
Original Paper

Boosting Delirium Identification Accuracy With Sentiment-Based
Natural Language Processing: Mixed Methods Study

Lu Wang1,2, PhD; Yilun Zhang1, MSc; Mark Chignell1, PhD; Baizun Shan1, MSc; Kathleen A Sheehan3,4, MSc, MD,

PhD; Fahad Razak3,5, MPhil, MD; Amol Verma3,5, MPhil, MD
1Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
2Department of Computer Science, Texas State University, San Marcos, TX, United States
3GEMINI - The General Medicine Inpatient Initiative, Unity Health Toronto, Toronto, ON, Canada
4Department of Psychiatry, University of Toronto, Toronto, ON, Canada
5Faculty of Medicine & Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada

Corresponding Author:
Mark Chignell, PhD
Department of Mechanical & Industrial Engineering
University of Toronto
RM 8171A, Bahen Building
40 St George Rd
Toronto, ON, M5S 2E4
Canada
Phone: 1 6473898951
Email: chignel@mie.utoronto.ca

Abstract

Background: Delirium is an acute neurocognitive disorder that affects up to half of older hospitalized medical patients and can
lead to dementia, longer hospital stays, increased health costs, and death. Although delirium can be prevented and treated, it is
difficult to identify and predict.

Objective: This study aimed to improve machine learning models that retrospectively identify the presence of delirium during
hospital stays (eg, to measure the effectiveness of delirium prevention interventions) by using the natural language processing
(NLP) technique of sentiment analysis (in this case a feature that identifies sentiment toward, or away from, a delirium diagnosis).

Methods: Using data from the General Medicine Inpatient Initiative, a Canadian hospital data and analytics network, a detailed
manual review of medical records was conducted from nearly 4000 admissions at 6 Toronto area hospitals. Furthermore, 25.74%
(994/3862) of the eligible hospital admissions were labeled as having delirium. Using the data set collected from this study, we
developed machine learning models with, and without, the benefit of NLP methods applied to diagnostic imaging reports, and
we asked the question “can NLP improve machine learning identification of delirium?”

Results: Among the eligible 3862 hospital admissions, 994 (25.74%) admissions were labeled as having delirium. Identification
and calibration of the models were satisfactory. The accuracy and area under the receiver operating characteristic curve of the
main model with NLP in the independent testing data set were 0.807 and 0.930, respectively. The accuracy and area under the
receiver operating characteristic curve of the main model without NLP in the independent testing data set were 0.811 and 0.869,
respectively. Model performance was also found to be stable over the 5-year period used in the experiment, with identification
for a likely future holdout test set being no worse than identification for retrospective holdout test sets.

Conclusions: Our machine learning model that included NLP (ie, sentiment analysis in medical image description text mining)
produced valid identification of delirium with the sentiment analysis, providing significant additional benefit over the model
without NLP.

(JMIR Med Inform 2022;10(12):e38161) doi: 10.2196/38161
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Introduction

Background
Delirium is described as “acute brain failure” and is considered
both a “medical emergency” and “quiet epidemic” [1,2]. It is
the most common neuropsychiatric condition among medically
ill and hospitalized patients [3]. It is also recognized as a quality
of care indicator in Canada, the United States, the United
Kingdom, and Australia [4-8]. Symptoms of delirium can be
severe and distressing for both patients and caregivers [9,10]
and result from a complex interaction between predisposing
and precipitating factors [9]. Affecting up to 50% of older
hospital patients, those with delirium are more than twice as
likely to die in the hospital or require nursing home placement
[11-14]. The long-term effects of delirium are serious, as it is
associated with worsening cognitive impairment and incident
dementia [14-17]. Patients with delirium have longer
hospitalizations, increased readmission rates, and more than
double the health care costs. The study by Leslie et al [18]
indicated that 1-year health costs associated with delirium
ranged from US $16,303 to US $64,421 per patient. More recent
estimates suggest that it accounts for US $183 billion dollars
of annual health care expenditures in the United States [18,19].
Up to 40% of cases are preventable and many of the remaining
cases of delirium could be better managed with implementation
of standardized multicomponent programs [19,20]. These
programs result in up to US $3800 in savings per patient in
hospital costs and >US $16,000 in savings per person-year in
the year following an episode of delirium [19,20]. However, in
routine clinical care, there is a significant practice gap, and most
hospitals have not consistently implemented best practices
[19-21].

A key barrier in using delirium as a quality indicator is the lack
of a reliable and scalable method for early identification of
delirium cases. Clinicians are not good at recognizing delirium
using clinical gestalt, with corresponding recognition rates
ranging between 16% and 35% [22]. The Confusion Assessment
Method (CAM) [23] is one of the number of screening tools for
delirium, but it takes time and training to use; as a result, tools
such as CAM are used relatively infrequently. For instance,
Hogan et al [23] found that only 28% of emergency departments
with a geriatric focus used delirium screening tools.

As delirium is difficult to recognize in situ, there has been
interest in recognizing delirium after it has occurred, either
through administrative chart review (ie, looking for evidentiary
factors such as the use of antipsychotic drugs) or through
retrospective identification. Ideally, identification of delirium
would be prospective, proving a method to identify those at the
highest risk of developing delirium to target delirium
identification interventions for these individuals. However,
retrospective identification of delirium can also be useful in
determining delirium rates, which can serve as quality indicators
and measures of effectiveness for interventions aimed at quality
improvement.

Numerous models for predicting delirium have been developed
based on known predisposing and precipitating risk factors [18].
However, current models have limitations [24]. First, they rely

on variables not routinely collected as part of clinical care such
as preexisting cognitive impairment and functional status,
making them difficult to scale [25]. For example, the United
Kingdom’s National Institute for Clinical Excellence delirium
risk identification model requires information on cognitive
impairment and sensory impairment to be available in the
electronic record [26-28]. Second, a systematic review of
delirium identification models highlighted their inadequate
identification and numerous methodological concerns regarding
how the models were validated such as their accuracy and
inadequate predictive ability. The review concluded that model
performance was likely exaggerated [26]. Third, prior risk
identification models for delirium have tended to use a limited
set of machine learning methods [7,29-33] and have tended to
neglect text data [34].

With the growing availability of electronic clinical data
repositories such as the one used in this study, methods such as
data mining and machine learning can supplement or replace
conventional statistical models [27,32,34-38]. Natural language
processing (NLP) methods for medical text mining are required
to extract valuable medical information and derive calculable
variables for identification models [39]. NLP has proven to be
highly effective in extracting the information from medical text
into a computationally useful form that can support clinical
decision-making [40-47].

Sentiment analysis analyzes the text for the sentiment of the
writer (eg, positive vs negative, or in our case delirium vs
non–delirium-related text) using machine learning and NLP
[46-48]. We adapted sentiment analysis to predict sentiment
concerning delirium status. Thus, positive (with delirium) and
negative (without delirium) status was a new (binary) sentiment
feature in the subsequent analysis. Using this delirium-based
text sentiment analysis, we created a text-derived feature that
estimated the delirium status for each admission.

Objective
The overall research goal of our project was to retrospectively
identify delirium cases during hospitalization using all data
available from admission to discharge to estimate delirium rates
and thereby quantify the effect of quality improvement
interventions related to delirium. In this study, we focus on the
methodological goal of demonstrating the value of incorporating
NLP methods in the retrospective identification of delirium.

Methods

Data Source

Overview
The General Medicine Inpatient Initiative (GEMINI) is a
multi-institutional research collaboration in Ontario, Canada.
GEMINI has developed infrastructure and methods to collect
and standardize electronic clinical data from hospitals. The data
for this study were obtained from 6 hospitals (St Michael’s
Hospital, Toronto General Hospital, Toronto Western Hospital,
Trillium Credit Valley Hospital, Trillium Mississauga Hospital,
and Sunnybrook Hospital). GEMINI is emerging as a rich
resource for clinical research and quality measurement [4,49-52].
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A rigorous internal validation process demonstrated 98% to
100% accuracy across key data types [50].

In GEMINI, administrative health data are linked to clinical
data extracted from hospital information systems at the
individual patient level (Table 1).

Table 1. Data contained in the General Medicine Inpatient Initiative project.

MicrobiologyClinical docu-
mentation

PharmacyImagingLaboratoryPhysician and roomPatient detailsData type

Selected
variables

••••••• OrganismPhysician
orders

Medica-
tion

Radiologist
reports of di-
agnostic and
interventional
imaging

Biochem-
istry

Physician de-
tails

Demographics
• •Comorbidities Antimicro-

bial suscepti-
bility

•••• Vital signsDoseHematol-
ogy

Transfer details• Diagnoses
• Route• Procedures

• Transfu-
sion

• Collection
details

• Costs

Administrative Data
Patient-level characteristics were collected from hospitals as
reported to the Canadian Institute for Health Information
Discharge Abstract Database and the National Ambulatory Care
Reporting System. Diagnostic data and interventions were coded
using the enhanced Canadian International Statistical
Classification of Diseases and Related Health Problems and the
Canadian Classification of Health Interventions.

Clinical Data
Data from the electronic information systems in GEMINI
include laboratory test results (biochemistry, hematology, and
microbiology), blood transfusions, in-hospital medications, vital
signs, imaging reports, and room transfers. The quality of the
key elements of these data was ensured through statistical quality
control processes and direct data validation [53]. GEMINI data
extraction methods allow access to a wealth of data ideal for
text processing methods, including radiologist reports of
diagnostic imaging.

The delirium cases in the research reported here were identified
through manual medical record review by trained medical
professionals using a validated method [54]. This method relies
primarily on the identification of delirium or its numerous
synonyms (eg, confusion) through a detailed review of
physicians, nurses, and interprofessional documentation. The
method has good sensitivity (74%) and specificity (83%)
compared with clinical assessment and is considered a suitable
gold standard for the identification of delirium for research and
quality improvement [54].

We used 11 data files from a GEMINI data set that contained
3862 hospital admissions manually labeled according to delirium
status. The data files include clinical and administrative data,
as described in Table 1. However, labeling delirium is highly
labor intensive, with trained reviewers answering the following
question as part of the process: “Is there any evidence from the
chart of acute confusional state (e.g., delirium, mental status
change, inattention, disorientation, hallucinations, agitation,
inappropriate behavior, etc.)? Review the entire medical record,
including progress notes, nursing notes, consult notes, etc.”
Thus, although chart review labels can be used to train more
efficient machine learning methods, they are too expensive to
use in label all older patients in terms of whether they
experienced delirium during their hospital stay.

In our study, we used the chart review method [51] to label a
subset of cases in our data set with respect to delirium. Interrater
reliability was assessed by having 5% of the charts blindly
reviewed by a second abstractor, achieving 90% interrater
reliability. This resulted in the 3862 hospital admissions used
in the analyses reported in this paper. The data files include
clinical and administrative data, as described in Table 1.

Ethics Approval
The research ethics board (REB) at the Toronto Academic
Health Science Network approved the GEMINI study (REB
reference number 15-087). The extension of the REB approval
was issued by the Unity Health Toronto REB (reference number
15-087). A separate REB approval was obtained for Trillium
Health Partners.

This paper is also part of the GEMINI substudy, named “Using
artificial intelligence to identify and predict delirium among
hospitalized medical patients,” which was approved by the
University of Toronto REB (approved as reference number
38377).

Data Preprocessing
The data tables contained in GEMINI were merged into a single
table worksheet suitable for conducting machine learning.
Before that, merger relevant variables were selected from the
data tables, as described in the following subsections.

Laboratory Tests
A total of 45 medical tests were included in this data file, for
example, blood urea nitrogen, mean cell volume, and high
sensitivity troponin. Note that in each admission, not all 45
medical tests were performed, although some tests were
performed several times in the same patient. In the original
laboratory tests data file, each instance of a medical test
corresponded to a separate record. We converted the laboratory
tests table to one with a single row per admission, where each
column represented a different test. As patients typically
received a small subset of the available tests, there were many
empty cells (ie, sparsity), and some cells had to represent
multiple instances of the same test. To address the problem of
sparse variables, we converted them to 1 or 0 flag variables (1
for test performed and 0 for test not performed). For frequently
performed tests, we recorded the minimum, maximum, median,
and frequency of the test results for each admission. If a test
was administered at least five times in >50% of the admissions,
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we calculated the SD of the test results across each admission
as an additional summary measure.

Patient Diagnosis
We first mapped the International Classification of Diseases,
Tenth Revision (ICD-10) to the Clinical Classification Software
(CCS) discharge diagnosis codes in a process that we previously
described [4,49,50,55]. We use all available ICD-10 codes,
including those assigned retrospectively, and this should not be
considered data leakage but rather leveraging all available data
to serve the use. The physician team identified 240 unique CCS
codes potentially relevant to delirium. We then created flag
variables (Boolean) for these 240 unique CCS codes that
indicated whether the admission involved each of the diagnoses.
Note that we did not create flag variables for ICD-10 codes
because this would have dramatically increased the number of
features in the analysis.

Clinical Interventions
This set of features covered a range of clinical interventions
including surgical and endoscopic procedures as coded by the
Canadian Classification of Health Interventions. Two variables
were used to record the number of interventions for each
admission. The first derived variable was the number of
interventions performed per admission (including repetitions
of the same intervention). The second derived variable counted
the number of unique interventions per admission. No other
information regarding interventions was used in the data file.

Room Transfers
We calculated the number of room transfers for each admission,
which was the only variable used from this data table.

Clinical Risk Scores
We used the following clinical scores, which are markers of
illness severity and patient risk of adverse outcomes: Charlson
Comorbidity Index [56], Laboratory-Based Acute Physiology
Score [57], and Kidney Disease: Improving Global Outcomes
Acute Kidney Injury stages [58].

Emergency Department Triage Score
We applied one-hot encoding on the feature representing the
patient’s illness severity at the time of emergency department
triage with a 5-point scale, as measured by the Canadian Triage
and Acuity Scale [59].

Administrative Admission and Discharge Data
We applied one-hot encoding on the feature representing the
type of medical services that the patient was admitted to and
discharged from as per the hospital admission, discharge, and
transfer system. We also calculated hospital length of stay and
derived a feature to indicate where the patient was discharged
to.

Medications
This file had 1 row per admission and was used as is.

Special Care Unit
Only 320 admissions had special care unit information, so we
created a flag variable with binary coding to indicate whether

patients were cared for in a special care unit at any point during
the admission.

Blood Transfusion
This medical data table contained only 429 admissions that
included blood transfusion information; therefore, we created
1 column with binary coding to represent its presence or
absence.

NLP on Radiologist Reports of Diagnostic Imaging
The medical imaging data table contained the text description
of magnetic resonance images and computed tomography scans,
which were filtered to include only brain or head imaging.
Similar to the laboratory tests data file, there was 1 row per
imaging test; therefore, there could be multiple rows per
admission. If there were multiple tests per admission, we first
concatenated the text descriptions across the tests and then used
text mining on this file by cleaning, tokenizing, and vectorizing.

The data set used for machine learning represented data
integrated from multiple sources, for example, laboratory results,
medications, radiologist reports, and administrative data. We
adapted sentiment analysis to predict sentiment concerning
delirium status. Thus positive (with delirium) and negative
(without delirium) status was a binary sentiment that then
formed a new feature in the subsequent analysis. Using this
delirium-based text sentiment analysis, we created a text-derived
feature that estimated the delirium status for each admission.

Preliminary text analysis was carried out before the sentiment
analysis. Text cleaning included uppercase transformation, stop
words removal, punctuation removal, intraword splitting,
tokenization, and lemmatization and was performed using the
nltk [39] and sklearn [60] packages. Next, term
frequency–inverse document frequency, word count
representation, and n-gram methods were applied for text
vectorization.

A total of 8 baseline machine learning classification models
were then trained to perform sentiment analysis, that is, logistic
regression, Naive Bayes, support vector machine (SVM),
decision tree, random forest, gradient boosting, XGboost, and
multilayer perceptron. Hyperparameter tuning was applied using
RandomSearchCV (ie, a randomized search on hyperparameters
optimized by cross-validated search over parameter settings)
[60].

Gradient boosting was selected as the final sentiment analysis
method because its F1-score was the highest among the 8
classifiers. The final model was a stochastic gradient boosting
(with a 0.8 subsample) that used 200 estimators, with Friedman
mean square error as the criterion and a maximum depth of 3.
We then created a feature with the predicted binary sentiment
from the description of the medical images in the text using the
selected gradient boosting model.

We integrated this new feature with 10 laboratory tests and
electronic health record data to create a complete data file for
training and testing machine learning identification models.
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Model Construction and Training
A total of 12 supervised classification algorithms with the task
of predicting delirium status were implemented. The 12 machine
learning algorithms covering most types of machine learning
models were as follows:

• Ensemble machine learning models: gradient boosting
classifier, AdaBoost classifier, random forest, and voting
classifier soft

• Nonparametric machine learning models: K-nearest
neighbor and decision tree

• Linear parametric machine learning models: logistic
regression, linear SVM, and linear discriminant analysis

• Nonlinear parametric machine learning models: quadratic
discriminant analysis, neural network: multilayer perceptron
classifier in deep learning

• Bayesian-based machine learning models: Gaussian Naive
Bayes.

For the modeling, we split our integrated complete data into 2
parts, a training set and a testing set. As shown in Figure 1, the
data extended over a 5-year period, from April 1, 2010, to March
31, 2015. We divided this period into ten 6-month segments.
We treated the first 9 segments, that is, April 1, 2010, to
September 30, 2014, as the training set. The last 6-month period,
that is, October 1, 2014, to March 1, 2015, was used as holdout
data (ie, testing set) to estimate the likely future performance
of the model that was forward in time relative to the data used
in building the model. This allowed us to assess whether there
was any nonstationarity in the data, which would affect our
ability to predict delirium in the future based on models
developed on currently available data as transferability to future
data.

Figure 1. Data splits for models training and testing on a rolling basis. TS: time segment.

In the training set, we used 5-fold cross-validation to tune the
model parameters for each of the 12 machine learning
algorithms. We then used the tuned parameters from the 5-fold
cross-validation to identify delirium status of each admission
in the testing or holdout set.

Results

Overview
We tested the model performance on the holdout testing set and
calculated 6 evaluation metrics to find the best model, that is,
accuracy, precision, recall or sensitivity, F1-score, specificity,
and area under the receiver operating characteristic curve
(ROC-AUC).

Accuracy answers the question of how many admissions did
we correctly label out of all the admissions.

Precision answers the question of how many of those who we
predicted as having delirium actually had delirium.

Sensitivity represents the proportion of people with delirium
who were correctly labeled as having delirium.

F1-score is a weighted average of the precision or recall, where
the F1-score reaches its best value at 1 and worst score at 0.

Specificity answers the question of how many negative instances
(ie, people with no delirium) were correctly predicted.

The ROC curve was plotted using the true-positive rate against
the false-positive rate at various threshold settings. The
calculated ROC-AUC indicated the probability that our binary
classifier ranked a randomly chosen positive instance higher
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than a randomly chosen negative one (assuming “positive” ranks
higher than “negative”).

The 12 machine learning algorithms, along with hyperparameter
tuning and cross-validation, were implemented in the Python
package Scikit-learn [60]. Hyperparameter tuning was conducted
using the RandomizedSearchCV and GridSearchCV functions.
Cross-validation was used via the cross_val_score,
cross_validate, and cross_val_predict functions.

The gradient boosting classifier was trained using the
GradientBoostingClassifier function. The AdaBoost classifier
used the AdaBoostClassifier function. The neural network
classifier was implemented using the MLPClassifier function.
The decision tree classifier was implemented using the
DecisionTreeClassifier function. K-nearest neighbor
classification was trained using the KNeighborsClassifier
function. The logistic regression classifier used the
LogisticRegression function. The random forest classifier was
implemented using the RandomForest classifier function. The
SVM method used the svm function. The Gaussian Naive Bayes
method implemented the GaussianNB function. The linear
discriminant analysis classifier was trained using the
LinearDiscriminantAnalysis function. The quadratic
discriminant analysis classifier used the

QuadraticDiscriminantAnalysis function. The voting classifiers
with soft settings were implemented using the Voting Classifier
function.

Experimental Results
We trained these models using hyperparameter tuning and 5-fold
cross-validation on the first 9 time segments. We present the
results from the 3 best-performing models in Table 2, and the
results from the other 9 models are presented in Multimedia
Appendix 1. In both tables, we report the average performance
over 5 folds for the data from the first 9 time segments.

We then tested our delirium identification (sentimental or +NLP)
model, which incorporated NLP in the training process. We
compared the results of the +NLP model with the results
obtained for the unsentimental (–NLP) delirium identification
model that was trained, without NLP, on the last 6-month data
in the GEMINI data set. The performance of the 3
best-performing models in predicting delirium labels in the last
6 months of the data is shown in Table 3. A similar presentation
of the results is shown for the other 9 models in Multimedia
Appendix 2. It should be noted that we used well-tuned
parameters from the best-performing models of the training data
on the testing data.

Table 2. Comparison of models in the 3 best-performing algorithms: average training results using 5-fold cross-validation on training set (April 1,
2010, to September 30, 2014).

Random forestAdaBoost classifierGradient boosting classifierModels

Accuracy

0.8260.8660.868 bDelirium (+NLPa)

0.7680.7950.797Delirium (–NLP)

Precision

0.8330.7940.78Delirium (+NLP)

0.80.750.747Delirium (–NLP)

Recall

0.3980.6490.678Delirium (+NLP)

0.1410.3290.341Delirium (–NLP)

Specificity

0.9750.9420.935Delirium (+NLP)

0.9880.9580.957Delirium (–NLP)

ROC-AUCc

0.8970.8950.91Delirium (+NLP)

0.830.8340.83Delirium (–NLP)

F1-score

0.5290.7120.722Delirium (+NLP)

0.2390.4520.463Delirium (–NLP)

aNLP: natural language processing.
bHighest performance values are italicized.
cROC-AUC: area under the receiver operating characteristic curve.
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Table 3. Comparison of 3 types of models in the 3 best-performing algorithms: model performance on holdout set 10 (October 1, 2014, to March 31,
2015).

Random forestAdaBoost classifierGradient boosting classifierModels

Accuracy

0.8350.8350.853 bDelirium (+NLPa)

0.7760.8110.807Delirium (–NLP)

Precision

0.8660.7250.742Delirium (+NLP)

0.8060.7470.74Delirium (–NLP)

Recall

0.4360.5940.669Delirium (+NLP)

0.1880.4210.406Delirium (–NLP)

Specificity

0.9760.920.918Delirium (+NLP)

0.9840.9490.949Delirium (–NLP)

ROC-AUCc

0.930.9170.922Delirium (+NLP)

0.8690.8490.848Delirium (–NLP)

F1-score

0.580.6530.704Delirium (+NLP)

0.3050.5380.524Delirium (–NLP)

aNLP: natural language processing.
bHighest performance values are italicized.
cROC-AUC: area under the receiver operating characteristic curve.

In the training set, our proposed delirium (+NLP) models
performed the best in terms of accuracy, precision, recall or
sensitivity, rate, ROC-AUC, and F1-score, whereas delirium
(–NLP) models generated the best specificity. In the testing set,
the performances in both delirium (+NLP) and delirium (–NLP)
models continued the same trend.

Note that F1-score is the balance of sensitivity and precision,
and ROC-AUC is generated by sensitivity and specificity so
that our delirium (+NLP) models performed the best in terms
of balancing sensitivity, precision, and specificity. In acute
diseases such as delirium, sensitivity is particularly important
because the cost of failed identification of a disease (a miss) is
higher than the cost of a false alarm. Thus, the present results
indicate that the sentimental (vs unsentimental) delirium
identification model should be more useful in clinical practice.

We also tested the +NLP and –NLP models across time, moving
the holdout set across each of the 9 time segments one at a time,
before using the most recent time segment as the holdout set.
Thus, each of the time segments was used as the testing set,
whereas the other 9 time segments were treated as the training
set on a rolling basis, as shown in Figure 1. The corresponding
data distribution of training and independent holdout or testing
data are presented in Table 4. Tables 5 and 6 present the data

distribution of patient characteristics of the cohort across the
data splits.

Figure 2 shows the identification results for the best-performing
machine learning algorithm, that is, the gradient boosting across
the 10 time segments. The 8 panels in the figure represent the
8 evaluation metrics used.

Note that the 2 different lines shown in each of the 8 panels
within Figure 2 represent the results on the corresponding
evaluation metrics for the 2 different types of models (ie,
Delirium [+NLP] and Delirium [–NLP]). The 10 data points in
each line show how the performance varied as the timing of the
holdout time segment varied. Overall, the identification
performance of the sentimental (+NLP) model was better than
that of the unsentimental (–NLP) model. In addition, the
performance of the sentimental (+NLP) model tended to be
more stable across the different time segments than the other
schemes. It can also be seen that precision, recall, and F1-score
tended to be less stable over time than the other 3 measures,
even though these performance measures remained relatively
stable for the delirium (+NLP) model.

Figure 3 presents the calibration of the gradient boosting model
that was found to provide the best overall performance.
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Table 4. Data distribution of training and holdout sets for each time segment (TS). Note that positive admissions indicate that the patients were diagnosed
with delirium upon their admissions, whereas negative admissions were not.

Holdout setTraining setDifferent TS as holdout set on
a rolling basis

Number of posi-
tive admissions

Number of nega-
tive admissions

Number of admis-
sions

Number of posi-
tive admissions

Number of nega-
tive admissions

Number of admis-
sions

8823332190626353541TS1

9024133190426273531TS2

8128736891325813494TS3

10227237489225963488TS4

8824833690626203526TS5

10028338389425853479TS6

10830841688625603446TS7

9828838689625803476TS8

10633243888825363424TS9

13337650986124923353TS10
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Table 5. Data information in patient characteristics for age and gender of the cohort across in 10 time segments (TSs) in both training and testing data
sets. Three adult age groups are defined: young adults aged 18-44 years, middle-aged adults aged 45-64 years, and older adults aged ≥65 years.

AgeGenderTS

TestingTrainingTestingTraining

Older
adults, n
(%)

Middle-
aged
adults, n
(%)

Young
adults, n
(%)

Older
adults, n
(%)

Middle-
aged
adults, n
(%)

Young
adults, n
(%)

Female, n
(%)

Male, n
(%)

Female, n
(%)

Male, n
(%)

204 (63.5)81 (25.2)36 (11.2)2267
(64.02)

844 (23.84)430 (12.14)159 (49.5)162
(50.5)

1788
(50.49)

1753
(49.51)

TS1 (training:
n=3541; test-
ing: n=321)

206 (62.2)80 (24.2)45 (13.6)2265
(64.15)

845 (23.93)421 (11.92)152 (45.9)179
(54.1)

1795
(50.84)

1736
(49.16)

TS2 (training:
n=3531; test-
ing: n=331)

239 (64.9)80 (21.7)49 (13.3)2232
(63.88)

845 (24.18)417 (11.93)199 (54.1)169
(45.9)

1748
(50.03)

1746
(49.97)

TS3 (training:
n=3494; test-
ing: n=368)

252 (67.4)71 (18.9)51 (13.6)2219
(63.62)

854 (24.48)415 (11.9)196 (52.4)178
(47.6)

1751 (50.2)1737 (49.8)TS4 (training:
n=3488; test-
ing: n=374)

206 (61.3)87 (25.9)43 (12.8)2265
(64.24)

838 (23.77)423 (12)169 (50.3)167
(49.7)

1778
(50.43)

1748
(49.57)

TS5 (training:
n=3526; test-
ing: n=336)

241 (62.9)93 (24.3)49 (12.8)2230 (64.1)832 (23.91)417 (11.99)196 (51.2)187
(48.8)

1751
(50.33)

1728
(49.67)

TS6 (training:
n=3479; test-
ing: n=383)

273 (65.6)92 (22.1)51 (12.3)2198
(63.78)

833 (24.17)415 (12.04)201 (48.3)215
(51.7)

1746
(50.67)

1700
(49.33)

TS7 (training:
n=3446; test-
ing: n=416)

244 (63.21)99 (25.65)43 (11.14)2227
(64.07)

826 (23.76)423 (12.17)195 (50.5)191
(49.5)

1752 (50.4)1724 (49.6)TS8 (training:
n=3476; test-
ing: n=386)

273 (62.33)108 (24.66)57 (13.01)2198
(64.19)

817 (23.86)409 (11.95)225 (51.34)213
(48.6)

1722
(50.29)

1702
(49.71)

TS9 (training:
n=3424; test-
ing: n=428)

333 (65.42)134 (26.33)42 (8.25)2138
(63.76)

791 (23.59)424 (12.65)255 (50.1)254
(49.9)

1692
(50.46)

1661
(49.54)

TS10 (train-
ing: n=3353;
testing:
n=509)
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Table 6. Data information in patient characteristics for special care unit (SCU) of the cohort across the data splits.

TestingTrainingTSa

Not in SCU file, n (%)In SCU file, n (%)Not in SCU file, n (%)In SCU file, n (%)

294 (91.6)27 (8.4)3250 (91.78)291 (8.22)TS1 (training: n=3541; testing: n=321)

305 (92.1)26 (7.8)3239 (91.73)292 (8.27)TS2 (training: n=3531; testing: n=331)

339 (92.1)29 (7.9)3205 (91.73)289 (8.27)TS3 (training: n=3494; testing: n=368)

341 (91.2)33 (8.8)3203 (91.83)285 (8.17)TS4 (training: n=3488; testing: n=374)

308 (91.7)28 (8.3)3236 (91.78)290 (8.22)TS5 (training: n=3526; testing: n=336)

347 (90.6)36 (9.4)3197 (91.89)282 (8.11)TS6 (training: n=3479; testing: n=383)

384 (92.3)32 (7.7)3160 (91.7)286 (8.3)TS7 (training: n=3446; testing: n=416)

350 (90.7)36 (9.3)3194 (91.89)282 (8.11)TS8 (training: n=3476; testing: n=386)

402 (91.8)36 (8.2)3142 (91.76)282 (8.24)TS9 (training: n=3424; testing: n=428)

474 (93.1)35 (6.9)3070 (91.56)283 (8.44)TS10 (training: n=3353; testing: n=509)

aTS: time segment.

Figure 2. The performances of 2 schemes changing over the 10 time segments (TSs) are shown using the gradient boosting classifier, where TS1 to
TS10 are as follows: April 1, 2010, to September 30, 2010; October 1, 2010, to March 31, 2011; April 1, 2011, to September 30, 2011; October 1, 2011,
to March 31, 2012; April 1, 2012, to September 30, 2012; October 31, 2012, to March 31, 2013; April 1, 2013, to September 30, 2013; October 1, 2013,
to March 31, 2014; April 1, 2014, to September 30, 2014; and October 1, 2014, to March 31, 2015. NLP: natural language processing; ROC-AUC: area
under the receiver operating characteristic curve.
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Figure 3. The calibration plot of the gradient boosting classifier.

As with the results for the last 6-month time segment, the
delirium (+NLP) model also performed best using data from
each of the earlier 9 time segments as the holdout set. The
delirium (+NLP) model outperformed the delirium (–NLP)
model in terms of accuracy, precision, recall or sensitivity, miss
rate, ROC-AUC, and F1-score.

Discussion

Principal Findings
Overall, machine learning models incorporating NLP either
outperformed or were competitive with models that did not
incorporate NLP for predicting the presence of delirium.
Performance of the delirium (+NLP) model was relatively
weaker on the specificity metric, but that metric was highly
variable across the different holdout sets suggesting that it is a
less reliable measure of performance in this application. As

shown in the recall measure, the delirium (+NLP) model was
better at detecting true positives, that is, identifying delirium
for the admissions or patients who had ground truth delirium
labels. The delirium (+NLP) model also performed best out of
the 4 schemes in terms of having consistently high performance
in terms of sensitivity, F1-score (balancing sensitivity and
precision), and ROC-AUC.

Prior risk identification models for delirium have tended to use
a limited set of machine learning methods [7,29-33] and have
tended to neglect text data [34]. In addition, most machine
learning identification models to identify delirium only evaluate
via simple partition of data (randomly partitioned 80%/20% for
training and validating the classification model, respectively)
or cross-validation [30,32,33]. In contrast, we used independent
holdout or testing data (cross-validation in training data and
totally separate testing data over time segments on the rolling
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basis, as shown in Figure 1), providing more rigorous testing
of the identification model.

Previous research has found that routine clinical screening,
using tools such as CAM, underreports up to 75% of delirium
cases compared with clinical assessments for research [61-64].
Although we were not able to directly compare our model’s
performance with CAM results on the same patients, it is well
documented in the literature that routine clinical use of CAM
is unreliable for research or quality measurement, reinforcing
the need for a model such as the one we developed in this study.
Notably, the Montreal Cognitive Assessment is primarily used
for the assessment of stable cognitive impairment and not for
delirium.

The delirium (+NLP) model provided the best balance between
recognizing cases of delirium, where they existed, and not
mislabeling nondelirium cases as delirium. The baseline delirium
scheme performed better when detecting true negatives. This
is likely because our GEMINI data set was unbalanced, with
75% of admissions being nondelirium; thus, a poorly tuned
model can achieve better accuracy by being biased toward
predicting nondelirium.

One way of dealing with the trade-off between precision and
recall is to use the F1-score, which is the harmonic mean
(average) of the precision and sensitivity or recall scores. With
this more balanced measure, our proposed delirium (+NLP)
model outperformed the one without NLP across all time
segments.

Our delirium (+NLP) method integrated an NLP derived feature
into multisource medical data to improve the performance and
usefulness of models. This approach can also be extended to
other medical identification contexts.

This approach has several important applications, including for
quality measurement and quality improvement, for statistical
risk adjustment in research projects, and for large-scale
observational research in retrospective cohorts. There is
currently no scalable solution to retrospectively identify the
occurrence of delirium in hospital, and CAM is underutilized,
perhaps because of the lack of trained clinical resources. We
agree that prospective predictions of delirium would be clinically
useful, and research on that topic is underway. However,
retrospective prediction is also important for quality
management purposes and for evaluating the effectiveness of
interventions for preventing delirium. Typically, CAM is poorly
implemented and used infrequently [23].

One major reason why delirium is underidentified in routine
data sources is because it is often inconsistently documented,
with the use of various synonyms (eg, confusion and altered

level of consciousness). The only validated, high-quality method
for retrospectively identifying delirium is the Chart-based
Delirium Identification Instrument review method that we used
as the gold standard labeling method for training our machine
learning models. This method is time intensive and requires up
to 1 hour per hospital chart. Thus, it cannot be easily applied to
large data sets. Therefore, developing models that can use
routinely collected clinical and administrative health care data
represents a major contribution to the literature, as they can
enable both research and quality applications that rely on
retrospective identification of delirium cases.

It would be desirable to build models that could predict delirium
risk at the time of hospitalization or in real time during the
course of hospital admission. One impediment to developing
these models is having sufficiently large data sets on which to
train them. Our models, which seek to accurately classify
hospitalizations with or without delirium retrospectively could
then be used to label (using model predictions) large data sets,
which could then be used to generate quality estimates and
provide a basis for further model prediction.

Conclusions
Delirium is a highly prevalent, preventable, and treatable
neurocognitive disorder, which is associated with very poor
outcomes when untreated. It is characterized by an acute onset
of fluctuating mental status, psychomotor disturbance, and
hallucinations, and it is difficult to spot because the symptoms
can often be attributed to other causes. Better delirium prediction
will create an opportunity for higher quality care through
automated identification of delirium or of delirium risk. In the
research reported in this paper, we have shown that
incorporation of the NLP approach can significantly improve
identification compared with the standard machine learning
methods without NLP. We also showed that varying the holdout
period over time can estimate the temporal stability of model
identification. Another useful feature of this type of stationarity
analysis is that it can be used to identify unreliable evaluative
criteria that exhibit nonstationarity and to identify models that
are nonstationary with respect to their effectiveness over time.
In this study, we found that precision was an unreliable criterion,
with wide fluctuations over different periods.

The results of this study demonstrate the value of NLP in the
identification of an important health care outcome, and we
recommend that future research should focus on (1) applying
NLP on medical notes to extract more valuable information and
(2) augmenting the delirium (+NLP) model by adding
explanations so that the resulting models are more consumable
and more easily integrated into clinical workflow.
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