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Abstract

Background: Administrative claims databases have been used widely in studies because they have large sample sizes and are
easily available. However, studies using administrative databases lack information on disease severity, so a risk adjustment method
needs to be developed.

Objective: We aimed to develop and validate deep learning–based prediction models for in-hospital mortality of acute care
patients.

Methods: The main model was developed using only administrative claims data (age, sex, diagnoses, and procedures on the
day of admission). We also constructed disease-specific models for acute myocardial infarction, heart failure, stroke, and pneumonia
using common severity indices for these diseases. Using the Japanese Diagnosis Procedure Combination data from July 2010 to
March 2017, we identified 46,665,933 inpatients and divided them into derivation and validation cohorts in a ratio of 95:5. The
main model was developed using a 9-layer deep neural network with 4 hidden dense layers that had 1000 nodes and were fully
connected to adjacent layers. We evaluated model discrimination ability by an area under the receiver operating characteristic
curve (AUC) and calibration ability by calibration plot.

Results: Among the eligible patients, 2,005,035 (4.3%) died. Discrimination and calibration of the models were satisfactory.
The AUC of the main model in the validation cohort was 0.954 (95% CI 0.954-0.955). The main model had higher discrimination
ability than the disease-specific models.

Conclusions: Our deep learning–based model using diagnoses and procedures produced valid predictions of in-hospital mortality.

(JMIR Med Inform 2022;10(2):e27936) doi: 10.2196/27936
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Introduction

Administrative claims databases have been used widely in
clinical and epidemiological studies because they have large

sample sizes and are easily available. However, administrative
data generally lack clinical information [1,2] and do not
distinguish between comorbidities at admission and
complications after admission [3]. Risk adjustment is not
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necessarily feasible in studies that use administrative databases
because of the lack of data on disease severity, and inadequate
risk adjustment can result in confounding by indications.

Various models to predict in-hospital mortality have been
developed using comorbidities recorded in administrative data.
On the basis of these models, risk scores have been created and
used to adjust for disease severity in clinical and epidemiological
studies. However, the validity and usability of these models
remain controversial [1,4-6]. For example, the Charlson
comorbidity index was developed to predict in-hospital
mortality, and is commonly used as a risk adjustment measure
to capture levels of morbidity in studies that use administrative
claims databases. However, this index only uses information
on comorbidities that are recorded in the International Statistical
Classification of Diseases and Related Health Problems, 10th
revision (ICD-10) system [4].

Previous studies showed that additional clinical information
improved the performance of mortality prediction models using
administrative databases. In a previous study, we developed a
procedure-based prediction model using the Japanese Diagnosis
Procedure Combination (DPC) database, a nationwide
administrative claims database [7]. However, these previous
studies used logistic regression models that included only limited
numbers of predictors.

Recent advances in machine learning (including deep learning)
methods have made it possible to handle large amounts of
information and complex models [8,9]. Machine learning
methods allow researchers to input a large number of predictors,
and variable selection is performed automatically. Conversely,
conventional logistic regression requires variable selection based
on the existing knowledge of experts.

Many previous studies have used machine learning to create
disease-specific mortality prediction models (including models
of heart failure [10], stroke [11], and myocardial infarction
[12]), as well as all-patient mortality prediction models [12,13].
Most of these models used electronic health records and test
results [9-13]. However, to collect such data from a wide range
of medical institutions, it is necessary to standardize the
electronic medical records. Furthermore, to use such data for
clinical and epidemiological studies, experts in each disease
area must manually extract information on predictor variables
that are specific to the target disease. These factors make it
difficult to standardize and use electronic medical records in a
nationwide setting.

In this study, we developed and validated a deep learning–based
model for predicting all-patient in-hospital mortality using only
administrative claims data (including diagnoses and procedure
data), which are uniformly formatted and routinely collected in
a nationwide setting. To test the performance of the all-patient
model, we also constructed disease-specific models for
predicting in-hospital mortality of patients with acute myocardial
infarction (AMI), heart failure (HF), stroke, or pneumonia, using
common severity indices for each disease subgroup. Then, we
compared the prediction abilities between the all-patient model
and the disease-specific models for each disease subgroup.

Methods

Data Source
We conducted a retrospective cohort study. The data from July
2010 to March 2017 were collected from the DPC database. All
the patients in the database were included to maximize the
generalizability of the results. During the study period, 1569
hospitals contributed to the database. The patients in the
database represented about 50% of all the acute-care inpatients
in Japan [14].

The following data are included in the DPC database: age, sex,
admission date, discharge date, diagnoses, and procedures
(drugs, examinations, and surgical and nonsurgical treatments)
for each patient. In the DPC database, comorbidities present at
admission are clearly distinguished from complications arising
after admission. All diagnoses were recorded using the
International Statistical Classification of Diseases and Related
Health Problems, 10th revision (ICD-10) codes. Procedure
records were coded with Japanese conventional codes.

The DPC database also includes several severity indices,
namely, the Killip classification for AMI [15,16], New York
Heart Association classification for HF [17], Barthel index score
for activities of daily living at admission [18], Japan Coma Scale
of consciousness level at admission [19]; and age, dehydration,
respiration, orientation, blood pressure (A-DROP), the Japan
Respiratory Society community-acquired pneumonia severity
index [20,21]. The Japan Coma Scale is used widely in Japan
to measure impaired consciousness: a score of 0 indicates alert
consciousness; single-digit scores (1, 2, 3) indicate being awake
without stimuli; double-digit scores (10, 20, 30) indicate patients
can be aroused by some stimuli; and triple-digit scores (100,
200, 300) indicate coma. A-DROP is a system for scoring
severity of pneumonia that includes age (men ≥70 years, women
≥75 years), dehydration (serum urea nitrogen ≥21 mg/dL),
respiratory failure (oxygen saturation by pulse oximetry ≤90%
or PaO2 ≤60 mm Hg), orientation disturbance (confusion), and
low blood pressure (systolic blood pressure ≤90 mm Hg).

Our study was approved by the Ethics Committee of the
University of Tokyo School of Medicine (approval number:
3501-(4)).

Patient Selection
We extracted the data of inpatients who were discharged from
hospitals between July 1, 2010, and March 31, 2017. The study
population was divided randomly into a derivation cohort (95%)
and a validation cohort (5%). For cases with 1-day
hospitalization, the time at which we collected the information
for prediction and the time at which the outcome occurred could
be simultaneous. Because this could lead to an overestimation
of the accuracy of the prediction model, we excluded patients
who were discharged or died on the day of hospitalization from
the validation cohort.

Variables
The outcome variable was in-hospital death. For predictive
variables, we used patients’demographic information (age, sex,
and history of hospitalization in the 180 days before admission),
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all the ICD-10-based diagnoses at admission, and all the
procedures performed on the day of admission. Age was handled
as a continuous variable; the other variables were handled as
dichotomous variables (0 or 1). We also extracted the Killip
classification [15,16], New York Heart Association classification
[17], Barthel index score [18], Japan Coma Scale [19], and the
A-DROP score [20,21] as common severity indices for specific
diseases from the DPC database.

Development of the Main Model
We developed a deep neural network model as the main model
for predicting in-hospital death for all the patients, using 9 layers
with 4 hidden dense layers [22,23]. For this, we used the
patients’ demographic information, all the ICD-10–based
diagnoses at admission, and all the procedures performed on
the day of admission. All the layers had 1000 nodes and were
fully connected to adjacent layers. We used a softmax layer
with 2 nodes as the output layer [24]. Because the numbers of
deceased and alive patients were very different, we weighted
the deceased cases with the reciprocal of the proportion of
deceased cases (ie, 1/0.045=22.3) [23]. We used stochastic
gradient descent to obtain neural network weights iteratively
[25]. To avoid overfitting, 20% drop-out layers were sandwiched
within each of the dense layers and an early stopping procedure
involving learning steps using 3% data in the derivation cohort
was employed [26]. Details of the weight optimization process
are described in Multimedia Appendix 1.

Development of the Disease-Specific Models
We constructed disease-specific models for predicting
in-hospital mortality in subgroups with AMI, HF, stoke, or
pneumonia. The 4 models included patient backgrounds (age,
sex, and history of hospitalization in the 180 days before
admission) and diagnoses, and none of the models included
procedures. For the AMI-specific model, we selected patients
with AMI and included the Killip classification [15,16]. For the
HF-specific model, we selected patients with HF and included
the New York Heart Association classification [17]. For the
stroke-specific model, we selected patients with stroke and
included the Barthel index and the Japan Coma Scale at
admission [18,19]. For the pneumonia-specific model, we
selected patients with pneumonia and included the A-DROP
score [20,21].

Comparing Prediction Abilities Between the Main
Model and the Disease-Specific Models
We applied the main model to the subgroups of patients with
AMI, HF, stoke, and pneumonia and compared its prediction
performance with the prediction performances of the
disease-specific models for AMI, HF, stoke, and pneumonia.

We evaluated the performance of each model by calculating
performance measures in the validation cohort. Performance
measures included the area under the receiver operating
characteristic curve (AUC), used to determine the discriminatory
ability of the model. We calculated the 95% CI of the AUC
using the DeLong method [27] and plotted a calibration curve
to determine goodness of fit. We also calculated sensitivity,
specificity, and positive and negative predictive values at the
threshold determined by the Youden Index method [28]. We
obtained CIs for all the indices with 2000 bootstraps.

We also examined whether the risk scores calculated by the
disease-specific models improved the discrimination ability of
the risk scores calculated by the main model. We incorporated
the risk scores calculated by the main and disease-specific
models into predictor variables of a logistic regression model
and calculated combined risk scores that predicted in-hospital
mortality for each disease population. The discrimination ability
of the combined risk score was evaluated by its AUC and
compared with the AUC of the main model. CIs for the AUC
and hypothesis testing for the difference between the main model
risk score and combined risk score were calculated using the
DeLong method.

Results

We obtained the data for 46,665,942 patients during the study
period from the DPC database and divided them into derivation
(n=44,334,477) and validation (n=2,331,465) cohorts. We
excluded patients from the validation cohort according to the
exclusion criteria, which left 2,277,968 patients in the validation
cohort (Figure 1).

The characteristics of the derivation and validation cohorts are
shown in Table 1. The average lengths of stay were 14.2 days
and 14.5 days and in-hospital mortality was 4.3% and 3.7% in
the derivation and validation cohorts, respectively. Patients in
the validation cohort were slightly older and had more
comorbidities than those in the derivation cohort.

The structure of the main model is shown in Table 2. There
were 49,297 predictor variables, including 3 variables on patient
demographics and history (age, sex, history of hospitalization
in the 180 days before admission), 19,930 diagnoses at
admission, and 29,364 procedures (drugs, examinations, surgical
and nonsurgical treatments). Overall, 52,302,002 weights
(=49,297 × 1000 + 1001 × 1000 + 1001 × 1000 + 1001 × 1000
+ 1001 × 2) of links between the layers were optimized in the
derivation. The script for the deep learning model including
model weights is available on our website [29].
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Figure 1. Numbers of patients in the derivation and validation cohorts and disease-specific subgroups. AMI: acute myocardial infarction, HF: heart
failure.

Table 1. Characteristics of the patients in the derivation and validation cohorts.

P valueValidation cohort (n=2,277,968)Derivation cohort (n=44,334,477)Characteristic

<.00183,292 (3.7)1,905,286 (4.3)Death, n (%)

<.00114.5 (24.2)14.2 (24.1)Length of hospital stay (days), mean (SD)

<.00160.4 (24.2)60.1 (24.4)Age (years), mean (SD)

.071,207,886 (53.0)23,480,628 (53.0)Sex (male), n (%)

.07632,362 (27.8)12,282,386 (27.7)History of hospitalization within 180 days, n (%)

<.001Charlson comorbidity index, n (%)

1,465,779 (64.3)28,734,890 (64.8)0-1

594,500 (26.1)11,432,403 (25.8)2-3

217,605 (9.6)4,165,579 (9.4)≥4
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Table 2. Structure of the main model.

Weights, nOutput (nodes)Input (nodes)Layer

49,297,000100049,2971: Input

N/AN/AN/Aa2: Drop-out

1,001,000100010013: Hidden 1

N/AN/AN/A4: Drop-out

1,001,000100010015: Hidden 2

N/AN/AN/A6: Drop-out

1,001,000100010017: Hidden 3

N/AN/AN/A8: Drop-out

2002210019: Output

52,302,002N/AN/ASum of weights

aN/A: not applicable.

An overview of the main and disease-specific models used in
this study is given in Table 3. The total number of weights was
calculated as follows: total number of weights = the number of
input nodes × 1000 + 1001 × 1000 + 1001 × 1000 + 1001 ×
1000 + 1001 × 2.

The AUC of the main model in the validation cohort was 0.954
(95% CI 0.9537-0.9547). The sensitivity, specificity, and
positive and negative predictive values at the cutoff point
(0.0435) determined by the Youden index method of the main
model were 0.920 (95% CI 0.915-0.924), 0.855 (95% CI
0.852-0.860), 0.195 (95% CI 0.192-0.199), and 0.996 (95% CI
0.996-0.997), respectively (Table 4).

The calibration curves of the observed and estimated mortality
in the validation cohort are shown in Figure 2. Observed and
estimated mortality were strongly correlated, but the estimated
mortality was slightly lower than the observed mortality.

The AUCs and other prediction metrics of the main and
disease-specific models are shown in Table 4. The AUCs of the
main model for the AMI, HF, stroke, and pneumonia subgroups
were 0.944, 0.832, 0.921, and 0.918, respectively. The AUCs
of the disease-specific models for the AMI, HF, stroke, and
pneumonia subgroups were 0.876, 0.745, 0.894, and 0.863,
respectively. The main model showed significantly higher
discriminant ability than the disease-specific models for all 4
subgroups.

Table 3. Summary of the main and disease-specific models.

Weights, NInput (nodes)Model

52,302,00249,297Main model

3,014,0029Acute myocardial infarction model

3,059,00254Stroke model

3,014,0029Heart failure model

3,014,0029Pneumonia model
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Table 4. Performances of the main and disease-specific models.

NPVc (95% CI)PPVb (95% CI)Specificity (95% CI)Sensitivity (95% CI)ThresholdAUCa (95% CI)

Validation cohort (n=2,331,465)

0.996 (0.996-
0.997)

0.195 (0.192-
0.199)

0.855 (0.852-0.860)0.920 (0.915-0.924)0.04350.954 (0.954-0.955)Main model

Acute myocardial infarction (n=14,213)

0.990 (0.988-
0.995)

0.334 (0.264-
0.363)

0.862 (0.796-0.881)0.888 (0.864-0.947)0.0870.944 (0.938-0.950)Main model

0.984 (0.981-
0.988)

0.233 (0.210-
0.257)

0.783 (0.745-0.817)0.837 (0.797-0.877)0.0870.876 (0.866-0.887)Disease-specific model

Heart failure (n=43,792)

0.970 (0.965-
0.973)

0.220 (0.205-
0.245)

0.719 (0.678-0.771)0.782 (0.729-0.813)0.1180.831 (0.825-0.837)Main model

0.958 (0.954-
0.961)

0.172 (0.166-
0.184)

0.642 (0.613-0.688)0.727 (0.678-0.754)0.0970.745 (0.738-0.753)Disease-specific model

Stroke (n=82,454)

0.988 (0.987-
0.991)

0.267 (0.234-
0.279)

0.824 (0.781-0.837)0.863 (0.847-0.901)0.0910.921 (0.918-0.925)Main model

0.984 (0.983-
0.985)

0.235 (0.229-
0.249)

0.800 (0.793-0.818)0.824 (0.805-0.836)0.0800.894 (0.890-0.898)Disease-specific model

Pneumonia (n=87,775)

0.993 (0.991-
0.994)

0.209 (0.204-
0.219)

0.769 (0.762-0.786)0.913 (0.896-0.925)0.0750.918 (0.915-0.920)Main model

0.986 (0.983-
0.991)

0.160 (0.143-
0.173)

0.705 (0.638-0.744)0.851 (0.809-0.913)0.0640.863 (0.859-0.867)Disease-specific model

aAUC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
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Figure 2. Calibration curves for the observed and estimated mortality in the validation cohort with the main model. X-axis indicates predicted mortality
and Y-axis indicates actual mortality.

The discriminatory ability of the combined risk scores and the
risk scores calculated by the main model are shown in Table 5.
All combined risk scores except the one for AMI had
significantly higher AUCs than the main model risk scores.
However, the differences between the main model risk scores
and the combined risk scores were small.

The calibration curves for the main and disease-specific models
for the subgroups are shown in Figure 3. The correlations

between the observed and estimated mortality were better with
the main model than with the disease-specific models for the
AMI, HF, and stroke subgroups (Figure 3A-C). For the
pneumonia subgroup, the correlations were similar between the
main and disease-specific models when the predicted mortality
was ≤0.8. However, the disease-specific model failed to estimate
mortality well when the predicted mortality was ≥0.8 (Figure
3D).

Table 5. Comparison of the discriminatory ability of the combined risk scores and the risk scores calculated by the main model.

P valueCombined risk score AUC (95% CI)Main model AUCa (95% CI)

.230.945 (0.939-0.951)0.944 (0.938-0.950)Acute myocardial infarction

<.0010.838 (0.832-0.844)0.831 (0.825-0.837)Heart failure

<.0010.927 (0.924-0.930)0.921 (0.918-0.925)Stroke

<.0010.921 (0.918-0.924)0.918 (0.915-0.920)Pneumonia

aAUC: area under the receiver operating characteristic curve.
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Figure 3. Calibration curves for the observed and estimated mortality in the validation cohort with the disease-specific models. Models for (A) acute
myocardial infarction, (B) heart failure, (C) stroke, and (D) pneumonia. X-axis: predicted mortality. Y-axis: actual mortality. Solid line: main model.
Dotted line: disease-specific models.

Discussion

Principal Findings
We constructed deep leaning–based prediction models for
in-hospital mortality using a large Japanese inpatient database.
Patient backgrounds, diagnoses, and treatments on the first day
of admission were entered into the models. The overall
discriminant abilities of the models were high in subgroups of
patients with AMI, HF, stroke, and pneumonia. The main model
had better discriminant abilities than disease-specific models
using common severity indices. We integrated the risk scores
for the main and disease-specific models and calculated
combined risk scores. However, the improvement in the
predictive performance of the combined risk scores over that
of the main model risk scores was only slight.

Risk scores derived from administrative claims databases have
been developed previously. For example, the Charlson and
Elixhauser models, which use comorbidity information to predict
long-term survival, have been used for risk adjustment in clinical
and epidemiological studies [30,31]. In this study, a new
prediction model for in-hospital mortality developed using
administrative claims data showed high discriminatory power
(AUC=0.945). We believe that our model can also be used for
risk adjustment in clinical and epidemiological studies using
administrative claims data that includes diagnoses and
procedures.

In a previous study, we constructed a prediction model for
in-hospital mortality that incorporated comorbidities and several
selected procedures (blood tests, radiography, echocardiogram)
on the day of admission [7]. However, that model lacked
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generalizability; for example, it was not applicable to critically
ill patients. The newly constructed model can be used for risk
prediction and adjustment for patients with a wide range of
disease severity.

In a previous study, the predictive abilities of models with
administrative claims data alone were compared with those of
models with electronic medical records combined with
administrative claims data [32]. The predictive abilities of the
models with electronic medical records were higher because
the electronic medical records included detailed information
related to each patient, such as blood test results, vital signs,
and admission data collected during the first 2 days of the index
admission.

In this study, a deep learning model that used only massive
administrative data had higher predictive ability than models
that used disease-specific severity information. On the basis of
our results, we consider that large-scale administrative data can
be used to predict in-hospital mortality more accurately than
the generally used severity indices. Kharrazi et al [33] reported
that obtaining information from both administrative data and
electronic health records increased the prediction accuracy of
their model compared with using each data source alone. Zeltzer
et al [32] found that feeding the electronic health record
information collected during hospitalization, in addition to the
administrative data and pre-hospitalization electronic health
record information, into their model resulted in more accurate
mortality risk assessment. Rajkomar et al [9] predicted
in-hospital mortality with the same level of accuracy as we
achieved in this study by using information from structured
electronic health records. We also found that a combined risk
score, obtained by integrating the main model with a
disease-specific model, showed higher prediction accuracy than
the risk score obtained from the main model. However, in this
study, the difference between the main model and the combined
risk score was small, and there was no significant difference
between the two risk scores for AMI. This indicates that the

main model was able to construct a risk score comparable to
the combined risk score even without disease-specific severity
information. Therefore, we propose that patient outcome studies
can be conducted using administrative data alone, such as the
initial hospitalization process and diagnosis, without the need
for data on disease severity.

It is not easy to collect electronic health record information in
a standardized way and use it for research. We believe that the
results of this study can be used in cases where it is not possible
to obtain detailed clinical information, such as disease severity
and vital signs, that would be included in an electronic health
record.

Limitations
This study has several limitations. First, we did not conduct an
external validation. Second, we did not use a variety of machine
learning methods (eg, random forest, lasso regression, XGBoost,
and their ensembles), so we could not compare the prediction
performance of other machine learning methods. Third, because
the database used in this study is for acute hospitalization, we
could not obtain data on long-term outcomes. Fourth, model
accuracy is not always guaranteed for all diseases, so the
applicability of the model to other populations needs to be
considered.

Conclusion
In conclusion, we constructed a deep neural network model to
predict in-hospital mortality using all the data on diagnoses and
procedures performed on the day of admission in a Japanese
administrative claims database. Our model using only
administrative claims data showed higher prediction ability than
our models using the more generally used severity indices. We
propose that prognostic models using data on diagnoses and
procedures obtained only from administrative claims databases
can predict in-hospital mortality and can be used for risk
adjustment in clinical and epidemiological studies.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Model weight optimization process details.
[PDF File (Adobe PDF File), 50 KB-Multimedia Appendix 1]
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