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Abstract

Background: Health care data are fragmenting as patients seek care from diverse sources. Consequently, patient care is negatively
impacted by disparate health records. Machine learning (ML) offers a disruptive force in its ability to inform and improve patient
care and outcomes. However, the differences that exist in each individual’s health records, combined with the lack of health data
standards, in addition to systemic issues that render the data unreliable and that fail to create a single view of each patient, create
challenges for ML. Although these problems exist throughout health care, they are especially prevalent within maternal health
and exacerbate the maternal morbidity and mortality crisis in the United States.

Objective: This study aims to demonstrate that patient records extracted from the electronic health records (EHRs) of a large
tertiary health care system can be made actionable for the goal of effectively using ML to identify maternal cardiovascular risk
before evidence of diagnosis or intervention within the patient’s record. Maternal patient records were extracted from the EHRs
of a large tertiary health care system and made into patient-specific, complete data sets through a systematic method.

Methods: We outline the effort that was required to define the specifications of the computational systems, the data set, and
access to relevant systems, while ensuring that data security, privacy laws, and policies were met. Data acquisition included the
concatenation, anonymization, and normalization of health data across multiple EHRs in preparation for their use by a proprietary
risk stratification algorithm designed to establish patient-specific baselines to identify and establish cardiovascular risk based on
deviations from the patient’s baselines to inform early interventions.

Results: Patient records can be made actionable for the goal of effectively using ML, specifically to identify cardiovascular
risk in pregnant patients.

Conclusions: Upon acquiring data, including their concatenation, anonymization, and normalization across multiple EHRs, the
use of an ML-based tool can provide early identification of cardiovascular risk in pregnant patients.

(JMIR Med Inform 2022;10(2):e34932) doi: 10.2196/34932
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Introduction

Background
Each year in the United States, maternal morbidity and mortality
(MMM) accounts for more than 700 deaths and an additional
50,000 life-threatening complications associated with pregnancy
and childbirth [1]. It is estimated that 70% of these events are
preventable [1]. Cardiovascular disease accounts for 60% of
maternal morbidity events and over one-third of maternal deaths
in the United States [2]. More than 50% of MMM events are
attributed to cardiovascular causes including cardiomyopathy
(11.5%), thrombotic pulmonary embolism (9.6%),
cerebrovascular accidents (8.2%), hypertensive disorders of
pregnancy (6.6%), and other cardiovascular conditions (15.5%)
[1]. In 2019, the national maternal death rate was 20.1 deaths
per 100,000 live births [3]. It is estimated that 68.2% of
pregnancy-related cardiovascular deaths are preventable [4].

Exacerbating the crisis, health care data are fragmented as
patients seek care from diverse sources, including different
health care systems and telehealth providers. Consequently,
coordinating patients’ care with disparate health records
continues to increase in complexity.

We hypothesize that a systematic method for identifying risk
early by analyzing changes in a patient’s health data based on
complete data set trends is possible and facilitates early
intervention and treatment of high-risk conditions in pregnant
women. Early identification and intervention of these conditions
would likely result in a measurable reduction in maternal
fatalities and life-threatening complications.

A previous study focused on predicting common maternal
postpartum complications by leveraging machine learning (ML)
and electronic health records (EHRs) highlighted the risk level
of maternal postpartum complications requiring inpatient care
[5]. Data were gathered from patients’ dates of gestation to
delivery and demonstrated that routinely collected health data,
when used in conjunction with ML, have the potential to
accurately predict postpartum outcomes [5].

With this as our basis, our aim is to demonstrate that ML and
aggregated EHRs can be leveraged to surface signals and trends
in patients’ medical records to identify predictors of
cardiovascular conditions during pregnancy.

Through a retrospective study based on a cohort from a large
tertiary health care system of 32,409 patients who were seen
during pregnancy, we demonstrate that Invaryant’s Health
Outcomes for all Pregnancy Experiences–Cardiovascular-Risk
Assessment Technology (HOPE-CAT), an ML-based risk
assessment algorithm, identifies factors that may indicate the
development of cardiovascular conditions that lead to MMM.

Overview—Data and ML
ML is becoming a disruptive force in health care, and its
application is broad, including imaging, risk identification, and
risk assessment to inform and improve patient care and outcomes
[6]. Recent studies have demonstrated that ML, compared with
traditional statistical modeling, is a more effective tool in
predicting sex-specific and cardiovascular diseases [7]. In

addition, when combined with traditional logical regression,
ML may assist in identifying novel predictors of disease [8].

However, the vast differences that exist in each individual’s
corpus of health data and the lack of standards to define the
capture of data create challenges for ML. In addition to
complexity and variation among patients, there are systemic
issues that render the data unreliable and fail to create a single
accurate view of each patient. Despite standardization efforts,
including Fast Healthcare Interoperability Resources and
Continuation of Care Documents, adoption of these standards
and upgrades is slow. In addition, within health care, patients
often receive care from different providers and specialists for
various conditions, obtaining diverse medications and treatments
without a clearinghouse to ensure that all providers have access
to all relevant data. Finally, owing to lack of standardization,
when data are sourced from disparate systems, the resulting
data must be cleaned and normalized to be made actionable.
The lack of connectivity in health care creates challenges for
providers, who provide care with limited and often incomplete
patient information.

It is important to note that for this study, all available data were
sourced from a single health care system with 10 hospitals in
addition to outpatient clinics, which was both an advantage and
a challenge. One advantage was that the data set represented a
diverse patient population in a system with many hospitals and
outpatient clinics. However, because there was only access to
the single system, if a patient sought care at an external facility,
the data from those visits were not available in the data set. This
demonstrates one of the major challenges of the aforementioned
lack of interconnectivity within the US health care system.

Despite the defined systemic problems, ML models have several
advantages for the assimilation and evaluation of complex health
care data. Unlike traditional statistical models, ML offers
flexibility and scalability, which makes it deployable for many
tasks, such as risk stratification, diagnosis and classification,
and survival intervention [9]. However, when considering the
use of these tools for health care data, one must understand that
there are limitations to be anticipated and considered. Ethically
speaking, notwithstanding the systemic issues described, clinical
implementation of the technology must be for the direct benefit
of a patient and their providers. The completeness of data cannot
be assured, nor can it be assumed that those data are always
accurately captured; additionally, the ethical use of these
technologies mandates respect for patients’ sensitive personal
health information throughout their use.

Methods

Technology
For this project, the following software and platforms were
used: 4 Cerner Millennium (edition 2018.01) electronic medical
record software, PeriBirth (PeriGen), R (version 4.05; R
Foundation for Statistical Computing); Microsoft Azure Cloud,
Microsoft Azure Data Studio, Microsoft Azure Machine
Learning Studio, virtual machine, Microsoft SQL Server
Management Studio, Invaryant’s health platform, and
HOPE-CAT.
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For the purpose of this study, HOPE-CAT analyzes an individual
patient’s EHR data on an encounter-by-encounter basis to
identify risk factors (eg, elevated blood pressure readings,
shortness of breath, and chest pain) indicative of the
development or worsening of cardiovascular conditions.

HOPE-CAT was trained via causal inference, with limited
training supervision, using established maternal cardiovascular
risk factors and covariates, such as physical findings, symptoms,
and medical history (Textbox 1).

Textbox 1. Risk factors and covariates used to train the Health Outcomes for all Pregnancy Experiences–Cardiovascular-Risk Assessment Technology.

• Symptoms (variable risks)

• Dyspnea (red flag risk)

• Orthopnea (red flag risk)

• Tachypnea

• Asthma unresponsive to therapy

• Swelling in face or hands

• New or worsening headache

• Heart palpitations

• Dizziness or syncope

• Chest pain

• Physical findings (variable risks)

• Loud heart murmur

• Basilar crackles in lungs

• Resting heart rate≥120 beats per minute (red flag risk)≥110 beats per minute

• Systolic blood pressure ≥160 mm Hg (red flag risk)≥140 mm Hg

• Respiratory rate ≥30 (red flag risk)≥24

• Oxygen saturation ≤94% (red flag risk)≤96%

• Medical history (static risks)

• Aged ≥40 years

• Race=African American

• Prepregnancy obesity (BMI≥35)

• Prepregnancy diagnosis of diabetes

• Prepregnancy diagnosis of hypertension

• Substance use (nicotine, cocaine, alcohol, and methamphetamines)

• History of chemotherapy

• History of complications in labor or delivery

• History of heart disease

HOPE-CAT was then used to simulate chronological patient
encounters as they occurred in the medical records. The onsets
of risk detected by HOPE-CAT were compared with
EHR-recorded diagnoses or interventions in the source data’s
timeline. Loss vectoring methods were used to determine the
delta, or difference, between HOPE-CAT’s outputs and the
anticipated outputs, thereby guiding the learning and training.
In this study, the patient encounters and outcomes were already
known, and HOPE-CAT was configured to simulate patient
encounters (eg, clinic appointments, emergency department
visits, and hospital admissions) on the encounter dates recorded
in each patient’s EHR to assess the available data and detect
potential risks. A delta was then determined between

HOPE-CAT’s assessments and actions taken by the health care
provider on the same dates with the same information.

Criteria and Requirements Assessment
Inclusion and exclusion criteria to be pulled from the EHR were
defined to create the data set to ensure that the algorithms had
adequate data to analyze for trends and were able to designate
risk profiles as early in the process as possible for each patient.
Inclusion and exclusion criteria were agreed upon by clinical
cardiovascular and maternal health experts and data scientists.
These inclusion criteria included patient demographics (eg, age,
race, and geographic location), physiologic measures (eg, blood
pressure, heart rate, and oxygen saturation), symptoms (eg,
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headache and shortness of breath), and health history from each
patient encounter during pregnancy. Once criteria were defined,
the list of variables were organized to identify the sources of
data required.

Data Sourcing, Cleansing, Scrubbing, and
Normalization

Data Acquisition (Institutional Policy Compliance)
For this study, institutional privacy and security policies were
followed to ensure that patient data were protected and secure
throughout the project. Institutional review board approval was
obtained from the study institution. Analysts handling the data
maintain standing access to various databases containing
patient-EHR and other research data. Access is individualized
and maintained through the institution’s active directory. All
activities within these systems are tracked and auditable, and
institutional review board approval is required before any
research-related data extraction. Data access methods, as well
as data extraction, transfer, and anonymization procedures, were
reviewed by the institution’s data security team before the
creation of the shared analysis environment to ensure all
necessary security requirements were implemented before the
release of data.

Data Sources and Extraction
There were multiple data sources within the hospital system,
each with its own access restrictions, and in some cases, data
sources were administered by different departments or groups
within the hospital. The 2 primary systems used were a direct
connection to Cerner’s underlying Oracle database, as well as
an enterprise data warehouse (EDW) solution, which contains
data from the Cerner EHR, as well as other third-party billing,
quality, and safety systems employed at the different member
institutions. Access to both systems was controlled through
specific roles defined in the active directory, the Microsoft
Lightweight Directory Access Protocol service. RStudio
(running R version 4.05) was used to query both data sources
for extraction, as well as for subsequent data transformation. It
should be noted that it is theoretically possible to perform
discovery and extraction of this data using Cerner’s supplied
suite of tools (eg, Discern Analytics and Cerner Command
Language); however, because of the large number of variables
and size of the data set, having other solutions available provided
a significant advantage, both in performance and ease of use.

Both EDW and Cerner use a relational database architecture.
Cerner’s data model is primarily visit-centric, which means that
most data created within the EHR tie together via a unique
encounter ID that is created for each visit. Visits connect
together through a unique person ID, and certain tables—such
as the address table, family history table, and problems table
(for chronic conditions)—are kept at the person grain. The EDW
keeps these source identifiers and also includes additional fields
to allow for cross-walking of visits and patients between the
different imported data sources.

The data selection process began with a baseline population of
patients who had a documented delivery between January 1,
2017, and December 31, 2020. A delivery was defined as a
documented delivery procedure as outlined by the Centers for

Disease Control and Prevention [1]. From the initial population,
International Classification of Diseases, 10th Revision (ICD-10),
diagnosis codes were used to identify those patients’ prenatal
visits. After compiling the initial list of visits for each patient,
diagnoses, selected clinical variables, and personal information
(demographics) were abstracted for each patient.

In addition, visits created because of a historical upload or
import from another source were excluded. These visits had
registration dates starting in 1900. An age filter was also
implemented so that only data from patients aged 18-35 years
at the time of the encounter were received. Visit entries that
were created because of communication between staff and
patients, such as patient portal messages or phone calls, were
removed if there was no relevant clinical data or if the data
otherwise did not meet the established inclusion criteria.

The EDW was used for supplemental data not housed within
the main EHR environment, such as diagnosis-related group
codes to categorize diagnoses and complications, as well as
cleaned versions (with duplicates removed) of certain types of
data, such as medication administrations, to prevent duplicate
work. A large portion of the clinical data needed, such as
laboratory results, measurements, and other discrete clinical
observations, were sourced from the clinical events table within
Cerner and further categorized after extraction. The clinical
events table uses the same field for result values regardless of
the variable, so additional fields, such as the result unit (eg, lb,
kg, and mm Hg), were included for additional context; this also
allowed for the comparison of variables, such as weight, that
can be entered as either pounds or kilograms.

This time-consuming exercise was simplified by the creation
and maintenance of a comprehensive, well-documented data
catalog using the tools provided in the database administration
studio, which was updated when data were added from the
source systems (ie, the metadata repository or data dictionary).
Cerner does provide a table that has some preconfigured event
categorizations in a hierarchy. However, the hierarchies and
category labels are customizable at each institution, so manual
review was still required to create comprehensive groups.

Validation checks were completed by manually combing through
the events list to check if any code or piece of information had
been missed. This step was crucial for maternal history and
delivery information, as these can be documented in different
ways because of various workflows across different hospitals
or departments. Free-text clinical notes were not used for this
study because of the additional time and computing resources
that would have been required for proper removal of protected
health information and identification of clinically relevant text.

A series of checks were also completed to ensure the accuracy
of the data. After a variable list was developed, the data were
once again validated to ensure that the variables were accounted
for within the events. Randomized individual visits were then
selected to check for events that would be relevant and were
not already in a categorized set.

Data Anonymization
Although the data were administratively and medically permitted
to be viewed, for privacy, they were deidentified, and therefore,
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variables were transformed in stages before being transferred
into the dedicated Azure environment for analysis. The first set
of variables transformed were basic demographic information,
such as patient name and address. Zip codes were compared
with census data and discarded after characterization as urban,
rural, or suburban. Date time fields, such as the registration date
time for visits and date time stamps associated with visits, were
split into 2 fields containing the date and time of the event,
respectively. The date of the index visit was calculated for each
unique patient, and the date field was transformed to represent
the number of calendar days from that index visit date. Time
fields were kept for sequencing of events within a patient’s
course. Within the system, the unique person and encounter IDs
were hashed to create new person and visit IDs to prevent
reidentification. A master key was created to tie patients and
visits together and was only available locally to the data analysts
at the home institution. The key could also be used to backtrack
and revalidate in the case of errors if something did not make
logical sense or if additional variables needed to be pulled after
the original extraction.

The last piece of deidentification involved the events themselves.
This involved parsing procedural histories and removing event
types, such as comments, dates, and other free-text entry fields
where identifying patient information could potentially be
entered.

Data Transformation
After completion of the initial extraction and anonymization of
the data, a new database schema was necessary to house and

store the results for subsequent analysis. As a result, additional
data transformation was necessary to combine different but
related data elements into a single table and to aid HOPE-CAT.
As stated previously, a large portion of the clinical data were
further categorized after extraction. Three new fields were
created to accomplish this, based on the categorization of the
data fields: CATEGORY, SUB_CATEGORY, and
CLINICAL_CAT. The field CATEGORY is the parent
hierarchy, consists of values such as event and diagnosis, and
signifies from which set of tables the event came.
SUB_CATEGORY is the next level down and changes based
on context. In the diagnosis table, example values include
admitting diagnosis and discharge diagnosis, whereas examples
from the events table include labs, measurements, and
medication administration. CLINICAL_CAT is not used in all
tables but provides additional categories, such as blood gases,
metabolic panel, infectious disease, and hematology for lab
events and vitals and weight and BMI for measurements. These
3 fields helped standardize data in different tables for easier
processing.

The final database schema used a relational structure similar to
that of the original tables in the EHR. All of the final tables,
with the exception of the FamilyHX and Race tables, contained
both the transformed person IDs and the transformed visit IDs
to allow for easier analysis at either the visit or patient level.
The final database schema is shown in Figure 1.

Figure 1. Database schema.
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Normalizing and Loading
Data were provided to Invaryant’s team in the form of a
Microsoft SQL Server database, hosted on a Microsoft Azure
Virtual Machine. A data catalog was created to provide the team
with an inventory of available data. In addition to data profiling,
statistics, and other contents, the data catalog also provided a

descriptive index pointing to the location and type of available
data. Owing to the large volume of data, the tables were
individually loaded to the database, using Azure Data Studio,
as CSV files (Table 1). Indexes were later added to the tables
on key fields to make queries necessary for analysis
optimization.

Table 1. Database overview.

Value, n (%)Description

32,409 (100)Total patients in the database

18,095 (55.83)Patients with at least one risk identified

14,855 (45.83)Patients who delivered on the first visita

11,485 (35.44)Patients who only had 1 visit

1716 (5.29)Patients with red flag risk levels identifiedb

Number of births

37,457 (100)Total births

36,564 (97.62)Single live births

545 (1.45)Twin births

13 (0.03)Triplet births

294 (0.78)Stillbirths

Number of patients in top detected conditions

3468 (10.7)Preeclampsia

29 (0.09)Eclampsia

34 (0.1)Cardiomyopathy

5 (0.02)Cerebral infarction (stroke)

Number of patients with static risks based on category

2800 (8.64)BMI≥35

8194 (25.28)African American

3469 (10.7)History of substance use

aThese were excluded as there was no supporting retrospective data.
bSpecific severe risk factors or 4 or more total risk factors.

ML Training and Execution

Training Networks and Building Layers
To validate HOPE-CAT against retrospective patient records
through simulated patient encounters (ie, office visits) from the
data, training was first completed. HOPE-CAT was trained to
assess the available data chronologically by visit, as providers
would have recorded them in real time. To account for the
anonymization of patient-encounter dates, HOPE-CAT was
trained to work using a duration function (day count), rather
than a date function, to accurately determine the delta. Data
collected at, and related to, each visit (eg, patient demographics,
physical findings, symptoms, and medical history) were
provided as input to HOPE-CAT for analysis to detect changes
and trends in the patient’s data. If HOPE-CAT detected risk
based on the visit data and the risk factors in which it was trained
(Textbox 1), a risk profile was generated for that specific patient
encounter. Two types of risk profiles were generated indicating

standard risk or high risk, noted as a red flag. Red flag risks
indicated that the patient was experiencing either single severe
physiological symptoms (eg, elevated blood pressure or
orthopnea) or multiple risk factors (4 or more) that may be
predictors of needing immediate evaluation. A risk profile
establishes that risk factors indicative of the development of
severe or worsening cardiovascular conditions are present. These
conditions include, but are not limited to, preeclampsia,
eclampsia, peripartum cardiomyopathy, cerebral infarction,
myocardial infarction, heart failure, and pulmonary embolism.

Typically, HOPE-CAT evaluates for a patient’s individual
baseline metrics before further analysis. For example, if a
patient’s systolic blood pressure baseline is lower than the
medical mean, a high reading would be below the medically
recommended high-risk value in cases such as preeclampsia.
However, owing to the nature of retrospective data and, in many
cases, the lack of medical history, establishing personal baselines
for each patient was disabled for this study. Therefore, any
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patient whose data had fallen outside the medically accepted
averages (norms) was flagged and not used for training.

Refining the data ingested during data preparation allowed for
the isolation of data that related directly to patients who
exhibited static risk (ie, patient information that does not change,
such as race and prepregnancy history) or variable risk factors
(eg, physiologic measures and symptoms). The networks were
trained to identify both an individual’s static risk factors and
any additional variable risk factors developed over time.
Throughout the training process, Periodic testing was performed.
For missing data (eg, weight), those data were requested from
the data sources and added to the study database, and the catalog
and data dictionaries were updated. Once each issue was
resolved, the ingestion and refining process was continued, and
testing was repeated before additional training.

The training results were reviewed by clinical experts, and some
adjustments were made in the context of static risk. The system
was retrained to accommodate these changes, and once again,
a series of manual tests were run to ensure that the changes had
the appropriate effect.

As data were layered into the HOPE-CAT, outliers or patients
with data that did not meet the evaluation criteria (eg, a single
visit encounter was available, meaning trends could not be
identified) were identified and flagged for exclusion (Table 1).
It was found that certain data layers initially included in the
requirements had limited use and that some of the data were
held in other tables and, in some cases, in other databases.

Testing ML Outputs
Test data based on the specified inclusion criteria from
cardiovascular and maternal health experts, and findings of
previous studies, were used to train HOPE-CAT using human
reviews of maternal data. These metrics and parameters were
loaded and run against the test data. The outputs from the test
data set were reviewed manually on a patient-by-patient basis.
The advantage this study had in the context of medical care is
that the retrospective data had clearly defined outcomes for all
the patients included in the result set, thereby allowing precise
analysis of HOPE-CAT’s outputs, with direct confirmations of
the correlation of the defined risk to the outcome of the
pregnancy. For a risk coded or identified by HOPE-CAT, it was
possible to determine the accuracy of the assessment against
hard data (eg, the patient being diagnosed with a cardiovascular
condition).

Running ML and Reviewing Results
Once training was complete, HOPE-CAT was run against the
full data set to determine the risk level against the
encounter-duration function. When HOPE-CAT identified a
certain level of risk, the encounter date associated with the
output was compared with the date of when a diagnosis was
made or the provider intervened (ie, the delta). The delta
between the detection by HOPE-CAT and the diagnosis or
intervention by the provider was assessed and quantified. In
most cases, HOPE-CAT had the advantage over the provider
as HOPE-CAT had a single, condensed view to the patient’s
historical data, data trends, and micro and macro changes in the
patient’s health. As described earlier, the advantage of the

retrospective data allowed for in-depth manual reviews of the
data. The process involved reviewing each method by retrieving
the relevant data against the results of HOPE-CAT, and each
result was cross-checked and tabulated. The tabulated
information was then cross-checked by the independent quality
team. An important part of ML is the classification of outputs,
which identifies errors or artifacts that the system cannot
explain. These data were flagged for human review and
classification; as the system was designed to detect primarily
cardiac-related events, it did not know how to classify certain
events; therefore, HOPE-CAT flagged them as errors. Once
reviewed by the data analysts, a set of these errors were
identified as organ failures, and in review of the data, all
references to organ failure in the data were detected, and the
classification was added to the classification system. This
resulted in the expansion of the classification algorithm to alert
providers of the additional risk of potential organ failure in a
patient, indicating that a patient may require further monitoring
and intervention to prevent advancement of disease state and
more severe outcomes. For example, patients with HELLP
(hemolysis, elevated liver enzymes, and low platelets) syndrome
or preeclampsia should be monitored for hematologic changes
or changes in liver or kidney function, respectively, which may
indicate disease advancement and potential organ failure. This
process demonstrates that error handling is an effective tool for
identifying and correcting omissions or unexpected events in
the data.

Results

This study has shown that patient records from EHRs, when
aggregated, can be made actionable for the goal of effectively
using ML, specifically to identify cardiovascular risk in pregnant
patients. The resulting delta informs future studies in which
HOPE-CAT will be deployed to monitor for and alert providers
to real time trends in patient data.

Discussion

Limitations
Several methods used within this study are proprietary to
Invaryant. These methods are related to HOPE-CAT ML, the
risk stratification algorithm designed to establish patient-specific
baselines to identify and establish cardiovascular risk based on
deviations from the patient’s baseline. That said, these processes
being proprietary to Invaryant do not limit future research in
this purview. ML processes similar to HOPE-CAT may be
developed; however, the processes of training, variable
weighting, and validating may differ.

Conclusions
Within this study, 32,409 anonymized health records were
extracted from multiple Cerner EHR systems. Data were
collected and applied in four distinct steps: design, discovery,
ingestion, and refinement. Extensive measures were taken to
meet patient privacy requirements and the home institution’s
security requirements, including removing key identifiable data
points, including names, addresses, dates of birth, and zip codes,
as well as other measures to protect patient privacy. Further
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security measures were taken to provide access to the data and
establish the environment in the Microsoft Azure Cloud while
maintaining the home institution’s security policies and
practices. Data were then cleaned, scrubbed, validated,
structured, optimized, and normalized before setting up
analytical processing capabilities. To prepare for analytical
processing, iterative, layered training of samples of the data was
executed, and reviewed training for the learning engine was
run, to ensure an abundance of data categories were available
in large enough quantities to guarantee that results were
reproducible and scalable for complete analysis in a real-world
live setting. The latter part will be vital in instances where these
processes are used in vivo.

Future studies involving the HOPE-CAT may include the
following: the addition of geographic data and other data related
to social determinants of health, including unstructured sources
(eg, chart notes, family histories, and imaging) with natural
language processing or prospective in vivo application.

Recommendations From This Study and for Future
Studies
During the design process, it is recommended to consider the
following:

• Are enough data available to represent the pattern of
interest?

• Are the data available accurate? (Plausibility checks for
accuracy, misspellings, parsing, and standardization to
specific locales are recommended.)

• Have data correction schemes been considered?
• Data-cleaning decisions go beyond technical feasibility;

evaluating ethical and legal implications is also necessary.
• Including an iterative review process with clinicians for

algorithm-inclusion requirements is recommended.

• Educating end users on the many implications (medical,
legal, and ethical) of using these technologies to inform
better health outcomes and setting expectations for artificial
intelligence and ML strengths and limitations are
recommended.

• Training end users on how best to use artificial intelligence
and ML tools and interpret outputs is recommended.

Before gathering data, source selection is key. It is important
to first determine if data will need to be gathered from multiple
sources, and if so, how to integrate them. Assessing the number
of events required per observation period and determining
beforehand how much data are needed to represent segment
variability or to simply come to a successful conclusion could
be very useful. Formulating an easy method for matching data
from alternate sources is key to ensuring sufficient data for any
project.

Data preparation methods should include formal processes, such
as the creation of dictionaries, catalogs, and other controls, that
allow the process to be repeatable and scalable. Metadata,
persistent managed storage, and reusable transformation or
cleansing, and the information around them, must be included
to make data preparation efficient and consistent. Assessing
how the data need to be aligned for the analysis often involves
cardinality, binning, correlations, derivations of new values,
gender or identity analyses, and other methods to prepare data
at the needed level of granularity. Within this study, it was found
that once data refinement was started, additional data were
needed to better suit the purpose of the study. During the process
of refining data, it is recommended that one determines how fit
the data are for the intended purpose and if further data may be
needed.
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