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Abstract

Background: Health care organizations are collecting increasing volumes of clinical text data. Topic models are a class of
unsupervised machine learning algorithms for discovering latent thematic patterns in these large unstructured document collections.

Objective: We aimed to comparatively evaluate several methods for estimating temporal topic models using clinical notes
obtained from primary care electronic medical records from Ontario, Canada.

Methods: We used a retrospective closed cohort design. The study spanned from January 01, 2011, through December 31,
2015, discretized into 20 quarterly periods. Patients were included in the study if they generated at least 1 primary care clinical
note in each of the 20 quarterly periods. These patients represented a unique cohort of individuals engaging in high-frequency
use of the primary care system. The following temporal topic modeling algorithms were fitted to the clinical note corpus:
nonnegative matrix factorization, latent Dirichlet allocation, the structural topic model, and the BERTopic model.

Results: Temporal topic models consistently identified latent topical patterns in the clinical note corpus. The learned topical
bases identified meaningful activities conducted by the primary health care system. Latent topics displaying near-constant temporal
dynamics were consistently estimated across models (eg, pain, hypertension, diabetes, sleep, mood, anxiety, and depression).
Several topics displayed predictable seasonal patterns over the study period (eg, respiratory disease and influenza immunization
programs).

Conclusions: Nonnegative matrix factorization, latent Dirichlet allocation, structural topic model, and BERTopic are based on
different underlying statistical frameworks (eg, linear algebra and optimization, Bayesian graphical models, and neural embeddings),
require tuning unique hyperparameters (optimizers, priors, etc), and have distinct computational requirements (data structures,
computational hardware, etc). Despite the heterogeneity in statistical methodology, the learned latent topical summarizations and
their temporal evolution over the study period were consistently estimated. Temporal topic models represent an interesting class
of models for characterizing and monitoring the primary health care system.
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Introduction

Primary Care Text Data
Electronic medical record (EMR) systems are increasingly being
adopted in clinical settings across the globe [1]. As a result,
health care organizations are generating, collecting, and digitally
storing large volumes of routinely collected clinical information.
In this study, we focused on clinical text data commonly
collected in primary care EMR systems. We compared a class
of unsupervised machine learning models—temporal topic
models—used to characterize the latent thematic content of
large document corpora and summarize latent topical dynamics
over time. Temporal topic models have the potential to be
applied to large unstructured clinical document collections,
routinely captured in modern EMR systems, to passively
characterize the primary health care system.

Topic Models
Several methods can be used to estimate a topic model, given
a document collection, and to characterize the evolution of latent
topical bases over time. Latent Dirichlet allocation (LDA) [2,3]
uses a Bayesian probabilistic graphical modeling framework to
define a topic model. Learned topical vectors describe the
affinity of a word (v=1...V) in the corpus for a particular topic
(k=1...K). A latent admixing vector describes the affinity of a
specific document (d=1...D) for a specific topic (k=1...K). The
latent matrices in the LDA model are learned from
document-word co-occurrence statistics empirically collected
from the clinical note corpus. The traditional LDA model is not
intended for modeling temporal document collections; however,
Griffiths et al [4,5] demonstrated how simple time-stratified
estimators can be used to illustrate the evolution of latent topical
vectors over time. The structural topic model (STM), extends
the classical LDA model, allowing either (1) the matrix of
per-document topical prevalence weights or (2) the matrix of
per-topic word probabilities to deterministically vary according
to covariate information parameterized using a generalized
linear model [6]. Several parameterizations of time can be
incorporated into the generalized linear model (eg, discrete,
continuous, or spline effects), allowing the STM to flexibly
model the evolution of topical prevalence vectors over time.
Nonnegative matrix factorization (NMF) [7-9] uses a linear
algebraic framework and principles from constrained
optimization for topic modeling. NMF directly estimates the
parameter matrices of a topic model by factorizing an observed
document term matrix (DTM) into 2 latent nonnegative matrices.
One of the latent parameter matrices describes the affinity of a
document (d=1...D) to a topic (k=1...K), and the other latent
matrix describes the affinity of a word (v=1...V) to a topic
(k=1...K). Post hoc multivariate transformations of the NMF
latent parameter matrices can be used to generate estimates of
topical evolution over time. Recently, neural frameworks have
been developed for topic modeling, such as top2vec [10] and
BERTopic [11]. The BERTopic neural topic models begin by
embedding documents into a latent vector space. A finite number
of clusters (k=1...K) of semantically similar documents are
identified in the embedding space. For each document cluster
(k), the most relevant words describing the cluster or topic are
extracted using a cluster-specific term-frequency

inverse-document frequency (TF-IDF) weighting technique
[11].

Study Objectives
The objective of this study was to compare the performance of
several temporal topic modeling methodologies fitted to a corpus
of primary care clinical notes. We compared the following
temporal topic modeling methodologies: NMF, LDA, STM,
and BERTopic. We examined (1) the overall matrix of per-topic
word probabilities estimated over the corpus and (2) the
multivariate time series structures describing the evolution of
latent topical prevalence weights (k=1...K) over discrete times
(t=1...T). We compared the methods using a data set of
longitudinal primary care clinical notes collected over 5 years
(2011-2015) in Ontario, Canada.

Methods

Mathematically Representing and Computationally
Processing Our Clinical Text Corpus
Topic models use statistical information regarding
document-word co-occurrence frequencies to learn meaningful
latent variable representations from a corpus. Each document
in the collection (d=1...D) is represented as a high-dimensional
length-V vector (v=1...V), where each element is a count of the
number of times a particular word or token (v) in an empirical
vocabulary is observed in a particular document (d). We
represented the collection of document-specific term-frequency
vectors into a matrix X of dimension D*V, called the DTM.
The DTM is a large, sparse matrix. However, the matrix is
overdetermined because many of the rows (representing
document-specific term-frequency vectors) and columns
(representing word or token occurrence frequency over all
documents in the corpus) demonstrate strong intercorrelations.
Dimension-reduction techniques, such as topic models, use
intercorrelated statistical semantic information to estimate
meaningful thematic representations from document collections.
Topic models learn (1) clusters of intercorrelated words
describing the topical content of the corpus and (2) clusters of
correlated documents sharing latent topical concepts.

The most challenging and subjective aspect associated with
construction of the DTM involves specification of the
vocabulary or dictionary (v=1...V) encoding the column space
of the matrix. A priori constructed lexicons or dictionaries (of
dimension V) can be used to determine the study vocabulary.
Specification of appropriate domain-specific dictionaries would
be tasked with subject matter experts on the research team.
Alternatively, an entirely computational approach could specify
a text tokenization or normalization pipeline and
computationally parse the input character sequences into a finite
number of tokens.

In this study, we adopted a hybrid approach to vocabulary or
dictionary specification. We began by tokenizing the clinical
notes on whitespace boundaries (spaces, tabs, newlines, carriage
returns, etc). We normalized tokens using lower-case conversion
and removed all nonalphabetic characters. We removed tokens
with a character length ≤1. Finally, we sorted the list of tokens
or words by decreasing occurrence frequency and manually
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reviewed the sorted list of tokens. Our manual review identified
V=2930 distinct tokens for inclusion in our final vocabulary.
The total number of tokens in the corpus was 3,003,583. The
tokens chosen for inclusion in our final dictionary or vocabulary
were mainly medical terms with precise semantic meanings
(disease names, disease symptoms, drug names, medical
procedures, medical specialties, anatomical locations, etc). We
excluded stop words or tokens (ie, syntactic or functional tokens
with little clinical semantic meaning). Words with low
occurrence frequency were excluded for computational
considerations. All text processing was conducted using R (R
Foundation for Statistical Computing; version 3.6).

Review of Methods for Temporal Topic Modeling

NMF Model
NMF estimates latent topical matrices using the document-word
co-occurrence statistics contained in the empirical DTM. NMF
factorizes the D*V dimensional DTM into 2 latent submatrices
of dimensions D*K (θ) and K*V (Φ). The DTM (X) consists
of nonnegative integers (ie, word frequency counts), whereas
the learned matrices (θ,Φ) consist of nonnegative real values.
Mathematically, the NMF objective involves learning optimal
values of the latent matrices (θ,Φ) that best approximate the
input data set (X ≈ θΦ), subject to the constraint that the learned
matrices contain nonnegative values.

We selected a least square loss function to train the NMF model.
The objective function specifies that the observed data elements
are approximated in a K-dimensional bilinear form

. The analyst must specify the dimensions of
the latent space: K (the number of topics). Seminal articles on
NMF include Paatero and Tapper [7] and Lee and Seung [8,9].
Surveys of NMF and low-rank models are provided by Berry
et al [12] and Udell et al [13].

Post hoc, the row vectors constituting both θ and Φ, can be
normalized by dividing by their respective row sums. The
resulting normalized vectors can be interpreted as compositional
or probability vectors (ie, each normalized row of θ and Φ
contains nonnegative entries that sum to 1, row-wise). The row
vectors of the matrix Φ encode a set of k=1...K per-topic word
probabilities or proportions (estimated over a discrete set of
v=1...V words in the empirical corpus vocabulary). The row
vectors of the matrix θ encode a set of d=1...D per-document
topic proportions (estimated over a discrete set of k=1...K latent
dimensions), encoding the affinity a given document has for a
particular topic.

For each document d=1...D, assume we observe a time stamp
that allows us to associate each document (and latent
embedding) with a T-dimensional indicator variable denoting
the observation time (t=1...T). We estimated a K-dimensional

multivariate mean topical prevalence vector for each design
point, t=1...T. This resulted in a multivariate time series structure
(a T*K dimensional matrix). Each column (k=1...K) of the
matrix is a length T time series that described the evolution of
a latent topical vector.

The sklearn.decomposition.NMF() function in the Python
SKLearn package (version 0.24.2) was used to fit the NMF
topic model.

LDA Model
LDA is a probabilistic topic model. Probabilistic topic models
assume that a document comprises a mixture of topics. These
(latent) topics represent a probability distribution over a finite
vocabulary of words or tokens. Topic models can also be
described as admixture models. Each document is a soft mixture
of topics (k=1...K), where a topic is itself a probability
distribution over words in the vocabulary (v=1...V). A graphical
model describing LDA is shown in Figure 1 [2].

The LDA graphical model also describes a generative process
for creating a single document in the corpus. This can be
succinctly described using the following sampling notation
[14,15].

To generate a document, we begin by sampling the per-topic
word distributions from a Dirichlet distribution parameterized
by a V dimensional prior concentration parameter (β). Topical
vectors (k=1...K) are shared over the collection of documents.

Next, for each document d=1...D in the collection, we sample
the per-document topic distribution from a Dirichlet distribution
parameterized according to a K-dimensional prior concentration
parameter (α).

For each word in each document, we sample a topical indicator
variable, zd,n. This variable takes an integer value between 1
and K and signifies the per-topic word distribution from which

a specific word, wd,n, is chosen. The index n denotes the nth

word in a variable length document (n=1...Nd).

Finally, we draw a single word token, wd,n, from the topical
distribution associated with zd,n. The word indicator is an
element v=1...V in our empirical dictionary or vocabulary.

The statistical inference problem associated with probabilistic
topic modeling involves inverting the sampling process and
learning model-defined latent parameters given the observed
text data. The latent variables indicate which words are assigned
to which topical indicators (z), which documents have an affinity
for which topics (θ), and which words co-occur with high
likelihood under which topics (Φ). The latent parameters
associated with an LDA topic model are typically estimated
using Bayesian statistical machinery (Gibbs sampling [14],
variational inference [2], and other methods).
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A multivariate transformation of the matrix of per-document
topical prevalence weights generates a multivariate time series
data structure. This object is of dimension T*K, where each
column k=1…K represented a univariate topical time series of

length T. This series describes the evolution of latent topical
vectors over our study period.

The sklearn.decomposition.LatentDirichletAllocation() function
in Python SKLearn (version 0.24.2) was used to fit the LDA
topic model.

Figure 1. Graphical model representation of the latent Dirichlet allocation topic model.

STM Model
The STM is another type of probabilistic topic model. The STM
extends the LDA topic model, allowing latent matrices of (1)
per-document topical prevalence weights or (2) per-topic word
proportions to vary according to a generalized linear model
parameterization [6]. Covariate effects on the latent matrix of
per-document topical prevalence weights are incorporated into
the model using a logistic-normal prior distribution over
per-document topical prevalence vectors, similar to the
correlated topic model [16]. Covariate effects on the latent
matrix of per-topic word proportions are incorporated into the
model using a type of multinomial logit prior. In this study, we
modeled covariate effects (in our study, discrete time effects,
t=1...T) on the matrix of per-document topic prevalence weights.
We did not assume that the matrix of per-topic word proportions
varied according to covariates. The plate notation of STM is
shown in Figure 2. Variational methods are used for posterior
inference in STM [6].

To generate a document under STM, we begin by sampling the
per-topic word distributions from an (intercept-only)
multinomial logit model (where multinomial logit regression
parameters are given sparse “gamma-lasso” prior) [6].

Next, we sample the per-document topic distribution from a
logistic-normal distribution parameterized in terms of a mean
vector and covariance matrix. γ represents a D*T dimensional
design matrix encoding the time point (t=1...T) under which the
document (d=1...D) was observed. The vector γ is a matrix of
dimension T*K and encodes discrete time effects on each of
the per-document topical prevalence weights (a length K vector

for each document d=1...D). Finally, Σ is a K*K dimensional
covariance matrix that encodes correlations between topical
prevalence vectors (parameterized under a logistic-normal
model).

For each word (n=1...Nd) in each document (d=1...D), we sample
a topical indicator variable zd,n. This variable takes an integer
value between 1 and K and signifies the per-topic word
distribution from which a specific word, wd,n, is chosen. It must
be noted that the upper limit Nd suggests that the number of
words used for any given document (d) can vary.

Finally, we draw a single word or token, wd,n, from the topical
distribution associated with zd,n. The word indicator is an
element v=1...V in our empirical dictionary or vocabulary.

The framework for STM naturally allows for the estimation of
temporal effects on topical prevalence weights. In our study,
discrete time effects on topical prevalence can be interpreted
using the coefficient matrix (γ) from the fitted logistic-normal
model. As the temporal effects are encoded in a Bayesian
regression modeling framework, we can also compute inferential
measures (posterior means, highest posterior density intervals,
etc). The single-stage inferential mechanism encoded in STM
is a clear strength over earlier NMF and LDA models.

We used the stm() function in the STM package in R to fit the
STM to our study data.
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Figure 2. Graphical model representation of the structural topic model.

Neural Topic Modeling via BERTopic
Recently, researchers have developed topic models that integrate
neural architectures and related techniques for model
specification and learning. These neural topic models represent
a different class of topic models compared with those introduced
previously. Examples of recently developed neural topic models
include top2vec [10] and BERTopic [11]. In this study, we
focused on the BERTopic model.

BERTopic begins with embedding documents empirically
observed in the study corpus into a latent embedding space.
Many methods exist for embedding discrete linguistic units
(words, sentences, paragraphs, documents, etc) into an
embedding space. For example, words can be embedded in a
vector space using word2vec [17-19], GloVe [20], FastText
[21], ELMO [22], Flair [23], and transformer models [24].
Sentences and documents can be embedded using methods such
as doc2vec [25], universal sentence encoders [26], and
transformers [24]. The BERTopic model used in this study relies
on sentence transformers [27], particularly the MPNet sentence
transformer model [28]. The neural embedding model is a
discrete “hyperparameter” in the BERTopic modeling pipeline.
Different choices of neural embedding models are associated
with their own model-specific hyperparameters (embedding
dimension, context window width, model training or
optimization arguments, etc).

Each document (d=1...D) is embedded in a vector space,
typically of a few hundred dimensions. The uniform manifold
approximation and projection (UMAP) algorithm [29] was used
as a further nonlinear dimension-reduction technique to assist
in the visualization and clustering of document vectors.
Clustering was accomplished in the UMAP-reduced space using
the hierarchical density-based spatial clustering algorithm of
applications with noise (HDBSCAN) [30].

Clusters (k=1...K) of semantically related documents were
identified. Scores over words v=1...V in the vocabulary were
computed using cluster-specific TF-IDF weights. If a cluster
consisted of semantically focused documents, and hence words,
we expect to observe coherent and meaningful words identified
via TF-IDF scoring. The proportion of documents assigned to
each cluster during a specific period (t=1...T) can be used to
generate a T*K dimensional multivariate time series structure,
depicting the evolution of latent topic over our study period.

We fitted the BERTopic model using default hyperparameter
settings. The BERTopic pipeline requires (1) specification of
a document embedding algorithm (in our case, the MPNet
sentence transformer model [28]), (2) the UMAP nonlinear
dimension-reduction algorithm, (3) the HDBSCAN algorithm
for cluster identification, and (4) cluster-specific TF-IDF
scoring. The individual components of the pipeline could involve
substantive hyperparameter optimization. In this study, we used
the default model hyperparameter settings.

We used the Python package bertopic to fit BERTopic models.

Statistical Methods for Corpus Description and
Evaluation of Learned Temporal Topic Models
We used simple counts and percentages to describe the
characteristics of our study sample. We described the number
of unique patients and number of unique clinical notes. Each
patient in our sample was a “high-user” of the primary care
system, in the sense they generated at least one encounter/note
for each of the twenty quarterly time periods between
2011-2015. We described the distribution of the number of notes
per patients. We described demographic characteristics of the
sample (age/sex distributions).

When fitting the NMF, LDA, and STM models, we constructed
a DTM whose row dimension corresponded to the number of
unique patients in the sample (ie, 1727 unique patients)
multiplied by the number of distinct time periods (t=20;
1727×20=34,540). Each term-frequency vector observed in the
DTM was length V (V=2930), and an individual element
counted the number of times a given word was observed for a
given patient in each quarterly period. Across the DTM, we
counted the total number of words and the number of unique
words. We described the counts and percentages of the top 25
most prevalent words in our clinical note corpus. We also
described the sparsity of the DTM.

For each of the NMF, LDA, STM, and BERTopic models, we
constructed a K*T dimensional multivariate time series matrix
(this is the transpose of the T*K data structure described earlier).
Each row corresponds to a latent topic vector and each column
corresponds to a specific quarterly time period. A row vector
is a length T time series describing the evolution of a latent
topical vector across the study periods. Each column corresponds
to a distribution over topics at a particular period (ie, described
which topics are most important at a given period). For each
row k=1...K, we report the top 5 words loading most strongly
on a given topic. The cluster of words was semantically
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correlated and described the essence of the latent topical vector.
A heatmap was used to visualize this high-dimensional
multivariate time series structure; and we hierarchically clustered
the rows of the matrix using a Euclidean distance metric and
Ward agglomeration method (a dendrogram was used to
visualize the cluster structure of the topical series).

The topical structure of each of the NMF, LDA, STM, and
BERTopic model fits was described in terms of the top 5 words
loading most strongly on each of the k=1...K latent topics. In
other words, the topical structure of each model can be described
in terms of a “bag” of 250 words or tokens. We investigated
the topical diversity of the model fits. Topical diversity was
calculated in terms of the number of unique words in the bag
of 250 total words. Furthermore, we investigated the top 5 most
frequently occurring words in the “bag” describing each model
fit. The redundantly occurring words in the topical summaries
provided a rough approximation of the semantic concepts that
the models repeatedly identified as important.

We investigated several measures of topical coherence for the
NMF, LDA, STM, and BERTopic models. We considered the
“UMASS,” “UCI,” and normalized pointwise mutual
information (“NPMI”) metrics described in the surveys of Roder
et al [31] and Rosner et al [32]. These metrics assessed the
internal consistency of the collection of word clusters describing
the topical structure of the NMF, LDA, STM, and BERTopic
models. The theoretical minima or maxima of each coherence
measure varies; however, larger values indicate models that
generated more coherent topical characterizations. Mathematical
details related to the calculation of the aforementioned topical
coherence metrics are provided later and further outlined in the
studies by Roder et al [31] and Rosner et al [32]. In all the
equations used, we assumed that a topical vector is described
in terms of its top-L most probable words or tokens; {wi,wj}
represented distinct words from the top-L set, ε is a small
positive constant to avoid potential numerical issues in
computation; and δ is a weighting term (used in the normalized
NPMI estimates, compared with the unnormalized pointwise
mutual information estimates used in the UCI coherence
measure).

We used a set-based measure of concordance, the Jaccard
coefficient, to assess similarities or differences in the topical
structure describing the NMF, LDA, STM, and BERTopic

models. Each model was described in terms of a “bag” of 250
words or tokens (ie, k=50 topics, described in terms of their top
5 most probable words); consider 2 models generating bags of
words or tokens, b0 and b1. The Jaccard coefficient is defined
as the cardinality of the intersection of b0 and b1 divided by the
cardinality of the union of b0 and b1. In mathematical notation,
the Jaccard coefficient is expressed as follows:

Finally, we described the wall time (in seconds or minutes)
required to fit each of the NMF, LDA, STM, and BERTopic
models. We also discussed the computational issues associated
with hyperparameter tuning of each of the models.

Study Design, Setting, Data Sources, and Inclusion or
Exclusion Criteria
This study used a retrospective closed cohort design. Clinical
notes were obtained from primary care EMR systems
geographically distributed across Ontario, Canada. We included
all clinical notes written by the patient’s primary care provider
between January 01, 2011, and December 31, 2015. We
discretized time into quarterly strata (January-March;
April-June; July-September; and October-December). Patients
were excluded if they did not have at least one clinical note in
each of the 20 quarterly strata over the study period. Hence, the
selected sample of patients reflects a unique set of individuals
who frequently engaged with the primary health care system.

Results

Description of Corpus and Study Sample
Our document collection contained 160,478 clinical notes from
1727 patients. The 1727 patients received primary care services
from 1066 unique primary care physicians at 40 unique primary
care clinics (geographically distributed across Ontario, Canada).
The median age of the patients was 68 (IQR 55-80) years and
ranged from 20 to 103 years (age statistics were calculated using
study baseline as a reference date, January 1, 2011). Female
patients were observed more frequently than male patients
(1157/1727, 67% vs 570/1727, 33%). Table 1 describes the
characteristics of the study sample (in terms of both note-level
and patient-level units of analysis).

The initial note-level DTM had dimensions of 160,478 rows
(one row for each clinical note in the corpus) by 2930 columns
(one column for each unique word or token in the corpus). The
corpus comprised 3,003,583 tokens. The DTM was >99% sparse
(ie, it contained almost all zero elements). We also constructed
a patient-quarter–level DTM by aggregating notes observed on
the same patient within a quarter. This DTM had dimensions
of 1727×20=34,540 rows by 2930 columns and was >98%
sparse. The top 25 most frequently occurring words in the
analytic corpus are listed in Table 2.
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Table 1. Descriptive statistics for study sample, at note-level and patient-level unit of analysis.

Unique patients (n=1727), n (%)Unique notes (n=160,478), n (%)Characteristic

Age (years)

107 (6.1)9713 (6.1)20-40

675 (39.1)63,588 (39.6)40-65

704 (40.8)63,839 (39.8)65-85

241 (14)23,338 (14.5)>85

Sex

570 (33)51,530 (32.1)Male

1157 (67)108,948 (67.9)Female

Year

—a28,012 (17.5)2011

—31,220 (19.5)2012

—33,676 (21)2013

—33,756 (21)2014

—33,814 (21)2015

aNot applicable.
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Table 2. Top 25 most frequently occurring tokens or words in the final analytic primary care clinical note corpora (N=3,003,583).

Occurrence frequency, n (%)Token or word

88,132 (2.93)pain

65,612 (2.18)mg

52,970 (1.76)inr

50,751 (1.69)bp

43,556 (1.45)back

29,861 (0.99)dose

24,736 (0.82)feels

23,211 (0.77)rx

22,256 (0.74)chest

20,914 (0.7)meds

19,409 (0.65)referral

19,398 (0.65)work

19,322 (0.64)wt

17,415 (0.58)feeling

16,121 (0.54)blood

15,905 (0.53)symptoms

15,706 (0.52)prn

14,633 (0.49)urine

13,779 (0.46)bw

13,543 (0.45)lab

13,271 (0.44)clear

12,677 (0.42)knee

12,503 (0.42)pharmacy

12,331 (0.41)sleep

11,945 (0.4)prescription

Comparing Temporal Topic Models Estimated With
NMF, LDA, STM, and BERTopic Models
We comparatively evaluated inferences obtained from fitting
the NMF, LDA, STM, and BERTopic models to our primary
care clinical note corpus. For each model, we varied the number
of topics (K={25,40,45,50,55,60,75}) and observed similar
inferences at various levels of the model complexity parameter
(K). When K was too small, distinct semantic topics tended to
be grouped together, whereas when K was too large,
semantically similar topics tended to be split into arbitrary
clusters (resulting in an overclustering effect). Using human
judgment evaluation, we determined that a model complexity
of K=50 topics balanced a parsimonious, while simultaneously
expressive, characterization of the clinical document corpus.
For each of the NMF, LDA, STM, and BERTopic models, we
reported the results assuming K=50 latent topics.

A summary of the distribution of words over the k=1...50 latent
topics (for each of the 4 models under comparison) is given in
Figures 3-6, respectively. The y-axis in each figure lists the top
5 words loading most strongly on a given topic. For NMF, LDA,
and STM, we reported topical prevalence weights associated

with each word or token (which is approximately the probability
of observing the word or token under a given latent topic). For
the BERTopic model, we reported normalized cluster-specific
TF-IDF scores associated with words under topics (which can
be interpreted similarly to the outputs of the NMF, LDA, and
STM models). The x-axis of these plots represents t=1...20
quarterly periods. A column in the plot represents a topical
prevalence distribution over latent topics at a given time point.
A row in the plot illustrates the evolution of a latent topic over
the study period.

Each of the 4 latent temporal topic models learned a meaningful
representation of the primary care clinical notes corpus. In the
following paragraphs, we discuss (1) topics consistently
estimated across models that demonstrated constant trends in
topical prevalence across quarterly periods and (2) topics
consistently estimated across quarterly periods that demonstrated
interesting seasonal patterns.

Each of the fitted models consistently identified the following
latent primary care topical constructs (and these topics show
constant patterns across quarterly periods): sleep
(NMF=Topic−45; LDA=Topic-2 or Topic-31; STM=Topic-11;
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BERTopic=not applicable); mental health, for example, mood,
anxiety, and depression, (NMF=Topic-33; LDA=Topic-22;
STM=Topic-19; BERTopic=Topic-16); pain (NMF=Topic-1;
LDA=Topic-39, Topic-36, Topic-14, Topic-49, Topic-34, or
Topic-37; STM=Topic-8; BERTopic=Topic-9 or Topic-39);
blood pressure control and monitoring (NMF=Topic-36;
LDA=Topic-9; STM=Topic-21; BERTopic=Topic-31);
respiratory disease, for example, cough, throat, chest, fever, etc
(NMF=Topic-46; LDA=Topic-13; STM=Topic-46;
BERTopic=Topic-1), smoking (NMF=Topic-31;
LDA=Topic-32; STM=Topic-44; BERTopic=Topic-38);
diabetes, for example, blood, sugar, insulin, fbs, etc
(NMF=Topic-5; LDA=Topic-43; STM=Topic-42;
BERTopic=Topic-8); pharmaceutical prescription management
(NMF=Topic-26; LDA=Topic-40; STM=Topic-9;
BERTopic=Topic-36 or Topic-5); and annual influenza
vaccination programs (NMF=Topic-6; LDA=Topic-29;
STM=Topic-36; BERTopic=Topic-50). These thematic areas
represented archetypical patients, conditions, or roles
encountered in the primary health care system. The consistent
extraction of latent themes (represented as semantically
correlated word clusters) suggests that each model can leverage
information regarding word-context co-occurrence to learn
meaningful patterns from a large unstructured clinical document
corpus.

Figures 3-6 illustrate 4 different temporal topic model
multivariate time series structures. For a given plot, the x-axis
represents time (t=1...20 quarterly periods from 2011-2015),
and the y-axis represents a topical vector (k=1...50). The
intensity of color in the cell (t,k) indicates the extent to which

an encounter at time (t) is related to a latent topic (k). Topical
labels are exchangeable and clustered along the y-axis, according
to the similarity of the topical time series (a dendrogram
describing the similarity or differences across topical clusters
is illustrated in Figure 7). Figure 3-6 represent different
multivariate time series structures estimated with NMF (Figure
3), LDA (Figure 4), STM (Figure 5), and BERTopic (Figure
6).

For certain learned topics, seasonal harmonic patterns were
stably estimated over the study period. For example, the annual
influenza vaccination program consistently occurred in the fall
or winter months of the study (NMF=Topic-6; LDA=Topic-29;
STM=Topic-36; BERTopic=Topic-50). Similarly, annual spikes
in respiratory diseases (cough, cold, influenza, etc) are identified
as achieving peaks in the winter months and lows in the summer
months (NMF=Topic-46; LDA=Topic-13; STM=Topic-46;
BERTopic=Topic-1). These findings are illustrated in Figures
3-6; however, we also present individual time series plots of
these topics in Figures 8 and 9, so the reader can better
appreciate the ability of the different temporal topical models
to extract consistent seasonal patterns from the primary care
clinical document corpus. Findings regarding consistent seasonal
variation in primary care roles over time have strong face
validity and are corroborated by complementary data sources
(eg, administrative data). Furthermore, the consistency by which
these patterns are extracted from our large clinical document
collection helps build trust in the opportunity to use
word-context co-occurrence statistics (and topic models) to
characterize and monitor primary care practices and systems.

Figure 3. A heat map of the multivariate time series structure associated with the nonnegative matrix factorization temporal topic model.
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Figure 4. A heat map of the multivariate time series structure associated with the latent Dirichlet allocation temporal topic model.

Figure 5. A heat map of the multivariate time series structure associated with the structural topic model temporal topic model.
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Figure 6. A heat map of the multivariate time series structure associated with the BERTopic temporal topic model.

Figure 7. Dendrograms displaying the clustering structure of the latent multivariate time series objects learned from nonnegative matrix factorization
model (A), latent Dirichlet allocation model (B), structural topic model (C) and BERTopic model (D).
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Figure 8. Descriptive time series plots characterizing the seasonal evolution of annual influenza program topic, as estimated by nonnegative matrix
factorization model (A), latent Dirichlet allocation model (B), structural topic model (C) and BERTopic-models (D).

Figure 9. Descriptive time series plots characterizing the seasonal evolution of the respiratory disease topic, as estimated by nonnegative matrix
factorization model (A), latent Dirichlet allocation model (B), structural topic model (C) and BERTopic-models (D).
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Post Hoc Internal Evaluation of Fitted Temporal Topic
Models
When investigating the top-ranked words associated with
per-word topic distributions in Figures 3-6 we note that each
model can describe the corpus using a “bag” of up to 250 unique
words (K=50 topics multiplied by top 5 words being presented
for each latent topical representation). The number of unique
words—also known as the topic diversity—observed in NMF,
LDA, STM, and BERTopic model fits was 76.4% (191/250),
88.4% (221/250), 87.6% (219/250), and 77.2% (193/250),
respectively. The top 5 most frequently recurring words or
tokens describing the topical structure of each of the NMF,
LDA, STM, and BERTopic models are listed in Table 3.
Recurring words for LDA and STM are similar, suggesting that
primary care issues related to back pain (and other
musculoskeletal pain) are important, as are issues related to
hypertension and feelings (eg, mood disorders). Conversely,
the BERTopic model seems to prioritize primary care issues
related to prescription drugs and laboratory ordering or
management.

We explored the semantic coherence of NMF, LDA, STM, and
BERTopic models using the following metrics: “UMASS,”
“UCI,” and “NPMI” (Table 4) [31,32]. Larger coherence metrics
indicated increasingly internally consistent latent topical

characterizations. The “UMASS” metric favored the STM
model, whereas, the “UCI” and “NPMI” metrics favored the
BERTopic model.

To investigate the differences and similarities in the fitted topic
model, we used the Jaccard coefficient (Table 5). Using the
Jaccard measure of concordance, the Bayesian models (LDA
or STM) were identified as resulting in the most similar fit. The
BERTopic model generated the most distinct topical
representation compared with the other models.

The time required to train each model was reported. For NMF,
LDA, and STM models, we used a single central processing
unit (although Python SKLearn implementations of
decomposition models can be parallelized). For the BERTopic
model, we used a single graphics processing unit for embedding
documents and a single central processing unit for
dimensionality reduction (UMAP) and clustering (HDBSCAN).
Under these settings, the time required to fit the NMF, LDA,
STM, and BERTopic models was 237 seconds, 67 seconds, 879
seconds (14.7 minutes), and 2624 seconds (43.7 minutes),
respectively. The computational requirements of the BERTopic
model exceeded those of the other models, particularly the
highly optimized NMF or LDA implementations in Python
SKLearn.

Table 3. The most frequently occurring tokens observed in each of the bags of 250 words describing the topical structure of latent Dirichlet allocation
(LDA), nonnegative matrix factorization (NMF), structural topic model (STM) and BERTopic model fits (and their occurrence counts in the bag).

Topic modelWord or token

BERTopic (n)STM (n)LDA (n)NMF (n)

inr (11)back (5)back (9)head (4)Word or token-1

mg (9)mg (5)bp (6)mg (4)Word or token-2

lab (5)pain (5)pain (6)ccac (3)Word or token-3

prescription (5)bp (4)chest (3)diabetes (3)Word or token-4

dose (4)feels (3)feels (3)feeling (3)Word or token-5

Table 4. Topical coherence measures (“UMASS,” “UCI,” and normalized pointwise mutual information [“NPMI”]) estimated on each of the nonnegative
matrix factorization (NMF), latent Dirichlet allocation (LDA), structural topic model (STM) and BERTopic models.

Topic modelTopical coherence measure

BERTopicSTMLDANMF

−2.591−2.372−2.488−2.522UMASS

1.4051.1920.9871.220UCI

0.2300.1900.1490.183NPMI
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Table 5. Jaccard coefficient metrics of set-based concordance between fitted topic models: nonnegative matrix factorization (NMF), latent Dirichlet
allocation (LDA), structural topic model (STM), and BERTopic.

BERTopicSTMLDANMF

————aNMF

———0.526LDA

——0.5770.491STM

—0.3290.2860.343BERTopic

aNot applicable.

Discussion

Principal Findings
In this study, we compared several distinct methodologies (ie,
NMF, LDA, STM, and BERTopic) to estimate temporal topic
models from a large collection of primary care clinical notes.
Despite differences in the underlying statistical methodology,
models often converged on a consistent latent characterization
of the corpus. Furthermore, the temporal evolution of latent
topics was reliably extracted from each of the NMF, LDA, STM,
and BERTopic models.

Clinically, our data set represented high-users of the primary
care system. Many of the latent topics emerging from this
analysis are consistent with a high-user archetype, for example,
family counseling or social work, mood disorders, anxiety or
depression, chronic pain, arthritis and musculoskeletal disorders,
neurological conditions, cardiovascular disease and
hypertension, diabetes, cancer screening (breast, cervical,
colorectal, and prostate), laboratory requisitions and blood work,
diagnostic imaging, and pharmaceutical or prescription
management. Topic models also identified numerous acute
health conditions as important latent themes, such as cough,
cold and other respiratory infections, urinary tract infections,
skin conditions, and wound care. NMF, LDA, STM, and
BERTopic models each consistently captured (1) annual primary
care influenza programs and (2) seasonal respiratory conditions,
demonstrating predictable seasonal variation. Findings regarding
primary care use patterns, extracted solely from clinical text
data, were largely corroborated by provincial reporting based
on structured administrative data [33].

We observed that disparate statistical methodologies for
estimating temporal topic models generated a concordant or
consistent latent representation. We interpreted this to mean
that as the signal-to-noise ratio increases in a given clinical text
data set, the subtle choice of statistical methodology seems to
matter less, and any of these methods would extract a
meaningful latent representation of the primary care corpus.
For smaller corpora, where word-document co-occurrence
statistics are less certain, this hypothesis may not hold.

Furthermore, subtle or nuanced differences in model
representations emerged, which may lead analysts to favor
specific modeling strategies in particular settings. For example,
consider Figure 8 for the annual influenza vaccination program.
Models such as NMF and LDA are purely unsupervised and do
not consider external covariate information when formulating
the model objective function. For NMF or LDA models we

noticed that the “grand mean” topical prevalence over time
centers at approximately 2% (ie, 1/50 topics). Conversely, an
STM intentionally incorporates covariate information in the
Bayesian graphical models’ prior structure, and we observed
that for STM, the lows for annual influenza topic are much
closer to 0%, whereas the fall or winter peaks are more
pronounced. The BERTopic model does not intentionally
incorporate covariate information into its objective function(s)
either; however, it adopts a more “local averaging” principle to
estimate topical distributions over time and, as such,
demonstrated similar seasonal harmonic patterns as STM in the
context of the annual influenza program. Similar patterns can
be observed in Figure 9 for seasonal respiratory diseases. This
suggests that different topic models may perform more or less
optimally in certain scientific settings (ie, may be dependent on
the research question, available data, and how these foundational
aspects of a study interplay with model choice). A priori, should
the analyst or researcher expect topical prevalence to vary about
select observable covariates, it may make sense to adopt a more
flexible model that can adequately incorporate this anticipated
behavior. If there is no a priori rationale to believe that topical
prevalence varies as a function of covariates (eg, time in this
study), then the choice of model may become less relevant, as
all models may perform similarly well.

Because of the different statistical principles associated with
each temporal topic modeling methodology, each method is
associated with its own strengths and weaknesses. We have
elaborated on the methodological and computational issues
associated with each class of models.

First, NMF is the most mature and seemingly parsimonious
methodology for topic modeling. NMF is strongly rooted in
linear algebraic principles and is fundamentally based on the
constrained optimization of a simple least squares objective
function. Vanilla NMF is a well-studied statistical methodology
and many efficient computational routines exist for estimating
NMF models. NMF is flexible and can be readily extended.
Possible model extensions can be viewed as discrete tunable
hyperparameters in the model fitting process. Berry et al [12]
and Cichocki et al [34] discussed distinct algorithmic techniques
for estimating the latent parameters of an NMF model, such as
gradient descent, multiplicative updates, and alternating
nonnegative least squares. The choice of algorithm can be
conceived as a discrete tunable hyperparameter. Furthermore,
analysts are often confronted with the choice of whether to
regularize the latent parameter matrices [35]. Ridge, lasso, and
elastic net regularization are commonly encountered, although
more complex regularization can be used to encourage latent
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representations with smoothness, minimal volume, and other
characteristics. Furthermore, many researchers have attempted
to introduce coherent generalizations of NMF and related
techniques [13]. For example, generalized low-rank models that
flexibly incorporate different loss functions, functional forms,
weighting of data points, and regularization have been discussed
by Udell et al [13].

LDA and STM are Bayesian topic models. LDA was developed
as a fully Bayesian extension of existing linear algebraic-based
(eg, latent semantic analysis) and maximum likelihood-based
(eg, probabilistic latent semantic indexing) techniques for topic
modeling [2]. LDA has been extended in various ways,
illustrating the flexibility of Bayesian probabilistic graphical
models. For example, STM is a direct extension of LDA, which
allows latent parameter matrices to vary as a function of
observed covariates [6]. Efficient computational fitting routines
have been developed for LDA, and STM to a certain extent.
Analysts face several decisions when fitting LDA and STM
models to empirical data sets, including Bayesian inferential or
computational methods (eg, Gibbs sampling vs variational
inference) and prior distribution specifications.

BERTopic represents the most novel approach to topic modeling
[11]. The BERTopic model is a pipeline: (1) deep neural
networks (eg, sentence transformer models) embed documents
in a vector space; (2) nonlinear dimension reduction is applied
to latent document vectors (UMAP); (3) document clusters are
identified (HDBSCAN); and (4) representative topics
(collections of semantically correlated words) are extracted
from document clusters using a cluster-specific TF-IDF scoring
method. A disadvantage of the BERTopic pipeline is related to
computational requirements. For large corpora, a graphics
processing unit is required to learn document embeddings within
a reasonable time. In our study, we randomly down-sampled
our data set (3/8 documents were included, whereas 5/8
documents were excluded), even with a graphics processing
unit. That said, the BERTopic model’s strength is related to its
modularity. We observed that the BERTopic model generates
meaningfully coherent topics, and as neural embedding methods
continue to evolve, we anticipate that state-of-the-art document
embedding techniques can be dropped into this pipeline.

Limitations and Future Work
We attempted to be transparent with respect to how our final
vocabulary of words or tokens was selected and accordingly
the DTMs were constructed for this study. Different
computational pipelines could have been used to preprocess our
clinical text corpus. For instance, we could have used different
strategies for tokenization, lemmatization, stemming, stop-word
removal, and frequency-based word or token removal. Different
text preprocessing pipelines would ultimately lead to different

DTM structures (with different vocabularies). Further research
is needed to better understand the implications of these text
preprocessing decisions on downstream study inferences.

Each topic model considered in this study requires specification
of hyperparameters that govern the aspects of model fitting.
Fitting these topic models is computationally intensive for large
input data sets. We focused mainly on the stability and
robustness of inferences with respect to model complexity (K),
a common hyperparameter across all models. We did not explore
the stability of the inferences across other model-specific
hyperparameters.

We did not consider all possible methods for estimating temporal
topic models in this study. Bespoke NMF and LDA variants
exist that are applicable for estimating temporal topic models.
Sequential NMF [36] and dynamic LDA [37] are 2 extensions
which are relevant for estimating temporal topic models. Tensor
factorization models such as the canonical polyadic
decomposition or Tucker decomposition, which factorize a
D*V*T tensor into meaningful latent parameter matrices, may
also be applicable [34,38]. Additional surveys related to topic
modeling are provided in the studies by Churchill and Singh
[39], Zhao et al [40], and Boyd-Graber et al [41].

These works have led us to consider several possible ways of
extending different topic modeling frameworks, including
Bayesian NMF with document-level covariates (similar to the
STM extension of LDA), neural matrix factorization with
(nontemporal) covariates, LDA or STM extensions that allow
per-document topical prevalence weights to vary according to
a flexible generalized linear mixed model or multilevel model
(for modeling dependencies introduced because of the complex
design or sampling mechanism by which documents are created),
and computational methods for improving statistical inference
(eg, interval estimation and hypothesis testing) when engaging
with temporal topic models (eg, resampling methods, bootstrap,
and multiple outputation).

Conclusions
In this study, we compared several statistical techniques for
estimating temporal topic models from primary care clinical
text data. Different temporal topic models have unique strengths
and weaknesses owing to their underlying statistical properties.
Nonetheless, each model consistently estimated a latent variable
representation of a primary care document collection, which
meaningfully characterized high-use primary care patients and
their longitudinal interactions with the primary health care
system. As the adoption of EMRs increases and health care
organizations amass increasingly large volumes of clinical text
data, temporal topic models may offer a mechanism for
leveraging unstructured clinical text data for characterization
and monitoring of primary care practices and systems.
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