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Abstract

Background: Alzheimer disease (AD) and other types of dementia are now considered one of the world’s most pressing health
problems for aging people worldwide. It was the seventh-leading cause of death, globally, in 2019. With a growing number of
patients with dementia and increasing costs for treatment and care, early detection of the disease at the stage of mild cognitive
impairment (MCI) will prevent the rapid progression of dementia. In addition to reducing the physical and psychological stress
of patients’ caregivers in the long term, it will also improve the everyday quality of life of patients.

Objective: The aim of this study was to design a digital screening system to discriminate between patients with MCI and AD
and healthy controls (HCs), based on the Rey-Osterrieth Complex Figure (ROCF) neuropsychological test.

Methods: The study took place at National Taiwan University between 2018 and 2019. In order to develop the system, pretraining
was performed using, and features were extracted from, an open sketch data set using a data-driven deep learning approach
through a convolutional neural network. Later, the learned features were transferred to our collected data set to further train the
classifier. The first data set was collected using pen and paper for the traditional method. The second data set used a tablet and
smart pen for data collection. The system’s performance was then evaluated using the data sets.

Results: The performance of the designed system when using the data set that was collected using the traditional pen and paper
method resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.913 (SD 0.004) when distinguishing
between patients with MCI and HCs. On the other hand, when discriminating between patients with AD and HCs, the mean
AUROC was 0.950 (SD 0.003) when using the data set that was collected using the digitalized method.

Conclusions: The automatic ROCF test scoring system that we designed showed satisfying results for differentiating between
patients with AD and MCI and HCs. Comparatively, our proposed network architecture provided better performance than our
previous work, which did not include data augmentation and dropout techniques. In addition, it also performed better than other
existing network architectures, such as AlexNet and Sketch-a-Net, with transfer learning techniques. The proposed system can
be incorporated with other tests to assist clinicians in the early diagnosis of AD and to reduce the physical and mental burden on
patients’ family and friends.

(JMIR Med Inform 2022;10(3):e31106) doi: 10.2196/31106
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Introduction

Background
According to the latest report from Alzheimer’s Disease
International [1], the number of people with dementia worldwide
will increase from 50 million in 2019 to 152 million by 2050,
and the global annual cost of dementia is estimated to increase
from US $1 trillion in 2019 to US $2 trillion in 2030. Dementia
is also the seventh-leading cause of death in the world [2]. These
numbers continue to grow year by year, and the risk of
developing dementia grows significantly with increasing age.
Therefore, as more and more countries’ aging populations
increase, there is an urgent need to put more effort into research
related to this issue, since there is no cure for AD and the
existing treatment is to extend the period of rapid progression
of the disease.

AD is the most common etiology associated with dementia, and
it accounts for approximately 60% to 70% of all dementia cases

[3]. AD caused by the destruction and death of neurons in the
brain is a syndrome related to ongoing decline in cognitive
function in domains such as memory, visuospatial processing,
language, and executive function; this decline results in
impairment in carrying out the instrumental and basic activities
of daily living [4].

MCI is a transitional state between normal aging and dementia,
in which a patient’s cognitive function undergoes mild but
perceptible decline, as shown in Figure 1 [5]. Such degradation
of cognitive function occurs more quickly than in normal aging,
but unlike in AD, it does not affect the patient’s ability to handle
daily activities. According to the updated American Academy
of Neurology guideline on MCI [6], about 14.9% of patients
with MCI older than 65 years of age developed dementia at a
2-year follow-up. In clinical trials involving patients with MCI
who had memory loss, most of them who progressed to having
dementia had AD.

Figure 1. The continuum of Alzheimer disease [5]. MCI: mild cognitive impairment.

Currently, the diagnoses of the MCI and AD are based on the
clinical judgment of doctors according to the symptoms, medical
reports, and medical history from the individual, family
members, friends, or caregivers. Additionally, a series of
cognitive tests and neuropsychological assessments, such as the
Mini-Mental State Examination (MMSE) [7] and the Clinical
Dementia Rating scale [8], are essential to evaluate the
individual’s cognitive function. Furthermore, biomarker
measurements that include cerebrospinal fluid testing and
neuroimaging, such as structural magnetic resonance imaging
(MRI) and positron emission tomography (PET), are also used
to aid in diagnosis [9].

Several challenges need to be addressed to propose a screening
system for the early detection of AD. One of the challenges is
that the characteristics or signs of the early stage of the disease
may not be obvious [10]. Moreover, the high cost of manual
feature extraction needs to be avoided. However, meaningful
feature representation has to be determined for building a
screening model for the disease. As a screening tool, the
efficiency of the overall screening process is another issue that

needs to be considered. In this work, we proposed a digital
screening system to reduce the burden on clinicians.

Purpose
The aim of this research was to propose a data-driven
convolutional neural network (CNN) architecture through
transfer learning and deep learning methods to discriminate
between patients with AD or MCI and healthy controls (HCs).
The designed CNN architecture was developed for a
Rey-Osterrieth Complex Figure (ROCF) test system that
automatically calculates scores to assist diagnosis. The purpose
of the proposed system is to prevent late diagnosis of AD among
older adults. Nevertheless, the proposed system will also reduce
the manual workload for clinicians and diagnostic costs.

Related Work

Overview
When AD and other types of dementia collectively became one
of the primary public health concerns worldwide, many different
types of research studies began to develop diagnostic tools to
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accurately classify individuals as having AD or MCI or as
cognitively unimpaired individuals, also known as HCs. These
studies can be categorized into two main types: neuroimaging
studies and neuropsychological test studies.

Neuroimaging Studies
AD is a neurodegenerative disease, and the most remarkable
brain changes appear to occur in the hippocampal formation
and the entorhinal cortex, which are critical brain structures
related to memory function. MRI is commonly used to measure
the structural atrophy of the hippocampus and entorhinal cortex.
Compared with cognitively unimpaired older adults and
individuals with MCI, patients with AD have a smaller-sized
hippocampus and entorhinal cortex [11]. Functional MRI
provides information on the flow of oxygenated blood in the
brain to detect higher brain cell activity by higher blood flow;
it can be used to record the activation patterns of neural networks
in the hippocampus when the participant is performing memory
tests [12]. Furthermore, with the injection of a radioactive
contrast agent into the human body, a PET scan can be used to
obtain information on glucose metabolism and the brain’s
neurotransmitter activity.

With the help of multiscale feature extraction from baseline
local hippocampus MRI data, Hu et al [13] adopted support
vector machine (SVM) learning models to distinguish between
patients with MCI that converted to AD and patients with MCI
that did not convert to AD, and to distinguish between patients
with AD and HCs. Challis et al [14] applied functional MRI
scans and Bayesian Gaussian process logistic regression models
to distinguish between HCs and patients with amnestic MCI,
and between patients with amnestic MCI and those with AD.
Li et al [15] used fusion information from MRI and PET scans
for feature selection, processed the selected features through
restricted Boltzmann machines to obtain the learned features,
and applied the learned features to an SVM model for the
classification of the different stages of AD. However,
neuroimaging is not cheap. Moreover, patients who experience
claustrophobia cannot undergo scanning by the machine because
patients need to lie motionless inside the closed shell of the
machine. Furthermore, patients with metallic implants, such as
pacemakers, cannot undergo MRI due to the magnetic and
radiofrequency fields generated during imaging. In addition,
patients will be exposed to radiation while undergoing a PET
scan.

Neuropsychological Test Studies
Neuropsychological assessments employing specifically
designed tests are important for evaluating the brain
dysfunction’s behavioral and functional expression [16]. A
neuropsychological test is typically administered to a participant
by an examiner or neuropsychologist in a quiet environment.
The purpose of the assessment is to gather the participant’s
cognitive and behavioral performance information. The MMSE
is a widely used screening test for evaluating the cognitive status
of older adults. However, it has limited utility in distinguishing
between the patients with MCI and people in a standard aging
group [17].

Drawing tests are widely used to assess constructional abilities,
where the patient is asked to copy a complex figure and then
recall and replicate the figure from memory. The Clock-Drawing
Test (CDT) is a simple tool for screening people with dementia.
It requires participants to draw the clock correctly using
appropriate abilities, such as understanding language, planning,
visualizing orientations, and executing the appropriate
movement. However, people with dementia will not draw
correctly due to impaired cognitive abilities, such as visual
constructional processing, memory function, semantic
knowledge retrieval, or executive function. Prange and Sonntag
[18] proposed a digital CDT by implementing the Mendez
scoring system [19] and creating a hierarchy of error categories
to model the characteristics of CDT. Nevertheless, according
to a survey report [20], many researchers using the CDT cannot
significantly distinguish between patients with MCI and
cognitively unimpaired participants, and the sensitivity and
specificity have also been less satisfactory in most studies.

The ROCF test is widely used to assess visuospatial
constructional capabilities and visual memory function [21]. It
is a score-based neuropsychological assessment tool that
assesses the individual’s visual memory by testing their ability
to draw a complex figure by copying, immediate recall, and
delayed recall from memory. The ROCF test was first
constructed by Rey [22], and it was then standardized by
Osterrieth [23]. Miller et al [24] showed that combining the
ROCF test with the MMSE can enhance the performance of the
detection of individuals with MCI. Salvadori et al [25] evaluated
the ROCF test using the Boston Qualitative Scoring System
(BQSS) [26] in order to distinguish vascular MCI from
degenerative MCI. There are several different scoring systems
for quantifying the performance of the ROCF test, for example,
the Rey-Osterrieth 36-point scoring system [27], the
Developmental Scoring System [28], and the BQSS.

Nevertheless, the current scoring system of the ROCF test is
labor intensive and needs to be performed by trained experts,
due to the complexity of the scoring criterion. However,
cognitive impairment in individuals with MCI is often subtle.
It appears to be more challenging to distinguish between patients
with MCI and HCs than between patients with AD and HCs,
as the current manual scoring system may also have a limited
ability to detect subtle differences between individuals with
MCI and HCs.

Methods

System Overview
The proposed approach was partitioned conceptually into two
portions, namely model training and screening, as depicted in
Figure 2. The model training portion mainly included three
modules: data collection, pretraining, and retraining. First,
according to the standardized assessment protocol, participants
had to be classified as individuals with MCI or HCs by an
experienced doctor and neuropsychologist. Therefore, the
diagnosis results were used to train the classification model as
the ground truth. Second, we collected the ROCF test drawings
from all participants, and a large, open, sketch data set was used
for pretraining our proposed screening system. Third, the
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screening model was implemented by applying the pretrained
model to the collected data. Finally, we used the retraining
model to discriminate participants. The screening portion used
the system to classify new participants by differentiating

cognitively unimpaired individuals from patients with AD or
MCI. The following sections discuss the detailed implementation
of each part in more detail.

Figure 2. System overview. AD: Alzheimer disease; HC: healthy control; MCI: mild cognitive impairment.

Screening System

Neuropsychological Test Selection
Neuropsychological test selection was based on whether it could
be performed in a clinical setting and whether it had been used
in related AD and MCI studies. The ROCF test is a
neuropsychological test that has been adopted to assess various
cognitive functions, such as visuospatial abilities, visual episodic
memory, organization skills, attention, and visuomotor
coordination [29]. Visual memory impairment is an early sign
of AD [30], and some studies [31,32] have shown that the ROCF
test can identify patients with MCI, patients with mild AD, and
HCs.

The ROCF does not resemble any existing object; it combines
many shapes that include lines, circles, rectangles, triangles,
crosses, diamonds, and more. There are three trials during an
ROCF test: copy, immediate recall, and delayed recall. Cognitive
functions such as attention, visuospatial processing, and
visuomotor coordination are required for copying the
complicated geometrical figures successfully. The immediate
recall and the delayed recall are used to assess the participant’s
ability to retrieve learned information from memory incidentally.

Data Collection Procedure

Overview

First, participants were invited to participate in the study
according to ethical approval from the Institutional Review
Board (IRB) of the National Taiwan University Hospital
(NTUH; see Ethics Approval section for details), and written

informed consent was received from each of them. Each
participant was asked to sit at a table with pen and paper or with
a Cintiq 16 tablet (Wacom) and Pro Pen 2 (Wacom) [33]. Next,
the participant was asked to write his or her name or draw some
shapes on the digital device using the smart pen in order to
become familiar with the devices. After that, the participant was
informed about the process of the ROCF test during three trials:
the copy trial, the immediate recall trial, and the delayed recall
trial.

Copy Trial

The participant was shown the ROCF and asked to duplicate
the complicated geometrical figure as close as possible to the
original figure. The participant was informed that there was no
time limit for copying the figure. After the copy stage was
finished, both the original ROCF and the copied figure that was
drawn by the participant were removed from sight. Furthermore,
the participant was not notified that the figure would need to
be drawn again in the subsequent trials.

Immediate Recall Trial

After a short delay, the participant was asked to draw the
complicated geometrical figure from memory with as much
detail as possible. The participant was informed that there was
no time limit. When the immediate recall drawing was finished,
the drawn figure was moved away from the participant’s sight.

Delayed Recall Trial

After a 20- to 30-minute delay, the participant was asked to
redraw the complicated geometrical figure from memory. The
participant was informed that there was no time limit.
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Data Preparation

Overview
Two different data sets were used to evaluate our proposed AD
screening system; they were gathered according to ethical
approval from the IRB of the NTUH (see Ethics Approval
section). In line with IRB ethical approval, older adults in
Taiwan were invited, and their written informed consent was
obtained. Participants with a past or current history of the
following conditions were excluded from this study:

1. Nonneurodegenerative problems that might affect brain
function, such as stroke, epilepsy, and moderate or severe
head injury.

2. Severe psychiatric illness, such as depression and autism.
3. Drug abuse.
4. Blindness or severe hearing impairment that would result

in participants not being able to take the ROCF
neuropsychological test.

The details of both data sets are described in the following
sections.

NTUH_ROCF Data Set
This study data set included a total of 118 participants: 59
(50.0%) participants with MCI and 59 (50.0%) HCs. The
NTUH_ROCF data set was collected using pen and paper
through the data collection procedure described above. All
participants underwent a comprehensive neuropsychological
assessment, including measurements from five cognitive
domains: attention, executive function, visuospatial function,
memory, and language. An expert from our team evaluated the
assessments; the criteria of classifying patients with MCI was
based on the approaches proposed by Jak et al [34].

Table 1 shows the demographic information of the older adult
participants, including gender, age, years of education (minimum
6 years), and MMSE scores for the MCI and HC groups.
Participants were asked to draw the ROCF pictures during the
copy trial, the 3-minute delayed trial (ie, immediate recall), and
the 30-minute delayed trial (ie, delayed recall).

Table 1. Demographic information from the NTUH_ROCFa data set.

Healthy controls (n=59)Participants with mild cognitive impairment (n=59)Characteristic

Gender, n (%)

33 (56)31 (53)Female

26 (44)28 (47)Male

62.58 (5.89)67.51 (6.30)Age (years), mean (SD)

15.05 (2.82)13.12 (3.20)Education (years), mean (SD)

29.18 (0.96)27.81 (2.10)MMSEb score, mean (SD)

aNTUH_ROCF: National Taiwan University Hospital_Rey-Osterrieth Complex Figure.
bMMSE: Mini-Mental State Examination; total scores range from 0 (all answers are incorrect) to 30 (all answers are correct).

NTUH_D-ROCF Data Set
This study data set included a total of 60 participants: 30 (50%)
participants with AD and 30 (50%) HCs. Patients with AD were
recruited from NTUH, and the NTUH_D-ROCF data set (where
“D” represents Alzheimer disease) was collected using the
graphics tablet and smart pen (Cintiq 16 and Pro Pen 2; Wacom)
to evaluate the automation approach’s performance. Disease

diagnoses from a board-certified neurologist and a
board-certified clinical neuropsychologist were used as the
ground truth for training the system. The demographic
information from the participants is summarized in Table 2.
Participants were asked to draw the ROCF pictures during the
copy trial, the immediate recall trial, and the 10-minute delayed
recall trial.

Table 2. Demographic information from the NTUH_D-ROCFa data set.

Healthy controls (n=30)Participants with Alzheimer disease (n=30)Characteristic

Gender, n (%)

19 (63)20 (67)Female

11 (37)10 (33)Male

73.40 (7.24)77.67 (6.96)Age (years), mean (SD)

15.03 (2.66)11.83 (3.55)Education (years), mean (SD)

28.50 (1.55)21.33 (2.80)MMSEb score, mean (SD)

aNTUH_D-ROCF: National Taiwan University Hospital_Alzheimer Disease_Rey-Osterrieth Complex Figure.
bMMSE: Mini-Mental State Examination; total scores range from 0 (all answers are incorrect) to 30 (all answers are correct).
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Designed Architecture of the Neural Network

Overview

Training a deep CNN from scratch is a time-consuming task
and usually requires a large amount of data to achieve the goal
of generalization. Generally, it is hard for researchers to collect
enough labeled images for each specific task. According to
research by Yosinski et al [35], the transfer learning technique
applied to deep neural networks could achieve surprising results.
They found that initializing the weights of a network by
transferring features from almost any number of layers of a
pretrained network can retain the generalization ability, even
fine-tuning the weights according to the target data set. It

inspired us to use the TU (Technical University)-Berlin sketch
data set [36] to pretrain our neural network. The data set consists
of 250 different object categories, such as animal, insect, plant,
food, furniture, transportation, and instrument, where each
category contains 80 sketch images. The data set contains a
total of 20,000 hand-drawn sketches. We used that data set
because it is large and similar to our collected data, in that both
sets of images are sketched and contain the shapes of circles,
squares, and lines. The learned weights or pretrained models
were then transferred to the target screening engine rather than
training the target neural network from scratch. The network
structure of our proposed screening system is depicted in Figure
3.

Figure 3. The network structure of the screening system for Alzheimer disease. ROCF: Rey-Osterrieth Complex Figure.

Pretraining Engine

Inspired by the neural network architecture described in Yu et
al [37], we further designed a low-cost neural network for
pretraining the sketch data set, as demonstrated in the upper

part of Figure 3. The input was the image I∈Rh×w×c, where h
and w stand for the height and width of the image, and c is the
number of channels of the image. The output comprised the
probabilities of belonging to the corresponding 250 categories,
and the highest probability indicated the predicted output label
of the sketch image. In other words, features were extracted
based on CNN architecture to recognize the hand-drawn

sketches across numerous object categories. A series of
convolutional layers and their following pooling layers acted
as the feature extraction, while fully connected (FC) layers were
used for further classification.

The pretraining network adopted five 3×3 convolutional layers
with a stride of 1 pixel. The stride was set to 1 to keep as much
information as possible through the convolution operation. In
addition, each convolutional layer was followed by a 2×2 max
pooling layer using a stride of 2 pixels. The convolutional
function used in each convolutional layer is represented as
follows:

JMIR Med Inform 2022 | vol. 10 | iss. 3 | e31106 | p. 6https://medinform.jmir.org/2022/3/e31106
(page number not for citation purposes)

Cheah et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


where F(l–1) indicates the input feature map to the l-th layer, W
is the weight matrix to be applied to the input feature map, b is
the bias vector, the operator * is the convolution operation, σ
is the nonlinear activation function, pool is a subsampling
operation, and s represents the pooling size of the filter that
usually covers an s×s square region.

The feature representations were then flattened into a
2048-dimension vector and connected to two FC hidden layers,
each with 512 neurons. A rectified linear unit (ReLU) [38]
function, as shown in equation 2 below, was used as the
activation function of the convolutional layers and the two FC
hidden layers, while the softmax function, as shown in equation
3 below, was applied to the output layer to compute the
prediction probability for each class. Finally, dropout [39] was
adopted after the flattened layer and two FC hidden layers with
a dropout rate of 0.5. The dropout technique was used to prevent

overfitting of the training data, which reduced the number of
active neurons during training by dropping 50% of the neurons.

A data augmentation technique was used to increase the diversity
of sketches per category for classification. Furthermore, it
increased the number of training samples through several
random transformations on the image, such as vertical shift,
horizontal shift, rotation, and flip, in order to train the model
with a greater range of various augmented data. This technique
lets the model constantly train on new, slightly modified
versions of the input data, which enables the model to learn
more robust features and increases the generalization of the
model. Thus, the shift and rotation transformations of data
augmentation were adopted in the training process, and the
transformations were then applied in real time as batches were
passed into training in this work, as shown in Figure 4.

Figure 4. The real-time process of data augmentation.

Initially, the sketch data set was separated into training and
testing data, and the data augmentation technique was only
applied to the training data. The original batch of sketch images
was then fed into the image augmentation module to apply a
series of random transformations to each image in the batch.
Next, the sketches from the training data were randomly shifted
horizontally or vertically with a 0.1 fraction of total width or
height and randomly rotated in the range of 0.1 degrees. Finally,
the new and randomly transformed batch was used for training
the CNN, while the original data were not used for training. In
other words, the image augmentation module randomly
transformed the original images and returned only the new
transformed images.

The cross-entropy loss function was applied to calculate the
model loss through the training data. We obtained the loss value
for later optimization by comparing the model’s predictions

with the ground truth. The probability denotes the
prediction result of i-th class of a sample, where s is the output

score of the model, si is the i-th element of vector s, and C is
the total number of the classes. Set y = [y1,...,yM,...,yC], where
yM = 1 and yi = 0(if i ≠ M) to indicate that the M-th class is the
ground truth. Then, the cross-entropy loss function L is
represented as follows:

Lastly, an Adam optimizer [40] with a learning rate of 0.0001
was used to adjust the trainable parameters to reduce the model
loss for each batch. The Adam optimizer combines two methods:
AdaGrad (adaptive gradient algorithm) [41], which deals with
sparse gradients very well, and RMSProp (root mean square
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propagation), which does well with online and nonstationary
settings.

Retraining Engine

Given the image as the input I∈Rh×w×c, where h and w stand for
the height and width of the image and c is the number of
channels of the image, which implicitly contains the necessary
information for building the screening model of AD, the output
is the score or probability of having AD or MCI. A CNN was
used to determine the score, and features were learned
automatically rather than handcrafted. We formulated the score
of having AD or MCI with a function of the image drawn by
the participant, as shown in the following equation:

where I represents the image drawn by the participant, the output
of the model score is a 2D vector, and each dimension is a scalar
value between 0 and 1, which indicates the possibility of having
AD or MCI or of being an HC, respectively.

The architecture of the retraining engine is shown in the bottom
part of Figure 3. The convolutional base of the retraining engine
was leveraged from the convolutional base of the pretraining
model by using the TU-Berlin sketch data set. The convolutional
base layers were frozen, consisting of five convolutional layers
with a filter size of 3×3 and a stride of 1 pixel; a 2×2 max
pooling layer follows each convolutional layer with a stride of
2 pixels. A new classifier was implemented for further
distinguishing the image drawn by the participant. The feature
representations were then flattened into a 2048-dimension vector
and connected to two FC layers, each with 128 neurons. Every
node of the FC layer applied the ReLU [38] activation function
(equation 2). The probability or score of having AD or MCI
was calculated by applying the softmax function (equation 3).
The dropout technique was also applied after the flattened layer
with a dropout rate of 0.5.

The same data augmentation technique applied in the pretraining
engine was also implemented in the retraining engine. The
ROCF training data were randomly shifted horizontally or
vertically with a 0.05 fraction of total width or height and
randomly rotated in the range of 0.1 degrees. As mentioned
before, the real-time data augmentation technique implemented
in the screening engine was similar to that implemented in the
pretraining engine.

The corresponding ground truth label for the output is as
follows: 0 indicates that the participant is healthy, while 1
indicates that the participant has AD or MCI. The loss function
is defined as the cross-entropy sum between the predicted output
and the ground truth as follows:

where L is the loss function, yi is the ground truth of class i, and
y and ŷ are the truth label and output of the screening engine,

respectively. In addition, the Adam optimizer with a learning
rate of 0.0001 was adopted for training the retraining engine,
and the batch size was 16 for the training process.

Ethics Approval
Ethical approval was obtained from the IRB (No. NTUH
201802091RIND) of the NTUH.

Results

Performance Metrics
The performance of the system was measured using four metrics:
sensitivity, specificity, accuracy, and area under the receiver
operating characteristic curve (AUROC). Sensitivity represents
the proportion of actual patients with AD or MCI who are
identified correctly. Specificity denotes the proportion of people
who are genuinely healthy older adults who are identified
correctly. Accuracy indicates the ratio of correctly classified
patients with MCI or AD and cognitively unimpaired older
adults to total participants. The receiver operating characteristic
(ROC) curve illustrates the relationship between sensitivity and
specificity for a given classification model and several given
thresholds. If the ROC curve is almost a straight line through
the diagonal, it indicates poor performance. When comparing
different classification models, the ROC curve of each model
can be drawn, and the AUROC is used as an indicator to
illustrate the model’s performance. Equations for calculating
sensitivity and specificity are as follows:

where TP (true positive) and TN (true negative) denote the
number of correct classifications, and where FP (false positive)
and FN (false negative) denote the number of the incorrect
classifications.

Evaluation Procedure
A series of experiments were conducted to examine the
efficiency of our proposed screening engine. First, the images
were resized to 128×128×1, and the data were randomly shuffled
to ensure that they were thoroughly mixed. Next, training and
testing were executed on a GeForce GTX 1080 Ti GPU
(NVIDIA) to evaluate the performance of the implemented
classifier through a 10-fold cross-validation procedure. The data
set was randomly shuffled to 10 subsets, which were used as
testing data in turn, and the other nine subsets were used as
training data for each fold test. The 10-fold cross-validation
was repeated five times, and each performance score was
recorded.

Evaluation of the NTUH_ROCF Data Set

Comparison of Different ROCF Trials
The performance of the copy, immediate recall, and delayed
recall trials were calculated separately, and the results are listed
in Table 3. The performance of the copy trial had a mean
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sensitivity of 0.668 (SD0.015), a mean specificity of 0.536
(SD0.026), a mean accuracy of 0.602 (SD0.009), and a mean
AUROC of 0.672 (SD0.004). The results of the copy trial
indicate that it was not easy to distinguish whether a participant
had MCI or was an HC; this might be the case because both
patients with MCI and HCs still have adequate attention and
visuospatial processing ability, allowing them to duplicate the
complex geometrical figure during the copy trial. On the
contrary, the delayed recall trial had the best classification
capability in differentiating participants with MCI from HCs,

with a mean sensitivity of 0.847 (SD0.017), a mean specificity
of 0.905 (SD0.009), a mean accuracy of 0.876 (SD0.010), and
a mean AUROC of 0.913 (SD0.004). The performance of the
immediate recall trial had a mean sensitivity of 0.736 (SD0.028),
a mean specificity of 0.885 (SD0.014), a mean accuracy of
0.810 (SD0.015), and a mean AUROC of 0.871 (SD0.008).
Compared with cognitively unimpaired older adults, the patients
with MCI may have had problems recalling the figure from
memory after some time.

Table 3. Performance of three ROCFa trials using the NTUH_ROCFb data set.

Delayed recall trial, mean (SD)Immediate recall trial, mean (SD)Copy trial, mean (SD)Metric

0.847(0.017)0.736 (0.028)0.668 (0.015)Sensitivity

0.905 (0.009)0.885 (0.014)0.536 (0.026)Specificity

0.876 (0.010)0.810 (0.015)0.602 (0.009)Accuracy

0.913 (0.004)0.871 (0.008)0.672 (0.004)AUROCc

aROCF: Rey-Osterrieth Complex Figure.
bNTUH_ROCF: National Taiwan University Hospital_Rey-Osterrieth Complex Figure.
cAUROC: area under the receiver operating characteristic curve.

Performance of the Proposed Screening System for
Classifying Participants With MCI Versus Healthy
Controls
In this experiment, the performance of the proposed architecture
of the screening engine for distinguishing between the complex
figures drawn by participants with MCI and HCs was evaluated
using the images drawn by the participants during the delayed

recall trial. Initially, the TU-Berlin sketch data set was used to
pretrain the neural network; the learned feature representations
were then leveraged for our ROCF data set for further training.
Figure 5 shows the mean (SD) of AUROC and accuracy for
each repeat of the 10-fold cross-validation and the mean (SD)
of these five repeats. The performance of our model achieved
a mean AUROC of 0.913 (SD 0.004), while the mean accuracy
of the five repeats of 10-fold cross-validation was 0.876 (SD
0.010).

Figure 5. Receiver operating characteristic (ROC) curves of the proposed screening engine after five repeats of 10-fold cross-validation using the
NTUH_ROCF data set. Acc: accuracy; AUROC: area under the receiver operating characteristic curve; NTUH_ROCF: National Taiwan University
Hospital_Rey-Osterrieth Complex Figure.
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Evaluation of the NTUH_D-ROCF Data Set

Comparison of Different ROCF Trials
Different ROCF trials were evaluated individually, and their
performance results are shown in Table 4. The performance of
the immediate recall trial and the 10-minute delayed recall trial
were similar in distinguishing between participants with AD
and HCs. The performance of delayed recall had a mean
sensitivity of 0.820 (SD0.038), a mean specificity of 0.953 (SD
0.018), a mean accuracy of 0.887 (SD 0.016), and a mean
AUROC of 0.940 (SD 0.006). The performance of immediate
recall had a mean sensitivity of 0.827 (SD 0.015), a mean
specificity of 0.947 (SD 0.018), a mean accuracy of 0.887 (SD

0.012), and a mean AUROC of 0.950 (SD 0.003). The results
showed that the immediate recall trial had the best performance,
followed by the 10-minute delayed recall trial, while both could
be used to distinguish between participants with AD and HCs.
The patients with AD may have had problems recalling the
complex figure from memory during the immediate recall trial
and the 10-minute delayed recall trial, as compared to HCs. On
the other hand, compared with the immediate recall trial or the
10-minute delayed recall trial, the performance of the copy trial
was less discriminative; this trial had a mean sensitivity of 0.627
(SD 0.028), a mean specificity of 0.900 (SD 0.033), a mean
accuracy of 0.763 (SD 0.016), and a mean AUROC of 0.762
(SD 0.018).

Table 4. Performance of three ROCFa trials using the NTUH_D-ROCFb data set.

Delayed recall trial, mean (SD)Immediate recall trial, mean (SD)Copy trial, mean (SD)Metric

0.820 (0.038)0.827 (0.015)0.627 (0.028)Sensitivity

0.953 (0.018)0.947 (0.018)0.900 (0.033)Specificity

0.887 (0.016)0.887 (0.012)0.763 (0.016)Accuracy

0.940 (0.006)0.950 (0.003)0.762 (0.018)AUROCc

aROCF: Rey-Osterrieth Complex Figure.
bNTUH_D-ROCF: National Taiwan University Hospital_Alzheimer Disease_Rey-Osterrieth Complex Figure.
cAUROC: area under the receiver operating characteristic curve.

Performance of the Proposed Screening System for
Classifying Participants With AD Versus Healthy
Controls
The performance of the proposed architecture of the screening
engine to distinguish between the abstract and complex figures
drawn by participants with AD and HCs was conducted using

the images collected from the immediate recall trial. First, the
TU-Berlin sketch data set was also used to pretrain the neural
network; the feature representations learned by the pretrained
neural network were then fine-tuned and leveraged for our
ROCF data set for further training. As a result, the performance
of our model achieved a mean AUROC of 0.950 (SD 0.003),
while the mean accuracy of the five repeats of 10-fold
cross-validation was 0.887 (SD 0.012), as shown in Figure 6.

Figure 6. Receiver operating characteristic (ROC) curves of the proposed screening engine after five repeats of 10-fold cross-validation using the
NTUH_D-ROCF data set. Acc: accuracy; AUROC: area under the receiver operating characteristic curve; NTUH_D-ROCF: National Taiwan University
Hospital_Alzheimer Disease_Rey-Osterrieth Complex Figure.
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Effectiveness of the Dropout and Data Augmentation
Techniques
An experiment verifying the performance of the designed system
after applying the data augmentation and dropout techniques
was conducted for the data collected in the delayed recall trial.
The data augmentation method was adopted when training the
neural network concurrently; only the training data, instead of
testing data, were augmented. The performance of the designed
system after applying both techniques was better, with a mean
sensitivity of 0.847 (SD 0.017), a mean specificity of 0.905 (SD
0.009), a mean accuracy of 0.876 (SD 0.010), and a mean
AUROC of 0.913 (SD 0.004). When the techniques were not
used, the system had a mean sensitivity of 0.824 (SD 0.019), a
mean specificity of 0.898 (SD0.024), a mean accuracy of 0.861
(SD 0.001), and a mean AUROC of 0.893 (SD 0.012), as seen

in Table 5. When applying data augmentation and dropout
techniques, most studies on image classification obtain better
results. Data augmentation techniques could extend the diversity
of the training data, and dropout techniques could avoid
coadaptation of the model by randomly disabling neurons with
probability during the training process. The results showed that
with the data augmentation and dropout techniques, the system
performed better, according to the results provided in Table 5.
Therefore, integrating them into the model provides better
results. Consequently, to obtain better performance, both
technologies were adopted in our model. The higher the
sensitivity, specificity, accuracy, and AUROC values, the better
the performance was. However, these numbers do not explain
the system’s reliability, sustainability, and consistency. That
will be a different concern to address, which is out of the scope
of this research.

Table 5. Effects of data augmentation and dropout techniques applied to the NTUH_ROCFa data set.

Delayed recall trial, mean (SD)Metric

With data augmentation and dropout techniquesWithout data augmentation and dropout techniques

0.847 (0.017)0.824 (0.019)Sensitivity

0.905 (0.009)0.898 (0.024)Specificity

0.876 (0.010)0.861 (0.011)Accuracy

0.913 (0.004)0.893 (0.012)AUROCb

aNTUH_ROCF: National Taiwan University Hospital_Rey-Osterrieth Complex Figure.
bAUROC: area under the receiver operating characteristic curve.

Comparison of Different Network Architectures
From the images drawn by participants in the delayed recall
trial, the performances of the different architectures of the neural
network classifier were studied. Additionally, the total number
of parameters and the time to complete 1-fold training were
listed for comparison for different classifiers. The different

neural network architectures included AlexNet [42];
Sketch-a-Net [37]; our previous work, a convolutional
autoencoder neural network [43]; and the proposed network
architectures mentioned in this study. As a result, the
architecture of our proposed framework in this study achieved
better performance than the architecture of AlexNet,
Sketch-a-Net, and our previous work, as shown in Table 6.

Table 6. Performance of different network architectures applied to the NTUH_ROCFa data set.

Our systemSketch-a-NetAlexNetMetric

With data augmentation
and dropout techniques

Without data augmentation
and dropout techniques

0.847 (0.017)0.756 (0.033)0.671 (0.047)0.698 (0.039)Sensitivity, mean (SD)

0.905 (0.009)0.864 (0.017)0.820 (0.054)0.790 (0.046)Specificity, mean (SD)

0.876 (0.010)0.810 (0.020)0.746 (0.019)0.744 (0.034)Accuracy, mean (SD)

0.913 (0.004)0.851 (0.020)0.819 (0.009)0.814 (0.021)AUROC,b mean (SD)

0.560.408.3846.73Total parameters (×106), n

292910Time required to complete 1-fold training, minutes

aNTUH_ROCF: National Taiwan University Hospital_Rey-Osterrieth Complex Figure.
bAUROC: area under the receiver operating characteristic curve.

The sensitivity, specificity, accuracy, and AUROC of our
proposed network architecture achieved the highest performance
compared to the others mentioned above. Furthermore, the total
number of parameters used in our proposed model was 560,000,

which was relatively fewer parameters than that used with
AlexNet (83.45 times larger) and Sketch-a-Net (14.96 times
larger). Although the total number of parameters in our previous
work was 0.4 million (1.4 times smaller), the accuracy and
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AUROC of our proposed model increased by 6.6% and 6.2%,
respectively. Moreover, it took only 2 minutes to complete
1-fold training of our proposed network architecture compared

to AlexNet (10 minutes), Sketch-a-Net (29 minutes), and our
previous work (9 minutes). Figure 7 depicts the ROC curves of
the different classifiers.

Figure 7. Receiver operating characteristic curves of the different network architectures using the NTUH_ROCF data set. Acc: accuracy; AUROC:
area under the receiver operating characteristic curve; NTUH_ROCF: National Taiwan University Hospital_Rey-Osterrieth Complex Figure.

Effectiveness of the Transfer Learning Technique
A comparison of models with or without use of the transfer
learning strategy was carried out using the images drawn by the
participants in the delayed recall trial. In order to validate the
effectiveness of the transfer learning method, the network
applied the same structure as that of the convolutional base of
the pretraining model using the TU-Berlin sketch data set
mentioned in the Methods section. The network was composed
of five 3×3 convolutional layers; a 2×2 max pooling layer
followed each convolution layer, and two FC layers with
neurons were used to discriminate the images drawn by the
participants. Moreover, the dropout and data augmentation
techniques were also implemented. In addition, we compared
the transfer learning technique using Sketch-a-Net’s network
architecture [37]. First, the network architecture of Sketch-a-Net

was pretrained using the TU-Berlin data set [36]. The pretrained
model was then transferred to our NTUH_ROCF data set, and
data augmentation was also implemented for further training
and classification of participants with MCI or HCs.

As a result, the transfer learning technique, which pretrained
using a larger data set, achieved better performance, with a mean
sensitivity of 0.847 (SD 0.017), a mean specificity of 0.905 (SD
0.009), a mean accuracy of 0.876 (SD 0.010), and a mean
AUROC of 0.913 (SD 0.004). When the transfer learning
technique was not used, the model performance achieved a mean
sensitivity of 0.749 (SD 0.030), a mean specificity of 0.814 (SD
0.017), a mean accuracy of 0.781 (SD 0.014), and a mean
AUROC of 0.846 (SD 0.005), as shown in Table 7. Moreover,
our proposed network achieved better results than the
Sketch-a-Net with the transfer learning architecture.

Table 7. Performance of network architectures with and without transfer learning applied to the NTUH_ROCFa data set.

Our proposed model, mean (SD)Sketch-a-Net: with transfer learning, mean (SD)Metric

With transfer learningWithout transfer learning

0.847 (0.017)0.749 (0.030)0.641 (0.040)Sensitivity

0.905 (0.009)0.814 (0.017)0.810 (0.022)Specificity

0.876 (0.010)0.781 (0.014)0.725 (0.010)Accuracy

0.913 (0.004)0.846 (0.005)0.819 (0.010)AUROCb

aNTUH_ROCF: National Taiwan University Hospital_Rey-Osterrieth Complex Figure.
bAUROC: area under the receiver operating characteristic curve.
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Discussion

System Usage
The developed system is applicable for use as an early-stage
screening system in hospitals. It could help clinicians diagnose
patients with MCI and AD. It could also help clinicians assess
patients’ visual perception and their ability to retrieve learned
information, in order to test their long-term visual memory
function. The accuracy, reliability, and efficiency of the
screening system is important for diagnosing patients correctly.

Limitations of This Study
For the data set, as ground truth, it is assumed that the
participants were diagnosed correctly by experienced doctors
and neuropsychologists. To study the designed system that has
been proposed, only the characteristics that are detectable from
the neuropsychology test were involved. Therefore, it is a
challenge to have participants participate in the study. For
research purposes, the number of data sets obtained was
minimal, and the data set was only collected locally in Taiwan.
Therefore, the data set is biased. As for this study’s research
purpose, the study was focused on distinguishing participants
with AD and MCI from HCs in an Asian older adult population.
In order to obtain more generalized data sets to reduce
overfitting, further data need to be collected from participants
of different ethnicities and age groups. This system is only
useful for one specific neuropsychological test: the ROFC test.
In the future, incorporation with other neuropsychological tests
will improve the performance of the screening system.

Conclusions
For decades, AD has been one of the most common diseases
among older adults. It is challenging to identify the difference
in cognitive performance between patients with MCI and people
experiencing normal aging, as the difference may be very subtle,
particularly at the early stage of MCI. Nevertheless, early
identification of individuals with a high risk of developing AD

will help in the management and support of the long-term quality
of life of patients with AD and their caregivers.
Neuropsychology and cognitive ability can be tested during the
screening process, and they do not require any sophisticated
medical equipment. Among different types of cognitive testing,
clinicians and neuropsychologists often use the ROCF test to
help with diagnosing patients. However, it involves intensive
labor, and the tester must be qualified as an expert. Data-driven
deep learning approaches, which can extract features
automatically, have opened the door to the possibility of
assisting clinicians, such as neurologists, and clinical
neuropsychologists during screening by making the diagnosis
process more effective than the traditional approach. With the
aid of transfer learning and deep learning, we have proposed
an automatic digital screening system to characterize
hand-drawn images. It allows us to effectively distinguish
patients with MCI and AD from people experiencing normal
aging based on the ROCF test process.

The digital screening system that was developed in this study
has shown promising preliminary results regarding
distinguishing patients with AD and MCI from HCs. Therefore,
this screening system can be used during early assessments to
diagnose individuals with a high risk of AD. The results have
also shown that the system performed better when distinguishing
patients with AD from HCs, since there is a significant
characteristic difference, as compared to distinguishing patients
with MCI from HCs. After analyzing the drawn images, the
scores were calculated automatically, and the calculation time
was swift. Therefore, this system can replace the labor-intensive
and time-consuming work that comes with manually calculating
scores according to the criteria of the scoring system. For future
studies, merging additional data from various types and stages
of dementia will increase the capability of our system in
assisting clinicians. Moreover, other types of neuropsychological
tests can be included through ensemble methods to provide a
complete screening system.
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