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Abstract

Background: It is hard to distinguish cerebral aneurysms from overlapping vessels in 2D digital subtraction angiography (DSA)
images due to these images’ lack of spatial information.

Objective: The aims of this study were to (1) construct a deep learning diagnostic system to improve the ability to detect posterior
communicating artery aneurysms on 2D DSA images and (2) validate the efficiency of the deep learning diagnostic system in
2D DSA aneurysm detection.

Methods: We proposed a 2-stage detection system. First, we established the region localization stage to automatically locate
specific detection regions of raw 2D DSA sequences. Second, in the intracranial aneurysm detection stage, we constructed a
bi-input+RetinaNet+convolutional long short-term memory (C-LSTM) framework to compare its performance for aneurysm
detection with that of 3 existing frameworks. Each of the frameworks had a 5-fold cross-validation scheme. The receiver operating
characteristic curve, the area under the curve (AUC) value, mean average precision, sensitivity, specificity, and accuracy were
used to assess the abilities of different frameworks.

Results: A total of 255 patients with posterior communicating artery aneurysms and 20 patients without aneurysms were included
in this study. The best AUC values of the RetinaNet, RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM
frameworks were 0.95, 0.96, 0.92, and 0.97, respectively. The mean sensitivities of the RetinaNet, RetinaNet+C-LSTM,
bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM frameworks and human experts were 89% (range 67.02%-98.43%), 88%
(range 65.76%-98.06%), 87% (range 64.53%-97.66%), 89% (range 67.02%-98.43%), and 90% (range 68.30%-98.77%),
respectively. The mean specificities of the RetinaNet, RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM
frameworks and human experts were 80% (range 56.34%-94.27%), 89% (range 67.02%-98.43%), 86% (range 63.31%-97.24%),
93% (range 72.30%-99.56%), and 90% (range 68.30%-98.77%), respectively. The mean accuracies of the RetinaNet,
RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM frameworks and human experts were 84.50% (range
69.57%-93.97%), 88.50% (range 74.44%-96.39%), 86.50% (range 71.97%-95.22%), 91% (range 77.63%-97.72%), and 90%
(range 76.34%-97.21%), respectively.
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Conclusions: According to our results, more spatial and temporal information can help improve the performance of the
frameworks. Therefore, the bi-input+RetinaNet+C-LSTM framework had the best performance when compared to that of the
other frameworks. Our study demonstrates that our system can assist physicians in detecting intracranial aneurysms on 2D DSA
images.

(JMIR Med Inform 2022;10(3):e28880) doi: 10.2196/28880
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Introduction

The prevalence of cerebral aneurysms in the general population
is approximately 2% to 3% [1]. When an intracranial aneurysm
ruptures, it may bleed into the brain parenchyma, causing a
hemorrhage of the cerebral parenchyma, or, more commonly,
it bleeds into the subarachnoid space and causes a subarachnoid
hemorrhage (SAH). An SAH is a catastrophic event with a
mortality rate of 25% to 50%. Nearly 50% of SAH survivors
have permanent disabilities; only approximately one-third of
patients with SAH have good prognoses [2,3]. Hence, it is
crucial to detect and treat aneurysms as early as possible. The
gold standard for diagnosing cerebral aneurysms is digital
subtraction angiography (DSA). The application of 3D DSA
has dramatically improved the diagnostic accuracy for
aneurysms. However, as many hospitals lack the technical and
reconstitution equipment for 3D DSA, especially in low-income
countries, radiologists in these hospitals have to diagnose
cerebral aneurysms by using 2D DSA images. Unlike 3D
images, 2D DSA images lack spatial information, and it is
difficult for radiologists to distinguish aneurysms from
overlapping vessels in 2D DSA images. Therefore, the
assessment of these 2D DSA images is usually subjective and
may be influenced by the experience of radiologists.

In recent years, image recognition via deep learning for
diagnostic imaging has achieved good performance in various
medical fields, such as skin cancer, retinopathy, pneumonia,
and gastric cancer [4]. Deep learning represents a new machine
learning method that enables a machine to analyze various
training images, so that it can extract specific clinical features
[5]. Based on the cumulative clinical features, a machine can
prediagnose newly acquired clinical images.

A convolutional neural network (CNN) is a type of deep learning
model for processing data that have a grid pattern, such as
images. CNNs were inspired by the organization of the animal
visual cortex [6,7] and designed to automatically and adaptively
learn spatial hierarchies of characteristics from low- to
high-level pictures. CNNs have achieved good performance in
several medical fields, such as lesion detection [8] and
classification [9].

Convolutional long short-term memory (C-LSTM) networks
[10] have advantages over feedforward neural networks, as they
can discover the hidden structures of medical time signals.

C-LSTM networks can perform pattern recognition analyses
on medical time series data and have obtained high accuracies
in the classification of medical signals [11,12].

Recent studies have used deep learning methods for detecting
cerebral aneurysms in 2D DSA images, but these works have
some limitations. Podgoršak et al [13] modified the Visual
Geometry Group network—a network used for
classification—into a network suitable for semantic
segmentation tasks for detecting aneurysms. The data set of
their study was composed of positive case data for aneurysms,
and its false-positive rate has not been evaluated. Jin et al [14]
used a bidirectional C-LSTM network to segment aneurysms;
although the network’s patient-level sensitivity was 97.7%, the
average number of false positives per sequence was as high as
3.77. Liao et al [15] used a C-LSTM network to extract time
information when detecting aneurysms but did not consider the
relationships among DSA images from different aspects of the
same patient. Duan et al [16] combined frontal and lateral DSA
images for detection but did not use the timing information of
the DSA sequence. This method requires an additional
false-positive correction algorithm for correcting the results.
Therefore, the existing deep learning–based aneurysm detection
methods still need to be improved.

To solve the aforementioned problems, we combined a CNN
for acquiring spatial information and a C-LSTM network for
learning temporal information to detect aneurysms in 2D DSA
images.

Posterior communicating artery (PCoA) aneurysms are one of
the most common aneurysms encountered by neurosurgeons
and neurointerventional radiologists and are the second most
common aneurysms overall (25% of all aneurysms), representing
50% of all internal carotid artery (ICA) aneurysms [17]. Hence,
to solve the problem of data deficiency, we focused on PCoA
aneurysms to (1) construct a deep learning diagnostic system
to improve the ability to detect PCoA aneurysms on 2D DSA
images and (2) validate the efficiency of the deep learning
diagnostic system in 2D DSA aneurysm detection.

This deep learning diagnostic system includes a region
localization stage (RLS) and an intracranial aneurysm detection
stage (IADS). The RLS is used to automatically locate a specific
detection area, and in the IADS, the system conducts aneurysm
detection for the area images outputted in the RLS. The
cascading framework flowchart is shown in Figure 1.

JMIR Med Inform 2022 | vol. 10 | iss. 3 | e28880 | p. 2https://medinform.jmir.org/2022/3/e28880
(page number not for citation purposes)

Liao et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/28880
http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. The flowchart of the deep learning diagnostic system. “Xi
t” represents the tth frame in the digital subtraction angiography sequence of the

ith patient. C-LSTM: convolutional long short-term memory; FPN: feature pyramid network; IADS: intracranial aneurysm detection stage; ResNet:
residual deep neural network; RLS: region localization stage.

The main contributions of this paper can be summarized as
follows. First, the bi-input network framework of the IADS
increases the amount of information and then combines
spatial-temporal information through feature pyramid networks
(FPNs) [18], with a residual deep neural network (ResNet) [19]
and bidirectional C-LSTM network acting as the backbone.
This greatly improves the accuracy and efficiency of aneurysm
detection. Second, our proposed method can achieve low
false-positive rates without the need for a false-positive
correction algorithm.

Methods

Ethics Approval
This retrospective study was approved (number 20220310005)
by the institutional review board of West China Hospital,
Sichuan University, Chengdu, China, with a waiver of written
informed consent.

Study Design
A total of 586 patients who underwent DSA examination and
had identified PCoA aneurysms from January 2014 to December
2019 in West China Hospital were included in this study. All
of the PCoA aneurysms were double confirmed via 3D DSA.
The main inclusion criterion stipulated that patients were
diagnosed with PCoA aneurysms via DSA. The exclusion
criteria consisted of the following: (1) patients lacking lateral

frontal DSA images; (2) patients with arteriovenous
malformations, arteriovenous fistulas, or moyamoya disease;
(3) patients with treated aneurysms; and (4) patients with
aneurysms in other locations.

The obtained images were in DICOM format, which requires
a large memory space. To decrease the computational load and
improve usability, we converted the images to PNG format in
model training and testing.

Two experienced radiologists identified 6 to 12 frameworks for
2D DSA images, which provided sufficient visualization of the
PCoA region. Manual annotations were performed for the
identification of aneurysms, vessel overlaps, and PCoA regions.
To augment the training data, each image was rotated randomly
between 0° and 359°. The data set was divided into the following
three parts: the training set, validation set, and test set. The
training set was used to train the algorithm, the validation set
was used for model selection, and the test set was used for the
assessment of the final chosen model. To obtain a reliable and
stable model, this study adopted 5-fold cross-validation, during
which the data set was divided into 5 parts; 4 parts were used
for training and 1 part was used for validation. The mean value
of the 5 results was used as the algorithm accuracy. The
advantage of cross-validation is that it can make full use of
limited data to find suitable model parameters and prevent
overfitting. Raw 2D DSA images usually have large resolutions.
Initially, the detection of intracranial aneurysms was based on
original 2D DSA images, and the large resolution of the original
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2D DSA images resulted in extra time consumption and
interference. Specifically, researchers have attempted to avoid
large resolution–related problems by manually locating detection
areas requiring considerable amounts of work. In our case, we
used the RLS to automatically locate specific detection regions
of raw 2D DSA sequences, as shown in Figure 2. This method
can be used to reduce the interference in aneurysm detection.
In theory, region localization can be performed to locate any
ICA region, but we could only prove the feasibility of using the
RLS to identify PCoA regions due to the limitations of the data
set. As shown in Figure 2, this architecture uses a raw 2D DSA

sequence as input. The ResNet-50–based [19] FPN sends the
features extracted from each frame to anchor boxes [20] to
predict the PCoA region. The detector outputs 6n parameters
in which “6” represents the bounding box’s x-coordinate,
y-coordinate, width, height, classification label, and confidence
for classification and “n” refers to the n objects detected in the
RLS. The bounding box with the highest prediction confidence
was applied to other frameworks in the DSA sequence, and it
outputted the PCoA region sequence. Moreover, to connect with
the IADS, each frame of the output sequence was resized to
288×288 pixels during the RLS.

Figure 2. The network architecture of the RLS. “Conv f×f, c, /s” represents a 2D convolutional layer with a kernel size of f×f, a c number of channels,
and an s number of strides, which is defaulted to 1. “Pool f×f, /s” denotes the maximum pooling layer, which has a filter size of f and an s number of
strides. The “anchor” is used to predict the PCoA region, and “up-sampling” refers to nearest neighbor up-sampling with an up-sampling rate of 2.
PCoA: posterior communicating artery; RLS: region localization stage.

ResNet was the winner of the 2015 ImageNet Large Scale Visual
Recognition Challenge for image classification [19]. It has
several advantages over traditional CNNs, as follows: (1) it
accelerates the training speed of deep networks; (2) instead of
widening the network, it increases the depth of the network,
resulting in fewer extra parameters; (3) the residual block inside
ResNet uses jump connections to alleviate the problem of
gradient disappearance resulting from the increase in the depth
of the deep neural network; and (4) it achieves higher accuracy
in network performance, especially in image classification [19].
Due to the excellent performance of ResNet, it has been widely
used in various medical imaging tasks [21-23].

C-LSTM is a variant of long short-term memory (LSTM) that
has a convolution operation inside of the LSTM cell. Both
models are special kinds of recurrent neural networks that are
capable of learning long-term dependencies. The main difference
between C-LSTM and LSTM is the number of input dimensions.
Using LSTM to process image sequences with temporal
information requires converting 3D data to 2D data, which
inevitably results in the loss of information. C-LSTM networks
inherit the advantages of traditional LSTM networks and are
very suitable for the analysis of spatiotemporal data due to their
internal convolution structure. Therefore, many studies use
C-LSTM to process medical image sequences [11,12,24].

Detecting objects at different scales, particularly small objects,
is challenging. FPNs combine low-resolution, semantically
strong features with high-resolution, semantically weak features
via a top-down pathway and lateral connections. FPNs have
rich semantics at all levels and are built quickly from a
single-input image scale without sacrificing representational
power, speed, or memory [18].

Object detection algorithms have 2 classic structures—1-stage
and 2-stage algorithms. Compared to the 1-stage algorithm, the
2-stage algorithm has 1 more step for solving the problem of
class imbalance. Therefore, the 2-stage algorithm is more
time-consuming. Lin et al [25] constructed RetinaNet by
combining ResNet, FPNs, and fully convolutional networks
[26]. The RetinaNet algorithm solves the problem of class
imbalance by using the focal loss function instead of the
proposal extraction step, thereby greatly improving the detection
speed with high accuracy. Because of the excellent performance
of RetinaNet, it is widely used in object detection tasks involving
medical images [27-29].

We compared the following three structures in the IADS: (1)
RetinaNet [25], which uses single-frame images as input; (2)
RetinaNet+C-LSTM [15], which is based on RetinaNet and
uses C-LSTM to extract bidirectional time information and take
frontal or lateral DSA sequences as input; and (3)
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bi-input+RetinaNet [16], which combines frontal and lateral
DSA sequences together as input.

As shown in Figure 3, the target sequence of the PCoA region
and its corresponding frontal or lateral sequence were
concatenated as a 6-channel image sequence in which the target
sequence occupies the first 3 channels. ResNet-50 extracted
individual spatial features from each 6-channel frame in the
input sequence. In total, 3 feature layers were selected for
temporal feature extraction by using bidirectional C-LSTM,
namely C3, C4, and C5, which had 512, 1024, and 2048

channels, respectively. It should be noted that the number of
channels in the C-LSTM network was set as half of the input.
After extracting the temporal information, we concatenated the
features of the forward C-LSTM network and the reverse
C-LSTM network and sent them to the FPN for further
extraction. Anchor boxes identified intracranial aneurysms and
overlapping blood vessels based on the features extracted by
the FPN. To make the detection results more reliable, the
detector only outputted the predicted objects with a confidence
level of >0.6.

Figure 3. The network architecture of the IADS. “Xi
t” represents the tth frame in the DSA sequence of the ith patient. “Conv: f×f, /s” represents a

convolutional layer with a kernel size of f×f and an s number of strides, where s is defaulted to 1. The channel of the convolutional layer defaults to
256. “C3,” “C4,” and “C5” represent the 3-layer features of ResNet-50. “Up-sample” refers to nearest neighbor up-sampling with an up-sampling rate
of 2. The “anchor” denotes the anchor box, which uses the features to output the detection result. C-LSTM: convolutional long short-term memory;
Conv 2D: 2D convolution; DSA: digital subtraction angiography; FPN: feature pyramid network; IADS: intracranial aneurysm detection stage; ResNet:
residual deep neural network.

All models were trained and tested with a Keras [30] deep
learning framework on an NVIDIA GTX 1080Ti graphics
processing unit (11GB GDDR5X; NVIDIA Corporation). We
used the data in the training set to train the region localization
and intracranial aneurysm detection algorithms, and the initial
learning rate of each step in the training process was set to

3×10−6 for the RLS and 1×10−4 for the IADS. The Adam
optimization method [31] was adopted, and the learning rate
was dynamically adjusted with the training progress. If the
variation in the range of loss in 2 consecutive epochs was less

than 1×10−4, then the learning rate was reduced by a factor of
10. This method achieved the local optimum of the training
process.

The loss function for object classification used focal loss [25].
This loss function reduced the weight of the large number of
simple negative samples in training, thereby solving the problem

of a serious imbalance in the ratio of positive to negative
samples in object detection tasks. The focal loss was defined
as follows:

where “FL” denotes focal loss, “α” denotes the balanced
parameter used to balance the proportional inequality of positive
and negative samples, “γ” denotes the downweighted rate, “p”
represents prediction confidence, and “y {±1}” is the ground
truth class. When γ was >0, the loss function reduced the loss
of easy-to-classify samples and thus focused more on difficult
and misclassified samples. Specifically, we used an α of .25
and a γ of 2.0 in the training process.

Smooth L1 loss [25] was used as the loss function for bounding
box regression. As a commonly used loss function in regression
tasks, smooth L1 loss can limit the gradient value from the
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following two aspects to prevent training failure: (1) when the
difference between the predicted value and the ground truth was
too large, the gradient value was not too large, and (2) when
the predicted value was very close to the ground truth, the
gradient value was small enough. This loss function was defined
as follows:

in which

where “SL” denotes smooth L1 loss, “t” denotes the bounding
box of the predicted object, “v” represents the bounding box of
the ground truth, and “σ” is the weighted factor. A σ of 3.0 was
used in the training process.

Statistical Analysis
Statistical analyses were performed by using statistical software
(SPSS version 22.0; IBM Corporation). We used the 5-fold
cross-validation strategy with mean average precision (mAP)
values to assess the accuracy of intracranial aneurysm and
overlap classification. The bounding box regression task was
evaluated based on the smooth L1 loss. A confusion matrix,
receiver operating characteristic (ROC) curves, and area under
the curve (AUC) values were used to assess the abilities of
different frameworks. For ROC curves, comparisons of AUC
values (with SEs and 95% CIs) were made by using a
nonparametric approach [32]. A total of 20 patients with PCoA
aneurysms (test set) and 20 patients without aneurysms were
used to evaluate the performance of each framework and the
human experts, who had 20 years of experience. True positives,
true negatives, false positives, and false negatives were used to
calculate sensitivity, specificity, and accuracy, which were
determined based on the optimal threshold from the Youden
index. The adjusted Wald method was used to determine the
95% CIs of the accuracy, sensitivity, and specificity values from
the contingency tables [33].

Results

During the RLS, the system only needs to perform the simple
task of determining the valid coarse regions. The accuracy of
region localization for the test set was 100%, which proves that

this method accurately located the PCoA regions from the
original DSA images.

Of the 275 patients included in this study, 255 had PCoA
aneurysms, and 20 did not have aneurysms. A flowchart of the
enrolled patients is shown in Figure 4.

The AUC values and the ROC curves of RetinaNet [25], Liao
et al [15], Duan et al [16], and the bi-input+RetinaNet+C-LSTM
framework are shown in Figure 5. The focal loss and the smooth
L1 loss also showed that the aforementioned frameworks had
sufficient convergence (Figures 6 and 7). Compared to the
average AUC values of RetinaNet [25] (0.920), Liao et al [15]
(0.920) and Duan et al [16] (0.916), the
bi-input+RetinaNet+C-LSTM framework had the largest average
AUC value (0.936). The 5-fold cross-validation mAP values of
the aforementioned frameworks are listed in Table 1. The mAP
represents the average area under the precision-recall curves
that were drawn based on the results of aneurysm and blood
vessel overlap predictions.

The sensitivity, specificity, and accuracy results of RetinaNet
[25], Liao et al [15], Duan et al [16], the
bi-input+RetinaNet+C-LSTM framework, and the human
experts with 20 years of experience are listed in Table 2.

Compared to the other frameworks’ results, the
bi-input+RetinaNet+C-LSTM framework had the best
performance. The mean sensitivity, specificity, and accuracy
of the bi-input+RetinaNet+C-LSTM framework were 89%
(range 67.02%-98.43%), 93% (range 72.30%-99.56%), and
91% (range 77.63%-97.72%), respectively.

The confusion matrix of each framework is shown in Figure 8;
both the bi-input+RetinaNet+C-LSTM and RetinaNet
frameworks had the highest true-positive rate, but the
false-positive rate of the bi-input+RetinaNet+C-LSTM
framework was much smaller than that of the other frameworks.
Therefore, the bi-input+RetinaNet+C-LSTM framework had
the best performance compared to that of the other frameworks.

The original images of the DSA sequence and their
corresponding results for the RLS and IADS are presented in
Figure 9, which shows the detection results for different sizes
of aneurysms. Most of the results had a confidence level of up
to 1.0. This proves that our proposed method performs well in
the detection of multiscale aneurysms.
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Figure 4. Flowchart of enrollment information for included patients. AVF: arteriovenous fistula; AVM: arteriovenous malformation; DSA: digital
subtraction angiography; PCoA: posterior communicating artery.

Figure 5. The 5-fold cross-validation results for the ROC curves and AUC values of the different frameworks. The results of different cross-validation
models are shown in different colors. A: RetinaNet [25]. B: Liao et al [15]. C: Duan et al [16]. D: Bi-input+RetinaNet+C-LSTM. The ROC curves of
fold 0 and fold 2 in graph C overlap, and the ROC curves of fold 1 and fold 4 in graph D overlap. AUC: area under the curve; C-LSTM: convolutional
long short-term memory; ROC: receiver operating characteristic.
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Figure 6. The 5-fold cross-validation results of the focal loss of each framework. Different color curves indicate different cross-validation models. A:
RetinaNet [25]. B: Liao et al [15]. C: Duan et al [16]. D: Bi-input+RetinaNet+C-LSTM. C-LSTM: convolutional long short-term memory.

Figure 7. The 5-fold cross-validation results of the smooth L1 loss of each framework. Different color curves indicate different cross-validation models.
A: RetinaNet [25]. B: Liao et al [15]. C: Duan et al [16]. D: Bi-input+RetinaNet+C-LSTM. C-LSTM: convolutional long short-term memory.
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Table 1. The mean average precision (mAP) values from the 5-fold cross-validation.

Fold 5, mAPFold 4, mAPFold 3, mAPFold 2, mAPFold 1, mAPFrameworks

0.75690.69410.56870.65530.4006RetinaNet [25]

0.76810.64790.58520.69680.5082Liao et al [15]

0.82940.79250.46660.71570.4982Duan et al [16]

0.74080.65060.52540.65230.4435Bi-input+RetinaNet+C-LSTMa

aC-LSTM: convolutional long short-term memory.

Table 2. The performance of each framework.

Time cost (s)Accuracy (%), mean (range)Specificity (%), mean (range)Sensitivity (%), mean (range)Frameworks

0.2484.50 (69.57-93.97)80 (56.34-94.27)89 (67.02-98.43)RetinaNet [25]

2.2188.50 (74.44-96.39)89 (67.02-98.43)88 (65.76-98.06)Liao et al [15]

0.3386.50 (71.97-95.22)86 (63.31-97.24)87 (64.53-97.66)Duan et al [16]

2.7291 (77.63-97.72)93 (72.30-99.56)89 (67.02-98.43)Bi-input+RetinaNet+C-LSTMa

N/Ab90 (76.34-97.21)90 (68.30-98.77)90 (68.30-98.77)Human experts

aC-LSTM: convolutional long short-term memory.
bN/A: not applicable.

Figure 8. The results of the confusion matrix for each framework. The upper left corners represent true positives, the upper right corners represent
false negatives, the lower left corners represent false positives, and the lower right corners represent true negatives. A: RetinaNet [25]. B: Liao et al
[15]. C: Duan et al [16]. D: Bi-input+RetinaNet+C-LSTM. C-LSTM: convolutional long short-term memory; Diag+: diagnosed with tumor; Diag-:
diagnosed without tumor; Pred+: predicted tumor; Pred-: no predicted tumor.
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Figure 9. A sample of the original images of the DSA sequence and their corresponding results in the RLS and IADS. A, D, and G represent the raw
DSA sequences, and B, E, and H represent the experimental results of the RLS. The results of the IADS are shown in C, F, and I. The red bounding
boxes denote the aneurysms, and the green bounding boxes represent the overlapping blood vessels. DSA: digital subtraction angiography; IADS:
intracranial aneurysm detection stage; RLS: region localization stage.

Discussion

Principal Findings
We used the RLS to help decrease the computational load and
reduce the interference of unrelated tissues, such as bones and
small vessels. This step can reduce time consumption and help
neural networks focus on the PCoA region. Moreover, as the
2D DSA images may have had different scales, we used the
RLS to standardize the images to the same scale. In the clinical
diagnosis process, experienced neurosurgeons and
neurointerventional radiologists observed the whole DSA
sequence and distinguished overlapping arteries from aneurysms
based on the flow of contrast agents through blood vessels.
Inspired by this process, we introduced temporal information
processing, which has been widely used in text understanding,
to improve our diagnostic system. As classic time-processing
neural networks, such as LSTM networks, only focus on 1D
information, they inevitably result in information loss (ie, the
loss of spatial details) when a 2D image is flattened to 1D
information. To address this problem, we chose the C-LSTM
network, which is specifically designed for 3D data. C-LSTM
networks use 3D data as input to process 2D image sequences
combined with temporal information. Monodirectional
processing methods only allow later features to obtain
information from previously inputted images, which results in
the imbalance of information. As such, it is difficult to specify

which frame might be more important for detection.
Bidirectional temporal information processing allows each frame
in DSA sequences to combine both past and future information,
and each frame can apply the same weight in the diagnosis
process. Although processing time information increases
detection times, accuracy is more important than speed when
it comes to medical imaging tasks. Even if the detection time
increases, the model can still complete the detection within 3
seconds, which is acceptable. Therefore, it was reasonable for
us to add a bidirectional C-LSTM network to process
information.

In the real diagnosis process, physicians often combine the
frontal and lateral sequences to make decisions because some
aneurysms are difficult to identify in images taken from 1 angle.
Based on this idea, we combined the frontal sequences with the
lateral sequences together (bi-input) to increase the amount of
spatial information and further improve the performance of the
diagnostic system. According to the results of this study, the
bi-input+RetinaNet+C-LSTM framework improved the
sensitivity to 89% and the specificity to 93%, and its accuracy
was the highest (91%) among all models. In addition, the
bi-input+RetinaNet+C-LSTM framework also had the highest
average AUC value and the best confusion matrix. Hence, the
bi-input+RetinaNet+C-LSTM framework had the best
performance among all models, and its results were similar to
those of experienced human experts.
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We labeled some overlapping blood vessels that were easily
confused with aneurysms, which also indirectly reduced the
rate of false positives to some extent. However, adding the
overlap labels also caused fluctuations in the mAP values. The
reason for this may have been that the physicians only labeled
aneurysms and some overlaps, such as the segment of the ICA
near the clinoid process. It was difficult to label all of the
overlaps, since our main task was to look for aneurysms, and
labeling overlaps requires considerable amounts of work. In our
framework’s predictions, some overlapping blood vessels were
identified by the framework but may not have been marked,
and some overlaps were annotated but not detected, which
resulted in a large fluctuation in mAP values.

Conclusion
According to our results, more spatial and temporal information
can help improve the performance of the frameworks. Therefore,

the bi-input+RetinaNet+C-LSTM had the best performance
when compared to that of the other frameworks. Our study
demonstrated that our system can assist physicians in detecting
intracranial aneurysms on 2D DSA images.

Our experiment had some limitations. First, our data set is
comparatively small and only includes PCoA aneurysms. In the
future, we will include cerebral aneurysms in different locations.
Second, the cascading network framework is relatively complex.
Therefore, an end-to-end network should be considered. In
future work, we will attempt to find a method that compensates
for the loss of information in the process of converting 2D
information to 1D information and use a transformer [34] to
process time information.
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Abbreviations
AUC: area under the curve
C-LSTM: convolutional long short-term memory
CNN: convolutional neural network
DSA: digital subtraction angiography
FPN: feature pyramid network
IADS: intracranial aneurysm detection stage
ICA: internal carotid artery
LSTM: long short-term memory
mAP: mean average precision
PCoA: posterior communicating artery
ResNet: residual deep neural network
RLS: region localization stage
ROC: receiver operating characteristic
SAH: subarachnoid hemorrhage
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