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Abstract

Background: A concise visualization framework of related reports would increase readability and improve patient management.
To this end, temporal referrals to prior comparative exams are an essential connection to previous exams in written reports. Due
to unstructured narrative texts' variable structure and content, their extraction is hampered by poor computer readability. Natural
language processing (NLP) permits the extraction of structured information from unstructured texts automatically and can serve
as an essential input for such a novel visualization framework.

Objective: This study proposes and evaluates an NLP-based algorithm capable of extracting the temporal referrals in written
radiology reports, applies it to all the radiology reports generated for 10 years, introduces a graphical representation of imaging
reports, and investigates its benefits for clinical and research purposes.

Methods: In this single-center, university hospital, retrospective study, we developed a convolutional neural network capable
of extracting the date of referrals from imaging reports. The model's performance was assessed by calculating precision, recall,
and F1-score using an independent test set of 149 reports. Next, the algorithm was applied to our department's radiology reports
generated from 2011 to 2021. Finally, the reports and their metadata were represented in a modulable graph.

Results: For extracting the date of referrals, the named-entity recognition (NER) model had a high precision of 0.93, a recall
of 0.95, and an F1-score of 0.94. A total of 1,684,635 reports were included in the analysis. Temporal reference was mentioned
in 53.3% (656,852/1,684,635), explicitly stated as not available in 21.0% (258,386/1,684,635), and omitted in 25.7%
(317,059/1,684,635) of the reports. Imaging records can be visualized in a directed and modulable graph, in which the referring
links represent the connecting arrows.

Conclusions: Automatically extracting the date of referrals from unstructured radiology reports using deep learning NLP
algorithms is feasible. Graphs refined the selection of distinct pathology pathways, facilitated the revelation of missing comparisons,
and enabled the query of specific referring exam sequences. Further work is needed to evaluate its benefits in clinics, research,
and resource planning.
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Introduction

Radiology departments generate tremendous amounts of reports
every day. Narrative radiology reports are the primary
communication medium between radiologists and referring
physicians, thus playing a central role in patient care and
containing a large variety of health care information [1,2]. From
1996 to 2010, image study volume for computed tomography
(CT) and magnetic resonance imaging (MRI) increased by 280%
to 380% [3]. Radiology embraced digital workflows and
electronic information transfer to referring colleagues early on,
which virtually eradicated analog data in this field [4]. This
early commitment provides enormous quantities of digitalized
reporting data containing interpretative image descriptions.
However, the extraction of this information is hampered because
unstructured reports are poorly computer-readable [5]. Semantic
reports contain valuable information at a granular level (eg,
multiple temporal referrals) that can be evoked for the overall
report or specific findings in multiple document locations. This
multilocular information cannot easily be determined on a whole
document level [6].

Natural language processing (NLP) is one solution to the
problem of extracting specific information from the plethora of
free-text radiology reports. NLP is defined as the analysis of
linguistic data, most commonly in the form of textual data, using
computational methods [7-13]. NLP has evolved from rule-based
to machine learning algorithms [14-20], deep learning being a
subset of the latter that applies multilayer neural networks
[21,22]. Its capability to automatically extract structured
information has been described in many medical research
settings [23-29]. Especially in radiology, there are numerous
instances where it has demonstrated excellent text mining
performances, including the detection of incidental findings and
recommendations [30-32], actionable findings [33], specific
findings [34-41], quality assessment of reports [42,43], and the
generation of curated data sets [44-49]. 

The quantitative accumulation of radiology reports per patient
over the years has led to a highly interconnected network of
exams. Modern picture archiving and communication systems
(PACS) represent the different exams as a list sorted by their
acquisition date. Most systems can highlight the previous exams
of roughly the same region in the study description to the user.
This type of comparative visualization does not consider
multiregional studies or often-encountered findings at the
margins of the acquired field of view. It does not foreground
the dates to which the radiologist compared his findings in the
report. This last part especially is a significant shortcoming for
clinicians reviewing patient history. They have to read every
report carefully to see to which point in time the radiologist
compared tumor progress, for example, or if the images from
an external institute were available to the radiologist at the exact
time when reading the follow-up exam.

One crucial connection in this context is dated referrals to prior
exams. The good practice guidelines for radiological reporting
from the European Society of Radiology [50] and the 2020
revised American College of Radiology practice parameter for
communication of diagnostic imaging findings emphasize the

need for comparison with previous investigations, including the
date of previous reports and mentioning the absence of previous
imaging. By using comparison studies, radiologists make more
observations, gain confidence in their interpretation, and provide
more diagnoses [51-55]. One study found that the diagnostic
accuracy, sensitivity, and specificity in mammography increased
as the false-positive rate decreased [56]. Various recent studies
relied on NLP techniques to extract the temporality of
measurements in imaging reports (ie, attributing an observation
on the current or prior exam) [39-62]. However, to the best of
our knowledge, no methods that extract every referring date
from semantic radiological texts have been researched.
Moreover, no studies in the literature have focused on the overall
temporal indexing of the report assessed, in most instances, by
the radiologist at the beginning of the report.

One solution to displaying connections between a multitude of
different reports is graph representation. Graph theory defines
graphs as a set of properties stored in nodes connected by edges,
which represent a relationship between the connected nodes
[63,64]. A review paper from 2020 found that graphs, as defined
by graph theory, are hardly used to represent patient data in a
clinical context; in the literature review, only 11 papers matched
the description [65]. 

This study aimed to develop a novel and concise visualization
framework of related reports.

To this end, we applied a self-designed NLP algorithm capable
of extracting the referencing dates from unstructured radiology
reports on all the reports generated for 10 years at a university
hospital. This information was an essential input for a relational
graph in which the nodes represent the radiology reports with
their associated metadata and the dated referrals are their
connecting edges. Finally, we investigated the potential benefits
of such a graph representation and storage for clinical and
research purposes.

Methods

Ethics Approval
Institutional review board approval and the requirement for
informed consent were waived (institutional review board:
Ethikkommission Nordwest- und Zentralschweiz) since no
patient identifiers were used. Collected data consisted of plain
text from radiology reports and randomized metadata, neither
of which could be tracked back to radiologists, individual
patients, nor referring clinicians.

Data Set Acquisition and Description
We extracted all radiology reports from January 2011 to
December 2021 as well as a selection of their associated Digital
Imaging and Communications in Medicine (DICOM) metadata
(ie, randomized patient ID, modality type, body region, study
date) from the hospital database. All reports were written in
German and derived from all the imaging modalities (ie,
ultrasound, radiography, mammography, x-ray angiography,
CT, MRI, nuclear medicine exams, and positron emission
tomography [PET]-CT). The reports were a mix of unstructured
free-text reports and standardized templates, either containing
subheadings for distinct organs with prewritten normal findings
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(eg, CT chest-abdomen) or checklists for standardized reporting
features (eg, Liver Imaging Reporting and Data System for liver
MRI). The broad structure of the reports was usually divided
into 5 sections: medical history, medical question, examination
protocol, radiological finding, and impression. 

Every radiology exam had a predefined body region and
modality type in its DICOM metadata. There were 14 body
regions and 9 modalities (see Multimedia Appendix 1).

Construction of a Temporal Reference Extraction
Algorithm 

Data Selection for Training
We randomly selected 5187 reports from the previously
extracted radiology reports.

Data Annotation
An internally developed data annotation tool, “xtag,” was used.
A second-year medical resident (LBG) manually labeled 5187
reports with 5 classes indicating the temporal reference (Table
1). The annotation classes “date,” “today,” “yesterday,” and
“no previous” were applied on the text sequence level (ie,
annotating sequences of numbers or words). The annotation
class “missing” was applied at the document level and was
exclusive, meaning that no other annotation could be applied.
On the other hand, “date,” “today,” “yesterday,” and “no
previous” could be applied multiple times per report. To assess
the necessity of a second reading, a fifth-year medical resident
in radiology (TW) annotated 100 randomly selected reports.
This process yielded 100% agreement among readers.
Considering the simplicity of the task and based on this result,
we refrained from a second reading of the whole data set.

Table 1. Annotated classes and their defined meaning. 

MeaningClass

Precise numerical date referring to a comparative exam; any numerical or partially numerical format was accepted.Date

Non-numerical temporal reference to a comparative study done on the same day as the actual report (ie, any literal expression
meaning today)

Today

Non-numerical temporal reference to a comparative study done on the day before the actual report (ie, any literal expression
meaning yesterday)

Yesterday

Explicit statement that no comparable previous exams are availableNo previous

No mention of a comparative studyMissing

Data Format
The training pipelines required the annotations to conform to
the IOB2 format [66,67]. The predictions were also produced
in the same format (further technical information can be found
in Multimedia Appendix 2 [5,68-72]).

Algorithm Training and Testing
We excluded 2392 reports from the annotated data set, as they
did not contain temporal links. We split the data into a
training/validation data set of 2646 reports (94.6%) and an
independent test data set of 149 reports (5.4%). We estimated
that 5% for an independent and second test data set is a valid
representation, as we verified the algorithm's robustness using
the 5-fold cross-validation [73]. We also considered the low
output variability of the problem to be solved. We used the
Spacy sentencizer to text into sentences before training. We
then used the ktrain library to produce a bidirectional long
short-term memory (LSTM) [74] model starting with pretrained
fastText word embeddings [75] (for details, see Multimedia
Appendix 2). We applied various rule-based date extraction
algorithms on the predicted date sequences to extract as many
dates as possible. The non-numerical classes today and yesterday
were converted into a numerical format using the date of the
referring report as a reference. The dates missing the year
specification were assigned the same year as the referencing
report. The prediction was ignored if the day or month was
missing. A grid search algorithm tested different combinations
of learning rates and batch sizes to find the near optimal
parameters for our training algorithm. A 5-fold cross-validation

[76] of the training data set with 20% of the reports as validation
in each round was performed to evaluate the model's
performance on large independent data sets. The data set split
into folds was done at the report level. The model was tested
on the independent test data set in a final evaluation step. The
following performance evaluation metrics were used to assess
the trained model's quality: precision, recall, and F1-score [77].

Extraction of the Referenced Modality and Body Region 
The referenced modality was extracted using a simple rule-based
approach. After extracting the temporal references from the
report, the algorithm searched for a mention of the modality in
the sentence with the date reference. The previous report's body
part was derived from its metadata and was assumed to be the
same as the referencing report's body region. 

Graduation of the Predicted Link's Confidence
We graduated the prediction's confidence as follows: (1) date,
modality, and body part; (2) date and modality; (3) date and
body part; (4) date. This confidence graduation was established
as a link property, in which 1 was the most confident and 4 was
the least confident. The link was discarded if it was impossible
to generate it based on these 4 principles. This approach
permitted narrowing and increasing the accuracy of the
referenced reports if more than one exam was acquired on the
referenced date. 
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Algorithm Application and Data Extraction on the
Complete Data Set
The preparatory steps for extraction of the temporal information
by the trained model were the same as for the training part. The
result of the model's application to all the reports from 2011 to
2021 was a per-token table with labels for each token in the
IOB2 format. Predictions that did not comply with the IOB2
format were removed. 

Populating the Graph Database
The graph database system used was Neo4j (Version 4.4.). All
the reports and a selection of their associated metadata from
2011 to 2021 were imported via the py2neo library. The
metadata consisted of the exam's acquisition date, name,
modality, and body region, as well as its randomized patient
ID. The reports and their metadata were assigned to the vertices,
and unidirectional edges from referencing reports to referenced
reports were created. We assigned 3 properties to the edges:
The first consisted of the inferred class called “reference class,”
the second showed the extracted string, and the third displayed
the prediction's confidence.

Interactive Exploration of the Graph 
The assessment of the potential benefits of patient data
visualization in a graph was explored interactively. The aim

was to offer, at one glance, a well-ordered overview of the
patient's imaging history with the related reports; enable
comparison to previous exams; and represent the desired
pathology pathway in a concise way (eg, oncological or
postoperative follow-up imaging). In addition, it reveals to the
clinician and the radiologist at what point in time the radiologist
made his or her comparison. The user should be able to restrict
his or her search to individually adaptable filters in the report's
metadata (eg, body region, modality type, report date, or
keywords in the reports' text). Another important feature would
be to provide precisely filtered examinations in a concise order,
in which every exam has its precisely defined position in a
sequence. A final goal was to assess missed comparisons to
previous exams, which was hoped to be achieved visually by
spotting the missing link in the graph and by self-designable
search algorithms.

Results

Data Set 
In total, 1,684,635 reports from 264,655 distinct patients were
extracted. We excluded 170,415 (10.1%) reports from the
metadata analysis because they consisted of consultation notes
and external referrals (detailed count in Multimedia Appendix
3).  Figure 1 shows the detailed methodical flowchart.

Figure 1. Study flowchart of 1,684,635 patient reports retrieved from the hospital database (2011 to 2021). NLP: natural language processing.

Annotation Distribution 
A total of 7860 annotations were applied to 5187 reports from
2011 to 2019. Class distribution of the training data set was as
follows: 44% date reference, 27% no previous comparative
exam, 23% missing temporal link and 6% referral class “today.”
We removed the semantic referencing class “yesterday” from
our data set as there were not enough training samples (34/5187,
0.7%). 

Temporal Information Extraction Algorithm

Hyperparameter Optimization 
The algorithm's output yielded an optimal learning rate of 1e-2
and a batch size of 1024. The random state was fixed for
reproducibility. The maximal number of training epochs was
limited to a never reached limit of 30. 
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Training and Testing
The stagnation in the validation performance of 3 epochs was
targeted for the early stopping. During training, the model is
stored after each epoch. After the completion of the training

process, the best-performing epoch weights were used for the
final model. The same procedure was used for all the steps in
which training was involved. After 5-fold cross-validation
(results in Multimedia Appendix 4), the algorithm's performance
was tested on the previously unused test data set (Table 2).

Table 2. Test results on 149 previously unused reports.

F1-score (95% CI)Recall (95% CI)Precision (95% CI)Variable

0.93 (0.91-0.94)0.9 (0.86-0.93)0.93 (0.89-0.93)Date

0.96 (0.93-0.98)0.98 (0.96-0.98)0.94 (0.95-0.97)No previous

0.83 (0.79-0.93)0.85 (0.79-0.90)0.76 (0.73-0.88)Today

0.94 (0.89-0.93)0.92 (0.90-0.95)0.93 (0.91-0.94)Micro average

0.91 (0.80-0.94)0.91 (0.87-0.95)0.86 (0.84-0.95)Macro average

0.94 (0.91-0.95)0.93 (0.90-0.94)0.93 (0.91-0.94)Weighted average

Temporal Referencing Analysis 
A temporal reference to comparable exams was mentioned in
53.3% (656,852/1,232,297), explicitly stated as not available
in 21.0% (258,386/1,232,297), and omitted in 25.7%
(317,059/1,232,297) of the reports. Variability over the years
was asserted (Figure 2). The modalities with the least amount
of missing references were mammography (41,197/545,636,
7.6%), PET/CT (1850/18,500, 10.3%), and CT
(278,286/2,399,017, 11.6%). On the other hand, angiography
(33,924/40,872, 83.2%) and ultrasound (94,080/254,270, 37.2%)
had the most missing references (Table S4 in Multimedia
Appendix 5). The body regions with the lowest amount of

missing references were trunk (3072/39,639, 7.8%), breast
(5727/70,617, 8.1%), and thorax (25,646/276,060, 9.3%). On
the other hand, the heart (19,030/26,090, 72.9%) and neck
(14,716/23,230, 63.4%) regions had the most missing links
(Table S5 in Multimedia Appendix 5). Modalities primarily
referred to the same modality except for angiography referring
to plain radiographs in 39.8% (1790/4503), PET/CT referring
to MRI in 45.1% (456/1013), and nuclear medicine exams
referring to CT in 33.9% (3500/10294; Table S6 in Multimedia
Appendix 5). Every body region predominantly referred to the
same body region. The most extreme example was “breast,”
which was referenced in 99.0% (59,619/60,221) of the cases
by the other breast studies.

Figure 2. Temporal reference of the reports (n=1,514,220) over the years.
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Analysis of the Median Time Period of the Referencing
Reports
The median period between referencing reports from 2011 to
2021 was determined in days, per modality (Table 3) and body

region (Table 4). The most extended periods were found in
mammography (372 days) and the corresponding body region
breast (370 days). The shortest periods were observed in plain
radiograph reports (19 days) and the thorax region (10 days). 

Table 3. Median time period between referencing reports (n=757,249) per modality.

P valueIQRTime period (days), median (Q1-Q3)Modality

<.00111619 (2-118)Computed radiography

.04813035 (7-137)X-ray angiography

<.00122842 (3-231)Computed tomography (CT)

.00234165 (3-344)Magnetic resonance

.06432114 (8-440)Nuclear medicine

<.001336129.5 (30-366)PETa/CT

.002362344 (24-386)Ultrasound

.03368372 (352-722)Mammography

aPET: positron emission tomography.

Table 4. Median time period between referencing reports (n=757,249) per body region.

P valueIQRTime period (days), median (Q1-Q3)Body region

.0115410 (2-156)Thorax

.014711 (1-48)Upper extremity

.00623335 (4-237)Abdomen

<.00120435 (3-207)Spine

.00114339 (3-146)Pelvis

.0113042 (6-136)Lower extremity

<.00136265 (2-364)Head

.0316289 (34-196)Trunk

=.40370125 (8-378)Heart

<.001419.3128 (8-427.3)Whole body

.045366182 (29-395)Neck

.009202370 (348-550)Breast

Exploration of Imaging Records in a Graph

General Overview 
All the imaging reports and metadata from 2011 to 2021 were
successfully loaded into a directed graph. The blue nodes
represented the different patient reports labeled with their
examination name (eg, CT-chest or MRI-head), and the

connecting links were their automatically extracted referral
dates. The interface was individually adaptable (eg, the user
could freely position the nodes as desired, and the colors of the
individual components and displayed metadata were
customizable). The total number of distinct patient reports could
be selected at the beginning of any query. This view permitted
a rapid visual assessment of the earliest comparison exam
(Figure 3).
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Figure 3. Single patient case example (lung cancer with cancer-related studies) including the full user interface in which the blue box in the top left is
the query interface; the blue nodes contain the examination name, represent all the imaging studies stored in the picture archiving and communication
system (PACS), and are ordered from oldest on the left to newest on the right; the connecting blue arrows represent their referral links; and a node’s
metadata (examination name, acquisition date, text of the selected and referenced reports, and finding and impression sections) appears on the right side
when the node is clicked on. CT: computed tomography; MRI: magnetic resonance imaging; PET: positron emission tomography; RX: x-ray; US:
ultrasonography; WB: whole body.

Multiparametric Filtered Representations 
Narrowing the reports down to the most relevant and thus
facilitating visualization are of utmost relevance with the high
number of exams per patient. By clicking on the node of interest,
the user could opt to display solely the linked reports (visualized
in Figure 4). Another possible method of restricting the view

and looking for specific findings was a search filter related to
the associated metadata and specific words in the report's text.
One possible concept would be to look for specific exams with
no previous reference and a defined pathologic condition as a
keyword in the report's text, which would speed up the selection
of the first exam associated with this condition.
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Figure 4. Filtered representation of related studies as a partial screenshot within the user interface, in which all the related prior exams appear at one
glance by clicking on the last node referring to a lung cancer (red arrow). Although the user selected the most recent study, clicking on every other node
in this network would have resulted in the same view. CT: computed tomography; MRI: magnetic resonance imaging; PET: positron emission tomography;
US: ultrasonography; WB: whole body.

Specific Exam Sequence Selection
Selecting highly customizable sequences of referring exams
with specific metadata attributes (eg, chest x-ray followed by

chest CT) was possible. This can be refined, for example, with
a period restriction or restricted time interval between the related
exams (Figures 5 and 6).

Figure 5. Specific exam sequence selection as a partial screenshot within the user interface, in which we used the query field to randomly select 300
reports (blue nodes) of head computed tomography (CT) referenced by a head magnetic resonance image (MRI) that was acquired no longer than 3
days later and contained the keyword “infarct” in the impression field.
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Figure 6. Chord diagram representing the connections between modalities in the head region referencing a head computed tomography (CT) image
(light blue rim) during the 7 days after its acquisition. The size of the arc is proportional to the number of referenced reports. Most referring reports are
head magnetic resonance images (MRIs), followed by other head CT images. CR: computed radiography; MR: magnetic resonance; NM: nuclear
medicine; OT: other; PT: positron emission tomography; US: ultrasound.

Visual and Filter-Aided Detection of Missing
Comparative Connections
Selective queries with sequential filters and graph visualization
permitted a rapid assessment of situations in which referral links
were missing (Figure 7). This feature was helpful when

preceding comparative exams had been overlooked due to the
poor list-like appearance of exam history in PACS or radiology
information systems as well as when previous external images
were imported into the PACS after the acquisition and reading
of the following exam.
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Figure 7. Single patient case example illustrating a missing temporal reference (red arrow) between subsequent reports (blue nodes, ordered by the
earliest acquisition on the left to the latest on the right) of computed tomography (CT) studies of the thorax (green boxes). It is easy to detect a suspected
missed link between the earlier CT-Thorax report at the top was not referenced by the later CT-Thorax report at the bottom right as well as via the search
queries exposing temporal inconsistencies in the referrals (blue box at the top). PET: positron emission tomography; US: ultrasonography; WB: whole
body.

Discussion

Principal Findings
As shown in this paper, representing imaging records in a
directed graph is feasible. Connecting them via their referring
dates improved visualization of related imaging pathways and
detected missed exam comparisons. We also showed that
automated extraction of referring dates from written radiology
reports using a deep learning–based NLP algorithm, the
groundwork needed to create the representation, is feasible and
achievable with high significance (F1-score of 0.94).

Considering the extraction of concepts of temporality using
NLP, our method can be compared with a publication from
2019 by Bozkurt et al [60]. Their main focus was extracting
measurements and their core descriptors, among other things,
their temporal context, for which they used rule-based NLP
with predefined regular expressions. They solely focused on 2
temporal aspects (ie, current or prior), and their pipeline had a
high F1-score of 0.85. Our approach uses a date-extracting
LSTM. It focuses on all the referring dates in a written report,
including the ones without a precise measurement, for example,
the lesions that cannot be measured due to an amorphous
configuration or the overall comparison date of the report. In
addition, our algorithm has the crucial and unique advantage
of detecting the explicit absence and missingness of a
comparative exam from written text. Furthermore, we extracted
every date of comparison from the report, thus permitting a
comminuted and precise linkage for constructing a general
graph.

Our approach, however, has the main disadvantage of not
attributing the comparison date to specific findings or

measurements, which will slow down the focused review of
specific entities in complex patient histories. Another
disadvantage of our more granular extraction method is the high
complexity of the task, which consecutively increases its
dependency on correctly spelled referencing dates. Following
this logic, omitted or wrongly chosen dates would have a greater
impact on the integrity of the machine learning model and the
graph in addition to the effect of varying writing habits or report
templates between different institutions or radiologists. Although
the reporting guidelines favor precisely dated comparisons, the
radiologist does not always explicitly write the exact date of
the compared finding in the text. As this omission mostly
happens in comparison to the most recent report, which would
be mentioned at the beginning of the report as the last referenced
report, our method covers the majority of these cases. These
aspects may render the overall applicability of our model more
complex and susceptible to smaller errors than the temporality
extraction algorithms developed so far.

In 2006, Lakhani et al [78] explored, in their large-scale database
analysis of 1.8 million reports, how often radiologists compared
with prior studies using a SQL approach. They found that 42.5%
of reports completely omitted any reference to previous studies,
38.7% mentioned a comparison, and no relevant comparison
was explicitly pointed out in only 18.8%. Although not entirely
comparable, as they focused on a purely semantic approach of
referring information extraction, it provides a good
approximation, because if the reports contained phrases hinting
toward a comparison, the date of the compared exam was most
probably mentioned. In our study, reports referenced the date
of a comparable exam (53%), explicitly stated that there was
no previous exam (21%) more often, and were less prone to
miss the referring link (26%). The best year for indicating
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temporal references was 2021, with only 17.9% of reports
missing a reference, down from 30.4% in 2019 and 28.8% in
2020. This tendency toward more temporal referrals could result
from the increased emphasis on comparison exam consultation
and report structuring in current reporting guidelines and
digitalization, with many previous studies easily accessible.
However, these percentages of prior exam consultation based
on the written references in radiology reports are most probably
underestimates. Haygood et al [79] concluded in their study
from 2018 that the assumption that an older radiologic image
or medical document was not consulted during radiologic
interpretation merely because it is not cited in the report was
not valid. This causes medicolegal issues for the reader.
Radiologists were found negligent by juries for failure to
compare a new chest radiograph with all previous chest
radiographs [80]. Without written proof, this gets more difficult
to defend. Another relevant aspect is the different extraction
approaches. Our sentence-based named-entity recognition
system analyzed data on a granular level, thus not missing single
dates meant for comparison in parenthesis or other dates without
a clear semantic indication of referral like the SQL approaches
required. 

Studies analyzing errors in the radiology reporting process
emphasized the importance of comparing findings [52-56]. The
good practice guidelines from the European Society of
Radiology [50] and the 2020 revised American College of
Radiology practice parameter for communication of diagnostic
imaging findings support this affirmation. Kim and Mansfield
[55] found that 5% of all errors in radiology resulted from failure
to consult prior radiographic studies that could have led to the
correct diagnosis. However, a critical review of the previous
radiologists' findings or impressions should prevail when
comparing previous exams. One must be careful not to follow
an incorrect path; this error, called “satisfaction of report,”
accounted for 6% of all errors reported in radiology in the study
by Kim and Mansfield [55]. The widespread availability of
previous exams in modern PACS renders an excuse for failing
to compare findings with prior exams obsolete. The automatic
selection of comparative exams offered by modern PACS is
inherently biased because it primarily considers the locoregional
aspect, thus losing focus on multiregionality. For example, a
CT of the cervical spine or shoulder may be overlooked as a
potential comparison source when evaluating apical lung masses,
or abdominal radiographs when interpreting hips. The same
logic applies to clinicians or radiologists reviewing the imaging
history of a given finding, especially in oncology, which has
many multiregional studies and findings.

These complex considerations call for a well-arranged and
organized visualization system. Poor usability and hampered
visualization of patient data reduce the motivation of thoroughly
reviewing them, which remains a challenge in health care and
is associated with increased error rates due to missing pertinent
details, user fatigue, and frustration [78,79]. A study from 2022
analyzing the impact of intensive care unit clinical information
systems showed that poor interface design and visual
representations are major sources of dissatisfaction among users
[80]. Our explorations indicate that grouping related exams

together in a graph could help improve this fundamental and
increasingly pressing user-friendliness issue. 

We hope that, by reinforcing the radiologist's organizing role
and improving the case overview by replacing the list
appearance of imaging history, he or she will tend to omit the
referring links less often, thus minimizing comparison error.
Another critical aid is the improved detection of omitted
connections in situations in which, for example, previously
acquired external scans were loaded into the PACS after reading
the following exam. This would be of great value for the
subsequent physicians reviewing the imaging history. Temporal
referrals in a report prove to the reader that the radiologist has
not forgotten to compare a specific finding. This is a valuable
asset, considering that a finding's relevance is often determined
by its temporal course. For example, lung nodules, brain atrophy
changes, or vascular aneurysms showing no dynamic changes
over a long period are less alarming, especially in infants and
older adults, for whom noninvasive imaging follow-ups are
favored over invasive medical investigations. Optimizing
visualization with a graph representation could save time as
well as decrease unnecessary exams and radiation exposure for
patients.

In specialized medicine, clinicians are more focused on specific
regions or findings. Manually filtering out the irrelevant exams
adds work and a source of potential error (eg, an orthopedic
surgeon is more inclined to investigate images implying the
healing process of a fracture or a neurologist the exams related
to cerebral or spinal findings). Our graph enables the user with
an exam of interest to select all the related studies and to omit,
if desired, all the unrelated reports, thus substantially and
instantly reducing the number of studies to be reviewed.

Our system can assist quality control and review of guideline
adherence by rapidly filtering out selectable sequences of exams
(eg, CT performed after an x-ray) refined by the possibility of
restricting the search for an interstudy period. This highly
customizable review based on the reports' metadata could also
help research projects. For example, when evaluating the
features of a brain lesion over time, one could filter out all the
reports in the database in which the finding is described in the
report text; these reports will then be shown, if desired
independently of the patient, with their respective related reports.
This approach rapidly and intuitively speeds up an otherwise
fastidious query, offering the researcher a follow-up and quick
method for taking the measurement steps on the associated
images. The quantitative and qualitative predictions as well as
the period of the related following radiology exams could be
of great value for clinical management purposes, permitting
optimal prediction of the necessary human and material
resources.

Limitations
Our study has several limitations. The main limitation was that
the analysis was based on a single tertiary care university
hospital and depended strongly on our reporting customs.
Second, reports were labeled by only 1 reader (a second-year
resident). Given the low grade of complexity in labeling the
referencing dates and the 100% agreement in a subset of 100
reports, we refrained from a second reading of the whole data
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set. The more challenging task of determining the comparative
study was done during the reporting process by at least one
board-certified radiologist. Third, there were insufficient
samples to train the non-numerical referencing dates expressing
“yesterday.” This should be addressed in future work. One
solution could be to use active learning algorithms prioritizing
the model's most uncertain predictions. Fourth, there was a lack
of external validation. Also, to our knowledge, there is no
comparable study in the literature. Nevertheless, the
methodology should be reproducible in other radiology
department setups to allow for future comparison. To this end,
we have also made the codebase that allows for internal testing
available (Multimedia Appendix 2). Fifth, the focus here was
on the feasibility of an entire pipeline, including extraction and
representation. Thus, we did not thoroughly evaluate its clinical
usefulness but, instead, illustrated the potential usefulness in
several use cases.

Future Prospects
The high performance of our NLP-based model at processing
immense amounts of free-text data underlines its potential for
future research projects. The process of filtering out comparative
studies could be accelerated substantially, which could greatly
benefit the development of image detection–based and
NLP-based algorithms. The concept of a related graph database
could optimize the engineering and designing of other medical
software tools in radiology by improving visualization and
user-friendliness, accelerating data selection in research projects,

and enhancing quality control and clinical review processes.
An important amelioration could be the connection of the dates
to the specific findings or measurements to which they are
referring. Furthermore, it could enable resource planners to
separately predict the necessary human and material resources.
A significant asset of these databases is the easy-to-implement
expansions (eg, integration of pathology reports or associated
images). By giving users the possibility of correcting and adding
links, it would be conceivable to create a continuously
self-improving algorithm.

Conclusion
We established a proof of concept of an NLP-based algorithm
capable of accurately extracting the dates of referrals on a
granular level from unstructured radiology reports. We
successfully generated customizable graphs of referring
radiology reports, in which multiple filters may freely be
applied, providing a well-arranged visual overview. This type
of visualization permitted new possibilities for querying specific
exam sequences, facilitated the detection of missed comparisons
by the radiologist, and offers health care professionals a wide
range of review opportunities. The radiologist's awareness and
motivation for the comparative aspect of his or her findings
could be increased, and his or her worth for clinicians could be
augmented by not solely providing information but also actively
helping to organize it. Further work is needed to expand its
features and evaluate its definite benefits in day-to-day clinical
practice. 
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