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Abstract

Background: Scoring systems developed for predicting survival after allogeneic hematopoietic cell transplantation (HCT) show
suboptimal prediction power, and various factors affect posttransplantation outcomes.

Objective: A prediction model using a machine learning–based algorithm can be an alternative for concurrently applying
multiple variables and can reduce potential biases. In this regard, the aim of this study is to establish and validate a machine
learning–based predictive model for survival after allogeneic HCT in patients with hematologic malignancies.

Methods: Data from 1470 patients with hematologic malignancies who underwent allogeneic HCT between December 1993
and June 2020 at Asan Medical Center, Seoul, South Korea, were retrospectively analyzed. Using the gradient boosting machine
algorithm, we evaluated a model predicting the 5-year posttransplantation survival through 10-fold cross-validation.

Results: The prediction model showed good performance with a mean area under the receiver operating characteristic curve of
0.788 (SD 0.03). Furthermore, we developed a risk score predicting probabilities of posttransplantation survival in 294 randomly
selected patients, and an agreement between the estimated predicted and observed risks of overall death, nonrelapse mortality,
and relapse incidence was observed according to the risk score. Additionally, the calculated score demonstrated the possibility
of predicting survival according to the different transplantation-related factors, with the visualization of the importance of each
variable.

Conclusions: We developed a machine learning–based model for predicting long-term survival after allogeneic HCT in patients
with hematologic malignancies. Our model provides a method for making decisions regarding patient and donor candidates or
selecting transplantation-related resources, such as conditioning regimens.
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Introduction

Background
Allogeneic hematopoietic cell transplantation (HCT) is a
potentially curative therapeutic option for patients with
hematologic malignancies, which has been widely used. The
increasing use of allogeneic HCT is attributable to multiple
factors, including improved alternative donor availability,
reduced-intensity conditioning regimens, advances in the
prevention of transplantation-related toxicities, and an
improvement in general supportive care. Despite these advances,
allogeneic HCT remains associated with considerably high rates
of complications, treatment-related mortality, and relapse [1].
To predict transplantation outcomes more accurately before
making decisions regarding transplant eligibility, several
prognostic scoring systems for survival after allogeneic HCT
have been developed. These scores include the HCT-specific
comorbidity index, the European Group for Blood and Marrow
Transplantation (EBMT) risk score, and the Pretransplant
Assessment of Mortality score, among others [2-5]. Most
prognostic scoring systems were developed using parametric
statistical methodologies, such as Cox proportional hazards
models, for predicting the likelihood of survival for HCT
recipients. The scoring systems’ variables mainly include
recipient factors, such as age, comorbidities, performance status,
time from diagnosis to HCT, and disease status. Furthermore,
several donor factors are considered in the EBMT risk score,
including donor type (human leukocyte antigen [HLA]: identical
sibling or matched unrelated), sex match, and cytomegalovirus
serostatus. However, the reported accuracy of these prediction
models is suboptimal, where the area under the receiver
operating characteristic (ROC) curve (AUC) ranges between
0.6 and 0.7 [6].

Recently, attempts to predict transplantation-related outcomes
more accurately have been made in various clinical settings
regarding early mortality [7], graft-versus-host disease (GVHD)
[8], or relapse using deep learning–based prediction models [9].
The Acute Leukemia (AL)–EBMT score was developed using
a data mining–based approach to predict 100-day mortality after
allogeneic HCT [7]. Another study of a machine learning
algorithm predicting the incidence of acute GVHD using
Japanese registry data has demonstrated that the calculated
scores were associated with clear stratification of acute GVHD,
whereas lower scores were associated with a low incidence of
acute GVHD [8]. In one study, a machine learning–based model
was developed to predict the 1-year relapse rate after allogeneic
HCT in patients with AL [9]. Although the patient population,
endpoints, and criteria for variable selection were different
between studies, the performances were similar and seemed
slightly better than the previously reported transplantation
outcome prediction scores.

The survival following allogeneic HCT, however, can vary
depending on multiple variables, such as disease relapse and

transplantation-related complications, including GVHD,
engraftment failure, or infection, which can lead to increased
nonrelapse mortality (NRM). Furthermore, these HCT
complications are associated with several variables, including
donor-related or recipient-related factors, donor-recipient
relationship, and conditioning, among others.

Objective
We hypothesized that the selection of variables using a machine
learning–based approach and the establishment of a prediction
model by applying those variables will improve the performance
of the model and avoid unexpected biases. Additionally, we
assumed that the established prediction algorithm will help
choose better transplantation-related factors or donors to
improve post-HCT outcomes. In this study, we developed a
model for predicting the long-term survival of patients with
hematologic malignancies after allogeneic HCT based on
selected variables using a machine learning algorithm, and we
validated the model’s accuracy in a validation set. Then, we
implemented an algorithm to select more appropriate
transplantation-related factors using the established prediction
model.

Methods

Patient Population and Study Outcomes
Data on 1470 adult patients (≥15 years old) with hematologic
malignancies who underwent allogeneic HCT between
December 1993 and December 2015 at Asan Medical Center,
Seoul, South Korea, were obtained for developing the machine
learning–based prediction model. To predict long-term survival
after allogeneic HCT, we included patients who survived more
than 5 years and who died within 5 years after transplantation.
As the data cutoff date was December 2020, we only included
patients who underwent allogeneic HCT before December 2015
to ensure that the follow-up duration of each patient could be
at least 5 years. Then, 229 variables, including recipient and
donor characteristics, disease features, HLA types, graft
information, administered medications for conditioning, GVHD
prophylaxis, supportive care, and other laboratory data, were
collected for analysis.

The primary objective of the study was to predict the 5-year
overall survival (OS) after allogeneic HCT, and the secondary
objectives include determining the NRM, cumulative incidence
of relapse (CIR), and 100-day OS. All censored data were
calculated from the date of the transplantation.

Ethics Approval
The Institutional Review Board of Asan Medical Center
approved the protocols of this study (2021-1003), which was
conducted according to the 2008 Declaration of Helsinki.

Selection of a Predicting Model
The patients were classified into two groups, those who survived
more than 5 years and those who died within 5 years. In the
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learning process, the former group was labeled 0 and the latter
was labeled 1. Therefore, the closer the predicted value to 1,
the higher the probability of death within 5 years. The
aforementioned predictive factors were classified into
categorical or noncategorical variables and used for developing
5 prediction models. The performance for predicting survival
after allogeneic HCT was tested using the following 5 machine
learning algorithms: gradient boosting machine (GBM), random
forest, deep neural network, logistic regression, and adaptive
boosting (AdaBoost). Each algorithm was tested using the same
training set which was randomly divided (1176/1470, 79.59%
of the total number of patients in the training set). The AUCs
of the algorithms are shown in Multimedia Appendix 1. Of the
5 algorithms, GBM showed the highest AUC (0.75) compared
with random forest (0.74), deep neural network (0.65), logistic
regression (0.70), and AdaBoost (0.72). Therefore, the selection
of relevant variables and the development of the final model
were performed using GBM. GBM is an ensemble method that
combines several weak classifiers, such as trees. The goal of
GBM is to focus and place the weights on incorrectly predicted
results through gradient descent [10]. While GBM is training,
the initial tree trains the data set and assigns weights to
incorrectly predicted records with errors, and the next tree from
the same model learns the weighted data set and repeats the
process of assigning weights.

Explainable Individualized Survival Prediction
We provided an explainable individualized survival prediction
using Shapley values to quantify the probability of surviving
for each patient by predicting the OS after allogeneic HCT. A
Shapley value is calculated as the average change according to
the presence or absence of a single feature over all possible
combinations of features [11]. Given a survival prediction
model, f(x), we can compute the Shapley values using the
following equation:

where n is the total number of features, and the sum extends
over all subsets S of N not containing feature i. In a recent study,
a unified framework called Shapley Additive Explanations
(SHAP) was released for explainable machine learning models

using Shapley values [10]. In this study, the survival model also
provides a description of patient-specific survival prediction
using SHAP.

Other Statistical Analyses
Categorical variables were compared using the chi-square test
or Fisher exact test, and continuous variables were compared
using the Mann-Whitney U-test or Student t test, as appropriate.
The OS was calculated using the Kaplan-Meier method, and
the resulting survival curves were compared using the log-rank
test. NRM and CIR were evaluated using a cumulative incidence
function regarding competing risks and compared using the
method of Gray in R, version 3.6.3 (R Foundation for Statistical
Computing). All statistical analyses were conducted using SPSS,
version 24 (IBM Corp), and graphs were generated using
GraphPad Prism, version 9.1.2 (GraphPad Software Inc). In all
analyses, P values were two-tailed, and those less than .05 were
used to denote statistical significance.

Results

Patient and Donor Characteristics
The characteristics of the patients and donors included in the
study are shown in Table 1. Between December 2009 and
December 2015, 1470 patients underwent allogeneic HCT for
hematologic malignancies, including acute myeloid leukemia
(n=783), acute lymphoblastic leukemia (ALL; n=306),
myelodysplastic syndrome (MDS; n=188), chronic myeloid
leukemia (n=92), non-Hodgkin/Hodgkin lymphoma (n=56),
BCR-ABL1–negative myeloproliferative neoplasm (MPN;
n=16), MDS/MPN (n=6), and multiple myeloma (n=13).
Approximately two-thirds of the patients (n=995) received
peripheral blood as a graft source, and one patient who received
cord blood as a graft source was included. Reduced-intensity
conditioning and myeloablative conditioning were used in 934
(63.5%) and 536 (36.5%) of the 1470 patients, respectively.
Antithymocyte globulin was used in 903 (61.4%) of the 1470
patients as GVHD prophylaxis.

During the median follow-up duration of 8 years (95% CI
7.8-8.3 years), the estimated 5-year OS of all patients was
46.2%. The 2-year incidence of NRM and CIR was 17.7% and
33.3%, respectively.
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Table 1. Patient and donor characteristics.

ValueVariable

1470Patients, N

5.7 (0-268)Interval between diagnosis to HCTa in months, median (95% CI)

Recipient sex, n (%)

833 (56.7)Male

637 (43.3)Female

Donor sex, n (%)

977 (66.5)Male

493 (33.5)Female

41 (15-75)Recipient age in years, median (range)

34 (0-70)Donor age in years, median (range)

Donor-recipient sex, n (%)

551 (37.5)Male to male

280 (19)Female to male

424 (28.8)Male to female

213 (14.5)Female to female

Recipient disease, n (%)

783 (66.9)AMLb

188 (16.1)MDSc

306 (26.2)ALLd

56 (4.8)Lymphoma

13 (1.1)MMe

92 (7.9)CMLf

16 (1.4)MPNg

16 (1.4)MDS-MPN

3 (0-8)HCT-CIh score, median (range)

Disease risk, n (%)

830 (56.5)Standard riski

640 (43.5)High risk

Donor type, n (%)

591 (40.2)Matched sibling

387 (26.4)Unrelated

491 (33.4)Haploidentical familial

1 (0.1)Cord blood

Graft source, n (%)

472 (32.1)Bone marrow

997 (67.8)Peripheral blood

1 (0.1)Cord blood

Conditioning intensity, n (%)

536 (36.5)Myeloablative

934 (63.5)Reduced intensity
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ValueVariable

903 (61.4)Treated with antithymocyte globulin to prevent GVHDj, n (%)

aHCT: hematopoietic cell transplantation.
bAML: acute myeloid leukemia.
cMDS: myelodysplastic syndrome.
dALL: acute lymphoblastic leukemia.
eMM: multiple myeloma.
fCML: chronic myeloid leukemia.
gMPN: myeloproliferative neoplasm.
hHCT-CI: hematopoietic cell transplantation–specific comorbidity index.
iThe standard-risk group is defined as follows: patients with acute leukemia in the first remission (except by salvage chemotherapy), CML in the chronic
phase, drug-sensitive lymphoma/MM, or MDS with bone marrow blasts ≤5% at HCT.
jGVHD: graft-versus-host disease.

Development of the Prediction Model
After deciding on GBM as the prediction algorithm, the
variables used for model development were selected using the
recursive feature elimination (RFE) method. RFE is one of the
widely used feature selection methods that provide a rank to
each variable according to feature importance in predicting the

target variable and help select a minimum specified number of
variables showing good performance in a model [12]. Using
the RFE algorithm, we selected 45 relevant variables for
developing the prediction model (see Multimedia Appendix 2
and Textbox 1). In the case of HLA type, each allele of
recipients and donors was regarded as an independent variable.

Textbox 1. Selected variables for the prediction model. AML: acute myeloid leukemia. WBC: white blood cell. HLA: human leukocyte antigen. RBC:
red blood cell. CMV: cytomegalovirus. HCT-CI: hematopoietic cell transplantation–specific comorbidity index. *The standard-risk group is defined
as follows: patients with acute leukemia in the first remission (except by salvage chemotherapy), CML in the chronic phase, drug-sensitive lymphoma/MM,
or MDS with bone marrow blasts ≤5% at HCT.

Variables

• Diagnosis and disease (eg, AML first complete remission)

• Disease risk*

• WBC count at diagnosis

• Extramedullary disease at diagnosis

• Extramedullary disease at HCT

• Karyotype at diagnosis

• Karyotype at HCT

• CMV serostatus of recipient

• CMV serostatus of donor

• Hepatic score of HCT-CI

• Total score of HCT-CI

• Conditioning regimen

• Donor type

• Recipient HLA type: A, B, C, DR, and DQ

• Donor HLA type: A, B, C, DR, and DQ

• RBC transfusion before HCT

• Platelet transfusion before HCT

Final Performance of the Prediction Model
The performance of the prediction model using GBM and
selected variables in 294 patients is depicted in Figure 1A. The
AUC and prediction accuracy of the final model were 0.788
and 0.712, respectively. Figure 1B shows a calibration plot with

the Brier score of the model demonstrating agreement between
the estimated predicted risk and observed risk of death in the
validation cohort. The algorithm was trained and evaluated
using 10-fold cross-validation in the total patient cohort, where
the predictive power of the model demonstrated a generalized
performance with a similar accuracy.
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Figure 1. The final performance of the prediction model. Panel A shows the area under the receiver operating characteristic curve. Panel B shows the
calibration plot.

Because we classified patients who died within 5 years as 1,
the closer the predicted value of the GBM model to 1, the higher
the risk of death. The optimal threshold for determining whether
the risk score is positive or negative is calculated using the
Youden J statistic along with the ROC curve. From the
prediction model, the threshold is 0.5533, and if the risk score
is greater than that, the model estimates that the patient will die
within 5 years. The predicting probability of the risk score of

each patient was tested in a randomly selected patient cohort,
which corresponds to 20% of all patients (294/1470) to reduce
the probable bias from choosing one of 10 produced models.
Figure 2A shows the estimated post-transplantation OS of the
patients according to the risk score, which was equally divided
by the absolute score values. The estimated 5-year OS was
70.3% in the low-risk group, 42.6% in the intermediate-risk
group, and 14.9% in the high-risk group (P<.001).

Figure 2. Different post-transplantation outcomes of the patients of validation set according to the prediction score (A) Overall survival (B) relapse
(C) non-relapse mortality.

Prediction of NRM and Relapse
To assess whether the risk score can also predict NRM and
relapse after HCT, we analyzed the incidence of NRM and
relapse using 3 risk groups. High-risk scores were significantly

associated with both higher CIR (P<.001) and higher NRM
(P=.02) (Figure 2B and 2C). The estimated 2-year CIR was
11.3% in the low-risk group, 22.4% in the intermediate-risk
group, and 53.1% in the high-risk group. The 2-year NRM was
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9.3% in the low-risk group, 17.3% in the intermediate-risk
group, and 25% in the high-risk group.

Application of the Algorithm for Donor Selection
We assumed that the prediction score for each patient can be
applied in selecting the most appropriate donor when there are
multiple donor candidates. For example, the prediction score
can help physicians select the donor between a younger
HLA-haploidentical individual and an older matched sibling.
To verify this, we calculated the scores using Shapley values
through which the importance of each variable can be visualized
using a specific value. We simulated a real case of a patient

with ALL in the first CR who has the following 2 donor
candidates: one is a 48-year-old HLA-haploidentical familial
female individual, and the other is a 43-year-old
locus-mismatched unrelated male individual. A total of 2
prediction scores were calculated using data derived from each
donor showing different values (Figure 3). Among the variables,
the pretransplantation disease status appeared to be the most
important factor in calculating each score. According to our
prediction model, the donor in Figure 3B (unrelated donor)
could be preferred because the score is lower than the donor in
Figure 3A (haploidentical donor).

Figure 3. Survival difference of the patients of validation set according to the prediction score.

Discussion

Principal Findings
Long-term survival after allogeneic HCT in patients with
hematologic malignancies is affected by multiple factors but
mainly depends on disease relapse and NRM. Multiple variables,
including disease status, genetic risk, conditioning regimen,
comorbidities, degree of HLA matching, and patient and donor
ages, are associated with disease relapse, GVHD, engraftment,
or treatment-related toxicities, and these outcomes are closely
and mutually related to survival after transplantation. However,
traditional statistical methods are unsuitable for analysis
considering the interactions between variables or their
differences according to the specific values of each factor, such
as the relationship between the HLA allele of the patient and
donor. In this regard, prediction models based on machine
learning algorithms can be an effective alternative for predicting
posttransplantation outcomes and can provide guidance for
selecting appropriate patients, donors, or resources [13].

We developed a prediction model and risk score using GBM
and selected variables based on machine learning for long-term
survival after allogeneic HCT. Our model demonstrated an AUC
of 0.788, which showed better performance in predicting
posttransplantation outcomes than previously reported machine
learning–based models. Shouval et al [7] have reported the

AL-EBMT model predicting 100-day mortality after allogeneic
HCT showing an AUC of 0.701, which was significantly better
than that of the EBMT score (AUC, 0.646). A study on Japanese
individuals who underwent HCT has developed a machine
learning–based prediction algorithm of acute GVHD, and the
AUC of the model was 0.62 [8]. Another prediction algorithm
developed by Fuse et al [9] has shown an AUC of 0.667 for
predicting relapse within 1 year after transplantation. Most
models were developed by applying the alternating decision
tree algorithm, and the variables were selected by researchers.
In this study, the model was developed using variables derived
from the GBM algorithm and using the RFE method, instead
of using preselected variables based on the opinion of the
researchers or conventional statistical analysis. Through RFE,
we extracted the minimum required features where the
performance of the predicting model does not deteriorate. This
is an important difference from the existing literature that
applied machine learning algorithms using clinically selected
variables. In contrast, we first built a full model using all
possible variables and then gradually removed features that had
little effect on survival prediction. Those differences might
contribute to the higher AUC of our prediction model by
reducing biases in selecting variables and augmenting possible
correlations between each factor. Interestingly, the selected
variables for our prediction model include each HLA allele type
of recipients and donors. Because we used the raw values of
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each HLA allele of both recipients and donors rather than
calculating the degree of mismatch, direction of mismatch, or
allele types, our approach integrated the interactions between
alleles affecting survival.

To apply the prediction model to patients planning for allogeneic
HCT in practice, a specific tool for comparing the expected
outcomes according to multiple different factors is required.
We provided a prediction score to quantify the probability of
survival, which showed good concordance of the observed and
estimated survival after HCT. Additionally, SHAP visualizes
the importance of each factor (Figure 3), which allows for the
prioritization of more appropriate transplantation-related
resources. The most remarkable aspect of our model is that the
importance of each factor can be quantified and visualized so
that physicians can use the algorithm when planning allogeneic
HCT to select factors, such as donor or conditioning regimen,
that are expected to achieve better survival.

The limitations of this study include the relatively small number
of patients used for establishing the algorithm-based prediction

model. Although the model showed consistency using 10-fold
cross-validation in the validation cohort, a larger patient cohort
is considered more helpful in verifying the performance of the
algorithm. Further external validation using data from a greater
number of patients is warranted. Second, the retrospective nature
of the study may have resulted in selection and measurement
biases. However, we included all patients with hematologic
malignancies who underwent allogeneic HCT during a certain
period of time to reflect real-world practice.

Conclusions
Here, we present a machine learning–based algorithm and
prediction score for quantifying the probability of long-term
survival after allogeneic HCT in patients with hematologic
malignancies. The prediction score showed a moderate negative
correlation with long-term survival, NRM, and relapse after
transplantation. Our prediction model provides a personalized
method for selecting more appropriate transplantation-related
factors and patient or donor candidates for allogeneic HCT.
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Multimedia Appendix 1
The AUC of each tested algorithm. cb, CatBoost; rf, random forest; fnn, feedforward neural network; log, logistic regression;
ada, AdaBoost.
[PNG File , 92 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Recursive feature elimination showing the AUC (area under the curve) according to the number of selected features.
[PNG File , 45 KB-Multimedia Appendix 2]
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