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Abstract

Background: Modern clinical care in intensive care units is full of rich data, and machine learning has great potential to support
clinical decision-making. The development of intelligent machine learning–based clinical decision support systems is facing great
opportunities and challenges. Clinical decision support systems may directly help clinicians accurately diagnose, predict outcomes,
identify risk events, or decide treatments at the point of care.

Objective: We aimed to review the research and application of machine learning–enabled clinical decision support studies in
intensive care units to help clinicians, researchers, developers, and policy makers better understand the advantages and limitations
of machine learning–supported diagnosis, outcome prediction, risk event identification, and intensive care unit point-of-care
recommendations.

Methods: We searched papers published in the PubMed database between January 1980 and October 2020. We defined selection
criteria to identify papers that focused on machine learning–enabled clinical decision support studies in intensive care units and
reviewed the following aspects: research topics, study cohorts, machine learning models, analysis variables, and evaluation
metrics.

Results: A total of 643 papers were collected, and using our selection criteria, 97 studies were found. Studies were categorized
into 4 topics—monitoring, detection, and diagnosis (13/97, 13.4%), early identification of clinical events (32/97, 33.0%), outcome
prediction and prognosis assessment (46/97, 47.6%), and treatment decision (6/97, 6.2%). Of the 97 papers, 82 (84.5%) studies
used data from adult patients, 9 (9.3%) studies used data from pediatric patients, and 6 (6.2%) studies used data from neonates.
We found that 65 (67.0%) studies used data from a single center, and 32 (33.0%) studies used a multicenter data set; 88 (90.7%)
studies used supervised learning, 3 (3.1%) studies used unsupervised learning, and 6 (6.2%) studies used reinforcement learning.
Clinical variable categories, starting with the most frequently used, were demographic (n=74), laboratory values (n=59), vital
signs (n=55), scores (n=48), ventilation parameters (n=43), comorbidities (n=27), medications (n=18), outcome (n=14), fluid
balance (n=13), nonmedicine therapy (n=10), symptoms (n=7), and medical history (n=4). The most frequently adopted evaluation
metrics for clinical data modeling studies included area under the receiver operating characteristic curve (n=61), sensitivity (n=51),
specificity (n=41), accuracy (n=29), and positive predictive value (n=23).

Conclusions: Early identification of clinical and outcome prediction and prognosis assessment contributed to approximately
80% of studies included in this review. Using new algorithms to solve intensive care unit clinical problems by developing
reinforcement learning, active learning, and time-series analysis methods for clinical decision support will be greater development
prospects in the future.
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Introduction

With the popularization of electronic health records, medical
equipment, and the improvement of detection methods, patient
data are generated in large amounts every day in intensive care
units. In traditional clinical data analysis, models and tools can
only make use of a limited number of variables in clean and
well-organized data. Machine learning has enabled clinical
decision support research and applications to generate actionable
insights, by utilizing large amounts of intensive care unit patient
data, that are useful in many clinical scenarios.

Machine learning, sometimes called the data-driven method,
uses statistical analysis models and computational technologies,
allowing computer systems to learn from patient data and
discover unknown clinical situations. Supervised learning,
unsupervised learning, and reinforcement learning are the 3
main types of machine learning [1] used to predict or guide the
treatment of patients who are critically ill.

In supervised machine learning tasks, a function maps an input
to an output based on example input–output pairs. Functions
are inferred from labeled training data. Classification and
regression methods, which include but are not limited to linear
regression, logistic regression, decision tree, random forest, and
support vector machine, are common supervised learning
methods.

In unsupervised machine learning tasks, patterns are learned
from untagged data. Models are designed to identify or partition
large data sets into subsections or clusters that share similar
characteristics. In intensive care unit–related tasks, unsupervised
learning enables the discovery of latent structures or patient
subgroups in specific cohorts [2]. Commonly used unsupervised
learning models include clustering, auto-encoding, and principal
component analysis.

Reinforcement learning is concerned with how intelligent agents
ought to take actions in an environment to maximize the notion
of cumulative rewards. The environment is typically defined
by a discrete-time stochastic control process called the Markov
decision process. In an intensive care unit, clinicians often need
to determine treatment plans and make clinical decisions.
Reinforcement learning models have great potential for solving
these types of problems by providing targeted treatment plans
for each patient or patient status and assisting clinicians in
making efficient decisions [3-8].

Although there are still challenges when data from multiple
sources must be combined, and the performance and ability of
machine learning is limited by the volume and quality of data,
a number of clinical decision support studies [9,10] have
demonstrated the ability to use sophisticated machine learning
models to solve certain intensive care unit–related tasks, and
their performance has been shown to be comparable with human

abilities, and for certain tasks, even it potentially exceeds human
abilities [7,11].

We sought to focus on machine learning research and
applications adapted to clinical decision support in intensive
care units, which may directly help clinicians diagnoses
accurately, predict outcomes, identify risk events, or decide
treatments at the intensive care unit point of care.

Methods

Search Strategy
We searched for papers in the PubMed database that had been
published prior to October 2020 using a query combination of
MeSH terms (“intensive care unit,” “critical care,” “machine
learning,” “artificial intelligence,” “decision support systems,
clinical”) and keywords in the title or abstract keywords related
to machine learning (“machine learning,” “artificial
intelligence,” “prediction model,” “predictive model,”
“predictive modeling,” “artificial learning,” “predictive
analysis,” “machine intelligence,” “data driven,” “data-driven,”
“statistical learning,” “neural network,” “deep learning,”
“reinforcement learning,” “time series,” “time-series,”
“algorithm”), decision-making (“clinical decision support
system,” “medical decision,” “decision tool,” “support tool,”
“clinical decision,” “physician decision,” “clinician decision,”
“decision algorithm,” “CDSS,” “CDS,” “clinical management,”
“decision making,” “decision-making“), and intensive care units
(“intensive care,” “ICU,” “critical care,” “intensive care unit”).

Selection Criteria
We included English-language papers that reported studies (both
prospective and retrospective studies) on clinical decision
support, with machine learning methods that targeted a specific
clinical scenario of intensive care units. We excluded papers
that were systematic reviews and meta-analyses, studies of
clinical decision support system implementations or clinical
decision support system usability evaluations, studies that
described rule-based clinical decision support system, studies
that used data that were not from patients in intensive care units
(eg, studies for intensive care unit admission prediction but
using patient data from other departments, such as emergency
or surgery departments), studies with outcomes irrelevant to
regular intensive care unit clinical care (eg, studies about
estimation of caffeine regimens), and studies that did not use
machine learning methods (eg, studies using clinical scores or
statistical analysis on small samples).

Data Analysis
We extracted the following information from selected papers
for content analysis: study cohort, machine learning models,
analysis variables, evaluation methods, and research topics.
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Study Cohort
In general, the greater the number of data sets to which a
machine learning model is applied, the stronger its generalization
capabilities. Therefore, we investigated the inclusion cohorts
and distribution centers of each study and classified these studies
into single-site or multisite studies accordingly. We also
classified studies by c, the sample size of studies: c<500,
500<c<2000, 2000<c<5000, 5000<c<10,000, 10,000<c<50,000,
and c>50,000.

Machine Learning Models
The model methods or algorithms used in each paper were
reviewed for analysis, and model methods were categorized as
supervised learning, unsupervised learning, or reinforcement
learning.

We reviewed variables or features used for modeling in each
study. According to routine intensive care unit practices, we
classified these variables into 12 groups: demographic variables,
vital signs, symptoms, laboratory values, ventilation parameters,
medications, nonmedicine therapy, comorbidities, fluid balance,
scores, medical history, and outcome. Given the wide range of
variable expressions in papers, such as formal medical terms,
abbreviations, acronyms, and capitalizations, variable name
normalization was implemented using text processing and
manual annotation methods. As some studies used self-defined
features or derived data for their special study purpose, variables
used in only 1 study were excluded.

Evaluation Methods
To determine the applicability and potential impact of various
machine learning models for clinicians and patients (ie, in
applications), model evaluation methods are important
components of model development. We reviewed evaluation
metrics used for measuring model performance.

Research Topics
In addition to overall quantitative analysis, which included all
studies, selected papers were divided into 4 topics for detailed
analysis: detection and monitoring for diagnosis, early
identification of clinical events, patient outcome prediction, and
treatment decisions.

Results

General
A total of 643 papers were found. The number of machine
learning–enabled intensive care unit clinical decision support
system research papers published in the PubMed database has
been continuously increasing between January 1980 and October
2020 (Figure 1).

Among the 643 papers identified and assessed for eligibility,
14 non–English language papers, 55 clinical decision support
system implementations and clinical decision support system
usability evaluations, 114 reviews and meta-analyses, 35 expert
system clinical decision support system studies, 68 studies not
about intensive care unit clinical questions, 76 studies using
patient data from other clinical departments or with outcomes
irrelevant to regular intensive care unit clinical care, 107 studies
that used methods other than machine learning, and 77 studies
for which full-text papers were unavailable were excluded
(Figure 2); therefore, 97 papers remained (Table 1).

Most studies used data from adult patients (n=82, 84.5%);
however, 8 studies used data from pediatric patients (8.2%) and
7 studies used data from neonates (7.2%). Two-thirds of the
studies (65/97, 67.0%) were developed from single-center data
sets, and 32 (33.0%) were developed from a multicenter data
set; cohort sizes also varied (c<500: 35/97, 36%; 500<c<2000:
19/97, 20%; 2000<c<5000: 12/97, 12%; 5000<c<10000: 10/97,
10%; 10000<c<50000: 16/97, 16%; c>50,000: 7/97, 7%).

The vast majority of studies used supervised learning (88/97,
91%), and only a few used unsupervised learning (3/97, 3%) or
reinforcement learning (6/97, 6%). In total, 849 variables for
model analysis were extracted. The most frequent variable
categories are shown in Table 1, and the top 20 most frequently
used variables are shown in Figure 3.

Most studies used more than 1 evaluation metric. The most
frequently used were area under receiver operating characteristic
curve (n=57), sensitivity (n=37), specificity (n=31), and
accuracy (n=24).
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Figure 1. Growth in number of publications.

Figure 2. Article review process. CDSS: clinical decision support system; ICU: intensive care unit.
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Table 1. General characteristics of the selected studies.

Value (n=97), nCharacteristic

Types of decision support

13Detection, monitoring, and diagnosis

32Early identification of clinical events

46Outcome prediction and prognostic assessment

6Treatment decisions

Population

82Adult

8Pediatric patients

7Neonates

Medical setting

65Single-center

32Multicenter

Type of machine learning

88Supervised learning

3Unsupervised learning

6Reinforcement learning

Type of variables

74Demographic variables

59Laboratory values

55Vital signs

48Scores

43Ventilation parameters

27Comorbidities

18Medications

14Outcome

13Fluid balance

10Nonmedicine therapy

7Symptoms

4Medical history

Type of evaluation method, na

57Area under the receiver operating characteristic curve

37Sensitivity

31Specificity

24Accuracy

11Positive predictive value

aMore than 1 variable type could be used in each study.
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Figure 3. Top 20 most frequently used variables. DBP: diastolic blood pressure; FiO2: fractional inspired oxygen; GCS: Glasgow Coma Scale; HR:
heart rate; MBP: mean blood pressure; MV: mechanical ventilation; PaO2-partial pressure of oxygen; RR: respiratory rate; SBP: systolic blood pressure;
SCR: creatine; SpO2: peripheral capillary oxygen saturation; WBC: white blood cell count.

Monitoring, Detection, and Diagnosis

Overview
Among 13 studies, 4 (30.8%) studies [12-15] focused on
monitoring or detection of physiological indicators, 3 studies
(23.1%) [16-18] focused on the of mechanical ventilation
abnormalities (in particular, patient-ventilator asynchrony), 4
studies (30.8%) [19-22] used electroencephalography (EEG) to
diagnose brain diseases, and 2 studies (15.4%) [11,23] studies
focused on infections. Variables used included demographic
variables (n=5), vital signs (n=6), laboratory values (n=5),
ventilation parameters (n=5), comorbidities (n=1), and outcome
(n=1).

Most data were obtained from a single center (11/13, 84.6%),
and only 2 studies (2/13, 15.4%) used multicenter data sets.
Some studies (3/13, 23.1%) used data from public databases,
such as the MIMIC database, the public NIH Chest-XRay14,
and PLCO data sets (Multimedia Appendix 1).

The top 3 models used were neural network (n=4), tree (n=3),
and random forest (n=3) models. Support vector machine models
were used twice (n=2). Other models, such as logistic regression,
and linear regression were only used in 1 study each.

Model performance was mainly evaluated with sensitivity (n=7),
specificity (n=8), area under the receiver operating characteristic
curve (n=3), and accuracy (n=3), whereas other evaluation
methods such as equal error rates, F1 score, recall, and κ
coefficients were each used only once.

Monitoring of Physiological Indicators
Quinn et al [13] provided a general model for inferring hidden
factors from clinical data and was successfully applied to the
major task of monitoring premature infants in the intensive care
unit. Eshelman et al [12] described an algorithm consisting of

a set of rules for identifying intensive care unit patients who
may become hemodynamically unstable. Taking into account
the individual differences of intensive care unit patients, Zhang
and Szolovits [15] developed an algorithm based on personalized
vital signs data to improve the accuracy of alarms. Charbonnier
[14] extracted online temporal episodes from the high-frequency
physiological parameters of intensive care unit patients to
visually support signal interpretation.

Mechanical Ventilation
Mechanical ventilation is widely used in intensive care units,
during which a series of parameters need to be monitored. Kwok
et al [16] established a nonlinear adaptive neuro-fuzzy inference
system model for fractional inspired oxygen estimation, which
reduced the need for invasive inspections. Two groups of
researchers discussed the problem of patient-ventilator
asynchrony, and developed a classifier based on machine
learning to detect abnormal waveforms [17,18].

Electroencephalography Monitoring
EEG monitoring plays an important role in the detection of
brain function and the diagnosis of brain disease. Koolen et al
[19] developed a method for the automated classification of
neonatal sleep states via EEG. Golmohammadi et al [21]
presented a system that can achieve high-performance
classification of EEG events that might correlate with epilepsy,
metabolic encephalopathy, cerebral hypoxia, and ischemia.
Farzaneh et al [20] developed a machine learning framework
to automatically segment and assess the severity of patients
with subdural hematoma during traumatic brain injuries [20].

Diagnosis of Infection
Infections are an important clinical issue in intensive care. Sepsis
is a common and serious condition in the intensive care unit
that results from an overreaction to infection that damages
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tissues and organs and can lead to complications, making it one
of the leading causes of hospital-related deaths [24]. A
high-performance algorithm, InSight, was demonstrated to be
superior to the commonly used Modified Early Warning Score,
Simplified Acute Physiology Score, and Systemic Inflammatory
Response Syndrome score for the diagnosis of patients with
alcohol use disorder combined with sepsis shock [23]. In
addition, it is still challenging to explain lung opacity in
radiography of the supine chest of patients with lung infection
in the intensive care unit—Rueckel et al [11] evaluated a
prototype artificial intelligence algorithm that could classify
underlying lung opacity, which might suggest a diagnosis
pneumonia.

Early Identification or Prediction of Clinical Events

Overview
Clinical event prediction, the use of data from electronic health
records to predict the occurrence of certain events or the best
time to give treatment, is one of the most important aspects of
intensive care unit clinical decision support system. Among 32
clinical event prediction studies, 3 (9.4%) were related to acute
kidney injury, 11 (34.4%) were related to infection prediction,
8 (25%) were related to respiratory diseases, and 10 (31.3%)
were related to other predictions and evaluations (Multimedia
Appendix 1).

In intensive care unit clinical prediction and evaluation studies,
up to 87 variables were used in a single paper. Categories of
variables, in order of frequency, were laboratory values (n=25),
demographic variables (n=25), vital signs (n=20), scores (n=18),
ventilation parameters (n=14), fluid balance (n=8), medications
(n=7), comorbidities (n=7), outcome (n=4), nonmedicine therapy
(n=3), symptoms (n=3), and medical history (n=1).

More than three-quarters of the studies (25/32, 78%) were based
on data from a single center, 10 of which were from the freely
available public database Medical Information Mart for Intensive
Care II or III. Multi-institutional data were used in the other
studies (7/32, 22%).

Logistic regression was the most commonly used method (11/32,
34%), followed by neural networks (7/32, 21%), and random
forest (6, 19%). Support vector machine and decision tree
models were each used in 5 (15.6%) studies. Naive Bayes,
gradient boosting tree model, extreme gradient boosting, fuzzy
model, and Insight each appeared twice (6.3%).

Sensitivity (n=16) and area under receiver operating
characteristic curve (n=17) were the most commonly used
evaluation metrics, followed by specificity (n=12) and accuracy
(n=12). The following metrics appeared in fewer than 10 papers:
positive predictive value (n=3), F1 score (n=4), and mean
absolute error (n=2).

Acute Kidney Injury Prediction
Early prediction of acute kidney injury has a high value for the
long-term survival and quality of life of critically ill patients.
Acute kidney injury is often associated with high morbidity and
mortality rates in intensive care units. The status of other vital
organs, initiation of therapy, patient response, and preexisting
comorbidities can all contribute to the development of acute

kidney injury [25]. Multiple machine learning methods have
been utilized and compared to analyze unstructured clinical
records and structured physiological measurements to identify
early episodes of acute kidney injury [26]. Soliman et al [25]
studied the prognostic impact of early acute kidney injury
predicted by data from the first day of admission. One study
[27] focused on patients younger than 21 years, who are more
likely to recover from disease.

Prediction of Sepsis and Infection
Early identification and treatment is the key to survival for many
sepsis and infection patients [28], but it is difficult for clinicians
to predict before it occurs, because it is extremely complex and
each patient is different. Early prediction of sepsis using
interpretable or uninterpretable machine learning models can
help clinicians enhance the accuracy of fever workup [28] to
identify and intervene in a timely manner [29-33]. One research
aim is to make accurate predictions with as little electronic
health record data as possible [34]. Mao et al achieved early
prediction of sepsis using only vital signs validated in multiple
centers [35]. The prediction of neonatal sepsis has also received
substantial research attention in recent years [36,37]. One paper
[38] focuses on predicting infections caused by a specific
microorganism—invasive fungal disease due to Candida
species—in intensive care unit patients.

Prediction of Respiratory Disease and Mechanical
Ventilation
Respiratory management in the intensive care unit is an
important aspect of critical care and treatment. Early diagnosis
of respiratory critical illness has a significant impact on patient
prognosis [39]. In addition, maintenance of cardiopulmonary
function is required in patients admitted to the intensive care
unit due to acute symptoms such as direct trauma, pulmonary
infection, heart failure, and sepsis. Machine learning methods
can help predict the onset of acute respiratory disease in patients,
especially in pediatric patients. Sauthier et al [40] used random
forest and logistic regression to predict the time of acute hypoxic
respiratory failure in critically ill children with severe influenza.
Messinger et al [39] applied a cascaded artificial neural network
to design new respiratory scores for early identification of
asthma in young children. In addition, early prediction of acute
respiratory distress syndrome was studied because of its high
morbidity and mortality [41].

Furthermore, ventilator weaning and reintubation after weaning
are currently well studied [42,43] in intensive care unit clinical
decision support system literature, as well as the effect of drugs
on intubation [44]. Moreover, predicting patient oxygen
saturation after ventilation [45] and risk factors for failure of
mechanical ventilation [46] can help health care professionals
respond in a time manner.

Other Predictions and Evaluations
There were 10 papers that could not be classified; we simply
put them into one class separately. There were forecasts for
detection and monitoring indicators, such as urine output after
fluid administration [47], glucose [48], lactic acid [49], and
activated partial thromboplastin time [50]. Lin [47] established
a gradient tree-based machine learning model implemented with
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extreme gradient boosting algorithms to predict urine output in
sepsis patients after fluid resuscitation to prevent fluid
overload-related complications. Pappada et al [48,49] developed
a neural network–based model to obtain a complete trajectory
of glucose values up to 135 minutes in advance. Mamandipoor
et al [49] combined least absolute shrinkage and selection
operator regression, random forest, and long short-term memory
to predict blood lactate concentration in patients in the intensive
care unit. Our previous study also compared multiple machine
learning approaches to guide clinical heparin administration by
predicting the range of activated partial thromboplastin time
values [50]. There were also studies that aimed to reduce
unnecessary laboratory tests to streamline the process and reduce
the burden on patients [51,52]. Predicted clinical events also
included acute traumatic coagulopathy [53], delirium [54],
advanced anemia [55], and fluid resuscitation therapy [56].

Outcome Evaluation and Prognostic Assessment

Overview
Of 46 papers that used machine learning for outcome evaluation
for patients who were critically ill, 11 papers (23.9%) predicted
overall mortality and survival, 23 papers (50%) predicted the
outcomes of patients with certain diseases, and 12 papers
(26.1%) included treatment prognosis, length of stay in the
intensive care unit, and other outcome evaluations (Multimedia
Appendix 1).

Categories of variables, in order of frequency, were demographic
variables (n=39), scores (n=24), laboratory values (n=23),
ventilation parameters (n=20), vital signs (n=18), comorbidities
(n=17), medications (n=10), outcome (n=8), nonmedicine
therapy (n=7), fluid balance (n=4), symptoms (n=4), and medical
history (n=3).

Of the 46 outcome prediction studies, 25 (54.3%) were based
on single-center data, 6 of which used data from MIMIC II and
III, and the other 21 studies (45.7%) made use of multicenter
data.

Logistic regression was the most commonly used method (27/46,
59%), followed by random forest (9/46, 20%), random forest
(8/46, 17%), support vector machine (7/46, 15.2%) and decision
tree model (5/46, 11%) studies. The gradient boosting tree model
appeared in 4 (9%) studies, and adaptive boosting and linear
regression each appeared twice (4.3%). Other models that
appeared only once are not discussed here.

Area under receiver operating characteristic curve (n=37) was
the evaluation metric used most often, followed by sensitivity
(n=14), specificity (n=11), positive predictive value (n=4),
accuracy (n=8), negative predictive value (n=6),F1 score (n=2),
Matthews correlation coefficient (n=2), and Brier score (n=2).

Overall Intensive Care Unit Patient Outcomes
Typical outcomes were overall mortality [57-62], survival [63],
and long-term quality of life [64]. Mortality [65,66] and survival
status at 1 year [67] in critically ill patients aged 80 years and
older were also studied using machine learning methods.

Outcomes of Patients With Specific Diseases
Patients with sepsis and infection remain one of the most studied
populations in terms of mortality (generally 28 days) [68-72],
followed by acute kidney injury [72-75]. There is an increasing
trend in outcome prediction studies in critically ill patients with
liver disease—acute liver injury [76,77], cirrhosis [77], and
advanced liver disease [78] have been studied using machine
learning. In patients with severe cancer, 30- [79] and 120-day
[80] survival rates were studied retrospectively with logistic
regression models.

For cardiac disease, Lee et al [81] used EEG data to predict the
outcome of children with cardiac arrest and Murtuza et al [82]
found that arterial blood lactate levels can be associated with
mortality in children who have undergone cardiac surgery. For
brain diseases, the outcomes of patients with subarachnoid
hemorrhage [83] and severe traumatic brain injury [84] have
been analyzed. Wildman et al [85] predicted the impact of
chronic obstructive pulmonary disease and asthma on mortality
in critically ill patients. Daly et al [86] used logistic regression
to study the relationship between early discharge and mortality
with the intention of reducing mortality in this group of intensive
care unit patients. Other papers [87-89] examined patient
outcomes and factors influencing them after deterioration.
Ebadollahi et al [90] predicted the temporal trajectory of
physiological data with patient similarity, with the aim to
identify universal patterns of disease progression from a large
amount of clinical practice data, to establish a generalized
computer-aided clinical decision support framework for
personalized treatment.

Treatment Prognosis and Intensive Care Unit Stay Time
Evaluation
Evaluating the outcome of certain treatments through machine
learning can help medical professionals refine their treatments
to achieve better therapeutic effects. Evaluation of outcomes
after extubation based on continuous vital sign information and
static characteristics of children can help adjust the timing of
extubation to reduce mortality [91-93]. Evaluation of prolonged
mechanical ventilation [94] and 1-year and 5-year functional
survival [95] after cardiac surgery was used to help adjust and
optimize postsurgical care practices. Evaluating the length of
stay in the intensive care unit [96,97] and the risk of readmission
after discharge from the intensive care unit [98] to effectively
forecast the trend of the disease could improve treatment and
care. In addition, designing and improving critical illness scores
to indicate disease severity [99-101] was studied. For example,
McRae et al [102] designed a score to quickly determine the
severity of COVID-19 and achieved optimistic results in 160
individuals.

Treatment Decisions
Treatments, clinical determination, and decision-making in the
intensive care unit were studied in 6 papers [3-8]. These papers
focused on various clinical questions and mainly used a
reinforcement learning model. Among them, 4 papers [3,5,7,8]
(67%) addressed drug dosage, such as optimal vasopressin dose
[3,7], heparin dosage [5], and morphine dosage [8]. The other
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2 papers [4,6] (33%) studied the timing of mechanical
ventilation extubation.

Categories of variables, in order of frequency, were vital signs
(n=6), demographic variables (n=5), laboratory values (n=5),
ventilation parameters (n=3), medications (n=4), fluid balance
(n=2), scores (n=4), and comorbidities (n=1) (Multimedia
Appendix 1).

Reinforcement learning models can be divided into conventional
reinforcement learning models (that is, wherein the reward
function is known and we only need to find a policy to maximize
the reward function) and inverse reinforcement learning models
(that is, wherein the reward function is unknown, and we have
to learn the most reasonable reward function through the
decision-making examples of clinicians)—4 papers used typical
reinforcement learning model, and 2 papers used inverse
reinforcement learning models.

All 6 papers used patient data from the intensive care units in
US hospitals. Most papers used single-center data from MIMIC
II (n=1) or MIMIC III (n=4), with c ranging from 707 to 96,156
(mean 22,256; median 7852).

Because the output of a reinforcement learning model is a policy
that is not easy to evaluate, in these studies, the policy given by
the model was compared with that actually given by the doctor;
when the 2 policies differed, the effect of the reinforcement
learning model was analyzed according to the actual clinical
problem.

Discussion

From reviewed studies, we concluded that early identification
of clinical outcome prediction and prognosis assessment
contributed to approximately 80% of studies, and machine
learning–based clinical decision support applications in intensive
care unit could support timely bedside decision-making [15],
transform data into more actionable insights or evidence-based
clinical rules [101], assist disease diagnosis [30], predict adverse
outcomes before they happen [76], enable continuous assessment
of patient responses to critical care interventions [91], allow
better management of highly complex situations and the best
treatment decisions [3], ultimately reduce clinicians burden
[52], and allow clinicians to have more time to deliver their
knowledge, experience, and human care in practice [64].

We found that 91% (88/97) of reviewed studies used supervised
learning methods. Unsupervised learning is commonly used for
phenotyping or patient subgrouping [2], usually to discover new
knowledge; therefore, explaining and validating subgroups or
patterns with reasonable clinical meaning is a challenge.
Reinforcement learning models have great potential for solving
medical decision problems; however, to the best of our
knowledge, there is a lack of sophisticated reinforcement
learning models to guide intensive care unit decision-making
[5]. Data-driven decision support tools will permit clinicians to
function more efficiently, caring for more patients more safely;
however the selection of a model should be tailored to the
clinical scenario [9,10]; therefore, we need a better
understanding of which algorithms are a best fit for which
clinical scenarios.

We also found that many machine learning–based clinical
prediction tasks are still challenging. First, not all the data
collected from intensive care unit are good quality data or
complete [7], particularly when data from different sources were
included in one predictive model. Various data in the intensive
care unit include general available data in the electronic health
record, such as patient information, encounter information,
diagnoses, intervention, routine laboratory data, imaging, natural
language and physiologic data, as well as limited available
information in the intensive care unit, such as social information,
omics data, pathology, radiology, and wearable data [103]. This
makes data preprocessing a difficult and time-consuming task.
Second, parameter optimization was used to obtain the best
parameter combination to improve model accuracy. Model
parameters need to be determined and fitted using the training
data set, and many adjustable hyperparameters must be tuned
to obtain a model with optimal performance [104]. Generally,
the more complex the model, the more parameters need to be
adjusted, and the more difficult it is to adjust the parameters.
For example, in logistic regression [74], usually only the
regularization coefficient is adjusted; and in random forest
models [53], the hyperparameters that need to be adjusted
include the number of trees, the maximum depth of the tree,
and the split criteria. Third, typically, the more complex the
model, the higher the required sample size [105]. If the sample
size is insufficient, overfitting occurs easily, which leads to
instability or inaccuracy of the model. In some clinical scenarios,
owing to the limited sample size, the use of complex models is
limited [59]. Last, after developing the model, prospective
evaluation using external data sets and clinical trials should be
conducted before using the model in practice [106] to improve
confidence in machine learning predictions [7]; however,
performing strong validation of a machine learning model’s
generalizability and interpretability is challenging; internal
validation approaches, such as cross-validation and
bootstrapping, cannot guarantee the quality of a machine
learning model due to potentially biased training data and the
complexity of the validation procedure itself [107]. Lack of
technical and semantic interoperability makes harmonization
of patient data from one center to another costly. As inconsistent
model results may be derived when adapting to new data sets
[108], retraining models using data from other sources would
minimize the cost and allow models to incorporate new clinical
settings.

Future research should expand the innovation and exploration
using new algorithms to solve intensive care unit clinical
problems by developing reinforcement learning, active learning,
and time-series analysis methods for clinical decision support.
In addition, machine learning modeling requires recognition,
understanding, and trust from intensive care unit clinicians.
Model developers must provide full explanations of modeling
methods, input, output, experimental and trial settings, clinical
scenarios, and operation methods to clinicians. With the basis
to understand, operate, and debug the outputs of a model,
clinicians can have more confidence in accepting the model
results and take action on the basis of that model’s
recommendations.
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