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Abstract

Background: In any health care system, both the classification of data and the confidence level of such classifications are
important. Therefore, a selective prediction model is required to classify time series health data according to confidence levels
of prediction.

Objective: This study aims to develop a method using long short-term memory (LSTM) models with a reject option for time
series health data classification.

Methods: An existing selective prediction method was adopted to implement an option for rejecting a classification output in
LSTM models. However, a conventional selection function approach to LSTM does not achieve acceptable performance during
learning stages. To tackle this problem, we proposed a unit-wise batch standardization that attempts to normalize each hidden
unit in LSTM to apply the structural characteristics of LSTM models that concern the selection function.

Results: The ability of our method to approximate the target confidence level was compared by coverage violations for 2 time
series of health data sets consisting of human activity and arrhythmia. For both data sets, our approach yielded lower average
coverage violations (0.98% and 1.79% for each data set) than those of the conventional approach. In addition, the classification
performance when using the reject option was compared with that of other normalization methods. Our method demonstrated
superior performance for selective risk (12.63% and 17.82% for each data set), false-positive rates (2.09% and 5.8% for each
data set), and false-negative rates (10.58% and 17.24% for each data set).

Conclusions: Our normalization approach can help make selective predictions for time series health data. We expect this
technique to enhance the confidence of users in classification systems and improve collaborative efforts between humans and
artificial intelligence in the medical field through the use of classification that considers confidence.

(JMIR Med Inform 2022;10(3):e30587) doi: 10.2196/30587

KEYWORDS

artificial intelligence; recurrent neural networks; biomedical informatics; computer-aided analysis; mobile phone

JMIR Med Inform 2022 | vol. 10 | iss. 3 | e30587 | p. 1https://medinform.jmir.org/2022/3/e30587
(page number not for citation purposes)

Nam et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:baekhwan.cho@samsung.com
http://dx.doi.org/10.2196/30587
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background
High-performance networks have been used to enhance the
quality and convenience of human life since the development
of deep learning techniques. Deep learning networks are used
in education, aviation, process management, entertainment,
agriculture, and robotics. Artificial intelligence (AI) has made
significant contributions to a variety of medical applications
[1-3]. However, in a clinical setting, the output from AI as an
accurate prediction is often insufficient and requires its
interpretation for further decisions [4]. As medical AI systems
can support efficient and accurate decisions, it is important not
only to increase the accuracy of classification in deep learning
networks but also to reduce errors, particularly those that can
be fatal [5]. In addition, health care data tend to be complex,
and neural networks have proven problematic in accurately
recognizing patterns in this complexity [6]. The uncertainty of
prediction measures the reliability of a prediction and must be
considered in fields that require prudent decisions, such as
medicine or autonomous driving [7]. Accordingly, in fields
where minor errors can cause significant problems, applying a
prediction model that can reject predictions when the confidence
level is not high enough is helpful. To develop such a deep
neural network, a selective prediction [8] method can be applied
to use the confidence level in both training and test sessions.

Various biosignal sensors have been developed for human health
care applications, and many algorithms have been developed
to analyze the data produced by these sensors. Deep learning
technologies have performed well when applied to data obtained
from health care or medical sensors [9]. Classification models
based on a deep neural network or convolutional neural network
(CNN) have been used to classify health and medical data. In
addition, biosignals and time series data from humans are used
in diverse health care systems [10]. In various studies, recurrent
neural network (RNN) models have been used to classify health
and medical data, especially time series data. Among such
models, RNNs have contributed significantly to the classification
of time series data. Many studies have used RNN models to
classify electronic health records obtained from clinical
measurements [11], predict diseases using patient diagnostic
histories [12-14], conduct health status analyses using biosignals
[15-18], and classify health information from mobile and
wearable sensors [19-22]. Previous studies have applied
prediction confidence to classify image data, and prediction
confidence can be considered for classifying time series health
data using RNN models. However, little research has focused
on how to use prediction confidence for time series health data.

Considering the specificity of time series health data, a model
that can produce results according to the predicted confidence
level and uses prediction confidence has the advantage of
reducing fatal errors.

The selective prediction model can learn from certain samples
that are sufficiently confident in their predictions. This means
that such a model can ignore predictions when they are uncertain
in training. In addition, the selective prediction model provides
a confidence level for each test sample in the inference stage,

which can be used as a reference score in a medical situation.
In early studies on selective prediction, neural network models
with a reject option were used to obtain a specific confidence
score from a trained model and as a model threshold to validate
performance [23-25]. However, these methods calculate the
prediction probability to select samples for training based on a
threshold called the prediction confidence score.

Recently, research using the selective prediction model mainly
consists of 2 parts. The first is to extract an appropriate
prediction confidence score and the second is to make good use
of the extracted prediction confidence score for the deep learning
model. For extracting the prediction confidence score, methods
have been designed in many studies. For example, the softmax
response and Monte Carlo (MC) dropout methods use a
confidence score from neural networks [26]. The softmax
response method extracts a confidence score using maximum
softmax values from neural networks, as described in the above
methods, whereas an MC dropout estimates a confidence score
using statistical approaches. However, MC dropout requires a
high computational cost to optimize the problem quickly.
Although Bayesian methods [27-29] can produce prediction
confidence scores of RNNs [30], they are applicable only for
natural language processing, which uses many-to-many RNNs
with multiple sequence inputs and outputs. However, the
predictive models in health care are usually many-to-one types
that predict class using a health information time series as input,
and it is helpful for medical staff to train a many-to-one
predictive model for time series data that has a selective
prediction ability. For a model using the prediction confidence
score, a selective prediction model that learned both prediction
and selection was developed [31]. On the basis of this method,
SelectiveNet [32] has demonstrated potential possibilities for
various applications, with the advantage of learning the selection
and prediction simultaneously. However, the structure of the
selective prediction model using long short-term memory
(LSTM) has not been validated in previous studies. Thus, a
well-designed selective prediction model for time series data is
required.

Objective
In this study, a selective prediction model using LSTM [33]
was implemented to classify time series health data. In
particular, we considered a method that incorporates a reject
option to control and measure prediction confidence for
many-to-one classification tasks. As the selection function uses
the output of the prediction model as an input, a suitable
selection function structure must be devised. Therefore, methods
to normalize the selection function were compared to achieve
a structure suitable for classifying time series data with LSTM.
To validate the LSTM selective prediction performance, we
used coverage violations and selective risks for each data set.
As high false-positive and false-negative rates can be critical
factors in diagnoses, we also present the false-positive and
false-negative rates of the LSTM selective prediction model.
In summary, the goal of this study is to develop a selective
prediction model for health data time series. The contributions
of this study are (1) applying the latest selective prediction
method with superior performance to classify time series health
data using LSTM and (2) presenting the structure of the selection
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function in the selective prediction model (especially the
normalization method) for time series selective prediction.

Methods

Selective Prediction
We examined the possibility of RNN models with a reject option
using SelectiveNet [32], which has superior performance
compared with existing selective prediction models. The overall
structure of the model was based on the SelectiveNet [32] model
with an LSTM; it is divided into selective and auxiliary
predictions, as shown in Figure 1. The selective prediction is
divided again into two steps: prediction and selection. Prediction
involves the results of the LSTM model and the selection part
extracts the predicted confidence level of the LSTM model. In
this study, we propose unit-wise batch standardization (UBS)
as part of the selection function. Selective prediction is
performed using both the prediction and selection function
results. An auxiliary prediction step using the LSTM prediction
result to derive the final result with the selective prediction
result was added to enhance prediction performance. As
selective prediction is a prediction model using a deep learning
model structure, it is optimized by a loss function. The entire
model is trained by optimizing the selective prediction and
auxiliary prediction steps simultaneously. Further details are
provided in the Optimization section. LSTM was used for the
RNN model for time series data classification.

A selective model was used to implement classification models
with the reject option [34]. The selective model (f, g) consists
of pairing a prediction function f and a selection function g:X→Y
{Y|0≤Y≤1} (X is a set of inputs and Y is a set of outputs). When

the data set is given as for supervised learning of

the classification model, the empirical risk of prediction function

f becomes . When τ is a threshold,
g acts as a qualifier of f and can be expressed as follows:

Selective models can be controlled by coverage and risk values.
When Ep is the expected probability, and ℓ is the loss function,
we can define the coverage and risk as follows:

where g(x) is the prediction confidence score, ϕ(g) is a coverage
value that is the expected value of the prediction confidence
scores for training samples, which is correlated with the number
of selected samples during training. R(f, g) is a selective risk
that represents the error rate for predicting the selected samples
using selective prediction. The corresponding selective risk for

a data set is called the empirical selective risk and
is defined as follows:

The empirical coverage corresponding to the data set Sm is as
follows:
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Figure 1. Long short-term memory model structure with a reject option. LSTM: long short-term memory.

Optimization
An optimization method was used to constrain coverage and
reduce the selective risk [31]. The selective prediction model
was optimized by the loss functions in equations 6, 7, and 8.
This loss function simultaneously regulates the prediction and
selection steps. Hence, the selective prediction was regulated
to lower the error rate, which is the selective risk for the selected
samples according to the prediction confidence. In addition, the
selection step was optimized to select training samples based
on the predefined target coverage so that the selection step
would reject predictions below the confidence level. The target
coverage is a controlling hyperparameter for the model to learn
the amount of data to be selected during training. On the basis
of this, we trained the model so that the coverage value was as
close to the target coverage as possible. The target coverage c
is in the range 0<c≤1. When the parameter set of the selective
model (f, g) is Θ the optimization of the selective model is as
follows:

The fθ and gθ in the selective prediction were optimized by
equation 6. It is necessary to constrain coverage and reduce risk
(error) for selective prediction. We used the interior point
method for optimization [35]. The following unconstrained
objective is used to optimize the selective prediction model for
a data set Sm:

where c is the target coverage, and λ is a hyperparameter that
controls the coverage constraints. Using equation 6, the selection
function g is optimized to produce an appropriate prediction
confidence score, and the selective prediction is optimized to

reduce the selective risk . The empirical coverage value

 is probabilistically calculated using the selection

function. The Ψ allows the coverage value to approximate
the target coverage during the training session. The auxiliary

classification loss is optimized using the loss function .
Overall, optimization can be defined using a convex combination
expressed by the following equations:

where α is another user-controlled parameter for the weights
between the selective and auxiliary predictions.

UBS Procedure
In this study, a new selection function structure for LSTM
models was designed. The basic frame of the selection function
structure was based on a CNN-based model from a previous
study [32] that used batch normalization [36] for the selection
function. The detailed structure and parameters were determined
through a grid search. The output shape of the many-to-one
structure LSTM is (n_batch, n_hidden_unit), with conventional
batch normalization, applying the same mean and variance to
all units. However, this method of normalization ignores the
features of each hidden unit in the LSTM output. To address
this problem, we applied a new UBS that normalizes the batch
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derived from an original batch normalization [36] while
preserving the hidden-unit features captured for each training
sample. As shown in Table 1, UBS uses a fully connected layer
that maintains the LSTM output's shape while generating the
output and standardizing the batch, as shown in Figure 2. When

batch normalization is applied to CNNs, normalization factors
(mean and variance) are obtained from each input channel [37].
However, to preserve hidden units' individual features, we
calculated normalization factors obtained from each LSTM's
hidden unit.

Table 1. Detailed structure of the selective prediction step.

Output shapeInput shapeLayer

(n_batch, n_hidden unit)(n_batch, n_time steps, n_features)LSTMa

(n_batch, n_hidden unit)(n_batch, n_hidden unit)FC1b,c

(n_batch, n_hidden unit)(n_batch, n_hidden unit)FC2b,d

(n_batch, n_hidden unit)(n_batch, n_hidden unit)ReLUb,e

(n_batch, n_hidden unit)(n_batch, n_hidden unit)UBSb,f

(n_batch, 1)(n_batch, n_hidden unit)FC3g

(n_batch, 1)(n_batch, 1)Sigmoid

aLSTM: long short-term memory.
bThe layer retains the input.
cFC1: fully connected layer 1.
dFC2: fully connected layer 2.
eReLU: rectified linear unit.
fUBS: unit-wise batch standardization.
gFC3: fully connected layer 3.
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Figure 2. Algorithm of unit-wise batch standardization. LSTM: long short-term memory; ReLU: rectified linear unit.

Performance Evaluation
In a health care system, a misdiagnosis involving a type 2 error
may imply serious repercussions, and incorrect judgment
involving a type 1 error may increase user fatigue. Therefore,
we verified the performance of the algorithm by checking
false-positive and false-negative rates. The false-positive rate
(also known as type 1 error, fall-out, or false-alarm ratio) was
calculated as the ratio between the number of negative events
incorrectly identified as positive and the total number of actual
negative events. The false-negative rate (type 2 error) was
calculated as the number of samples misclassified as negative
out of the total number of positive events.

Experiment

Overview

Data Sets

This study was reviewed and approved by the institutional
review board (#HYUIRB-202111-003) of the Hanyang
University, and the requirement for informed consent was
waived. A widely used public database was employed to verify

the applicability of the selective prediction model to time series
health care data. Considering that the purpose of selective
prediction is to reject uncertain predictions, we selected two
data sets containing classes that can be misclassified [38-42]:
the human activity recognition using smartphones and the
Massachusetts Institute of Technology-Beth Israel Hospital
(MIT-BIH) data sets. Detailed descriptions of the data sets have
been provided below.

Human Activity Recognition Using Smartphones Data Set

This data set consists of human gait signals monitored by an
accelerometer and gyroscope with 6 different activity classes
[43]. The signal was measured by attaching Samsung Galaxy
S2 smartphones with embedded inertial sensors to the waists
of 30 subjects aged 19 to 48 years. Each subject performed six
activities (standing, sitting, laying, walking, walking upstairs,
and walking downstairs) at least two times for 12 to 15 seconds.
The 3-axial linear acceleration and angular velocity were
measured at 50 Hz using an embedded accelerometer and
gyroscope. The experiments were video-recorded to label the
data manually. The signals were preprocessed using a median
filter and a third-order low-pass Butterworth filter with a 20-Hz
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cutoff frequency and then sampled in sliding windows of 2.56
seconds with 50% overlap (128 readings/window). A total of
10,299 data points were recorded. The training data were
randomly selected from 70% of the data set, and the remaining
data set was used for the test. The x, y, and z components of
the body accelerometer, body gyroscope, and total (gravitational
and body) accelerometers were treated as 9 input features. Each
sample contained 128 sequences.

MIT-BIH Arrhythmia Data Set

This data set contains 48 half-hour excerpts of two-channel
ambulatory electrocardiogram (ECG) recordings from 47
subjects [44]. The recordings were digitized at 360 samples per
second per channel with 11-bit resolution over a 10-mV range
and annotated independently by 2 or more cardiologists. The
data set is publicly available in the PhysioNet [45] database.
All protected health information was removed and deidentified
using record numbers. A method described in a previous study
was used for preprocessing data [46]. First, ECG signals were
divided into 10-second intervals. Subsequently, the signal was
normalized between 0 and 1. Where the median of the R-R time
interval in the ECG signal was T, the time from the R peak to
1.2 T was used as 1 segment. Because the length of the segment
changes every 10 seconds, the length of the entire data set is
zero-padded based on the longest time. The data set consisted
of 109,446 data points with a sampling frequency of 125 Hz.
Each data set contained 187 sequences grouped into five classes:
N (normal beat), S (supraventricular premature beat), V
(premature ventricular contraction), F (fusion of ventricular and
normal beats), and Q (unclassifiable beat). Unclassifiable data
were not included in this study. As the data for each class were
highly imbalanced, 800 data samples were randomly extracted
from each class [46]. The data set was sampled for every run,
and result was expressed as an average of the results. The data
set was then randomly divided into sets: 80% for training and
20% for testing.

Model Architecture and Parameters Setting

Overview
In this study, a selective prediction model was developed using
LSTM. Deep learning models such as LSTM are considered
effective for extracting meaningful features from raw data. No
feature extractor was used in this study because a deep learning
model is suitable for use with raw data. The prediction model
architecture was determined and optimized based on previous
studies, and hyperparameters were optimized using an extensive
grid search [47,48]. The details for each data set are described
below.

Human Activity Recognition Using Smartphones Data
Set
The LSTM model for the human activity recognition using
smartphones data set had a single layer with 2 cells and 32

hidden units. For parameter setting, the learning rate was 0.0005,
and the L2 regularization was set at a lambda of 0.00005. The
mini batch size was 919, and the training epoch was 500. The
optimal α and λ were 0.6 and 200, respectively.

MIT-BIH Arrhythmia Data Set
The LSTM model for the MIT-BIH arrhythmia data set had a
single layer with 2 cells and 48 hidden units, a learning rate of
0.0001, a minibatch size of 640, and a training epoch of 2000.
The optimal α was 0.2, and the optimal λ was 4.

Comparison Method
To prove that the UBS is effective for developing a proper
selection function in an LSTM model with a reject option, we
compared it with conventional batch normalization and a model
without normalization. The false-positive and false-negative
rates were also calculated, and a standard LSTM model without
a selection function was used as the baseline.

Results

LSTM Performance for Prediction
The baseline models should be optimized for LSTM models
without a selection function for each data set. Therefore, we
validated the LSTM model prediction performance without any
selection. The test accuracies of the LSTM models optimized
without a selection step for the human activity recognition using
smartphones data set and the MIT-BIH arrhythmia data set are
92.35% and 97.23% for each data set. The precision of the
model was 91.72% and the recall was 91.54% for the Human
Activity Recognition Using Smartphones data set. For the
MIT-BIH arrhythmia data set, the precision of the model was
87.13% and the recall was 78.64%. The F1-score for each data
set were 91.63% and 82.67%, respectively.

Coverage Violation
After setting the target coverage, the empirical coverage of the
test set was calculated for each normalization method. The target
coverage rates were obtained from a previous study [32]. As
the target coverage is the target threshold, it should be set to a
sufficiently reliable value. Therefore, the target coverages were
set at 0.85, 0.90, and 0.95. The difference between the target
coverage and the actual coverage value is called coverage
violation, which estimates the extent to which the model can
learn to select the samples as instructed by the target coverage
hyperparameter. The experimental results for each data set are
listed in Table 2. The coverage value was averaged for 5
different runs. As shown in Table 2, the empirical coverage
with UBS produced superior results as they converged on the
target coverage, whereas other normalization approaches showed
relatively poor results.
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Table 2. Empirical coverage of the human activity recognition (HAR) using smartphones and the Massachusetts Institute of Technology-Beth Israel
Hospital (MIT-BIH) arrhythmia data sets by different normalization methods. Target coverage was set before training.

MIT-BIH arrhythmia data setHAR using smartphones data setTarget coverage

Normalization method of selective predictionNormalization method of selective prediction

Without normalizationBNUBSWithout normalizationcBNbUBSa

1.0000 (0)0.9680
(0.0067)

0.9564
(0.0019)

0.9986 (0.0002)0.9996
(0.0001)

0.9660
(0.0029)

0.95, mean (SD)

1.0000 (0)0.9998
(0.0001)

0.9084
(0.0055)

0.9984 (0.0001)0.9980
(0.0001)

0.9053
(0.0035)

0.90, mean (SD)

1.0000 (0)0.9518
(0.0001)

0.8888
(0.0016)

0.9986 (0.0002)0.9237
(0.0026)

0.8582
(0.0007)

0.85, mean (SD)

10.007.321.799.857.380.98Average violation, %

aUBS: unit-wise batch standardization.
bBN: batch normalization (a normalization method using the mean and variance obtained from the input batch).
cWithout normalization means that there was no normalization in the selection function structure.

Selective Risk (Error Rate)
The selective risks for each normalization method are presented
in Table 3. The selective risk value was averaged from 5
different runs. In the selective prediction model with LSTM,

the selective risk increased with coverage. UBS normalization
achieved relatively superior performance with various target
coverages compared with conventional batch normalization. If
normalization was not applied, the risk varied widely.

Table 3. Selective risk of the human activity recognition (HAR) using smartphones and the Massachusetts Institute of Technology-Beth Israel Hospital
(MIT-BIH) arrhythmia data sets by different normalization methods.

MIT-BIH arrhythmia data setHAR using smartphones data setTarget coverage

Normalization method of selective predictionNormalization method of selective prediction

Without normaliza-
tion

BNUBSWithout normalizationcBNbUBSa

0.2000 (0.4472)0.2175
(0.0108)

0.1970
(0.0038)

0.1476 (0.0068)0.1611
(0.0445)

0.1423
(0.0041)

0.95, mean (SD)

0.2000 (0.4472)0.3200
(0.1095)

0.1791
(0.0050)

0.1312 (0.0139)0.1283
(0.0067)

0.1232
(0.0042)

0.90, mean (SD)

0.2000 (0.4472)0.1967
(0.0064)

0.1585
(0.0028)

0.1267 (0.0145)0.1170
(0.0024)

0.1136
(0.0060)

0.85, mean (SD)

0.20.24470.17820.13520.13550.1264Average risk

aUBS: unit-wise batch standardization.
bBN: batch normalization (a normalization method using the mean and variance obtained from the input batch).
cWithout normalization means that there was no normalization in the selection function structure.

False-Positive and False-Negative Rates
As the selective prediction model produced classification results
only when it was confident about its own classification, we
expected that both false-positive and false-negative rates would

decrease. The false-positive and false-negative rates of each
data set were calculated from the results of the model that
achieved the best performance among 5 different runs (Tables
4 and 5). The baseline models were well-optimized LSTM
models without a selection function for each data set.
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Table 4. False-positive rates of the human activity recognition (HAR) using smartphones and the Massachusetts Institute of Technology-Beth Israel
Hospital (MIT-BIH) arrhythmia data sets by different normalization methods.

MIT-BIH arrhythmia data setHAR using smartphones data setTarget coverage

General predic-
tion

Normalization method of selective predictionGeneral predic-

tiona
Normalization method of selective prediction

Without normalizationBNUBSWithout normalizationdBNcUBSb

N/A6.937.676.34N/Ae2.652.592.040.95, %

N/A6.776.985.39N/A2.633.002.000.90, %

N/A7.977.035.66N/A2.633.022.220.85, %

6.447.227.235.802.892.642.872.09Average false-
positive rate, %

aGeneral prediction is the long short-term memory classification model's false-positive rate without a selection function.
bUBS: unit-wise batch standardization.
cBN: batch normalization (a normalization method using the mean and variance obtained from the input batch).
dWithout normalization means that there was no normalization in the selection function structure.
eN/A: not applicable.

Table 5. False-negative rates of the human activity recognition (HAR) using smartphones and the Massachusetts Institute of Technology-Beth Israel
Hospital (MIT-BIH) arrhythmia data sets by different normalization methods.

MIT-BIH arrhythmia data setHAR using smartphones data setTarget cover-
age

General pre-
diction

Normalization method of selective predictionGeneral predic-

tiona
Normalization method of selective prediction

Without normalizationBNUBSWithout normalizationdBNcUBSb

N/A20.7823.3318.82N/Ae12.6917.1710.180.95, %

N/A20.3120.9416.48N/A13.0515.0410.720.90, %

N/A23.9121.4416.41N/A12.9414.4610.850.85, %

26.4721.6721.9017.2414.4812.8915.5610.58Average
false-nega-
tive rate, %

aGeneral prediction is the long short-term memory classification model's false-positive rate without a selection function.
bUBS: unit-wise batch standardization.
cBN: batch normalization; which is a normalization method using the mean and variance obtained from the input batch.
dWithout normalization means that there was no normalization in the selection function structure.
eN/A: not applicable.

Learned Feature Representation
Figure 3 shows the visualization of the features learned from
the LSTM models using t-distributed stochastic neighbor
embedding [49]. Figure 3 (left) depicts the test set sample that
was not rejected when the target coverage was set at 0.95. The
data set used in the visualization was the test set for the human

activity recognition using smartphones data set. The Sitting
(cyan) and Standing samples (blue) are more mixed in Figure
3 (right) than in Figure 3 (left). The Walking_Down_Stairs
(green), Walking_Up_Stairs (orange), and Walking samples
(red) are closely clustered in Figure 3 (left), whereas some of
them overlap in Figure 3 (right).
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Figure 3. t-Distributed stochastic neighbor embedding visualizations of learned features using all test samples in the human activity recognition using
smartphones data set. Left: Long short-term memory with a reject option using unit-wise batch standardization results when the target coverage was
0.95. Rejected samples were not included in this figure. Right: long short-term memory model results without a reject option.

Discussion

Principal Findings
Our objective is to develop a selective prediction model using
LSTM. The developed selective prediction model rejected
samples using the confidence level of classifications. This
selective prediction model with a reject option was trained to
determine whether to obtain a classification based on targeted
coverage. If the model's classification confidence was low, the
model rejected the classification and did not apply information
to backpropagate on samples. As a result, the selective prediction
model was trained mainly using samples that had a sufficient
confidence level, which guaranteed reliability and low error
rates for samples that were not rejected. To implement selective
prediction for LSTM, we conducted an experiment to identify
a method of normalization that could improve the performance
of the selection function.

In health care systems, high accuracy is important, but low
false-positive and false-negative rates are also essential. To
handle various time series data obtained from a health care
system, we devised a selective prediction model with LSTM
using an effective selection function and focused on the structure
of the function. As shown in Table 1, the output of the
many-to-one LSTM includes hidden-unit information. Our goal
was to deal with LSTMs that have many-to-one structures, but
conventional batch normalization normalizes all batches at once.
To tackle this problem, we devised UBS as a special method
of normalization that attempts to normalize each hidden unit in
LSTM. The false-positive and false-negative rates for each data
set were meaningful. For each target coverage, the selective
prediction model with UBS was superior to the model with
batch normalization and the model without normalization
(Tables 4 and 5). These findings show that a selective function
using UBS can decrease false-positive and false-negative rates.
On this basis, we interpreted that the model with UBS can learn

class-specific features and consider which samples to reject in
the training phase.

UBS also helped the model be trained based on target coverage
and reduced selective risk. Using 2 public health data sets, the
empirical coverage violation of the selective prediction was
lower than that of the other 2 methods. The selection function
with the UBS had the lowest selective risk (Table 3). The
MIT-BIH arrhythmia data set results show that the coverage of
the model without normalization was high regardless of the
target coverage. These findings imply that the selective function
without normalization did not perform as desired. We assumed
that these results were based on whether the normalization
methods considered hidden-unit characteristics of LSTM.

Regarding the learned feature representation, the classification
model with the reject option differed from existing models. In
Figure 3, a classification model with the reject option achieved
relatively better classification performance than the conventional
model without the reject option because the selective prediction
LSTM model did not learn the features from samples with a
low confidence level. As reported in a previous study [32], this
suggests that representational capacity was not wasted because
the model was trained mainly on samples with a high confidence
level using selective prediction. Using this property, selective
prediction allows humans to classify samples with low reliability
and act as a second opinion in health care applications. In
summary, the selective prediction model successfully classified
samples based on high confidence-level features and
simultaneously reduced the error rate by using the reject option.

Although our research supports the possibility of generating
LSTM models with selective prediction, challenges remain.
First, interpretation of the visualization of the learned features
is limited in this study and needs to be addressed in further
studies. Second, when LSTM was used for selective prediction,
it was difficult to optimize parameters that control selection
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functions, such as α and λ, for each data set. During the
experiments, we used only 2 data sets for testing and targeted
only the reject option to determine the confidence level of
classifications. In future studies, efficient optimization methods
should be devised and applied to various models using various
data sets.

Conclusions
In this study, we developed LSTM classification models with
a reject option to classify medical data time series. To develop
the LSTM classification models with the reject option, UBS
was applied. The UBS achieved superior performance
(concerning coverage, risk, and false-positive and false-negative

rates) compared with 2 other methods of normalization in
experiments using 2 public time series data sets.

If the performance in classifying nonrejected samples can be
maximized by adjusting coverage or selective risks, humans
can trust the output of a highly confident AI model and spend
more time on other rejected samples (low confidence). The final
performance (human+AI) can be maximized by appropriate
automation using selective prediction.

To the best of our knowledge, this is the first study
demonstrating the possibility of an LSTM classification model
with a reject option for time series data. Our findings may apply
to various other time series data sets that require reliability.
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