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Abstract

Background: Artificial intelligence (AI) technologies, such as machine learning and natural language processing, have the
potential to provide new insights into complex health data. Although powerful, these algorithms rarely move from experimental
studies to direct clinical care implementation.

Objective: We aimed to describe the key components for successful development and integration of two AI technology–based
research pipelines for clinical practice.

Methods: We summarized the approach, results, and key learnings from the implementation of the following two systems
implemented at a large, tertiary care children’s hospital: (1) epilepsy surgical candidate identification (or epilepsy ID) in an
ambulatory neurology clinic; and (2) an automated clinical trial eligibility screener (ACTES) for the real-time identification of
patients for research studies in a pediatric emergency department.

Results: The epilepsy ID system performed as well as board-certified neurologists in identifying surgical candidates (with a
sensitivity of 71% and positive predictive value of 77%). The ACTES system decreased coordinator screening time by 12.9%.
The success of each project was largely dependent upon the collaboration between machine learning experts, research and
operational information technology professionals, longitudinal support from clinical providers, and institutional leadership.

Conclusions: These projects showcase novel interactions between machine learning recommendations and providers during
clinical care. Our deployment provides seamless, real-time integration of AI technology to provide decision support and improve
patient care.

(JMIR Med Inform 2022;10(12):e37833) doi: 10.2196/37833
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Introduction

With the rampant growth in health data, artificial intelligence
(AI) technologies, such as machine learning and natural

language processing (NLP), provide a powerful means to extract
meaningful associations from big data sets [1]. Applications of
machine learning are far-reaching and have included patient
identification, computer vision, speech recognition, web
searches, and phenotype discovery [2-9].
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The electronic health record (EHR) captures data relating to
clinical encounters, but as much as 30%-50% of these data are
available only in free text [10]. As such, one particularly
valuable means to understand health care data involves NLP.
NLP is a technique of incorporating free-text analysis and
statistical methods into computerized algorithms to derive
linguistic features (eg, physicians’ diagnosis) from human
language input [11]. Clinical care and research can benefit from
using this unstructured text information [12,13]. NLP has been
used for surveillance, adverse event detection [14-18],
medication identification [19], and extraction of data from
radiology reports [20-22]. NLP has also successfully been
applied to evaluate clinical notes and provide recommendations
as part of clinical decision support (CDS) tools [23].

These CDS tools can change user behavior; however, to ensure
successful implementation, user involvement in CDS design is
critical [24-30]. CDS tools using AI and NLP technologies
remain less implementable directly into real-time clinical care
with long-term success [31-34]. The reason integration of these
AI pipelines within a clinical health system is challenging is
that it requires coordination with the following: (1) key
stakeholders and expected end users of the CDS tools; (2)
biomedical informatics professionals who design the AI; (3)
research information technology (IT) professionals who design
the CDS tools with stakeholders in mind; and (4) operational
IT professionals who are responsible for maintenance, uptime,
and EHR integration [35].

In this work, we report the main modifications implemented to
improve the development and real-time integration of two AI
technology–based pipelines using NLP in a tertiary pediatric
health care institution. These modifications contributed to the
successful deployment and ongoing utilization of these pipelines.

Methods

Objective
The objective of our case studies was to create functional AI
technology–based CDS tools effective in research settings and
integrate them into clinical workflow without sacrificing care
quality, speed of clinical care delivery, and labor requirement.

Setting and Participants
Cincinnati Children’s Hospital Medical Center is a large tertiary
care center with more than 1.2 million patient encounters

annually. It has a large epilepsy clinic (over 6,400 patients and
12,000 epilepsy visits per year) and a high volume of epilepsy
surgery cases (50 per year). The division of pediatric emergency
medicine oversees 5 urgent cares and 2 emergency departments
(EDs) with an annual census of 170,000 visits. The ED employs
8 full-time clinical research coordinators (CRCs) who enroll
patients in research studies during clinical visits.

Case 1: Automated Epilepsy Interventions

Background
The first case study aimed to facilitate early surgical intervention
in patients with intractable epilepsy, as it has been shown to
improve cognitive outcomes, mental health, and quality of life
[36], as well as increase quality-adjusted life years [37] in a
relatively safe procedure for the patient [38]. National guidelines
state that patients who continue to have debilitating seizures
after 2 or more adequate trials of antiepileptic medications
should be considered for a presurgical evaluation referral [39].
From the time of first seizure, on average, patients receive
surgery after having epilepsy for 7 years in pediatrics and 20
years in adults [40,41]. Only 0.5%-1.5% of patients received
surgery within 2 years of fulfilling clinical criteria for surgical
candidacy [42]. Indeed, improving the use of surgery has proven
to be difficult [42] because this highly specialized but critical
clinical knowledge is not ubiquitously available in clinical care.

Approach
A corpus of notes from patients with a diagnosis of epilepsy
who were seizure free or had a history of resective epilepsy
surgery was used to devise NLP features. The NLP generated
surgical candidacy scores for each patient, with higher scores
indicating a higher likelihood of surgical candidacy and lower
scores indicating a higher likelihood of seizure freedom. Next,
naïve Bayes, support vector machine, and random forest models
were developed using retrospective data as described in previous
work [43]. Figure 1 describes the system pipeline from input
data to the output recommendation.

To ensure the recommendations from the NLP system would
be accepted into practice, we validated the algorithm’s
classifications by comparing them head-to-head against manual
labels from epileptologists [2]. Prior to implementation into
clinical care, we prospectively evaluated the system for 1 year
to test the accuracy in a clinical setting [44].
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Figure 1. Epilepsy surgical pipeline architecture. From left to right: a series of Oracle PL/SQL queries extract epilepsy patient data and export them
in CSV format to bare meta installation servers. The data are divided into the following 3 groups: patients with surgery, seizure-free patients, and patients
with unknown outcome. The feature extraction module (ie, ‘training features’) analyzes the free-text notes and exports machine-readable feature vectors
in SVM light format. Surgery and seizure-free patient features are sent to the classifier training module to train the support vector machine model.
Unknown patient features are fed into the final trained classifier, which outputs a surgery candidacy score for each patient. All patients with unknown
outcome and their scores are then loaded into the Epilepsy Surgery Software (ESS) database. The highest scoring patients are sent to an Epic web service
that generates the in-basket message alerts. All patients and their notes can be viewed and searched in the ESS web application. This entire process is
run on a weekly basis, to continually incorporate new electronic health record data into the algorithm training.

Case 2: Automated Clinical Trial Eligibility Screener
(ACTES)

Background
The second case study aimed to identify participants who may
meet eligibility criteria for clinical trial recruitment in the ED.
In current practice, CRCs and physicians at the site of the
hospitals do trial eligibility screening manually [45]. For patients
presenting during clinical visits, screening would ideally take
place early enough in the visit such that eligible candidates
could be approached for enrollment without prolonging their
length of stay. However, given the large volume of data
documented in EHRs, it is labor-intensive for the staff to screen
relevant information, particularly within the time frame of a
single visit. As such, automatically screening and identifying
eligible patients for a trial based on EHR information promises
great benefits for clinical research.

Approach
To facilitate participant identification, we developed a machine
learning NLP-based system—ACTES [23,46]—which analyzed
structured data and unstructured narrative notes automatically
to determine patients’ suitability for clinical trial enrollment.
For development, we evaluated historical trial-patient enrollment
decisions in a pediatric ED and extracted EHR data including
clinical notes that were commonly reviewed by CRCs. We then
customized the machine learning and NLP algorithms based on
the trial-patient data. The ACTES was integrated into the
institutional workflow to support real-time patient screening in

our recent work [44]; details of system development have been
previously reported [46].

Implementation Strategy
We hypothesized that successful implementation of the AI
solutions relied on 5 key steps, as follows:

1. Integration of industry standard software pertinent to the
implementation site. Specifically, the systems needed to be
adapted to use industry standard software libraries.

2. Automation of the process to access the EHR data. The
systems need to be linked to the EHR to extract the input
data without manual intervention.

3. Encouragement of user feedback to inform the final design
of the AI solution.

4. Integration of the AI solutions into typical clinical
workflow.

5. Performance evaluations and regular maintenance to
continue to evaluate the utility of the AI solution.

After building the AI technology, we implemented the AI
solutions using these 5 strategies to facilitate successful
deployment of the tools.

Results

After creation and validation of the algorithms in a research
setting, we implemented these 2 AI solutions as NLP pipelines.
Both pipelines follow a step-by-step process that extracts data
from the EHR, processes it, and provides a recommendation in
the form of automated alerts that could be sent from the research
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systems to the EHR (Epic Systems) in real time. To do this, the
research systems had to be modified to integrate into clinical
workflow, as described in this section.

Industry Standard Software
After reviewing over 20 different libraries for managing NLP
pipelines, it was decided that the Java NLP library LingPipe
[47] would be used for feature extraction and preprocessing,
and the LIBSVM Python implementation from scikit-learn [48]
would be used for the classifier [49]. The NLP component in
ACTES was built upon the clinical Text Analysis and
Knowledge Extraction System [50], and the machine learning
component was coded in Java (Oracle Corporation).

Automation of EHR Data Access
For the epilepsy intervention AI, Oracle PL/SQL queries from
the EHR relational database were used to extract patient data.
For ACTES, RESTful and SOAP web services were developed
to extract EHR data, such as demographics, medication orders,
and clinical notes in real time, which were stored in an Oracle
SQL database. An interactive web-based dashboard was
developed to visualize the recommendations and receive
feedback from CRCs.

User Feedback Informed the Final Design
AI solutions were designed and integrated with feedback from
end users. The epilepsy and ACTES corpora were created by
manual annotation of patient notes by providers. Throughout
the algorithm design and implementation process, providers
were included in the build and ultimate integration. First, the
biomedical informatics team shadowed providers for workflow
observation. Second, the biomedical informatics team attended
clinical meetings that included faculty, staff, and clinical
research coordinators for a minimum of 10 hours to get feedback
and ensure the design was appropriate. Third, mock-up designs
were shared at a minimum of 3 meetings to discuss the process
of using and interacting with the AI solution in the form of a
CDS tool. In cases where the CDS tool could provide an alert,
the providers were consulted on their preferred alert method
(eg, email or text message alerts). In both AI technologies, the
providers were able to directly interact with the machine learning
recommendations as follows:

• For epilepsy surgical intervention, these results are
displayed in clinical care to suggest surgical consults, and
the subsequent actions resulting from the recommendations
are fed back into the application to improve performance.

• For ACTES, the clinical research coordinators’ entry of
eligibility is used to help train and improve the classifier.
Additionally, ACTES was assessed and improved for
usability and satisfaction by providers and was found to be
easy to use and learn.

Integration Into Clinical Workflow
Both AI technologies were integrated into clinical workflow to
support clinical practice. For patients with intractable epilepsy
and an upcoming visit, surgical eligibility is evaluated in
advance. For patients who are classified as potential surgical
candidates, EHR in-basket messages are sent to the provider
they are scheduled to see via web services.

We integrated the ACTES into the CRCs’ workflow to support
real-time patient screening [51]. The system ran continuously
on a secured, The Health Insurance Portability and
Accountability Act (HIPAA)–compliant server to extract
structured and unstructured EHR data for current ED patients.
For each clinical trial, the ranked list of patients recommended
by the system, along with their demographics and clinical
information, were displayed on the dashboard available to the
CRCs. The information was refreshed at 10-minute increments
to accommodate real-time updates. Given the recommended
patients as potential participants for a clinical trial, the CRCs
performed additional EHR screening to confirm the candidates’
eligibility. When an eligible candidate was identified, the CRCs
approached him or her for enrollment as per standard clinical
workflow.

Performance Evaluation
The epilepsy AI technology went live on April 12, 2016, as part
of the EHR release cycle and runs weekly. On Sundays, the
system trains on notes from patients who have been seizure free
for 1 year or previously underwent resective epilepsy surgery.
This trained classifier evaluates all other ‘unknown’ patients
with epilepsy who have had at least one seizure within the last
year but have not had a presurgical evaluation. Thus, the tables
of training and test patients are updated weekly. The system
performs as well as board-certified neurologists in identifying
surgical candidates (with a sensitivity of 71% and positive
predictive value of 77%) and improves with additional training,
identifying surgical candidates faster than neurologists [2]. As
part of the ongoing algorithmic development, the number of
patients with a history of surgery included in the training set
increased from 102 patients on April 10, 2016, to 195 patients
on October 6, 2019.

The ACTES patient identification system went live on October
1, 2017. ACTES was prospectively evaluated using a
time-and-motion study, quantitative assessments of enrollment,
and postevaluation usability surveys collected from the CRCs
[52]. During the time-and-motion study, an observer monitored
the activities a CRC was engaged in at 30-second increments
for 2 hours. The time spent per activity was compared to that
prior to the use of ACTES. This study was repeated monthly
for 4 months, and it was distributed among CRCs and shifts.
After the implementation of ACTES, the CRCs spent 12.9%
(P<.001) less time on electronic screening [52]. The quantitative
assessments of enrollment evaluated the number of patients
screened, the number of patients approached, and the number
of patients enrolled. The use of ACTES significantly improved
the number of screened patients for the majority of trials and
improved the number of approached patients and enrolled
patients, with statistical significance in 2 of 7 trials [52]. Finally,
results from the System Usability Survey and additional
open-ended questions were analyzed on a monthly basis to
improve ACTES [52].

Maintenance
The epilepsy system was operational more than 90% of the time
through the first 150 weeks. Throughout this time, issues were
addressed by the biomedical informatics research and production
IT staff. There were 10 changes made to the NLP system and
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6 errors executing the pipeline of scripts. Issues extracting
patient notes from the EHR were the largest reason for delays
in running the NLP system, which occurred 12 out of 150 (8%)
weeks.

Miscellaneous adjustments were made to the ACTES tool during
the pilot phase (2017-2018) to accommodate CRC needs.
ACTES was also updated 3 times because of significant updates
on the institutional EHR system and its web services for
real-time data extraction. Updates on the institutional EHR
system and the research IT environment caused multiple system
breakdowns during the evaluation period that interrupted less
than 2 out of 52 (4%) weeks of operation.

Discussion

Principal Results
This work highlighted the major modifications for the
integration and deployment of CDS tools from the research
setting to clinical practice. We successfully added AI-based
technology to the following 2 distinct clinical workflows at our
institution: an automated epilepsy surgical intervention tool and
an automated clinical trial eligibility screener (ACTES) system.
Throughout the process, we determined that successful
integration of these tools into clinical care requires adaptation
to industry standards, automation of data access, logical
integration into clinical workflow, and continual user feedback.

This work has several important strengths. We implemented
novel, automated machine learning tools to provide decision
support in a tangible fashion at our institution. These tools were
well received and streamlined clinical care in the identification
of qualified patients for surgery or clinical trials. Our experience
with the deployment of these tools agreed with the suggestions
made by Kawamoto et al [53] for successful implementation of
CDS tools. Our CDS tools were implemented in real time to
provide support at a natural point in the clinical workflow, so
as not to disrupt or extend the timeline of care. As with their
findings, our CDS tools use automatically available EHR data,
where possible, to ensure clinical scalability and effective
usability. In our case, we added an extra layer of testing whereby
we implemented our CDS tools in a localized clinical setting
in parallel to clinical care to test accuracy prior to full
deployment, which allowed for continued fine-tuning of the
CDS tool before it became part of clinical workflow.

Evaluation of Bias
We evaluated both tools for potential bias to ensure that the
CDS recommendations were not influenced by racial disparities.
The AI technology behind epilepsy surgical candidacy
recommendation was evaluated for bias in terms of patient
demographics, socioeconomic characteristics, and language
[54]. Patient race, gender, and primary language did not bias
the AI’s surgical candidacy scores (P>.35 for all).

Considerations and Limitations
Several concerns should be considered in the implementation
of a research tool into real-time clinical settings. As with most
record keeping systems, the EHR systems require regular
upgrades and bug fixes. This necessitates ongoing IT support
to keep the pipeline operational. EHR algorithm extractions and
pipeline characteristics should be placed into the EHR upgrade
queue to ensure their evaluation with each upgrade cycle. To
account for this, resources for both operational and research IT
should be set aside to ensure a consistent system when integrated
with clinical practice.

The successful deployment and continued use of these systems
also required close collaboration with the stakeholders embedded
in the respective clinical system. This collaboration was crucial
in allowing seamless integration of the research output into
daily clinical practice. Without input from the effective end
users, it would be difficult to fully understand the current
process, needs, as well as limitations related to workflow and
data to allow for optimization of the prediction.

Conclusions
The formulation, development, and real-time implementation
of two AI solutions in a clinical setting required the development
of a CDS tool and pipeline using public, industry-standard
programs and existing EHR web interfaces prior to integration.
In our work, we found that a CDS tool’s success was largely
dependent upon the collaboration between machine learning
experts, research collaborators, and operational IT professionals.
Furthermore, longitudinal support from clinical providers and
institutional leadership is necessary for continued maintenance
of the deployed CDS tool with careful consideration for its
long-term use.
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