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Abstract

Background: Several prognostic scores have been proposed to predict functional outcomes after an acute ischemic stroke (AIS).
Most of these scores are based on structured information and have been used to develop prediction models via the logistic
regression method. With the increased use of electronic health records and the progress in computational power, data-driven
predictive modeling by using machine learning techniques is gaining popularity in clinical decision-making.

Objective: We aimed to investigate whether machine learning models created by using unstructured text could improve the
prediction of functional outcomes at an early stage after AIS.

Methods: We identified all consecutive patients who were hospitalized for the first time for AIS from October 2007 to December
2019 by using a hospital stroke registry. The study population was randomly split into a training (n=2885) and test set (n=962).
Free text in histories of present illness and computed tomography reports was transformed into input variables via natural language
processing. Models were trained by using the extreme gradient boosting technique to predict a poor functional outcome at 90
days poststroke. Model performance on the test set was evaluated by using the area under the receiver operating characteristic
curve (AUC).

Results: The AUCs of text-only models ranged from 0.768 to 0.807 and were comparable to that of the model using National
Institutes of Health Stroke Scale (NIHSS) scores (0.811). Models using both patient age and text achieved AUCs of 0.823 and
0.825, which were similar to those of the model containing age and NIHSS scores (0.841); the model containing preadmission
comorbidities, level of consciousness, age, and neurological deficit (PLAN) scores (0.837); and the model containing Acute
Stroke Registry and Analysis of Lausanne (ASTRAL) scores (0.840). Adding variables from clinical text improved the predictive
performance of the model containing age and NIHSS scores, the model containing PLAN scores, and the model containing
ASTRAL scores (the AUC increased from 0.841 to 0.861, from 0.837 to 0.856, and from 0.840 to 0.860, respectively).

Conclusions: Unstructured clinical text can be used to improve the performance of existing models for predicting poststroke
functional outcomes. However, considering the different terminologies that are used across health systems, each individual health
system may consider using the proposed methods to develop and validate its own models.

(JMIR Med Inform 2022;10(2):e29806) doi: 10.2196/29806
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Introduction

Stroke is a common and serious neurologic disorder.
Approximately 1 out of every 4 adults aged ≥25 years will
experience a stroke in their lifetime [1]. Despite recent and
emerging advances in the acute treatment of strokes, more than
half of patients with stroke still experience an unfavorable
outcome, which can result in permanent functional dependency
or even death [2]. In clinical practice, having a handy and readily
available prognostic tool is desirable for clinical
decision-making and resource allocation. Prognostic
understanding is of direct clinical relevance and is essential for
informing goals-of-care discussions. It also facilitates discharge
planning, communication, and postdischarge support.

Several prognostic scores have been developed to predict
functional outcomes following an acute stroke. Most of these
scores use similar input variables for their predictions. As
functional outcomes are largely determined by age and stroke
severity [3], these two variables are almost always included in
existing prognostic scores [4]. Other commonly used input
variables may include comorbidities, neurologic status, and
biochemical parameters. For example, the preadmission
comorbidities, level of consciousness, age, and neurological
deficit (PLAN) score [5] includes comorbidities (preadmission
dependence, cancer, congestive heart failure, and atrial
fibrillation) and neurologic focal deficits (weakness of the leg
or arm, aphasia, or neglect) as additional predictors. The Acute
Stroke Registry and Analysis of Lausanne (ASTRAL) score [6]
comprises age, stroke severity, stroke onset to admission time,
the range of visual fields, acute glucose level, and the level of
consciousness. However, the feasibility of these scores in daily
clinical practice and their relevance to a specific clinical setting
need to be well thought out prior to implementation [4].
Furthermore, using structured information alone, as well as the
almost universal use of logistic regression models in the
development of traditional prognostic scores [4,7], which require
the assumption that linear and additive relationships are being
fulfilled among predictors, significantly limits the applicability
of these prognostic scores to an individual hospital or health
system [8].

The ubiquitous use of electronic health records (EHRs) and the
increase in computational power provide an opportunity to
incorporate various types of structured data for the data-driven
prediction of important clinical outcomes [9]. Machine learning
algorithms have been used to develop prognostic models to
predict various poststroke outcomes [10-16]. In previous studies
that aimed to predict functional outcomes after an acute ischemic
stroke (AIS), data-driven machine learning models generally
performed equally as well as the PLAN and ASTRAL scores
[10-12]. Matsumoto et al [10] developed and validated
data-driven models via linear regression or decision tree
ensembles and also validated traditional prognostic scores.
Although no direct statistical comparisons of predictive
performance were made between models, they concluded that

data-driven models may be alternative tools for predicting
poststroke outcomes. Monteiro et al [11] found that machine
learning models, including decision tree ensembles and support
vector machines, achieved only a marginally higher predictive
performance than that of traditional prognostic scores. Finally,
Heo et al [12] found that machine learning models developed
via random forest and logistic regression had a similar predictive
performance to that of the ASTRAL score, while the deep neural
network model outperformed this traditional prognostic score.

In addition to structured data, EHRs store a multitude of
unstructured textual data, such as narrative clinical notes,
radiology reports, and pathology reports. To our knowledge,
this kind of information has not been explored in the
development of stroke prognostic models [10-16]. However,
natural language processing (NLP) has been used to extract
valuable information stored in textual data within other medical
applications. By harnessing the information from textual data,
it is possible to improve the prognostication of patients with
critical illness [8] and the detection of severe infection during
emergency department triage [17]. Motivated by these ideas,
we aimed to investigate whether machine learning models using
unstructured clinical text can improve the prediction of
functional outcomes at an early stage after AIS.

Methods

Study Settings
Data that support the study findings are available from the
corresponding author on reasonable request. This retrospective
study was conducted in a 1000-bed teaching hospital that had
a catchment area with around 500,000 inhabitants. The stroke
center of this hospital has been prospectively registering all
patients who are hospitalized for a stroke and collecting data
that conform to the design of the nationwide Taiwan Stroke
Registry [18] since 2007. Data on patient demographics,
personal and medical histories, stroke severity as assessed by
using the National Institutes of Health Stroke Scale (NIHSS),
the treatments that patients received, hospital courses, and final
diagnoses were collected. Follow-up data, such as functional
outcomes as assessed by the modified Rankin Scale (mRS),
were collected only from patients who gave written informed
consent for the follow-up evaluation.

Ethics Approval
The study protocol was approved by the Ditmanson Medical
Foundation Chia-Yi Christian Hospital Institutional Review
Board (approval number: CYCH-IRB 2020090). Study data
were maintained with confidentiality to ensure the privacy of
all participants.

Study Population
We identified all consecutive adult patients who were admitted
to the study hospital for the first time for AIS from October
2007 to December 2019 by using the institutional stroke registry.
Patients who experienced an in-hospital stroke or those who
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were missing admission NIHSS scores from their clinical data
were excluded. Those who did not provide consent for the
follow-up or were lost to follow-up at 90 days were also
excluded. For each patient, we retrieved the history of present
illness (HPI) upon admission and the initial computed
tomography (CT) report from the EHR database. Patients whose
EHRs were unavailable were excluded.

To train and evaluate the machine learning models, we split the
study population randomly into a training set that consisted of
75% (2885/3847) of the patients and a holdout test set that
consisted of the remaining 25% (962/3847) of the patients, who
were withheld from all models during the training process.

Outcome Variable
The outcome of interest was a poor functional outcome as
assessed by using the mRS score 90 days after a stroke. The
mRS score was dichotomized into a good outcome (mRS score
of 0-2) versus a poor outcome (mRS score of 3-6).

Text Vectorization and Feature Selection
The model development and validation process is illustrated in
Figure 1. The free text extracted from the HPIs and CT reports
was processed separately by using the following NLP
techniques: (1) misspelled words were corrected by using the
Jazzy spellchecker [19]; (2) abbreviations and acronyms were
expanded to their full forms by looking up a list of common
clinical abbreviations and acronyms, which is maintained by
the stroke center of the study hospital (Multimedia Appendix
1); and (3) non-ASCII (American Standard Code for Information
Interchange) characters and nonword symbols were removed.

After text preprocessing, we used MetaMap to identify medical
concepts from clinical text. MetaMap is an NLP tool that was

developed by the National Library of Medicine [20]. Through
the process of tokenization, sentence boundary determination,
part-of-speech tagging, and parsing, input text was decomposed
and transformed to variants of words or phrases, which were
mapped to medical concepts in the Unified Medical Language
System Metathesaurus. MetaMap was configured with the option
of using the NegEx algorithm to identify negated concepts. We
appended the suffix _Neg to concepts that were identified as
negated. Next, the clinical text was vectorized for the text
classification task by using the bag-of-words approach [21] or,
more specifically, the so-called bag-of-concepts approach [22].
We built a document-term matrix in which each column
represented each unique feature (concept) from the text corpus,
the rows represented each document (the HPI or CT report for
each patient), and the cells represented the counts of each
concept within each document.

To reduce the number of redundant and less informative features
and to improve training efficiency [21], we performed feature
selection by filtering out concepts that appeared in less than 5%
(145/2885) of all documents in the training set and then used 1
of the following 2 feature selection methods. The first method
involved performing a penalized logistic regression with 10-fold
cross-validation to identify the most predictive concepts [8,23].
The second involved using an extra tree classifier to determine
important concepts based on the Gini index [24]. A large number
of predictor variables (concepts) were still retained in the feature
vector after these steps. To develop more parsimonious models,
we built another document-term matrix by selecting the top 20
concepts that appeared in the documents of patients with poor
or good functional outcomes based on chi-square statistics [25].
The same feature selection procedures were applied to the
parsimonious models.
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Figure 1. Model development and validation. ASTRAL: Acute Stroke Registry and Analysis of Lausanne; NIHSS: National Institutes of Health Stroke
Scale; PLAN: preadmission comorbidities, level of consciousness, age, and neurological deficit.

Development of Machine Learning Models
Extreme gradient boosting (XGBoost) is an extension of gradient
boosting algorithms [26]. It is an ensemble of classification and
regression trees that can capture nonlinear interactions among
input variables. The XGBoost algorithm trains a series of trees
in which each subsequent tree attempts to correct the errors of
the prior trees. XGBoost has gained popularity for predictive
modeling in the medical field because of its high performance
and scalability [24,27,28]. The XGBoost algorithm was
implemented in Python 3.7 with xgboost Python package version
0.90.

We built 6 text-based models for predicting poor functional
outcomes by using the XGBoost algorithm. Full model 1 was
trained by using the features derived from the HPIs. Full model
2 was trained by using the features derived from both the HPIs
and CT reports. In addition to the features used in full model 2,
full model 3 included patient age as an input variable. Simple
model 1 was trained by using only the selected concepts from
the HPIs (Figure 2), and simple model 2 was trained by using
the selected concepts from both the HPIs and CT reports (Figure
2). Similarly, simple model 3 included patient age.
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Figure 2. Keyness plots showing the top 20 concepts that frequently appear in the (A) HPIs and (B) CT reports of patients with good or poor functional
outcomes. The prefix before the concept is the concept unique identifier. A negated concept is suffixed with “_Neg.” CT: computed tomography; HPI:
history of present illness.

Hyperparameter optimization for each model was performed
by repeatedly performing 10-fold cross-validation 10 times on
the training set. We followed the steps proposed in a previous
study [24] and conducted a grid search to find optimal
hyperparameters. Model error was minimized in terms of the
area under the receiver operating characteristic curve (AUC).
Once the optimal hyperparameters were determined, the final
models were fitted with the full training set.

With the introduction of machine learning techniques into health
care settings, machine learning–based prediction models are
being used to assist health care providers in decision-making
for diagnosis, risk stratification, and clinical care. For decisions
of such importance, clinicians prefer to know the reasons behind
predictions rather than use a black-box model for prediction.
The interpretability of model predictions is therefore considered
a high priority for the implementation and use of prediction
models [29]. To this end, after building the text-based models,
we used Shapley additive explanations (SHAPs) [30], which
are based on classic Shapley values from game theory, to explain
the output of the XGBoost classifiers.

Traditional Prognostic Models
A total of 4 traditional prognostic models based on the clinical
data that were available at the time of admission were chosen

for experimentation. The model using NIHSS scores served as
the first baseline model. The second baseline model consisted
of age and NIHSS scores [3]. The third baseline model consisted
of the PLAN scores [5]. The fourth baseline model consisted
of the ASTRAL scores [6].

Statistical Analysis
Categorical variables were expressed as counts and percentages,
while continuous variables were expressed as means with SDs
or medians with IQRs. Differences between groups were tested
by using chi-square tests for categorical variables and 2-tailed
t tests or Mann-Whitney U tests for continuous variables, as
appropriate.

Model performance was evaluated on the test set. For each
patient in the test set, the probability of a poor functional
outcome was generated by using the six text-based machine
learning models. To assess the predictive performance of each
of the baseline models and text-based models, a logistic
regression was used to predict a poor functional outcome.
Furthermore, to assess the added usefulness of information from
the clinical text, the output (the probability of a poor functional
outcome) of simple model 2, which was based on unstructured
clinical text from the HPIs and CT reports, was treated as an
additional continuous variable and added to the baseline models.
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Discriminatory ability was evaluated by calculating AUCs. The
differences in AUCs among the models were compared by using
the DeLong method [31]. In addition, improvements in
predictive performance resulting from the addition of
information from clinical text to each baseline model was
evaluated by calculating the continuous net reclassification
improvement and integrated discrimination improvement
indices, as described by Pencina et al [32,33].

All statistical analyses were performed by using Stata 15.1
(StataCorp LLC) and R version 3.6.2 (R Foundation for
Statistical Computing). Further, 2-tailed P values were
considered statistically significant at <.05.

Results

A total of 6176 patients were admitted for AIS. After excluding
those with an in-hospital stroke (n=186), those who were
missing clinical data (n=216), those who did not consent to the
follow-up or were lost to follow-up (n=1048), and those with
unavailable EHRs (n=295), the remaining 3847 patients
comprised the study population. Of these, 1674 (43.5%) had a
poor functional outcome after 90 poststroke days. Patients with
a poor functional outcome were older, were more likely to be
female, had more comorbidities (excluding hyperlipidemia),
and were more likely to be dependent before the stroke. Stroke
severity, PLAN scores, and ASTRAL scores were significantly
higher among those with a poor functional outcome (Table 1).

Table 1. Baseline characteristics of the study population.

P valueFunctional outcomeAll (N=3847)Characteristics

Poor (n=1674)Good (n=2173)

<.00174.0 (11.4)66.1 (11.9)69.5 (12.3)Age (years), mean (SD)

<.001812 (48.5)771 (35.5)1583 (41.1)Female, n (%)

<.0011404 (83.9)1694 (78)3098 (80.5)Hypertension, n (%)

<.001756 (45.2)846 (38.9)1602 (41.6)Diabetes mellitus, n (%)

<.001872 (52.1)1323 (60.9)2195 (57.1)Hyperlipidemia, n (%)

<.001438 (26.2)246 (11.3)684 (17.8)Atrial fibrillation, n (%)

<.001128 (7.6)68 (3.1)196 (5.1)Congestive heart failure, n (%)

<.001143 (8.5)106 (4.9)249 (6.5)Cancer, n (%)

<.001390 (23.3)29 (1.3)419 (10.9)Preadmission dependence (mRSa score of >2), n (%)

.341189 (71)1574 (72.4)2763 (71.8)Onset-to-admission delay (>3 hours), n (%)

<.00110 (5-19)4 (2-6)5 (3-10)NIHSSb score, median (IQR)

.06166 (84)161 (82)163 (83)Glucose (mg/dl), mean (SD)

<.00112 (9-17)7 (6-8)8 (6-12)PLANc score, median (IQR)

<.00127 (22-39)19 (16-22)21 (18-27)ASTRALd score, median (IQR)

amRS: modified Rankin Scale.
bNIHSS: National Institutes of Health Stroke Scale.
cPLAN: preadmission comorbidities, level of consciousness, age, and neurological deficit.
dASTRAL: Acute Stroke Registry and Analysis of Lausanne.

The training and test sets consisted of 2885 and 962 patients,
respectively. The training set was used to build the
document-term matrix and to train the machine learning models.
Table S1 in Multimedia Appendix 2 lists the number of unique
features and final selected features for each model. The AUCs
of full models that used an extra tree classifier for feature
selection were higher than the AUCs of those that used penalized
logistic regression for feature selection, although the differences
did not reach statistical significance. By contrast, penalized
logistic regression resulted in higher AUCs than those resulting
from extra tree classifiers for simple models, and a significant
difference (P=.02) was observed for simple model 3. Therefore,
machine learning models that used penalized logistic regression
for feature selection were used in the following analyses.

The top 20 features for both good and poor functional outcomes
that were used in the simple models are shown in Figure 2.
Figure 3 shows the top 20 most important text features from
simple model 2; the features are ordered by the average absolute
SHAP value, which indicates the magnitude of the impact on
model output. Figure 3 also presents bee swarm plots showing
the magnitude and direction of the effect of each feature
according to the SHAP value, demonstrating how simple model
2 uses input features to make predictions. For example, when
the concepts of symmetrical, Binswanger disease, or dilatation
appear in a CT report, the model tends to predict a poor
outcome, whereas the model tends to predict a good outcome
when an HPI contains the concepts of numbness or the negated
form of slurred speech. Figures S1-S6 in Multimedia Appendix
2 show the bee swarm plots for all text-based models.
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Figure 3. (A) A bar chart showing the top 20 most important features of simple model 2 according to the average absolute SHAP values, which indicate
the average impact on model output. (B) A bee swarm plot for the top 20 features in which each dot represents an individual patient. A dot’s position
on the x-axis indicates the impact that a feature has on the model’s prediction for that patient. The color of the dot specifies the relative value of the
corresponding feature (concept). A higher feature value means that the concept appears more times in the clinical text. The prefix before the concept is
the concept unique identifier. A negated concept is suffixed with “_Neg”. CT: computed tomography; HPI: history of present illness; SHAP: Shapley
additive explanations.

Figure 4 illustrates the receiver operating characteristic curves
for the six text-based models and the four baseline models
trained on the test set. The models are grouped according to
whether age is included in the model. Tables S2-S4 in
Multimedia Appendix 2 list these models’ AUCs (with 95%
CIs) and the P values for the pairwise comparison of model
performance. Models that included age generally had higher
AUC values (range 0.823-0.841) than those of the models that
did not include age (range 0.768-0.811). Among the models
that did not include age, the AUCs of full model 1 (0.785; 95%
CI 0.756-0.814), full model 2 (0.807; 95% CI 0.779-0.834), and
simple model 2 (0.799; 95% CI 0.771-0.827) were not
significantly different from that of the model that included
NIHSS scores (0.811; 95% CI 0.783-0.839; P=.11, .78, and .47,
respectively). Among the models that included age, the AUCs
of full model 3 (0.825; 95% CI 0.799-0.851) and simple model
3 (0.823; 95% CI 0.797-0.850) were also not significantly

different from those of the model that included age and NIHSS
scores (0.841; 95% CI 0.815-0.867; P=.22 and .17, respectively),
the model that included the PLAN scores (0.837; 95% CI
0.811-0.863; P=.37 and .30, respectively), and the model that
included the ASTRAL scores (0.840; 95% CI 0.814-0.866;
P=.27 and .22, respectively). Table 2 lists the predictive
performance of models with and without added information
from the clinical text. According to the AUCs (model including
age, NIHSS scores, and text: P=.002; model include PLAN
scores and text: P<.001; model including ASTRAL scores and
text: P=.004), net reclassification improvement indices (all
models including text: P<.001), and integrated discrimination
improvement indices (all models including text: P<.001), a
statistically significant improvement in predictive performance
was achieved when adding information from the clinical text
into the baseline models.
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Figure 4. Receiver operating characteristic curves for predicting a poor functional outcome for (A) models without age and (B) models with age.
ASTRAL: Acute Stroke Registry and Analysis of Lausanne; AUC: area under the receiver operating characteristic curve; CT: computed tomography;
HPI: history of present illness; NIHSS: National Institutes of Health Stroke Scale; PLAN: preadmission comorbidities, level of consciousness, age, and
neurological deficit.

Table 2. Comparison of the performance of baseline models with or without added information from clinical text.

P valueIDIc, % (95% CI)P valueNRIb, % (95% CI)P valueAUCa (95% CI)Model

N/AN/AN/AN/AN/Ae0.841 (0.815-0.867)Age and NIHSSd score

<.0010.042 (0.029-0.054)<.0010.427 (0.302-0.551).0020.861 (0.837-0.885)Age and NIHSS score plus text

N/AN/AN/AN/AN/A0.837 (0.811-0.863)PLANf score

<.0010.038 (0.026-0.051)<.0010.543 (0.420-0.665)<.0010.856 (0.835-0.882)PLAN score plus text

N/AN/AN/AN/AN/A0.840 (0.814-0.866)ASTRALg score

<.0010.044 (0.031-0.057)<.0010.443 (0.318-0.567).0040.860 (0.837-0.884)ASTRAL score plus text

aAUC: area under the receiver operating characteristic curve.
bNRI: net reclassification improvement.
cIDI: integrated discrimination improvement.
dNIHSS: National Institutes of Health Stroke Scale.
eN/A: not applicable.
fPLAN: preadmission comorbidities, level of consciousness, age, and neurological deficit.
gASTRAL indicates Acute Stroke Registry and Analysis of Lausanne.

Discussion

Principal Findings
This study demonstrates that machine learning models based
on clinical text may provide an alternative way of
prognosticating patients after AIS. Most of the models (3/4,
75%) based on textual data alone performed equally as well as
the models based on NIHSS scores, whereas models based on
text and patient age had a comparable predictive performance
to those of the model based on age and NIHSS scores, the model
based on the PLAN scores, and the model base on the ASTRAL
scores. In addition, the information extracted from clinical text

can be used to improve the predictive performance of existing
prognostic scores in terms of the prediction of the 90-day
functional outcome.

Previous studies have found that machine learning algorithms
had comparable discrimination to or even higher discrimination
than that of conventional logistic regression models [10-12]. A
possible explanation may be that machine learning algorithms
can capture potential nonlinear relationships and handle complex
interactions between the input variables and the outcome
variable [10,34,35]. On the other hand, the performance of
prognostic scores is generally limited by different demographic
and risk factor distributions across diverse populations and
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health care settings [36,37]. By contrast, data-driven models
can make predictions without prior knowledge of the real system
[38]. The use of machine learning methods may enable each
individual site to develop its own prediction models for
providing patients with individualized medical decisions and
treatments. However, their transferability to different health
systems is not guaranteed.

Despite the emergence of machine learning technology as a new
tool for prognosticating stroke outcomes, textual data have
rarely been analyzed or used in previous machine learning
prediction models in the field of stroke medicine [39-44]. By
using NLP techniques, information extracted from unstructured
text, such as clinical notes or radiology reports, has been used
to build machine learning models to identify AIS [39-41] or
automate AIS subtype classification [43,44]. One of the
advantages of using textual data is that narrative notes are
generated during routine health care processes, thus avoiding
the extra effort required for data collection and coding. Although
structured entry and reporting tools are now available for clinical
documentation, health care providers generally prefer to write
narrative notes because structured documentation systems can
be too awkward to use without impeding clinical workflows
and can even result in errors [45,46]. Furthermore, the excessive
use of structured data entry in clinical documentation tends to
result in the loss of the subtleties in information by standardizing
away the heterogeneity across patients [46].

Although only the basic bag-of-words model was used for text
representation, this study shows an application of text
classification in the development of clinical prediction models.
However, a major challenge of this approach is the high
dimensionality of the feature space. The large number of features
generated by the bag-of-words model may cause problems, such
as increased computational complexity, degraded classification
performance, and overfitting [21,47]. Feature selection is thus
a necessary step for text classification. However, the choice of
feature selection methods usually depends on the characteristics
of the data and requires trade-offs among multiple criteria,
particularly in small samples with high dimensionality [47].
According to our experiments, the two feature selection methods
indeed performed slightly differently in different situations.

Another merit of using the bag-of-words approach for text
vectorization is the high level of interpretability that can be
achieved; this approach allows domain experts to examine each
predictor (concept) within its specific context. The patterns that
a machine learning model discovers and the explanations for
what is observed can be more important than the model’s

predictive performance, particularly in medical applications. In
this regard, we applied Shapley values to measure the impact
of each predictor. Taking the concept symmetrical as an
example, the reason why this concept tends to be associated
with a poor functional outcome (Figure 3) may not be obvious
at first glance. The reason became clear when the original text
in the CT reports was reviewed. Radiologists generally described
subcortical arteriosclerotic encephalopathy as “symmetrical
hypodensities in bilateral periventricular regions” and mentioned
hydrocephalus as a “symmetrical enlargement of the lateral
ventricles.” Both conditions cause a range of impairments in
brain function. Consequently, the concept symmetrical is
commonly found in the CT reports of patients with a poor
functional outcome.

Limitations
This study had some limitations to be addressed. First, although
data-driven prediction approaches have their own merits, the
relationships discovered from our data do not necessarily
indicate causation; therefore, prediction accuracy should never
be interpreted as causal validity [48]. Second, this is a single-site
study, which may limit the generalizability of study results.
Third, although MetaMap was used to extract medical concepts,
this study basically adopted the bag-of-words approach to
represent clinical text. As such, it disregards the order of
concepts and does not capture the contextual dependency
between concepts. Furthermore, different kinds of speculative
expressions, ranging from completely affirmative to completely
nonaffirmative, were found in the clinical text. Even though
negation detection was used, we did not perform factuality
detection. Different types of text representations, such as
contextual word embeddings, may be explored in future
research. Fourth, the terms and phrases used in clinical
documentation may differ across health systems and cultures.
This renders the transferability of the machine learning models
questionable and may entail that each individual health system
has to build its own version of the prediction models and follow
a similar process of model development.

Conclusions
This study demonstrates that by using NLP and machine learning
techniques, unstructured clinical text has the potential to improve
the early prediction of functional outcomes after AIS. Despite
these findings, this does not mean that the machine learning
models developed in this study can be directly deployed at other
stroke centers. We further suggest that each individual health
system develops its own model by applying the proposed
methods to its EHRs.
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SHAP: Shapley additive explanation
XGBoost: extreme gradient boosting
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