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Abstract

Generative pretrained transformer models have been popular recently due to their enhanced capabilities and performance. In
contrast to many existing artificial intelligence models, generative pretrained transformer models can perform with very limited
training data. Generative pretrained transformer 3 (GPT-3) is one of the latest releases in this pipeline, demonstrating human-like
logical and intellectual responses to prompts. Some examples include writing essays, answering complex questions, matching
pronouns to their nouns, and conducting sentiment analyses. However, questions remain with regard to its implementation in
health care, specifically in terms of operationalization and its use in clinical practice and research. In this viewpoint paper, we
briefly introduce GPT-3 and its capabilities and outline considerations for its implementation and operationalization in clinical
practice through a use case. The implementation considerations include (1) processing needs and information systems infrastructure,
(2) operating costs, (3) model biases, and (4) evaluation metrics. In addition, we outline the following three major operational
factors that drive the adoption of GPT-3 in the US health care system: (1) ensuring Health Insurance Portability and Accountability
Act compliance, (2) building trust with health care providers, and (3) establishing broader access to the GPT-3 tools. This viewpoint
can inform health care practitioners, developers, clinicians, and decision makers toward understanding the use of the powerful
artificial intelligence tools integrated into hospital systems and health care.

(JMIR Med Inform 2022;10(2):e32875) doi: 10.2196/32875
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Introduction

In 2020, OpenAI unveiled their third-generation language
generation model, which is known as the generative pretrained
transformer 3 (GPT-3) model [1]. This model was the latest in
a line of large pretrained models designed for understanding
and producing natural language by using the transformer
architecture, which was published only 3 years prior and
significantly improved natural language understanding task

performance over that of models built on prior architectures [2].
However, GPT-3’s development was remarkable because it
resulted in a substantial increase in the model’s size; it increased
by more than 10-fold in 1 year, reaching 175 billion weights
[1-3]. GPT-3’s increased model size makes it substantially more
powerful than prior models; propels its language capabilities to
near–human-like levels; and, in some cases, makes it the
superior option for several language understanding tasks [1].
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Ordinarily, deep learning tasks require large amounts of labeled
training data. This requirement usually limits the tasks to which
deep learning can be effectively applied. However, with its
increased model size, GPT-3 has an enhanced capability for
so-called few-shot, one-shot, and zero-shotlearning when
compared to prior models [1,4]. These learning methods involve
training a model on significantly smaller amounts of training
data. In these methods, the models are given a description of
the task and, if applicable, a handful of examples to learn from,
with few-shot training on only hundreds to thousands of
instances, one-shot training on only 1 example, and zero-shot
training on only the task description.

GPT-3 was designed as a language generation model, focusing
on producing appropriate text responses to an input. Although
it can be adapted to address more traditional machine learning
tasks, such as answering yes-no questions, matching pronouns
to their nouns, and conducting sentiment analyses [1], GPT-3’s
text generation capabilities have attracted much attention as a
potential solution for a variety of problems, such as creating
enhanced chatbots [5], answering complex questions, generating

computer code from a design specification [6], and writing news
articles [7]. As such, there is much research on and commercial
interest in using GPT-3 for a variety of text generation
applications. Textbox 1 illustrates the power of GPT-3 in 3
question and answer examples [8]. In 3 cases, GPT-3 provided
human-like logical and intellectual responses. However,
applying GPT-3 in health care is still an emerging topic.

A plethora of research articles have outlined the potential
opportunities for integrating artificial intelligence (AI) and
machine learning models in a variety of hospital and health care
settings [9-11]. However, the authors also quickly pointed out
the many development and implementation challenges to
deploying such solutions, such as the lack of transparency [11],
potential model biases [9], and financing [10]. A successful
deployment of GPT-3 would need to overcome all of these
standard barriers to AI implementation alongside the additional
challenges that GPT-3 itself introduces [12]. In this viewpoint,
we introduce the use of GPT-3 in the health care setting with a
use case and discuss implementation and operational
considerations for its use in clinical practice.

Textbox 1. Generative pretrained transformer 3 (GPT-3) question and answer examples.

Question and answer

• Human-generated question: “What is human life expectancy in the United States?”

• GPT-3–generated response: “Human life expectancy in the United States is 78 years.”

Text summary

• Human-generated prompt: “Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass one-thousandth
that of the Sun, but two-and-a-half times that of all the other planets in the Solar System combined. Jupiter is one of the brightest objects visible
to the naked eye in the night sky, and has been known to ancient civilizations since before recorded history. It is named after the Roman god
Jupiter. When viewed from Earth, Jupiter can be bright enough for its reflected light to cast visible shadows, and is on average the third-brightest
natural object in the night sky after the Moon and Venus.”

• GPT-3–generated response (a second grader’s language): “Jupiter is a huge planet made of gas. It is the fifth planet from the sun. It is very big
and bright. It is the third brightest object in the night sky after the moon and Venus. Jupiter has many moons. One of the moons is bigger than
the planet Mercury.”

A chatbot (sarcastic)

• Human: “Why is the sky blue?”

• GPT-3 chatbot: “I’m not sure. I’ll ask my friend Google.”

A Use Case: GPT-3 in Health Care

The power of meaningful text generation by GPT-3 makes it
an ideal tool for human-machine conversations, especially those
conducted via chatbots. In our case, we illustrate the use of
GPT-3 within a hospital network. In this hypothetical example,
the hospital is providing a chatbot triaging mechanism for

incoming patients to reduce the overhead at clinics and increase
the safety and quality of care during the COVID-19 pandemic.
The chatbot has to be connected to the hospital network,
combined with a triage text summary service that is to be
reviewed, and stored in the electronic health record (EHR;
Figure 1). Putting aside the front-end details in this workflow
(Figure 1), this use case outlines a typical implementation of
GPT-3 as a service within a health system.
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Figure 1. GPT-3 use case (chatbot triaging and patient note summarization). API: application programming interface; EHR: electronic health record;
GPT-3: generative pretrained transformer 3.

In this example, triage could be initiated by a patient or a
hospital to conduct a health screening. The front-end application
is operationalized through a chatbot mechanism over a front-end
application, which could be a patient portal app, voice assistant,
phone call, or SMS text messaging. Once a connection is
established, the hospital system formulates GPT-3 requests by
gathering patient health information and formatting this
information to be interpretable with the GPT-3 model. Within
the secure hospital network, GPT-3 is located outside of the
EHR and provided as the “GPT-3-as-a-Service” platform. The
application programming interface enables interoperability and
acts as a gatekeeper for the data transfer of requests and
responses. Once a request is received, the “GPT-3-as-a-Service”
platform preprocesses the data and requests, allocates the tasks
to be completed, produces outputs in an interpretable format,
and sends the outputs to users. The type of tasks allocated
depends on the requests, which, in our case, are question
answering, text generation or culturally appropriate language
translation, and text summarization. The response is sent back
to the EHR system and then to the front-end application. At the
end of triage, similar to the after-visit summary, the conversation
text is summarized. To reduce the additional clinical burden of
reading the whole conversation, GPT-3 summarizes the text
(similar to a digital scriber) and stores it in the patient's health
records. To avoid or address potential biases [12], correct errors,
and increase the control over patient data use and the model,
the human-in-the-loop model [13] can be implemented by using
a report back mechanism at the front end, or the clinical team
can be given oversight of GPT-3 integrated process in the
hospital EHR system at the back end. Furthermore, the error
corrections and adjustments in the text can be used to fine-tune
the GPT-3 model to increase its accuracy and effectiveness.

To be able to execute this use case in a real-world setting, health
care practitioners and decision makers should consider and
address the following operational and implementation
challenges.

Implementation Considerations

Processing Needs and Information Systems
Infrastructure
Unlike more traditional AI models, GPT-3 is considerably larger
in terms of memory requirements and is more computationally
intensive. Specialized hardware for model training and
execution—either graphics processing units or tensor processing
units—is required for a scalable implementation. For any
hospital system, additional investments for infrastructure to
compensate for processing needs could be required.

Given its size, dependencies, and hardware requirements, a
GPT-3 solution would likely need to be run as a service. For
this service, hospital systems would need to submit a service
request to the GPT-3 solution service, which would process the
request and return its results back to the hospital system. The
hospital local network in Figure 1 shows a sample workflow
diagram for such an implementation. Such a setup would require
diligent and significant provisioning, networking, and
monitoring to ensure that the services are accessible and provide
meaningful value.

Operating Cost
Given the current state of hospital networks and EHR systems,
the integration of GPT-3 solutions would require complex
systems and high technical knowledge for effective deployment
and be costly to operationalize. One possible solution to ease
the burden of GPT-3 deployments is integration with cloud
computing platforms within hospital systems. Many cloud
computing providers offer the specialized hardware needed to
run such models and can easily handle off-the-shelf networking
and dynamic load balancing. This would ease the burden of the
major components of GPT-3 deployment; however, outsourcing
cloud computing platforms can potentially increase the operating
cost.
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Model Bias
Several sources of bias can manifest themselves in a
GPT-3–powered solution at different levels. At a model level,
GPT-3 is trained on a large data set that has many problematic
characteristics related to racial and sexist stereotypes, and as a
result, the model learns certain biases against marginalized
identities [14,15]. These biases, which are present in GPT-3,
can be harmful in clinical settings. Korngiebel and Mooney [12]
highlight the risks of using GPT-3 in health care delivery, noting
specific examples where GPT-3 parrots extremist language from
the internet [16] and affirms suicidal ideation [17].

Aside from the inherent bias of GPT-3’s initial training,
fine-tuning on medical data could also introduce the
unintentional biases present in historic medical data. Practical
biases, such as the undertesting of marginalized subpopulations,
can influence underlying clinical data and introduce bias during
the training of predictive models [9]. Additionally, the implicit
biases of health care professionals can influence diagnoses and
treatments and are reflected in clinical notes [18], which, if used
to fine-tune GPT-3, would potentially affect the developed
model.

Given these biases, it would be unwise to deploy GPT-3 or any
other sizable language model without active bias testing [15].
Explicit procedures should be put in place to monitor, report,
and react to potential biases produced by GPT-3 predictions.
These mechanisms would ensure that GPT-3 can be used
effectively without introducing harm to the patient. In our use
case (Figure 1), we also added a human-in-the-loop mechanism,
which can mandate the control, assessment, and training
protocols and yield interpretable and manageable results.

Evaluation Metrics
Aside from physical implementation, there are methodological
considerations for deploying GPT-3. As Watson et al [10] notes
in their investigation of model deployment in academic medical
centers, clinical utility is a major concern for institutions.
Understanding the best way to receive and interpret model
results is imperative for a successful deployment, and ideally,
model performance should be tracked and assessed by using
evaluation methodologies and frameworks.

The evaluation of text generation tasks, that is, those that GPT-3
is designed to address, is notoriously difficult. Standard metrics,
such as prediction sensitivity and positive predictive value, do
not cleanly reflect correctness in text generation, as ideas can
be expressed in many ways in text. More specialized text
generation metrics, such as BLEU (Bilingual Evaluation
Understudy) [19] and METEOR (Metric for Evaluation of
Translation with Explicit Ordering) [20], try to account for text
variation but still only examine text at a word level without
capturing the fundamental meaning. Methods that do try to
incorporate the meaning of text in text evaluation rely on other
black-box deep learning models to produce a value [21]. Relying
on a black-box evaluation method to evaluate a black-box model
does not increase interpretability. Such a method would only
result in lower trust overall and thus decrease the likelihood of
the model being deployed.

Health care–specific evaluation methods and frameworks for
text generation tasks are therefore needed. The development of
more robust methodologies for evaluating text generation tasks
in the health care domain is required before the significant
adoption of GPT-3 technology can be achieved. It is imperative
that data scientists, informaticists, developers, clinicians, and
health care practitioners collaborate in the development of
evaluation measures to ensure a successful implementation of
GPT-3.

Operational Considerations: Compliance,
Trust, and Access

In addition to implementation, there are 3 major operational
factors driving the adoption of GPT-3 in health care, as follows:
(1) GPT-3 needs to work in compliance with the Health
Insurance Portability and Accountability Act (HIPAA), (2)
technology providers need to earn trust from health care
providers, and (3) technology providers should improve access
to the tool (Figure 2).

Similar to GPT-3, there was huge enthusiasm to use the Amazon
Alexa (Amazon.com Inc) voice assistant in health care delivery
when it was released in 2014. However, at the time, Alexa was
not yet legally able to store or transmit private health
information. It took Amazon 5 years to become HIPAA
compliant and to be able to sign business associate agreements
with health care providers [22]. A limited number of Alexa
skills was released, and there is still a long list of other Alexa
skills waiting to become HIPAA compliant. This example shows
the slow progress of legislation changes and regulation updates
for including new technologies in health care, suggesting that
efforts should be put forward as early as possible for GPT-3.
Without HIPAA compliance, the adoption of GPT-3 in health
care can be a false start [23]. However, although HIPAA
compliance may not be immediate, it may be gradually
progressing. GPT-3 is a black-box model, which complicates
the HIPAA compliance process because unlike with other types
of programmatic solutions, it is harder to decipher how data are
processed internally by the model itself. However, assuming
that GPT-3 will be deployable in the future, operations will start
with implementing the limited capabilities of GPT-3 (ie, storing
and transmitting data, running behind the firewalls of specific
hardware [security rules], and analyzing a specific data set or
patient cohort [privacy rules]). In parallel, further practices are
needed to optimize the payment models for accommodating
GPT-3 and seek opportunities for satisfying the US Food and
Drug Administration’s requirements for software as a medical
device [24] with regard to using AI in clinical applications.

In addition to legal requirements, trust must be established
among patients, health care providers, and technology companies
to adopt GPT-3 [25]. It is common for technology companies
to claim the right that they can use their customers’ data to
further improve their services or achieve additional commercial
value. Additionally, the culture of skepticism toward AI among
clinicians can place a heavy burden on model interpretability
and result in lower trust in clinical care than in other industries
[10]. Unlike commercial implementations, GPT-3 needs to be
explicitly discussed in terms of what it will and will not do with
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a patient’s data. Health care providers’ data governance
committees need to be aware and comfortable when they sign
the service agreement with GPT-3. Given the black-box nature

of GPT-3, an operational strategic approach will be necessary
for interpreting the evaluation reports and outcomes that are
generated through the human-in-the-loop model.

Figure 2. A model of operational and implementation considerations for generative pretrained transformer 3. IS: information systems.

Access also needs to be ensured. Training large language models
like GPT-3 can cost tens of millions of dollars. As such, GPT-3
is innovating the business model of access. Currently, GPT-3
is privately controlled by OpenAI, and health care providers
can remotely run the program and pay for usage per token (1000
tokens are approximately equivalent to 750 words) [26]. In
September 2020, Microsoft bought an exclusive license to
GPT-3, with plans to integrate it into its existing products.
Similarly, a number of companies are already integrating GPT-3
model predictions into their products. However, this business
model also limits open-access research and development and
will eventually limit improvements, such as advancements in
translation mechanisms and all-inclusive, equity-driven
approaches in conversational agent development. In these early
stages, open-source alternatives, such as GPT-J [27], may help
health care developers and institutions assess operational
viability. In future iterations, once the value of using GPT-3 in
the health care setting is assured, the responsibility of
accessibility could be delegated to health care and government
agencies. Such agencies may distribute the
“GPT-3-as-a-Service” platform through secure cloud platforms

and establish a federated learning mechanism to run
decentralized training services while collaboratively contributing
to the GPT-3 model [28]. This would also reduce the burden
on individual health systems when it comes to building, training,
and deploying their own GPT-3 platforms and reduce costs.
These advantages are especially beneficial for hospitals in
low-resource settings.

Conclusion

In this viewpoint, we briefly introduce GPT-3 and its capabilities
and outline considerations for its implementation and
operationalization in clinical practice through a use case.
Building on top of Korngiebel and Mooney’s [12] remarks
toward unrealistic, realistic, feasible, and realistic but
challenging use cases, we provide consideration points for
implementing and operationalizing GPT-3 in clinical practice.
We believe that our work can inform health care practitioners,
developers, clinicians, and decision makers toward
understanding the use of the powerful AI tools integrated into
hospital systems and health care.
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