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Abstract

Background: Under the paradigm of precision medicine (PM), patients with the same disease can receive different personalized
therapies according to their clinical and genetic features. These therapies are determined by the totality of all available clinical
evidence, including results from case reports, clinical trials, and systematic reviews. However, it is increasingly difficult for
physicians to find such evidence from scientific publications, whose size is growing at an unprecedented pace.

Objective: In this work, we propose the PM-Search system to facilitate the retrieval of clinical literature that contains critical
evidence for or against giving specific therapies to certain cancer patients.

Methods: The PM-Search system combines a baseline retriever that selects document candidates at a large scale and an evidence
reranker that finely reorders the candidates based on their evidence quality. The baseline retriever uses query expansion and
keyword matching with the ElasticSearch retrieval engine, and the evidence reranker fits pretrained language models to expert
annotations that are derived from an active learning strategy.

Results: The PM-Search system achieved the best performance in the retrieval of high-quality clinical evidence at the Text
Retrieval Conference PM Track 2020, outperforming the second-ranking systems by large margins (0.4780 vs 0.4238 for standard
normalized discounted cumulative gain at rank 30 and 0.4519 vs 0.4193 for exponential normalized discounted cumulative gain
at rank 30).

Conclusions: We present PM-Search, a state-of-the-art search engine to assist the practicing of evidence-based PM. PM-Search
uses a novel Bidirectional Encoder Representations from Transformers for Biomedical Text Mining–based active learning strategy
that models evidence quality and improves the model performance. Our analyses show that evidence quality is a distinct aspect
from general relevance, and specific modeling of evidence quality beyond general relevance is required for a PM search engine.

(JMIR Med Inform 2022;10(12):e40743) doi: 10.2196/40743
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Introduction

Traditionally, patients with the same diseases are treated with
the same therapies. However, the treatment effects can be highly
heterogeneous, that is, the benefits and risks may differ
substantially among patient subgroups [1]. The precision

medicine (PM) research initiative [2] takes into account
individual differences in people’s genes, environments, and
lifestyles when tailoring their treatment and prevention
strategies. Under the ideal paradigm of PM, patients of the same
diseases are divided into several subgroups, and different patient
subgroups receive different treatments that are the most suitable
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for them. PM is now widely applied in oncology, since
sequencing techniques can identify considerable genetic
variations in patients with cancer. For example, patients with
non–small cell lung cancer with epidermal growth factor
receptor gene mutations are sensitive to gefitinib therapy [3],
and patients with breast cancer who have human epidermal
growth factor receptor 2 mutations are sensitive to trastuzumab
therapy [4].

PM practices should be guided by the principles of
evidence-based medicine [5], where treatments are based on
high-quality clinical evidence, such as systematic reviews and
randomized controlled trials, instead of individual experiences.
However, as the number of scientific publications is growing
rapidly (eg, about 2700 articles are added to PubMed each day
in 2019), it is difficult for physicians to find clinical evidence
in the literature that supports or reject specific treatment options
for certain patients. Information retrieval (IR) is aimed at
automatically finding relevant documents for users’ queries. IR
has been successfully applied to the general consumer and
biomedical research domain with search engines such as Google
and PubMed. However, most current search engines cannot
process PM queries that contain structured information about
patients and therapies and neither do they rank the documents
based on their significance as clinical evidence.

To facilitate IR research for PM, the Text Retrieval Conference
(TREC) holds the PM Track annually since 2017. From 2017
to 2019, the TREC PM focused on finding relevant academic
papers or clinical trials of patient topics specified by their
demographics, diseases, and gene mutations [6-8]. In 2020, the
TREC PM focus was changed to retrieve academic papers that
report critical clinical evidence for or against a given treatment
in a population specified by its disease and gene mutation [9].
Both supporting and opposing clinical evidence are important,
because they provide valuable guidance to clinical decision
making regarding whether or not to use the treatment. To assist
the practices of PM, such as in the case of the TREC PM task,
the most vital property of a retriever is to rank the relevant
papers by their evidence quality, that is, to what extent they can
assist clinical decision-making. The objective of this work was
to develop a retrieval model that can rank relevant papers by
their evidence quality to a given PM topic.

Traditional IR systems are mostly based on term
frequency–inverse document frequency and its derivatives that
basically rank the documents by their bag-of-word similarities
with the input query. However, biomedical concepts are often
referred to by various synonyms, and multiple studies have
shown the importance of expanding query concepts to their
synonyms before sending them to IR systems [10-12]. To further
model for domain-specific relevance, such as evidence quality
in our case, rerankers are often added to finely rerank the
candidates returned by retrieval systems. However, such
rerankers are typically based on deep learning, and training
them requires a large number of labeled instances [13], which
are prohibitively expensive to collect in the biomedical domain.
Recent large-scale pretrained language models such as
Embeddings from Language Models [14] and Bidirectional
Encoder Representations from Transformers (BERT) [15] show
significant performance improvement over several natural

language processing benchmarks such as General Language
Understanding Evaluation [16]. BERT is basically a transformer
[17] encoder that is pretrained to predict a randomly masked
token in the original input. BERT can be effectively used to
rank documents given a specific query [18].

In this work, we propose the PM-Search model that tackles the
aforementioned problems of traditional search engines to assist
the practice of PM. The PM-Search system has two main
components: (1) a baseline retriever using query expansion and
keyword matching with the ElasticSearch engine; and (2) an
evidence reranker that ranks the initial documents returned by
ElasticSearch based on their evidence quality. The reranking
uses article features as well as pretrained language models under
an expert-in-the-loop active learning strategy, where a
biomedical language model BERT for Biomedical Text Mining
(BioBERT) [19] is fine-tuned interactively with the experts.
Our models participated in the TREC PM 2020 as the
ALIBABA team and ranked the highest in the evidence quality
assessment: PM-Search achieved standard normalized
discounted cumulative gain (NDCG) at rank 30 (NDCG@30)
of 47.80% and exponential NDCG@30 of 45.19%,
outperforming the second-ranking system by large margins.

In summary, our contributions of this work are three-fold:

1. We present PM-Search, which is an integrated IR system
specifically designed to assist precision medicine.
PM-Search achieved state-of-the-art performance in the
TREC PM Track.

2. We used an expert-in-the-loop active learning strategy based
on BioBERT to efficiently derive annotations and improve
model performance. To the best of our knowledge, this is
the first precision medicine search engine that combines
active learning and pretrained language models.

3. We thoroughly analyzed the importance of each system
feature with a full set of ablation studies, where we found
that the most important features included publication types
and active learning. We hope the experiments can provide
some insights into the potential future directions of PM
search engines.

Methods

Data and Materials
The TREC 2020 PM Track provided 40 topics for evaluation.
Each topic represented a PM query that contains three key
elements of a specific patient population: (1) the disease, that
is, the type of cancer; (2) the genetic variant, that is, the gene
mutation; and (3) the tentative treatment. The topics were
synthetically generated by biomedical experts and several
examples are shown in (Table 1). The task used the 2019
PubMed baseline as the official corpus, which contains over 29
million biomedical citations. Each citation is composed of the
title, authors, abstract, etc, of the article. For each topic, we
denoted its disease as , the genetic variant as and the treatment
as . The returned articles were denoted as . Each retrieval result
was a query-article pair that contained , , and . We also used
the publication type and citation count information extracted in
PubMed as additional data sources.
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The evaluation of the task followed standard TREC procedures
of ad hoc retrieval, where participants submitted a maximum
number of 1000 ranked articles and up to 5 different runs for
each topic. The assessments were divided into 2 phases, where
phase 1 was “Relevance Assessment,” judging the relevance of
each article, and phase 2 was “Evidence Assessment,” judging
the evidence quality provided by the article.

Phase 1 assessment was a general IR assessment that only
considered relevance, where the assessors first judged whether
the returned article a is generally related to PM. For the PM
papers, the assessors then assessed whether the d, g, and t were
exact, partially matching, or missing in a. Finally, the results
were classified as “Definitely Relevant,” “Partially Relevant,”
or “Not Relevant” based on a predefined rules of how the d, g,
and t matched. The evaluation metrics used in phase 1 include
precision at rank 10 (P@10), inferred NDCG (infNDCG), and
R-precision (R-prec). P@10 and R-prec are precisions at
different ranks:

where is the number of relevant articles for the query. NDCG
is computed by:

where

reli is the relevance score of article i and |RELn| denotes the
number of relevant articles ordered by the relevance up to
position n. Since not all submitted articles would be judged by
the organizers, there cannot be an exact value of NDCG. To
deal with this issue, a sample set of all articles in the top 30
ranks and a 25% sample of articles in ranks 31-100 was used
to compute the NDCG, that is, infNDCG.

In the phase 2 assessment, the assessors scored the relevant
papers from the phase 1 assessment using a 5-point scale. For
example, the tier 4 results should be “randomized controlled
trial with >200 patients and single drug, or meta-analysis” and
tier 0 should be “Not Relevant” for topic 16. The scale was
tailored for each topic to adjust for the differences in the disease,
genetic variant, and treatment. The main evaluation metric for
phase 2 assessment was NDCG@30. NDCG values at this phase
are exact since all articles in the top 30 ranks are judged. Two
sets of relevance values were used to compute NDCG, the
standard gains (std-gains) and the exponential gains (exp-gains).
Standard gains have scores (ie, reli) of 0, 1, 2, 3, and 4
corresponding to the 5 tiers, whereas exponential gains have
scores of 0, 1, 2, 4, and 8 corresponding to 5 tiers.

Table 1. Examples of the Text Retrieval Conference Precision Medicine 2020 topics.

TreatmentGeneDiseaseTopic

RegorafenibABL proto-oncogene 1Colorectal cancer1

AbemaciclibCyclin dependent kinase 4Breast cancer11

LenvatinibFibroblast growth factor receptor 2Differentiated thyroid carcinoma21

SorafenibNeurotrophic receptor tyrosine kinase 2Hepatocellular carcinoma31

PM-Search Overview
As shown in (Figure 1), PM-Search uses a 2-step approach to
retrieve relevant articles for each given PM topic: (1) a baseline
retriever that is fast and scalable, generating a relatively small
number (eg, thousands) of candidates out of millions of PubMed
articles—the baseline retriever is based on ElasticSearch

(reference) where the original queries are expanded by a list of
weighted synonyms; and (2) an evidence reranker that finely
reranks the retrieved documents based on their evidence
quality—the evidence reranker combines the predictions from
a BioBERT fine-tuned by an expert-in-the-loop active learning
strategy and a feature-based linear regressor.
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Figure 1. The architecture of PM-Search. EBM: evidence-based medicine; PM: Precision Medicine.

Baseline Retriever
We indexed the titles and abstracts of all articles from the
PubMed 2019 baseline provided by the TREC organizers using
ElasticSearch, a Lucene-based search engine. The synonyms
of the disease d and gene variant g were found via the National
Library of Medicine’s web application programming interface
in MedlinePlus [20,21]. We denoted the retrieved synonyms of
d and g as {d1, d2, ... , dm} and {g1, g2, ... , gm}, where d1 = d
and g1 = g. We did not expand the treatment because the
provided term either had no synonym or was used in almost all
articles.

For each synonym d1 and g1, we counted their document
frequency df(di) and df(gi) in the baseline corpus and calculated
the weights of each synonym used in ElasticSearch:

where

We used the normalized document frequency to lower the ranks
of rare terms.

We performed the retrieval in ElasticSearch, which ranks the
documents based on their word-level relevance with the input
query using the Okapi BM25 algorithm [22]. At the highest
level, we queried the ElasticSearch indices using a Boolean
query that must match the disease and treatment query and
should match the gene query. The disease, treatment, and gene
queries were all dis_max queries composed of their synonyms
with the weights as boost factors. The tie_breaker was set to
0.8 and the title field had a 3.0 boost factor, whereas that of the
abstract field was 1.0. In addition, the Boolean query should
match a list of keywords, including words such as “trial” and
“patient” that are chosen empirically to serve as a weak classifier
for evidence-based PM papers.

TREC PM allowed a maximum number of 1000 documents per
topic in the submission. We set the maximum number of
retrieved documents for each topic as 10,000. On average, we
retrieved 1589 candidates from the baseline retriever for each
topic.

Evidence Reranker

Overview
The Evidence Re-ranker scores a given candidate article a based
on its evidence quality for the query q by:

where ri is the output score, which is a weighted sum of: (1) a
linear regressor (LR) using the features of the ElasticSearch
score (es), pretrained BioBERT (pb), publication type (ty), and
citation count (ct); and (2) a fine-tuned BioBERT (FB). wLR

and wFB are the corresponding weights of the LR and FB. The
FB is trained by the expert-in-the-loop active learning strategy,
and the LR is trained by expert annotations.

Expert-in-the-Loop BioBERT
BioBERT [19] is a biomedical version of BERT that is trained
on PubMed abstracts and PubMed Central articles. BioBERT
achieves state-of-the-art performance on several biomedical
natural language processing tasks. We followed the same setting
as Nogueira et al [18] to use BioBERT in this task: to predict
the evidence quality of a candidate article a for the query q, we
first feed the concatenated q and a to the BioBERT, getting the
pair representation h:

where q is the concatenated disease d, gene variant g, and
treatment t in the query; a is the concatenated title and abstract
of the article; and [SEP] is a special token in BERT to mark the
input segments. A sigmoid layer is applied to the [CLS]

representation h to predict the evidence quality :
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where σ denotes the sigmoid function, w and b are the layer
weights. During fine-tuning, we minimized the mean square

loss between the predicted evidence quality and the
expert-labeled score r. BioBERT fine-tuning is implemented
using Huggingface’s transformers Python package [23]. We

use the Adam optimizer [24] with a learning rate of 4 × 10-5,
batch size of 16, and fine-tuning epoch number of 10 in each
iteration.

We show the expert-in-the-loop active learning procedure in
(Figure 2). At each iteration, a biomedical expert (senior MD
candidate) annotates the evidence quality of the highest-ranked
unannotated document for the given query based on the criteria
shown in (Figure 3). This is similar to the top-1 active feedback

setting described in Shen and Zhai [25]. Subsequently, we
fine-tuned the original BioBERT with all available annotations
at this iteration (ie, the newly annotated instances plus all
available annotations from the last iteration) and then used the
fine-tuned BioBERT to update the predictions for all documents,
leading to the new document rankings. Again, the new document
rankings were sent to the expert for annotations. We performed
22 iterations of the expert-in-the-loop active learning, where in
most iterations, 40 new annotations were added (1 for each
topic), resulting in 950 annotations in total. We also randomly
sampled 100 topic-article pairs to be annotated by another
medical doctor. The Pearson correlation was 0.853 between the
annotation scores of 2 annotators, indicating a high level of
interannotator agreement.

Figure 2. The architecture of our expert-in-the-loop active learning strategy. BioBERT: Bidirectional Encoder Representations from Transformers for
Biomedical Text Mining; Y: yes; N: no.

Figure 3. The expert annotation pipeline.
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Linear Regressor
We used the expert annotations to train a simple linear
regression model using the following features:

1. es: the relevance scores returned by the ElasticSearch;
2. pb: the relevance scores predicted by a pretrained BioBERT.

We used the annotations from the previous TREC PM
challenges to fine-tune the BioBERT. Specifically, we
collected 54,500 topic-document relevance annotations
from the qrel files of TREC PM 2017-2019, where the
queries contained disease, gene variant, and demographics
information but not the treatment option. To ensure
consistency, we only used the disease and gene variant
fields of the queries as input and fine-tuned the BioBERT
to predict their normalized relevance in the annotations.
We denoted this as “pretrained” BioBERT since the training

data were formatted differently from the data of TREC PM
2020;

3. ty: the publication type score. PubMed also indexes each
article with a publication type, such as journal article,
review, clinical trials, etc. We manually rated the score of
each publication type based on the judgments of their
evidence quality. Our publication type and score mapping
is shown in Table 2;

4. ct: the citation count score. We ranked the citation count
of all PubMed articles and used the quantile of a specific
article’s citation count as a feature. Similar to but simpler
than PageRank [26], this feature was designed to reflect
the community-level importance of each article.

The linear regression was implemented using the sklearn Python
package, which basically minimizes the residual sum of squares
between the expert annotations and the predictions from the
linear approximation.

Table 2. Mappings between publication types and clinical evidence quality scores.

ScorePublication type

–1Comment

–1Editorial

–2Published erratum

–2Retraction of publication

0English abstract

0Journal article

0Letter

0Review

1Case reports

1Observational study

2Clinical trial

2Meta-analysis

2Systematic review

Experiment Settings
We compared our PM-Search submissions to TREC PM 2020
with models submitted by other teams. We used 5 settings in
the challenge, namely PM-Search-auto-1, PM-Search-auto-2,
PM-Search-full-1, PM-Search-full-2, and PM-Search-full-3.
They use different rerankers to rank the same set of documents
retrieved by the baseline retriever. PM-Search-full-1,
PM-Search-full-2, and PM-Search-full-3 use the evidence
reranker. They use the full PM-Search architecture with different
combining weights in the evidence reranker.

We also used the PM-Search-auto-1 and PM-Search-auto-2
settings that do not use the expert-in-the-loop active learning
strategy. Since these settings do not rely on expert annotations,

they are considered as the “automatic” runs by the TREC
challenge. Specifically, the reranking scores of article a for a
given query in PM-Search-auto-1 and PM-Search-auto-2 are
calculated as a weighted sum of the LR features:

where esa, pba, tya, cta are the features of document a; esmax,
pbmax, tymax, ctmax are the corresponding maximum feature
values among all documents; and wes, wpb, wty, and wct are the
weights associated with different features and are determined
empirically. The feature weights of the submitted systems are
shown in Table 3.
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Table 3. Feature weights in different systems. Participant denotes the system name submitted to the Text Retrieval Conference (TREC) Precision
Medicine (PM).

w FB
fw LR

ew ct
dw ty

cw pb
bw es

a
TREC run IdSystem

PM-Search runs

——g0.01.50.51.0damoespb1PM-Search-auto-1

——0.01.00.51.0damoespb2PM-Search-auto-2

1.01.0–0.005–0.617–0.141–0.465damoespcbh1PM-Search-full-1

2.01.0–0.005–0.617–0.141–0.465damoespcbh2PM-Search-full-2

5.01.0–0.005–0.617–0.141–0.465damoespcbh3PM-Search-full-3

Ablations

——0.00.01.01.0N/AhRetriever + pb

——0.01.00.01.0N/ARetriever + ty

——1.00.00.01.0N/ARetriever + ct

0.01.0–0.005–0.617–0.141–0.465N/ALR

1.00.0–0.005–0.617–0.141–0.465N/AFB

aes: ElasticSearch score.
bpb: pretrained BioBERT.
cty: publication type.
dct: citation count.
eLR: linear regressor.
fFB: fine-tuned BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining).
gNot available.
hN/A: not applicable.

Results

Main Results
The main results of our participating systems in the TREC PM
2020, compared with the other top-ranking systems, are shown
in Table 4 [9].
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Table 4. Topic-wise averaged performance of different settings in the evaluation. All numbers are percentages. Other top-ranking Text Retrieval
Conference (TREC) submissions listed in the table include the systems of BIT.UA [27], CSIROMed [28], and h2oloo [29].

General relevance (phase 1)Evidence quality (phase 2)

R-precdP@10cinfNDCGbNDCG@30, standardNDCG@30a, exponen-
tial

All TREC runs

43.58 [28]56.45 [28]53.25[27]47.80 (ours)45.19 (ours)First

42.07 [27]55.16 [27]53.03 [28]42.38* [29]41.93* [29]Second

32.5946.4543.1625.2928.57Median

PM-Search runs

34.7247.4244.2447.8045.19PM-Search-full-3

34.1047.4243.0447.3044.97PM-Search-full-1

34.1447.1043.8447.4644.95PM-Search-full-2

35.9347.4245.3344.17*42.55PM-Search-auto-1

32.3744.5241.1244.60*42.54PM-Search-auto-2

Ablations

41.2153.8752.2637.04*32.36*Retriever + pbe

29.3740.3237.8043.26*41.46*Retriever + tyf

32.5244.8442.2038.40*35.55*Retriever + ctg

30.7446.1337.6544.86*42.86*Linear regressor

30.5846.4537.0643.81*42.08*Linear regressor, leave-one-out

34.8747.4244.5947.01*44.40*Fine-tuned BioBERTh

33.81*46.45*43.83*46.58*44.15*Fine-tuned BioBERT, leave-one-out

aNDCG@30: normalized discounted cumulative gain NDCG at rank 30.
binfNDCG: inferred NDCG.
cP@10: precision at rank 10.
dR-prec: R-precision.
epb: pretrained BioBERT.
fty: publication type.
gct: citation count.
hBioBERT: Bidirectional Encoder Representations from Transformers for Biomedical Text Mining.
*Significant differences from the PM-Search-full-3. Significance is defined as P<.05 in 2-sided paired t test.

General Relevance (Phase 1)
Our submissions scored higher than the topic-wise median
submission, but the best submission (infNDCG: 0.5325, P@10:
0.5645, R-prec: 0.4358) outperformed our submissions
(infNDCG: 0.4533, P@10: 0.4742, R-prec: 0.3593). Our
PM-Search runs (PM-Search-full-1 to 3; ie, PM-Search) showed
no significant improvements over the runs without active
learning (PM-Search-auto-1 and 2). It is not surprising, since
we focused on modeling evidence quality, and articles that are
highly related to the queries but are of low evidence quality (eg,
narrative reviews) will be ranked lower. As a result, our
submissions performed only moderately in the phase 1
assessment that mainly judges the general relevance.

Evidence Quality (Phase 2)
Our PM-Search system PM-Search-full-3 achieved the highest
scores for standard gain NDCG@30 of 0.4780 and exponential

gain NDCG@30 of 0.4519. As expected, the PM-Search-full
settings outperform the PM-Search-auto settings that only use
the features (0.4503 vs 0.4255 for averaged exponential
NDCG@30). This shows that our expert annotation procedure
as well as the expert-in-the-loop active learning strategy can
improve the performance of evidence quality ranking.
Remarkably, all our settings outperform the second-best system
(0.4238 for standard NDCG@30 and 0.4193 for exponential
NDCG@30) [29], including the PM-Search-auto settings that
do not rely on expert annotations (exponential NDCG@30:
0.4255). The results show that the proposed PM-Search system
is a robust evidence retriever that can be potentially applied to
assist the practice of PM.

Ablations and Feature Importance
We also experimented with different settings and studied the
importance of PM-Search components, including the baseline
retriever, active learning, and the reranking features.
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Baseline Retriever Settings
In Table 5, we show the performance of the baseline retriever
without query expansion or keyword matching. The results
show that query expansion is an important module to improve
the recall of relevant articles. However, we find that boosting
keywords such as “trial” and “patient” do not significantly

change the performance. This is inconsistent with the study of
Faessler et al [10], which shows that boosting a range of
keywords helps improve the performance. One key difference
between our system and Faessler et al [10] is that we only use
2 positive keywords, whereas they use various positive and
negative keywords, so increasing the number and diversity of
keywords could be a future work for improvements.

Table 5. Ablation results of different baseline retriever settings (in percentages).

General relevance (phase 1)Evidence quality (phase 2)Method

R@10kR@1kR@0.5kR@10kcR@1kbR@0.5ka

77.7172.3065.5181.0075.9668.99Baseline retriever

72.90*67.21*61.85*76.94*72.61*66.84*Baseline retriever without query expansion

77.7172.3365.6581.0076.0668.85Baseline retriever without keyword matching

aR@0.5k: recall at the top 500 positions.
bR@1k: recall at the top 1000 positions.
cR@10k: recall at the top 10,000 positions.
*Significant differences than the original retrieval. Significance is defined as P<.05 in 2-sided paired t test.

Active Learning
In Figure 4, we show the performance of the BioBERT
predictions at each iteration in active learning, evaluated with
infNDCG@30 by the evidence quality (phase 2) assessments.
The performance increases with the iteration when the number

of annotations is less than 500 and then converges after the
number of annotations is greater than 500. Interestingly, we
find that the average annotated relevance by our annotator also
reaches its maximum at around 500 annotations, which indicates
that this metric can be empirically used as the stop criterion.

Figure 4. InfNDCG@30 and average annotated relevance at each iteration in active learning. InfNDCG@30: inferred normalized discounted cumulative
gain at rank 30.

Reranker Features
To analyze the importance of the used features, we show the
ablation experiments in Table 4 and Pearson correlations
between them and the official scores in both phases in Table 6.

General relevance (phase 1): BioBERT that is further pretrained
by the annotations of previous TREC PM (pb) had the highest
correlation (0.5771) with the phase 1 scores, and the baseline
retriever with the pretrained BioBERT had the highest
performance (infNDCG: 52.26%) in our ablation experiments.
This is probably because the evaluations of previous tasks are

also based on general relevance. The ElasticSearch scores (es)
achieved the second highest correlation of 0.3892, and the
fine-tuned BioBERT by active learning (FB) had a Pearson
correlation of 0.3733. However, our expert annotations for the
evidence quality only had a Pearson correlation of 0.2157 with
the general relevance scores, which indicates that generally
relevant papers might not have high evidence quality. In
addition, the features of publication types (ty) and the citation
counts (ct), which are designed for the evidence quality ranking
and are positively correlated with the evidence quality, were
negatively correlated with the general relevance scores.
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Evidence quality (phase 2): The trends of ablation results and
correlations between features and evidence quality scores were
similar in both the standard and exponential scores. The most
important features in the evidence quality evaluation included
publication types and active learning. Interestingly, only using
the publication type and the baseline retriever achieves
comparable performance to the second-best system in TREC
PM (0.4146 vs 0.4193 for exponential NDCG@30). BioBERT
fine-tuned by the expert annotations (FB) had the highest
performance in the ablation experiments (exponential
NDCG@30: 0.4440) and its correlation to the official
annotations was close to that of our expert annotations (0.3309
vs 0.2937 for exponential gains; 0.2847 vs 0.3073 for standard
gains). Besides, the fine-tuned BioBERT outperformed the

expert annotations by a large margin (0.3733 vs 0.2157) in the
phase 1 assessment, indicating that it can rerank the documents
by evidence quality while retaining the original general
relevance ranks to some extent. The most correlated features of
phase 1, that is, the pretrained BioBERT (pb) and the
ElasticSearch score (es), had the lowest correlations with the
phase 2 scores, which further confirms that the evidence quality
assessment is distinct from the general relevance assessment.

In summary, the 2 assessment phases might have opposite
considerations since features that are highly related to the score
of one phase tended to be much less related to the score of the
other phase, with the exception of the fine-tuned BioBERT. As
a result, specific modeling of evidence quality beyond general
relevance is required for a PM search engine.

Table 6. Feature correlations to the official scores.

Expert annotationFBfLRectdtycpbbesaFeatures

0.21570.37330.1341–0.0435–0.06210.57710.3892General relevance

Evidence quality

0.29370.33090.27280.06960.25640.06210.0752Standard gains

0.30730.28470.28160.08060.27720.03380.0474Exponential gains

aes: ElasticSearch score.
bpb: pretrained Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT).
cty: publication type.
dct: citation count.
eLR: linear regressor.
fFB: fine-tuned BioBERT.

Discussion

Topic-Level Generalizability Analysis
Each instance used to train the PM-Search reranker contained
a topic-article pair and its relevance score. The main results
show that PM-Search is generalizable at instance-level, where
the model is trained and evaluated by different instances.
However, topic-level generalizability of the PM-Search was not
evaluated since our expert annotations and the official
annotations, that is, the training and evaluation instances, used
the same set of topics.

Here, we analyze how PM-Search generalizes to unseen topics
using a leave-one-out evaluation strategy. Each time, we use
the official annotations of only one topic to evaluate the models

that are trained by our expert annotations without the evaluation
topic. The results of each topic as the evaluation topic are
calculated and the averaged performance is shown in Table 4.
The leave-one-out results are close to the results when all expert
annotations are used for training: 0.4415 versus 0.4440 for
exponential NDCG@30 and 0.4658 versus 0.4710 for standard
NDCG@30. This shows that the model is also generalizable to
unseen topics.

Error Analysis
We show several typical cases in Table 7 to qualitatively analyze
some errors in the evidence quality assessment. It should be
noted that most errors cannot be attributed to a specific cause
since the predictions of BioBERT are not explainable, so
developing explainable models is a vital future direction to
explore.
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Table 7. Typical error cases in the evidence quality assessment. Topics are shown in Table 1.

Error typePMa-Search, rank (normal-
ized relevance)

Official, rank (normal-
ized relevance)

ArticleTopicCase

Concept recognitionN/Ac1 (1.00)PMIDb: 23177515; Title: Efficacy and safety of
regorafenib for advanced gastrointestinal stromal
tumours after failure of imatinib and sunitinib
(GRID): an international, multicentre, randomised,
placebo-controlled, phase 3 trial

11

Different understanding148 (0.47)1 (1.00)PMID: 24150533; Title: Risk of hypertension with
regorafenib in cancer patients: a systematic review
and meta-analysis

12

Unclassified297 (0.29)1 (1.00)PMID: 25213161; Title: Randomized phase III trial
of regorafenib in metastatic colorectal cancer:
analysis of the CORRECT Japanese and non-
Japanese subpopulations

13

Full article visibilityN/A1 (1.00)PMID: 29147869; Title: Hematological adverse
effects in breast cancer patients treated with cyclin-
dependent kinase 4 and 6 inhibitors: a systematic
review and meta-analysis

114

Full article visibility53 (0.50)1 (1.00)PMID: 28540640; Title: A Population Pharmacoki-
netic and Pharmacodynamic Analysis of Abemaci-
clib in a Phase I Clinical Trial in Cancer Patients

115

Different understanding6 (0.71)61 (0.25)PMID: 29700711; Title: Cyclin-dependent kinase
4/6 inhibitors in hormone receptor-positive early
breast cancer: preliminary results and ongoing
studies

116

aPM: precision medicine.
bPMID: PubMed IDentifier.
cN/A: not applicable.

Full Article Visibility
The PM-Search system can only access the title and abstract of
PubMed articles. However, vital article information (eg, detailed
gene variant types, treatments) might only appear in the full
article, especially for meta-analyses and systematic reviews
where abstracts tend to use more general concepts. For example,
PM-Search fails to retrieve the Case 5 article where the queried
disease “breast cancer” is only mentioned in the full article, not
in the abstract. For this, future models can use the full article
information from PubMed Central to better retrieve and rank
relevant papers.

Different Understanding
In some cases, we have a different understanding of how
clinically significant the evidence is that an article provides.
For example, the article “Risk of hypertension with regorafenib
in cancer patients: a systematic review and meta-analysis” in
Case 2 is focused on the hypertension side effect of the therapy,
not the therapeutic effects, which we think is not significant.
However, it was given the highest score in the official evaluation
but ranked much lower in the PM-Search prediction. This issue
should be solved by community efforts for the development of
standards.

Concept Recognition
The baseline retriever of PM-Search uses query expansion to
recognize relevant concepts in the article. However, this step is
error prone since biomedical terms are highly variable and thus

cannot be represented by a list of synonyms. For example, in
Case 1, the “colorectal cancer” in the query appears as
“gastrointestinal stromal tumours” in the article, which was
missed in the query expansion step of PM-Search. As a result,
this article was not returned by the PM-Search but ranked the
highest in the official assessment. Improving similar concept
recognition, such as using distributed representations of
concepts, remains an important direction to explore.

Comparison With Prior Work
Many IR systems for precision medicine have been proposed
in the TREC PM tracks [7-9,30], where the key issue to solve
is that queries and their related documents might use different
terms to describe the same concepts. Some studies [31-33] have
attempted to use BERT-based models for ranking in previous
TREC PM tracks, showing various levels of improvements.
Thalia is a semantic search engine for biomedical abstracts that
is updated on a daily basis [34]. It tackles the vocabulary
mismatch problem by mapping the queries to predefined
concepts by which the documents are indexed. The HPI-DHC
team shows that query expansion associated with hand-crafted
rules improves the retrieval performance [35]. Faessler et al
[10,36] systematically analyze the individual contributions of
relevant system features such as BM25 weights, query
expansion, and boosting settings. PRIMROSE is a PM search
engine that expands the queries with an internal knowledge
graph [37]. Noh and Kavuluru [38] use a basic BERT with
specific components for reranking. Koopman et al [39] present
a search engine for clinicians to find tailored treatments for
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children with cancer. For the vocabulary mismatch issue,
PM-Search uses a similar query expansion strategy to previous
studies. However, PM-Search differs from all prior work in that
it is specifically designed to rank the retrieval results by their
evidence quality, which is an important feature for PM search
engines.

Conclusions and Future Work
In this paper, we present PM-Search, a search engine for PM
that achieved state-of-the-art performance in TREC PM 2020.

PM-Search uses an ElasticSearch-based baseline retriever with
query expansion and keyword matching and an evidence
reranker that uses the BioBERT fine-tuned by an active learning
strategy. Our analyses show that the evidence quality is a distinct
aspect from the general relevance, and thus, specific modeling
of it is necessary to assist the practices for evidence-based PM.

The deployment and evaluation of PM-Search in real clinical
settings remains a clear future direction. It is also worth
exploring the use of dense vectors for baseline retrieval and
incorporating full-text information into the ranking process.
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