model with TF-IDF
features requires 2.3 GB of memory and takes almost 3 hours
(Table 2).
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Figure 6. Comparison of receiver operating characteristic (left column) and precision-recall (right column) curves for the prediction of presence of
cough (R05), abnormality of breathing (R06), and pain in throat and chest (R07) classes of symptoms from outpatient progress notes using logistic
regression (LR) with the limited-memory Broyden–Fletcher–GoldfarbShanno (lbfgs) solver on data set I, data set II and data set III with term
frequency–inverse document frequency (TF-IDF) and paragraph vector–distributed bag-of-words (PV-DBOW) features.
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Figure 7. Recall scores as a function of the symptom prevalence in 3 considered data sets for all the features. BOW: bag-of-words; CBOW: continuous
BOW; PV-BOW: paragraph vector–distributed BOW; TF-IDF: term frequency–inverse document frequency.

Table 2. Computational resources used for each classifier by feature type for data sets II and III.

Logistic regressionRandom forestFeature type and data set

Run time, hours:minutes:secondsMemory, MBRun time, hours:minutes:secondsMemory, MB

BOWa

00:21:3534000:04:10310II

23:17:20b340007:22:023500III

TF-IDFc

00:03:0427000:04:15310II

02:47:30230006:37:043400III

CBOWd

00:01:1718000:03:02193II

00:16:36170001:21:111700III

PV-DBOWe

00:00:348900:03:35170II

00:02:13160001:41:181100III

aBOW: bag-of-words.
bNo convergence after 100,000 iterations.
cTF-IDF: term frequency–inverse document frequency.
dCBOW: continuous BOW.
ePV-DBOW: paragraph vector–distributed BOW.

JMIR Med Inform 2022 | vol. 10 | iss. 3 | e32903 | p. 9https://medinform.jmir.org/2022/3/e32903
(page number not for citation purposes)

Humbert-Droz et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Enriching the Training Set With Weak Labels
Enhances the Performance Further
The original cohort contained many notes that do not contain
ICD-10 codes from the R chapter, leading to a substantial
reduction in the number of notes available to train our model.
Indeed, an additional 1,290,170 notes from the patients included
in our cohort did not contain any ICD-10 code for symptoms.

To use these notes, they were processed using a weak
supervision approach to determine the presence or absence of
symptoms belonging to the R00-R09 categories. Then, the
weakly labeled notes were added to data set D for training the
classifier (ie, data set IV). For comparison, we also trained a
model using only the weakly labeled notes (ie, data set V). Then,
the 2 models were tested on test set III with ICD-10 codes for

labels. The weak labeling model was also applied to the test set
to extract weak labels for testing. Given the poor scaling
performance of TF-IDF features compared with that of
PV-DBOW, this experiment was performed solely with the
PV-DBOW features.

Figure 8 shows the difference in performance between the
enriched data set (IV) and the baseline data set (III). Overall,
the recall score improved by 3.8%. However, the AUROC score
was reduced by 2.1%. This decrease in the AUROC score can
be attributed to the number of false-positive predictions. As the
model was trained on mixed labels (ICD-10 and weak labels)
but tested on ICD-10 codes, such increase in predictions flagged
as false positives was expected. However, treating the weak
labels as true labels for the test set led to an increase in recall
score by 17.7% and an increase in AUROC score by 3.7%.

Figure 8. Performance metrics differential for the weak labeling experiment. Delta H represents the score difference between the hybrid data set IV
and the baseline data set III (score [IV]–score [III]). Delta W represents the score difference between the weakly labeled data set V and the baseline
data set III (score[V]–score [III]) The left panel shows the score calculated using International Classification of Disease–10th revision–R (ICD-10–R)
codes for labels and the right panel shows the score calculated treating the weak labels (WL) as true labels in the test set. AUROC: area under the
receiver operating characteristic curve.

Use of only weakly labeled notes for training (data set V) and
testing on ICD-10 labels led to a 6% increase in recall score
and a 9.3% decrease in the AUROC score. Finally, using the
weak labels as true labels for the test set, the weakly labeled
notes performed 36.6% (recall) and 6.6% (AUROC) better than
the baseline data set.

Embedding-Based Features Perform Better Than
TF-IDF Features on an External Validation Set
We selected a set of 56.65% (571/1008) notes from the i2b2
2009 challenge annotated for symptom extraction [52]
containing mentions of symptoms of cough (R05), abnormalities

of breathing (R06), and pain in throat and chest (R07). The
logistic regression models trained on data set III using TF-IDF
and PV-DBOW features were used to predict the presence of
the 3 classes of symptoms.

Overall, the model trained with PV-DBOW features performed
well when used to predict symptoms from the i2b2 notes. Figure
9 shows the difference in scores between the i2b2 data set and
the baseline data set III trained using TF-IDF and PV-DBOW
features for the set of 3 selected classes of symptoms. For R06
and R07, PV-DBOW, recall, and AUROC scores were within
the range of the scores obtained when tested on the SHC notes.
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However, the F1 and average precision scores were >40 points
better on the i2b2 notes. On the other hand, the model trained
with TF-IDF features performed poorly. The recall and AUROC
scores were 20 to 30 points lower than when tested on the SHC
notes. The F1 score was similar to that obtained with the SHC
notes. However, the average precision was almost 30 points
higher than that of the SHC notes (Figure 9). For both
PV-DBOW and TF-IDF features, the performance of the
symptom cough decreased when tested on the i2b2 set compared
with the SHC notes.

Finally, the models trained with the hybrid labels and weak
labels using the PV-DBOW features were also tested on the
i2b2 notes. For both models, the recall and AUROC scores were
within the range of those obtained with the SHC notes. However,
the F1 and average precision scores were approximately 50
points higher than when tested with the SHC notes, reinforcing
the conclusion that even though the models were trained on
pseudolabels, they still perform well when tested on gold labels
(Figure 10). Typically, recall performed better when hybrid or
weak labels were used for training than when ICD-10 codes
were used. Similar to the use of ICD-10 codes as labels, the
performance for R05 decreased for the i2b2 notes.

Figure 9. Performance metrics differential for the external validation set. The score has been calculated as the difference between the score obtained
on the external validation set and the baseline data set III (score [Informatics for Integrating Biology and the Bedside]–score [Stanford Health Care]).
Term frequency–inverse document frequency (TF-IDF) represents the logistic regression model trained with TF-IDF features. Paragraph vector–distributed
bag-of-words (PV-DBOW) represents the logistic regression model trained with PV-DBOW features. International Classification of Disease–10th
revision–R codes have been used as reference labels to compute the metrics. AUROC: area under the receiver operating characteristic curve.
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Figure 10. Performance metrics differential for the external validation set. The validation was performed for three models using paragraph
vector–distributed bag-of-words features only, trained using different labels: International Classification of Disease–10th revision–R, the weak labels,
and the hybrid labels. The score differences are computed relative to the baseline data set III (score [Informatics for Integrating Biology and the
Bedside]–score [Stanford Health Care]). AUROC: area under the receiver operating characteristic curve.

Analysis of Misclassified Cases
To illustrate that despite the low quality of training labels used,
the classification models were able to correctly classify notes,
we show a few examples of the presence of abnormality of
breathing symptoms in Figure 11. Snippets (A) and (E) show
examples where the predictions were flagged as false positive

but turned out to be true-positive cases. Snippets (B) and (C)
show 2 examples that were flagged as false negative; however,
when reading the note, the symptom was clearly absent
(historical for (B) and negated for (C). Finally, snippet (D)
shows an example that was correctly predicted only when
embedding features were used.
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Figure 11. Snippet examples of mislabeled notes for R06 class of symptoms. ICD-10: International Classification of Disease–10th revision; NEG:
negative; POS: positive; WL: weak labels.

Discussion

Principal Findings
We trained one-versus-all multi-label classification models
using four featurization methods, namely BOW, TF-IDF,
CBOW, and PV-DBOW, to predict the presence of signs and
symptoms related to abnormalities in the circulatory and
respiratory systems. The challenging lack of labels for training
such models was addressed using 2 label extraction strategies.
First, we extracted labels based on a subset of ICD-10 codes
from EHR encounter data. This approach yielded good
predictive performance, as evidenced by external validation.
Relying on the coded part of EHR to extract training labels
leaves a large part of progress notes untouched, as ICD-10 codes
for symptoms are rarely used. The second approach we used
was a method to extract training labels by leveraging clinical
named entity recognition and a weak supervision pipeline. This
approach not only allowed us to make use of a much larger set
of notes for training but also significantly improved the
predictive performance, both on an SHC test set and an external
validation set.

Although TF-IDF features yielded the best performance overall
(Figure 4), the size of the feature vector is the size of the corpus,

leading rapidly to intractable size and computational inefficiency
when the corpus size increased (Table 2), whereas embedding
methods such as CBOW and PV-DBOW led to a fixed feature
vector length, independent of the training corpus size. The main
computing cost in such an approach lies in the pretraining of
the embedding vectors, which must be performed only once.
Training a classifier on any data set size led only to a minor
increase in computational cost, making this approach more
desirable.

Unfortunately, the results on a small training set were not
satisfactory as these types of models are known to be extremely
data hungry. The performance is expected to be more reasonable
with larger data set sizes. We observed this in our experiments;
when the training set size was increased, the performance also
increased significantly. For example, the most notable
performance improvement was observed for the recall, which
increased from 0.25 to 0.8 for PV-DBOW features (Figure 4).
This is important because when predicting the presence or
absence of symptoms, minimizing the false-negative rate is
desirable. Moreover, owing to the nature of our training labels,
the absence of an ICD-10 code does not mean the absence of
the symptom, whereas the presence of the code more likely
signifies the presence of the symptom. Moreover, the effect of
the low prevalence of some codes on the performance became
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negligible with increasing data set size and the use of
PV-DBOW features, suggesting that the use of a resampling
method is not necessary if training on larger data sets (Figure
6).

Next, enriching the largest data set with unlabeled notes using
a weak supervision approach for labeling yielded an overall
gain in performance. This result not only suggests that more is
better but also points to the conclusion that the use of ICD-10
codes as labels to extract the presence of symptoms from clinical
notes can be improved by using weak labeling pipelines to label
previously unlabeled notes. Indeed, external validation of our
models showed a large increase in performance of the
PV-DBOW features. We attribute this gain to the quality of
labels in the external validation data set, resulting in a drop in
false-positive predictions. This experiment also suggests that
although the quality of the labels used to train the models was
not optimal, the model was still able to learn enough to reliably
predict the presence of symptoms. On the other hand, the poor
performance of the TF-IDF features suggests that the high
performance observed on the SHC notes might be owing to
overfitting of the features rather than a good predictive power.
However, the increase in average precision suggests that the
false-positive rate is reduced owing to the higher quality of the
labels. Although TF-IDF seems to work well within one context,
it is likely to fail when testing at other sites.

It is worth noting that the performance for cough symptoms
(R05) decreased significantly when tested on our external
validation data set. The causes for such a drop have not been
investigated, but Figure 10 offers some hints about a labeling
issue. Indeed, the recall score performed poorly when using the
model trained with ICD-10 codes as labels but increased when
using the weak labels as ground truth for training.

The automatic classification of clinical text into specific ICD
codes is a common task, and various state-of-the-art models
have been developed over the years. Although our objective is
different, it is worth comparing our classification results with
some of the available work. Moons et al [54] recently compared
multiple state-of-the-art models for ICD coding of clinical
records, using public data sets encoded with both ICD-9
(MIMIC-III [55]) and ICD-10 (CodiEsp [56]). They reported
micro- and macro-F1, micro-AUROC, and Precision@5 for
multiple subsets of MIMIC-III and CodiEsp using multiple deep
learning architectures. As they did not report recall or the
prevalence of each class, a direct comparison with our work is
difficult. However, it is worth noting that the best-performing
model on the MIMIC-III data set (using ICD-9 codes) yields a
macro-F1 of 64.85. Their best-performing model on CodiEsp
(using ICD-10 codes) yields a macro-F1 of 11.03. Our macro-F1
of 24.66 falls in between these values, suggesting that our
performance lies within the range of some of the best-performing
deep learning models available.

We note that although we are using a data set containing gold
standard annotations, a direct comparison with previous results
from Steinkamp et al [52] is not possible. Both experiments are
fundamentally different. Our objective was to lay out strategies
to generate training labels for a symptom classification task and
demonstrate that if sufficient training data are provided, such

strategies will yield good predictive performance. We did not
aim to extract all symptoms from the notes or create new named
entity recognition models. The use of the external data set,
labeled by Steinkamp et al [52], was meant to show that (1) our
models, although trained on SHC data, perform well on another
institution’s data and, (2) considering that our models were
trained on pseudolabels, they performed well on a test set
containing gold labels.

Recent work has also seen the rise in transformers for NLP
tasks. Although these methods are gaining popularity, the
adaptation of such language model to the clinical use case is
not straightforward. First, transformer models usually have a
relatively short fixed maximum input length (eg, 412 tokens
for bidirectional encoder representations from transformers
[BERT]–based models). Clinical notes in general, and progress
notes in particular, tend to be much longer than that (eg, in our
case, the note length is closer to a couple of thousands of
tokens). Moreover, transformer-based models trained on open
domain text are not suitable for clinical text and must be
fine-tuned to maximize performance. Although some BERT
adaptations for the clinical domain have been released recently
(eg, ClinicalBERT [57], BioBERT [58], or BlueBERT [59]),
these publicly available models might not be suitable for the
task at hand. Reasons why BERT-based models might not be
suitable include attention dilution and the use of subword
tokenization rather than word-level tokenization [60]. Finally,
finding the best embedding method for note classification was
outside the scope of our study. For these reasons, we did not
include transformers in our comparison.

Conclusions
In this study, we introduced 2 methods to extract labels from
EHR data sets for the training of a classifier for clinical notes.
Multiple featurization methods were investigated, showing that
PV-DBOW is clearly superior in terms of transferability and
scaling. Although the use of ICD-10 codes present in the
encounter data is a simple way of extracting training labels, the
poor accuracy of the coding leads to less accurate models. Using
a weak labeling pipeline to extract such labels yields improved
performance and allows for the use of more notes as we are not
relying on the presence of codes. Both approaches have been
validated with an external set of notes containing gold labels,
which showed the superiority of the weak labeling approach.
Using ICD-10 codes for initial labels, we grouped a wide variety
of signs and symptoms under the same label, learning classes
of symptoms rather than specific symptoms. For example, R06
(abnormalities of breathing) covers a variety of breathing
abnormalities; for example, dyspnea, wheezing, or
hyperventilation. Such granularity in the symptoms is beyond
the scope of this study and thus has not been investigated.
However, the good performance of the weak labeling pipeline
suggests that such an approach to generate more granular labels
(eg, to distinguish between wheezing and shortness of breath
in the R06 category) could be used. Moreover, the nature of the
one-versus-all approach allows us to add a new category without
having to retrain our model on all labels. Finally, the good
performance and computational efficiency of the PV-DBOW
features with logistic regression model would make such an
expansion of the model computationally cheap.
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Abbreviations
AUROC: area under the receiver operating characteristic curve
BERT: bidirectional encoder representations from transformers
BOW: bag-of-words
CBOW: continuous bag-of-words
EHR: electronic health record
ICD-10: International Classification of Disease–10th revision
i2b2: Informatics for Integrating Biology and the Bedside
MIMIC: Medical Information Mart for Intensive Care
NLP: natural language processing
PV-DBOW: paragraph vector–distributed bag-of-words
SHC: Stanford Health Care
TF-IDF: term frequency–inverse document frequency
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