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Abstract

Background: Over the recent years, machine learning methods have been increasingly explored in cancer prognosis because
of the appearance of improved machine learning algorithms. These algorithms can use censored data for modeling, such as support
vector machines for survival analysis and random survival forest (RSF). However, it is still debated whether traditional (Cox
proportional hazard regression) or machine learning-based prognostic models have better predictive performance.

Objective: This study aimed to compare the performance of breast cancer prognostic prediction models based on machine
learning and Cox regression.

Methods: This retrospective cohort study included all patients diagnosed with breast cancer and subsequently hospitalized in
Fudan University Shanghai Cancer Center between January 1, 2008, and December 31, 2016. After all exclusions, a total of
22,176 cases with 21 features were eligible for model development. The data set was randomly split into a training set (15,523
cases, 70%) and a test set (6653 cases, 30%) for developing 4 models and predicting the overall survival of patients diagnosed
with breast cancer. The discriminative ability of models was evaluated by the concordance index (C-index), the time-dependent
area under the curve, and D-index; the calibration ability of models was evaluated by the Brier score.

Results: The RSF model revealed the best discriminative performance among the 4 models with 3-year, 5-year, and 10-year
time-dependent area under the curve of 0.857, 0.838, and 0.781, a D-index of 7.643 (95% CI 6.542, 8.930) and a C-index of 0.827
(95% CI 0.809, 0.845). The statistical difference of the C-index was tested, and the RSF model significantly outperformed the
Cox-EN (elastic net) model (C-index 0.816, 95% CI 0.796, 0.836; P=.01), the Cox model (C-index 0.814, 95% CI 0.794, 0.835;
P=.003), and the support vector machine model (C-index 0.812, 95% CI 0.793, 0.832; P<.001). The 4 models’ 3-year, 5-year,
and 10-year Brier scores were very close, ranging from 0.027 to 0.094 and less than 0.1, which meant all models had good
calibration. In the context of feature importance, elastic net and RSF both indicated that TNM staging, neoadjuvant therapy,
number of lymph node metastases, age, and tumor diameter were the top 5 important features for predicting the prognosis of
breast cancer. A final online tool was developed to predict the overall survival of patients with breast cancer.

Conclusions: The RSF model slightly outperformed the other models on discriminative ability, revealing the potential of the
RSF method as an effective approach to building prognostic prediction models in the context of survival analysis.
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Introduction

Breast cancer is a leading cause of morbidity and mortality in
women worldwide, and the prediction of breast cancer prognosis
is crucial for decision-making. Accurate outcome prediction
can assist doctors with providing appropriate treatment plans
for patients, which in turn could improve their chances of
survival and lessen the suffering. Several prognostic prediction
models have already been developed. PREDICT and Adjuvant!
Online are 2 famous prognostic prediction tools for breast cancer
based on clinical and pathological characteristics [1,2]. These
models have been validated by external data set and are
commonly used in the United States and Western Europe.
However, several external validations that were made in Asian
countries revealed a less-than-optimal predictive ability [3-6].

For survival analysis of follow-up observations, the most
important challenge is dealing with censored data. The Cox
proportional hazard regression is a classical modeling method
used to analyze right-censored data in survival analysis with
good interpretability. Typically, the Cox proportional hazard
regression imposes proportional hazard assumption and the
assumption that continuous covariates have a linear effect on
the logarithm of the hazard, which the real-world data may not
satisfy [7]. Compared with the Cox proportional hazard
regression, machine learning methods do not make any
parametric or semiparametric assumptions and have the ability
to detect and account for higher-order interactions as well as
nonlinear relationships [8]. While there have been some attempts
to use machine learning to build cancer prognosis prediction
models [6,9-13], currently, there is no consensus on whether
traditional or machine learning-based prognostic prediction
models have a better predictive performance.

Here, we discuss two main types of prognostic prediction models
using machine learning algorithms. The first types are the binary
classification models, which give a probability of the interested
outcome at a specific time. Several studies have used machine
learning methods to generate prognostic prediction models based
on classification. The outcome variable of these models is the
status of survival at 5 years [14-17] or at the time of data
collection [18,19]. The limitation of these models is that they
are not able to include right-censored observations that were
censored before the specified time, because the outcome of these
observations is unknown. Moreover, using the classification
outcome (survival status at a specific time) instead of the
survival outcome (survival time and status of the censor) can
lead to a loss of information. The second types are models using
improved algorithms of original machine learning algorithms
to enable modeling and analysis of censored data, such as
support vector machines (SVM) for survival analysis [20] and
random survival forest (RSF) [21]. These methods can describe
probability (RSF) and risk scores (SVM and RSF) of the
interested outcomes at different time points rather than at a
specific time point and can consider both the survival time and
the status of the censor.

In this study, traditional (Cox) and machine learning-based
(SVM and RSF) prognostic prediction models were developed
for patients with breast cancer based on a large cohort of Chinese
patients diagnosed with breast cancer and hospitalized in Fudan
University Shanghai Cancer Center. We aimed to compare the
performance of different models to pick the optimal predictive
model and provide a reference for the development of machine
learning in the prognosis prediction of breast cancer.

Methods

Study Design and Ethical Considerations
This retrospective cohort study included all patients diagnosed
with breast cancer and subsequently hospitalized in Fudan
University Shanghai Cancer Center between January 1, 2008,
and December 31, 2016. Data containing demographic and
clinicopathologic features were obtained from the hospital
information system. Overall Survival, defined as the duration
between the time of first treatment and the date of death, was
taken as the outcome to build the predictive models. The
outcome information was derived from medical visit records,
telephone visits, and death certificate data linkage with the
cancer registry system or death certificate system run by the
provincial Centers for Disease Control and Prevention.

By March 1, 2021, medical information and follow-up
information were collected from 25,629 patients. After excluding
male patients, patients with bilateral breast cancer (362 cases),
and patients with ≥3 missing features, 22,176 cases with 21
features were eligible for further analysis. Patients were followed
for a median follow-up time of 68.9 months (95% CI 68.42,
69.33). The data set was then randomly split into a training set
(15,523 cases, 70%) and a test set (6653 cases, 30%). The
statistical description of features and the survival curves of
patients in the training and test set are shown in Table S1 and
Figure S1 in Multimedia Appendix 1.

This study was approved by the Fudan University Shanghai
Cancer Center Institutional Review Board (Registration
YF-2021-01).

Preprocess of Missing Data
Since the data were generated and collected in a real medical
environment, there were many observations with missing
features. As the SVM and RSF methods do not support the
analysis of data sets with missing values, we performed a 2-step
process in order to reduce the impact of missing values on the
training process of developing prediction models. Firstly, we
excluded patients with too many missing features. The number
of missing features of patients and the log-rank test results are
shown in Table S1 in Multimedia Appendix 2. The log-rank
method was used to test the difference between the survival
state of 25,267 patients and the remaining patients. Based on
the results of the log-rank test, when we excluded patients with
≥3 missing features, there was no significant difference between
the survival of the remaining patients (22,176 cases) and the
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survival of the overall patients (25,267 cases; P=.17). Therefore,
3 was taken as the cut-off value, and patients with ≥3 missing
features were excluded. The statistics for missing features before
and after the first step of processing are shown in Table S2 in
Multimedia Appendix 2, and the remaining 22,176 cases are
eligible for further analysis. Secondly, the remaining missing
data were imputed by the missForest algorithm using library
“missingpy” (0.2.0) in Python (Python Software Foundation).
MissForest is a nonparametric imputation method that could be
applied for both continuous and categorical variables and does
not make explicit assumptions about the functional form of the
data [22]. In the process of imputing the missing values, the
outcome data were not involved in case imputed data were
affected and falsely related to the outcome data.

Statistical Analysis
The objective outcome in the study was time to event, which is
right-censored survival data. Therefore, the following 3 survival
modeling approaches were used to predict the survival time of
patients diagnosed with breast cancer: Cox proportional hazard
regression [23], SVM [24], and RSF [21]. Elastic Net (EN) was
used as the feature selection method to screen important features
to train the 3 models. Technical implementation details,
including the libraries and the process of hyperparameter tuning,
are provided in the Multimedia Appendix 3. Moreover, we have
open sourced the Python and R code that we developed for
generating the models and evaluating the performance of the
models in the GitHub repository [25].

The Cox proportional hazard regression is a classical modeling
method for survival analysis. The model predicts the probability
that the event of interest has occurred at a given time for given
values of the predictor variables [23]. We added a traditional
feature selection method for the Cox model, where univariate
Cox analysis was performed before significant (P<.1) and
clinically relevant features were forced into multivariate Cox
regression analysis. The Cox model using the EN method was
named “Cox-EN,” and the one using the traditional variable
selection method was named “Cox.”

Usually, the predictors should satisfy the proportional hazard
assumption in the Cox model. However, the main goal of
modeling in this study was survival prediction and maximizing
concordance index (C-index) and time-dependent area under
the curve (AUC), regardless of how predictions are generated.
Therefore, we did not perform the test for proportional hazards
in the process of modeling [26].

SVM is a supervised machine learning algorithm, which can
be used for both classification and regression challenges. An
SVM model is basically a representation of different classes in
a hyperplane in multidimensional space. The hyperplane is
generated iteratively by SVM so that the error can be minimized.
The goal of SVM is to divide the data sets into classes to find
a maximum marginal hyperplane [24].

Several extensions of SVM to survival analysis were proposed.
Shivaswamy et al [27] introduced an approach for censored
targets by casting survival analysis as a regression problem.
Van Belle et al [24,28] proposed the ranking approach and the
hybrid approach combining the regression and ranking approach

for survival outcomes. As an objective function of the
ranking-based technique depends on a quadratic number of
constraints with respect to the number of training samples, which
makes training intractable with medium to large-sized data sets,
we chose an approach of efficient training of linear survival
SVM [20].

RSF, which was developed by Ishwaran et al [21], is an
ensemble of tree-based learners for survival analysis of
right-censored data and an extension of the random forest
method. Using independent bootstrap samples, each tree in RSF
is grown by randomly selecting a subset of features for each
node and then splitting the node using a survival criterion
involving information of survival time and censoring status
[21].

EN is a feature screening technique that uses the penalties L1
and L2 from both the least absolute shrinkage and selection
operator (LASSO) and ridge techniques to regularize regression
models. The EN method is improved based on the shortcomings
of both ridge and LASSO methods. The ridge method keeps all
the features and cannot perform the function of feature
screening. When it comes to multiple correlated features, the
LASSO method randomly picks one of these features from such
groups and entirely ignores the rest, while the EN method is
likely to pick a few at once [29].

Evaluation of Model Performance
The discriminative ability of models was evaluated by the
C-index [30], time-dependent AUC [31], and D-index [32].
C-index measures the overall discriminative ability of models,
while time-dependent AUC measures the discriminative ability
of models by comparing the predicted probabilities with the
actual binary survival status and the probability estimation of
a death outcome of censored observations at an interested time.
C-index and time-dependent AUC both range in an interval
from 0 to 1, and a value of 0.5 is comparable to random
guessing, while a value of 1 means perfect discrimination.
D-index was used to measure the separation between patients
from equally sized high-risk and low-risk groups divided
according to the risk score obtained from different models.
Higher values of D-index indicate a more remarkable
discriminative ability of the model. The survival curves of
high-risk and low-risk groups was estimated using the
Kaplan-Meier method, and the log-rank test was used to
compare survival curves. The calibration ability of models was
evaluated by the Brier score [33], which varies between 0 and
1, while a lower Brier score was indicative of a better-calibrated
prediction. A value of 0.25 is comparable to random guessing,
while a value of 0 means perfect discrimination.

Results

User and Model Statistics
A total of 22,176 patients with 68.9 months (95% CI 68.42,
69.33) of median follow-up were included in this study. We
fitted 4 prognostic models (Cox, Cox-EN, RSF, and SVM) for
predicting the overall survival of breast cancer patients with the
training set and then used C-index, time-dependent AUC,
D-index, and Brier score to evaluate them in the independent
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test set. All models showed good calibration, and RSF
outperformed other models on discriminative ability with a
C-index of 0.827 (95% CI 0.809, 0.845).

Evaluation of Feature Importance
In order to screen out features with a large contribution to
predicting the prognosis of breast cancer, the EN was first used
to select important features, resulting in a total of 21 features.
The ways the coefficients changed for varying α is shown in
Figure 1, and the coefficient of each feature corresponding to
the optimal α is shown in Figure 2. The top 5 important features
were TNM staging, neoadjuvant therapy, number of lymph node
metastases, age, and diameter of the tumor. RSF was used to
rank the importance of the 11 features selected by the EN, and
the results are shown in Figure 3. The top 5 important features
were the number of lymph node metastasis, age, tumor diameter,
neoadjuvant therapy, and TNM staging.

The results of univariate and multivariate Cox analysis are
shown in Multimedia Appendix 4. Except for cases of the side
of the tumor, multiple tumors, adjuvant chemotherapy, and
targeted therapy, all features had a P value of less than .1 in the
univariate analysis. Considering that adjuvant chemotherapy
and targeted therapy could be confounding factors, multivariate
analysis was performed using adjuvant chemotherapy, targeted
therapy, and the significant factors (P<.1) from univariate
analysis. The results of the multivariate analyses showed that
age, menopause, invasive, diameter, lymph node metastasis,
TNM, Ki 67, estrogen receptors, progesterone receptors, breast
surgery, axillary surgery, adjuvant chemotherapy, targeted
therapy, adjuvant radiotherapy, adjuvant endocrine therapy, and
neoadjuvant therapy had a P value of less than .05, and the Cox
model was built by these features.

Figure 1. The coefficients of features change for varying α.
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Figure 2. The important coefficient of each feature corresponding to the optimal α by elastic net. Ln: lymph node; PR: progesterone receptors.
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Figure 3. The important coefficient of each feature by random survival forest. Ln: lymph node; PR: progesterone receptors.

Methods Performance
Evaluation results of the 4 models are shown in Table 1. From
the point of view of the C-index, the RSF model slightly and
significantly outperformed the Cox-EN model (P=.01), the Cox
model (P=.003), and the SVM model (P<.001) on discriminative
ability, and no significant difference was found between the
discriminative ability of other models. Time-dependent receiver
operating characteristic curves of each model at 3 years, 5 years,
and 10 years are shown in Figure 4. The time-dependent AUC

of each model over time is shown in Figure 5. As shown in
Figure 5, the time-dependent AUC of RSF was the highest at
most times. Survival curves of the high-risk and low-risk groups
divided according to the risk score are shown in Figure 6. The
D-index of 7.643 from the RSF model was also the highest, and
it can be interpreted as the risk of death in the high-risk group,
which is 7.643 times the risk of death in the low-risk group.
The 4 models’ 3-year, 5-year, and 10-year Brier scores were all
<0.1, suggesting that all models had good calibration.
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Table 1. Performance of different methods.

RSFcSVMbCox-ENaCoxIndexes

0.827 (0.809,0.845)0.812 (0.793,0.832)0.816 (0.796,0.836)0.814 (0.794,0.835)C-indexd (95% CI)

0.8570.8470.8570.850AUCe (3 years)

0.8380.8230.8220.821AUC (5 years)

0.7810.7600.7690.770AUC (10 years)

7.643 (6.542,8.930)6.522 (5.606,7.583)7.466 (6.383,8.733)7.210 (6.172,8.424)D-index (95% CI)

0.027—f0.0270.027Brier score (3 years)

0.045—0.0450.044Brier score (5 years)

0.093—0.0930.094Brier score (10 years)

aEN: elastic net.
bSVM: support vector machine.
cRSF: random survival forest.
dC-index: concordance index.
eAUC: area under the curve.
fNot available. Survival support vector machine can only predict a risk score and not a probability. Therefore, Brier score is not available for survival
support vector machine.

Figure 4. Time-dependent receiver operating characteristic curves of models at 3 years, 5 years, and 10 years. EN: elastic net; RSF: random survival
forest; SVM: support vector machine.

Figure 5. Time-dependent AUC of models over time. AUC: area under the curve; EN: elastic net; RSF: random survival forest; SVM: support vector
machine.
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Figure 6. Survival curves of high-risk and low-risk groups divided according to the risk score from (A) Cox, (B) Cox-EN (elastic net), (C) SVM
(support vector machine), and (D) RSF (random survival forest).

Online Prognostic Prediction Tool
Although the RSF model achieved the best performance among
these models, the interpretability and computational efficiency
of the RSF model had to be considered at the same time in the
deployment of the online prognostic prediction tool. The
memory usage of the RSF model was too large for the model
to be deployed on a website and have good computational
efficiency. The Cox-EN model achieved suboptimal
performance in the study and had better interpretability and
computational efficiency compared with the RSF model.
Therefore, it was selected as a backend for the online prognostic
prediction tool [34].

Discussion

In this paper, we compared the performance of traditional (Cox)
and machine learning-based (SVM and RSF) prognostic
prediction models for patients diagnosed with breast cancer and
found out the RSF model slightly and significantly outperformed
the Cox-EN model, the Cox model, and the SVM model on
discriminative ability. Compared with Cox, Cox-EN, and SVM,
the RSF model had a slightly better performance with a C-index

of 0.827 (95% CI 0.809, 0.845) and 3-year, 5-year, and 10-year
time-dependent AUC of 0.857, 0.838, and 0.781, respectively.
The results in this study were similar to those reported by some
previous studies. For example, Liu et al [10] used several
methods, including RSF and Cox, to predict breast cancer
progression with a sample size of 4575 patients. The results
showed that the RSF model achieved better performance with
a C-index of 0.814 compared with the Cox model with a C-index
of 0.759. Rahman et al [35] showed that RSF (5-year
time-dependent AUC 0.839, 95% CI 0.826, 0.849) outperformed
Cox (5-year time-dependent AUC 0.823, 95% CI 0.811, 0.833)
in the survival prediction of patients with esophageal cancer.

The possible reason for RSF achieving better performance may
be that RSF is able to detect and account for higher-order
interactions and nonlinear relationships. However, despite the
great predictive performance of RSF, there are several
shortcomings that limit the wide adoption of RSF. Firstly, the
theoretical properties and the inferential procedures of RSF are
not well understood. Secondly, RSF creates a “black-box” model
that is hard to interpret or visualize [8]. Nonetheless, RSF still
has the potential to be used as an effective approach to build
prognostic prediction models in the context of survival analysis.
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A major advantage of this paper was the large-scale prospective
cohort design with a long follow-up time. To the best of our
knowledge, this is the study with the largest sample size for
breast cancer prognostic prediction modeling based on machine
learning in the Chinese population thus far. Even though the
study is based on a single institution, the large-scale prospective
cohort and long follow-up time make the results valuable and
credible.

There are some limitations in this study that should be
acknowledged. The main limitation is that this study was
performed in a single center in China with no external validation.
Therefore, the current results need further multi-institutional
validation with larger samples before the prediction models
could be used in clinical practice. Another limitation relates to
missing data that were imputed, and we could not ascertain the

effect of the imputation of missing data on the overall results
and subsequent conclusions. Moreover, we chose the
randomized search method with 50 parameter settings sampled
instead of grid search in the process of tuning the
hyperparameters of the RSF due to the limitation of the
computational efficiency. This may cause an underestimate of
the performance of the RSF model.

In summary, the RSF model slightly outperformed the other
models on discriminative ability, revealing the potential of the
RSF method to be used as an effective approach to build
prognostic prediction models in the context of survival analysis.
Our future work will focus on additional external validation of
the model using data from multiple centers to verify the
extrapolation of our results.
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