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Abstract

Background: High flow nasal cannula (HFNC) provides noninvasive respiratory support for children who are critically ill who
may tolerate it more readily than other noninvasive ventilation (NIV) techniques such as bilevel positive airway pressure and
continuous positive airway pressure. Moreover, HFNC may preclude the need for mechanical ventilation (intubation). Nevertheless,
NIV or intubation may ultimately be necessary for certain patients. Timely prediction of HFNC failure can provide an indication
for increasing respiratory support.

Objective: The aim of this study is to develop and compare machine learning (ML) models to predict HFNC failure.

Methods: A retrospective study was conducted using the Virtual Pediatric Intensive Care Unit database of electronic medical
records of patients admitted to a tertiary pediatric intensive care unit between January 2010 and February 2020. Patients aged
<19 years, without apnea, and receiving HFNC treatment were included. A long short-term memory (LSTM) model using 517
variables (vital signs, laboratory data, and other clinical parameters) was trained to generate a continuous prediction of HFNC
failure, defined as escalation to NIV or intubation within 24 hours of HFNC initiation. For comparison, 7 other models were
trained: a logistic regression (LR) using the same 517 variables, another LR using only 14 variables, and 5 additional LSTM-based
models using the same 517 variables as the first LSTM model and incorporating additional ML techniques (transfer learning,
input perseveration, and ensembling). Performance was assessed using the area under the receiver operating characteristic
(AUROC) curve at various times following HFNC initiation. The sensitivity, specificity, and positive and negative predictive
values of predictions at 2 hours after HFNC initiation were also evaluated. These metrics were also computed for a cohort with
primarily respiratory diagnoses.

Results: A total of 834 HFNC trials (455 [54.6%] training, 173 [20.7%] validation, and 206 [24.7%] test) met the inclusion
criteria, of which 175 (21%; training: 103/455, 22.6%; validation: 30/173, 17.3%; test: 42/206, 20.4%) escalated to NIV or
intubation. The LSTM models trained with transfer learning generally performed better than the LR models, with the best LSTM
model achieving an AUROC of 0.78 versus 0.66 for the 14-variable LR and 0.71 for the 517-variable LR 2 hours after initiation.
All models except for the 14-variable LR achieved higher AUROCs in the respiratory cohort than in the general intensive care
unit population.

Conclusions: ML models trained using electronic medical record data were able to identify children at risk of HFNC failure
within 24 hours of initiation. LSTM models that incorporated transfer learning, input data perseveration, and ensembling showed
improved performance compared with the LR and standard LSTM models.
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Introduction

Background
The use of high flow nasal cannula (HFNC) respiratory support
in children in critical care, emergency departments, and general
wards has increased in recent years [1-8]. HFNC provides an
alternative to other noninvasive ventilation (NIV) techniques
and endotracheal intubation, has fewer associated risks and
complications, and is well-tolerated by children [3,5,6,8].
Nevertheless, many patients require escalation to a higher level
of respiratory support [3,8]. Importantly, for those who require
escalation, recent research indicates better clinical outcomes
for patients who were escalated to higher levels of respiratory
support earlier: lower hospital and intensive care unit (ICU)
mortality rates, higher extubation success rate, higher
ventilator-free days, and lower hospital and ICU lengths of stay
[9,10]. These findings suggest that early identification of
children in whom HFNC will not be successful could allow
more timely institutions of advanced respiratory support and
decrease morbidity and mortality.

Goals
This study aims to develop a model to make reliable, real-time
predictions of a child’s response to HFNC. Such a model could
help clinicians differentiate three groups: (1) children likely to
do well on HFNC alone, (2) children likely to need a higher
level of support, and (3) children whose HFNC response is
unclear. Differentiating these 3 groups would help clinicians
resolve the dilemma of appropriate NIV while not unduly and
potentially harmfully prolonging it. The last group may benefit
from the closest and most frequent monitoring. The second
group, although still monitored frequently, could be escalated
by clinicians to a higher level of support earlier. A further goal
is to compare different algorithms, from logistic regressions
(LRs) to long short-term memory (LSTM)-based recurrent
neural networks, for predicting HFNC response. Other
techniques, such as transfer learning (TL), input data
perseveration, and ensembling, are also explored and evaluated
for their impact on performance when used with LSTMs.

Related Prior Work
The authors are unaware of any studies developing a predictive
model of HFNC failure, although a few studies have investigated

risk factors for escalation from HFNC to a higher level of
respiratory support. Guillot et al [11] found that high pCO2

(partial pressure of carbon dioxide) was a risk factor for HFNC
failure in children with bronchiolitis. Er et al [12] reported that
respiratory acidosis, low initial oxygen saturation and SF
(oxygen saturation [SpO2] divided by the fraction of inspired
oxygen [FiO2]) ratio, and SF ratio <195 during the first few
hours were associated with unresponsiveness to HFNC in
children with severe bacterial pneumonia in a pediatric
emergency department. In a small study of children with
bacterial pneumonia, Yurtseven and Saz [13] saw higher failure
rates in those with higher respiratory rates. Kelley et al [8] found
that a high respiratory rate, high initial venous pCO2, and a pH
<7.3 were associated with failure of HFNC.

Methods

Data Sources
Data for this study came from deidentified clinical observations
collected in electronic medical records (EMRs; Cerner) of
children admitted to the pediatric intensive care unit (PICU) of
Children’s Hospital Los Angeles (CHLA) between January
2010 and February 2020. An episode represents a single
admission and a contiguous stay in the PICU. Patients may have
>1 episode. EMR data for an episode included irregularly,
sparsely, and asynchronously charted physiological
measurements (eg, heart rate and blood pressure), laboratory
results (eg, creatinine and glucose level), drugs (eg, epinephrine
and furosemide), and interventions (eg, intubation, bilevel
positive airway pressure [BiPAP], or HFNC). Data previously
collected for Virtual Pediatric Services, LLC participation [14],
including diagnoses, gender, race, and disposition at discharge,
were linked with the EMR data before deidentification.

Ethics Exemption
The CHLA institutional review board reviewed the study
protocol and waived the requirement for consent and
institutional review board approval.

Definitions
For ease of reference, Textbox 1 lists the terminologies and
definitions used throughout the sections which follow.

Textbox 1. Useful definitions.

Terms and definitions

• Episode: An individual child’s single, contiguous stay in the pediatric intensive care unit, spanning the time between admission and discharge

• High flow nasal cannula (HFNC) initiation: The start of HFNC treatment for a child not currently on HFNC

• HFNC period: The 24 hours following an HFNC initiation where the child was not on HFNC support at any time during the preceding 24 hours

• HFNC trial: An episode or subset of an episode (starting with admission) where only the very last HFNC period is designated as the training
target; it may include previous HFNC initiations

In an episode where HFNC is initiated only once, there is exactly
1 HFNC period and 1 HFNC trial. Episodes can have multiple

HFNC initiations. In such cases, a single episode may have
multiple HFNC periods, and each has an associated HFNC trial.
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Note that not all HFNC initiations have a corresponding HFNC
period. For instance, if a child started on HFNC for the first
time during an episode, then this marked the start of the HFNC
period. If HFNC was withdrawn 2 hours later, and the child
again received HFNC an hour after that, then this new HFNC
initiation did not mark the start of a new HFNC period as the
original HFNC period had not yet ended. In contrast, if this
second HFNC initiation took place >24 hours after the first
HFNC was stopped, then this second initiation marked the start
of a new HFNC period as it was initiated after the first HFNC
period had already ended. Finally, at least 30 minutes was

required between any de-escalation (step-down) from NIV or
intubation before the start of the HFNC period. This rule was
necessary as patients on a higher level of support may be stepped
down to HFNC to assess their ability to breathe on their own.
If such breathing trials fail, which is not an uncommon
occurrence, these patients immediately escalate back to
mechanical ventilation or NIV, technically becoming HFNC
failures but were, in fact, extubation failures and are not
representative of the escalation scenarios of interest in this study.
Figure 1 illustrates these terminologies.

Figure 1. Illustration of HFNC scenarios, definitions, and outcomes. HFNC: high flow nasal cannula; ICU: intensive care unit; NIV: noninvasive
ventilation.

Data Inclusions and Exclusions
Only episodes in which HFNC was used were included.
Episodes of patients aged ≥19 years at admission were excluded,
as were episodes associated with sleep apnea. Any episode that
ended <24 hours into an HFNC period where the patient next
went to the operating room was also excluded. Episodes with
a do not intubate or do not resuscitate order were also excluded.

Target Outcome
For each HFNC trial, the target of interest was escalation to a
higher level of support (BiPAP, noninvasive mechanical
ventilation, and intubation) within the 24-hour window (HFNC

period) after HFNC initiation. Each HFNC trial was labeled
either a failure (if there was an escalation within the associated
HFNC period) or a success (if there was no such escalation
within the associated HFNC period).

When a patient was discharged from the PICU within 24 hours
of HFNC initiation, the target label was determined by the
patient’s disposition at discharge (Textbox 2). Episodes with
the dispositions operating room, another hospital’s ICU, or
another ICU in current hospital were excluded as the outcome
was ambiguous. HFNC trials associated with a favorable
disposition (general care floor, home, or step-down unit) during
the HFNC period were labeled as success.
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Textbox 2. Target outcome mappings for high flow nasal cannula periods cut short by patient discharge.

Target outcome mapping and episode disposition

Success

• General care floor

• Home

• Step-down unit or intermediate care unit

Censored

• Operating room

• Another hospital’s intensive care unit

• Another intensive care unit in current hospital

The HFNC definitions and outcomes, combined with the
exclusion criteria, resulted in 834 HFNC trials that were
randomly divided into training, validation, and hold-out test
sets. All HFNC trials of an individual patient were assigned in
only one of these 3 sets to prevent leakage and bias during model
evaluations. No additional stratifications were applied.

Labeling Time Series Data for Model Training and
Assessment
Recall that the task is to predict HFNC failure (escalation of
care) for each HFNC trial. Data processing starts at the

beginning of the HFNC trial, with a model trained to output a
prediction each time a new measurement becomes available.
Figure 2 illustrates how the time series data of each HFNC trial
were labeled for this process. All prediction times during the
HFNC period were labeled as either 1 (failure) or 0 (success).
Predictions at times before the HFNC period were labeled NaN
(Not a Number) to exclude the predictions from error metrics
during model training and performance evaluations.

Figure 2. Illustration of labeling time series data for predicting HFNC escalation. HFNC: high nasal flow cannula; NaN: Not a Number; PICU: pediatric
intensive care unit.

Data Preprocessing

Overview
Each episode’s time series data were converted into a matrix.
Rows contain the measurements (recorded or imputed) of all
variables at 1 time point, and columns contain values of a single
variable at different times. The steps of this conversion are
described in detail in a previous work [15] and comprise the
aggregation and normalization of observed measurements,

followed by the imputation of missing data. A brief description
is provided in the following sections.

Aggregation and Normalization
Where medically appropriate, values of the same variable
obtained using independent measurement methods were
aggregated into a single feature. For example, invasive and
noninvasive systolic blood pressure measurements were grouped
into a single variable representing the systolic blood pressure
[16]. Any drug or intervention administered in <1% of patient
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episodes in the training set was excluded. This aggregation and
exclusion process resulted in a list of 516 distinct demographic,
physiological, laboratory, and therapy variables available as
model inputs (see Tables S1 to S4 in Multimedia Appendices
1-4 for the full list; variable acronyms appear in Table S5 in
Multimedia Appendix 5). Measurements considered
incompatible with human life were filtered out using established
minimum and maximum acceptable values (eg, heart rates >400
beats per minute). Physiological variables and laboratory
measurements were transformed to have 0 mean and unit
variance using the means and SDs derived from the training set.
Administered patient therapies were scaled to the interval [0,1]
using clinically defined upper limits. No variables were
normalized by age as patient age was one of the inputs.
Diagnoses were only used for descriptive analyses and not as
model input features.

Imputation
EMR measurements were sparsely, asynchronously, and
irregularly charted, with time between measurements ranging
from 1 minute to several hours. At any time where at least one
variable had a recorded value, the missing values for other
unrecorded variables were imputed. The imputation process
depended on the type of variable. Missing measurements for a
drug or an intervention variable were set to 0, indicating the
absence of treatment. When physiological observations or
laboratory measurements were available, they were propagated
forward until another measurement was recorded. This choice
reflects the clinical practice and is based on the observation that
measurements are recorded more frequently when the patient
is unstable and less frequently when the patient appears stable

[17]. If a physiological or laboratory variable had no recorded
value throughout the entire episode, the mean from the training
set population was used.

Input Perseveration
As described in the study by Ledbetter et al [18], LSTMs exhibit
predictive lag, wherein the model fails to react quickly to new
clinical information. A previous study [18] demonstrated that
an LSTM trained with input data perseveration (ie, the input is
replicated k times) responds with more pronounced changes in
predictions when new measurements become available while
maintaining overall performance relative to a standard LSTM.
As timely model responsiveness to acute clinical events is
critical in determining the necessity of escalating support, input
data perseveration was assessed as a training augmentation
technique.

Transfer Learning
TL is a technique of applying insights (eg, data representations)
that were previously learned from one problem to a new, related
task [19-22]. It can be particularly beneficial when one task has
significantly more training data than the other. As the number
of children on HFNC is significantly smaller than the number
of ICU episodes in the CHLA PICU data set, TL techniques
were considered to generate initial data representations and
facilitate training of the HFNC prediction models. LSTM-based
recurrent neural networks using the same input variables as
those for the HFNC task were trained on >9000 CHLA PICU
episodes to predict ICU mortality [23]. The first layer of one
of these mortality models was then used as the first layer of
some of the LSTM-based HFNC prediction models in Textbox
3.
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Textbox 3. Details of the 8 models considered.

Model and hyperparameters (a list of the 14 variables used as model inputs appears in Table S6 of Multimedia Appendix 6)

14-variable logistic regression (LR-14)

• Regularizer: 7.50×10−1

• Regularization: elasticnet (ratio=0.5)

517-variable logistic regression (LR-517)

• Regularizer: 1.15×10−3

• Regularization: elasticnet (ratio=0.2)

Long short-term memory (LSTM)

• Layers: 3

• Number of hidden units: (128,256,128)

• Batch size: 12

• Initial learning rate: 9.6e-4

• Patience: 10

• Reduce rate: 0.9

• Number of rate reductions: 8

• Loss function: binary cross-entropy

• Optimizer: rmsprop

• Dropout: 0.35

• Recurrent dropout: 0.2

• Regularizer: 1e-4

• Output activation: sigmoid

LSTM with 3-times input perseveration (LSTM+3xPers)

• Same as LSTM

LSTM with transfer learning (TL; LSTM+TL)

• Same as LSTM

• Transfer weights: first hidden layer only

LSTM with 3-times input perseveration and TL (LSTM+3xPers+TL)

• Same as LSTM

• Transfer weights: first hidden layer only

Simple ensemble of LSTM+3xPers+TL (Simple-en-LSTM+3xPers+TL)

• Same as LSTM

• Transfer weights: first hidden layer only

Multi-ensemble of LSTM+3xPers+TL (Multi-EN-LSTM+3xPers+TL)

• Same as LSTM

• Transfer weights: first hidden layer only

Ensembling
Ensemble methods combine multiple algorithms to achieve a
higher predictive performance than each component could obtain
[24]. The predictions from each component are averaged to

yield a single final prediction. Here, different seed values were
used to generate multiple LSTM-based models, with each seed
value initializing a different set of pseudorandom starting
weights for a particular model. Different seed values led to
slightly different models. Different seeds were used to train the
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mortality models used for TL and train the final LSTM models
on HFNC-specific data. Owing to the relatively small size of
the cohort available to develop the HFNC prediction model, it
was hypothesized that training models with different seeds
would result in high variance and low bias models that may be
decorrelated. Ensembling provides a method to average the
results across decorrelated models to reduce variance but
maintain a low bias.

HFNC Models
A total of 8 models were developed: a 14-variable LR (LR-14)
using variables previously identified as risk factors for HFNC
failure [8,11-13], a 517-variable LR (LR-517), a standard
LSTM, an LSTM with input perseveration (LSTM+3xPers,
where 3 indicates the number of replications described in the
study by Ledbetter et al [18]), an LSTM with TL (LSTM+TL),
an LSTM with both input perseveration and TL
(LSTM+3xPers+TL), a simple ensemble of LSTMs with input
perseveration and TL (Simple-EN-LSTM+3xPers+TL), and an
ensemble of ensembles of LSTMs with input perseveration and
TL (Multi-EN-LSTM+3xPers+TL). All models were trained to
generate a prediction every time new measurements became
available within the HFNC period.

Textbox 3 describes the parameters of all the models. Each
model was developed on the training set to maximize the
average of the validation set area under the receiver operating
characteristic (AUROC) curves measured hourly from 0 to 14
hours into the HFNC period. This window was selected to
prioritize the most clinically impactful period.

Figure 3 illustrates how the ensemble models were formed. An
LSTM mortality model was trained (seed A), and its first layer
was used as the first layer (TL weights) of a 3-layer LSTM with
input perseveration. Layers 2 and 3 of this model were trained
on the HFNC data 5 times (seeds 1-5), resulting in 5 slightly
different HFNC models whose predictions were averaged to
generate the Simple-EN-LSTM+3xPers+TL model predictions.
This process was repeated 4 times to generate an ensemble of
ensembles model: 4 LSTM mortality models were trained (seeds
A-D), each providing a different set of TL weights. For each of
these 4 sets of TL weights, 5 different seeds were used to train
with the HFNC data, resulting in 20 models whose predictions
were averaged together to generate the
Multi-EN-LSTM+3xPers+TL model predictions.
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Figure 3. Forming the (A) simple ensemble and (B) multi-ensemble models. HFNC: high flow nasal cannula; LSTM: long short-term memory; TL:
transfer learning.

Model Performance Assessment
Model performance was assessed on the test set by evaluating
the AUROC of predictions every 30 minutes within the 24-hour
HFNC period. AUROC performance for the subset of patients
with respiratory diagnoses was also compared every 30 minutes
within the 24-hour HFNC period. In the rolling cohort AUROC
computations, failures or successes that had already occurred
before the time of evaluation were excluded. For example, any
HFNC failures or successes that took place ≤4.5 hours into the
HFNC period were not considered in computing the 5-hour
AUROC. Including these in the 5-hour AUROC calculation
would artificially boost the result. This was followed for all
time points of interest. Therefore, the number of HFNC failures
and successes in the test set steadily decreased from 0 to 24
hours in the HFNC period. The fixed cohort AUROC and area
under the precision–recall curve in the first 15 hours were also
computed, wherein only those who were on HFNC for at least
15 hours were included to ensure a constant cohort (and,

consequently, a constant incidence rate of HFNC failures) at
each evaluation point.

In addition, receiver operating characteristic (ROC) curves,
sensitivities, specificities, positive predictive values (PPVs),
and negative predictive values (NPVs) of predictions 2 hours
after HFNC initiation were generated to evaluate model
performance early in the HFNC period, on both the entire test
set cohort and the respiratory subcohort.

Results

Cohort Characteristics
Table 1 describes the demographics and characteristics of the
data, whereas Figure 4 shows the histogram (in cyan) and
cumulative density (orange) for the time to HFNC failure for
the entire data set. Approximately 50% (87/175) of failures
occurred within 7.6 hours, and 80% (140/175) occurred within
14.1 hours.
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Table 1. Demographics and characteristics of the data partitions (N=834).

Overall (n=834)Test set (n=206)Validation set
(n=173)

Training set
(n=455)

Characteristic

637158138341Patients, n

715183151381Episodes, n

38 (4.6)7 (3.4)10 (5.8)21 (4.6)HFNCa trials died, n (%)

175 (21)42 (20.4)30 (17.3)103 (22.6)HFNC trials failed, n (%)

360 (43.2)90 (43.7)70 (40.5)200 (44)HFNC trials female, n (%)

589 (70.6)141 (68.4)115 (66.5)333 (73.2)HFNC trials with respiratory primary diagnosis, n (%)

PRISMb 3 score

4.2 (5.2)4.0 (5.0)3.6 (5.0)4.4 (5.3)Values, mean (SD)

3 (0-6)2 (0-6)2 (0-5)3 (0-7)Values, median (IQR)

Age (years)

3.1 (4.4)2.8 (3.7)3.1 (4.5)3.3 (4.6)Values, mean (SD)

1.2 (0.4-3.5)1.2 (0.5-3.8)1.2 (0.5-3.1)1.2 (0.4-3.4)Values, median (IQR)

Age group (years), n (%)

379 (45.4)96 (46.6)78 (45.1)205 (45.1)0-1

304 (36.5)77 (37.4)63 (36.4)164 (36)1-5

60 (7.2)17 (8.3)12 (6.9)31 (6.8)5-10

91 (10.9)16 (7.8)20 (11.6)55 (12.1)10-19

aHFNC: high flow nasal cannula.
bPRISM: pediatric risk of mortality.

Figure 4. Distribution of time to HFNC failure. HFNC: high flow nasal cannula.

AUROC Across the First 24 Hours
Figure 5 shows the 8 models’ rolling cohort AUROCs in
30-minute increments within the 24-hour HFNC period of all

HFNC trials in the test set. Table S7 in Multimedia Appendix
7 shows the number of remaining HFNC trials in the test cohort
at various evaluation times. Table S8 in Multimedia Appendix
8 presents the test set AUROC values associated with Figure 5
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at several times of interest in the first 12 hours of the HFNC
period. Table S9 in Multimedia Appendix 9 presents the
corresponding AUROCs in the respiratory cohort. The fixed
cohort AUROCs and areas under the precision–recall curve are

shown in Figures S10 and S11 in Multimedia Appendices 10
and 11. Both the rolling and fixed cohort AUROCs generally
increased over time.

Figure 5. Area under the receiver operating characteristics (AUROCs) of model predictions at different times on hold-out test set. AUC: area under
the receiver operating characteristic curve; HFNC: high flow nasal cannula; LR: logistic regression; LSTM: long short-term memory; TL: transfer
learning.

Two-Hour ROC and AUROC
Figure 6 presents the test set 2-hour ROC curves and AUROC
for the 8 models, showing predictive performance just 2 hours

into the HFNC period, whereas Figure 7 presents the same
metrics corresponding to the respiratory cohort.
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Figure 6. Receiver operating characteristic curves and area under the receiver operating characteristic (AUROC) curves of 2-hour predictions on the
entire test set. LR: logistic regression; LSTM: long short-term memory; TL: transfer learning.

Figure 7. Receiver operating characteristic curves and area under the receiver operating characteristic (AUROC) curves of 2-hour predictions on high
flow nasal cannula trials whose primary diagnosis is respiratory: all models. LR: logistic regression; LSTM: long short-term memory; TL: transfer
learning.
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Positive Predictive Value and Negative Predictive
Value
Table 2 shows the specificity, PPV, and NPV for the 2-hour
predictions of the Multi-EN-LSTM+3xPers+TL model that
correspond to different values of sensitivity. These metrics
provide a more intuitive understanding of performance in a
deployment scenario. At the 2-hour mark, 204 HFNC periods

remained (40 [19.6%] failures and 164 [80.4%] successes);
setting the operating point at 25% sensitivity correctly identified
10 of the HFNC failures (PPV=67%) and 159 of the nonfailures
(NPV=84%). Among the correctly identified HFNC failures,
the time to failure (at the 2-hour mark) ranged from a few
minutes to 19 hours (median=2.6 hours). Tables S12 to S14 in
Multimedia Appendices 12-14 show a comparison of these
metrics across all models.

Table 2. Specificity, PPV,a and NPVb corresponding to various sensitivity values of the 2-hour predictions of the Multi-EN-LSTM+3xPers+TL model.

NPVPPVSpecificitySensitivity

0.8170.5710.9820.10

0.8320.6150.9700.20

0.8410.6670.9700.25

0.8440.5000.9270.30

0.8530.3900.8480.40

0.8730.4260.8350.50

0.8900.4140.7930.60

0.9150.4520.7930.70

0.9400.4510.7620.80

0.9500.2900.4630.90

0.9440.2260.2070.95

1.0000.2040.0491.00

aPPV: positive predictive value.
bNPV: negative predictive value.

Discussion

Principal Findings
The ability to predict a child’s response to HFNC reliably and
in real time could help guide clinical differentiation among three
groups: (1) children most likely to do well on HFNC alone, (2)
children most likely to need a higher level of support, and (3)
children whose likely HFNC outcome is unclear and who may
require additional observation. Patients identified from the first
group may require less clinical intervention and free up scarce
ICU resources. Identifying children in the second group may
enable clinicians to intervene more rapidly and provide adequate
support to prevent decompensation. Owing to clinical
uncertainty, children in the third group may benefit from more
careful and frequent observation with the continuous prediction
of the likelihood of failure.

The granular longitudinal data captured from children in the
ICU presents a tremendous amount of information available for
learning and developing tools to help differentiate children’s
responses to numerous ICU interventions such as HFNC,
including ventilation, extracorporeal membrane oxygenation,
and dialysis. Deep learning models, especially those with
sequential processing capabilities such as LSTMs, have the
potential to use rich time-dependent data in ways that more
traditional machine learning models (eg, LR) cannot; however,
LSTMs may require sizable training data to construct
generalizable models. The results from this study showed this

to be the case: a standard, 3-layer LSTM was generally the worst
performing model on the hold-out test set.

TL was incorporated to address the issue of training LSTMs
with insufficient data. The models with TL had the advantage
of learning representations from >9000 PICU episodes, whereas
the models without TL learned from >600 HFNC trials
(approximately 500 episodes). The results demonstrate
considerable gains from using TL and are consistent with the
theory [14]. Figure 5, Figure S10, and Table S8, in particular,
highlight the significant and time-independent performance
increase delivered by TL in the LSTM models.

Input perseveration by itself (LSTM+3xPers) provided a
performance boost relative to the standard LSTM, especially
in the first 12 hours of the HFNC period in respiratory patients
(Table S9, Multimedia Appendix 9). When combined with TL
(LSTM+3xPers+TL), it continued to provide additional,
although slight, gains. As demonstrated in the study by Ledbetter
et al [18], LSTMs can exhibit a predictive lag phenomenon,
wherein they fail to react rapidly to new data reflecting sudden
clinical events and changes in patient status. In the context of
HFNC use and decisions about whether to escalate a child to
higher levels of support, this predictive lag may be deleterious
in a time-constrained environment such as the PICU.

Finally, the ensemble models (Simple-EN-LSTM+3xPers+TL
and Multi-EN-LSTM+3xPers+TL) were built to address another
consequence of limited training data: the relatively high
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variability of any one particular realization of the model. This
is a byproduct of randomly chosen initialization seeds used to
initialize LSTM weights and biases and for random dropout
techniques used for regularization purposes. The ensemble
methods provided a consistently higher performance on the
hold-out test set than the nonensemble models. The ensemble
models provided a slight performance boost over just a single
LSTM+3xPers+TL model. Not surprisingly, the
multiensembling of multiple models (both of those used to
generate TL weights and those used to generate HFNC
predictions) provided the best overall model
(Multi-EN-LSTM+3xPers+TL).

Regardless of the model, the performance generally increased
over time (Figure 5 and Figure S10). This is not surprising as
the lead time (the interval between the times of prediction and
outcome) decreases [25].

Model performance in patients with respiratory diagnoses is of
interest as the pathophysiology of respiratory illness is
particularly amenable to HFNC therapy [1-4]. Approximately
70% of HFNC initiation in this cohort were in patients with
respiratory illnesses. Table S8 shows that all models except
LR-14 generally performed better in the respiratory group over
time. Figure 7 shows that the best performing models in the
overall cohort—those that incorporated TL—performed even
better in the respiratory group after 2 hours of observation,
demonstrating the TL models’ potential clinical impact.

The 2-hour mark after HFNC initiation is an important clinical
decision point as a child has had adequate time to adapt to
HFNC, and the effects of treatment can be assessed. This
motivated the additional analyses of 2-hour predictions shown
in Figure 6 and Figure 7 (ROC curves) and Table 2 (sensitivity,
specificity, PPV, and NPV at various decision thresholds). The
Multi-EN-LSTM+3xPers+TL model had the highest AUROC.
In this model’s ROC curve for the entire cohort, 2 operating
points are of particular interest: the first corresponds to 95%
sensitivity (20% specificity), and the second corresponds to

25% sensitivity (97% specificity, 67% PPV, and 84% NPV).
The first point can be used to identify children most likely to
do well in HFNC (group 1), whereas the second can identify
those most likely to fail HFNC (group 2). Successfully
identifying 20% of group 1 can reduce the observational burden,
whereas identifying 25% of group 2 could lead clinicians to
intervene earlier with an escalation to a higher level of O2

support, potentially improving outcomes for these children
[9,10]. This system could potentially enable intervention 2 to
3 hours earlier in those most likely to fail HFNC. Children for
whom the model predictions fall between the 2 thresholds are
in the third group: those whose HFNC outcome is unclear and
who may benefit from more frequent observations.

Limitations
This study had several limitations. First, it was based on a
single-center retrospective cohort. Second, the target definition
considered only the first 24 hours following HFNC initiation.
Further work can refine the target to consider the subsequent
24 hours, regardless of how long the patient has already been
on HFNC.

Finally, this study is limited by the exclusion of children
experiencing apnea, making the predictive model’s applicability
to such children unclear. Although less than ideal, this exclusion
was deemed necessary as it is difficult to determine whether
escalation to BiPAP in these children is because of clinical
necessity (ie, true escalation) or prophylactic caution (to guard
against sleep apnea).

Conclusions
This study demonstrated the feasibility of applying advanced
machine learning methodology to a complex and challenging
clinical situation. This work demonstrated that clinically relevant
models can be trained to predict the risk of escalation from
HFNC within 24 hours of initiation of therapy and could be
obtained by using an LSTM with the application of TL and
input perseveration to boost AUROC performance.
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