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Abstract

Background: A primary goal of precision medicine is to identify patient subgroups and infer their underlying disease processes
with the aim of designing targeted interventions. Although several studies have identified patient subgroups, there is a considerable
gap between the identification of patient subgroups and their modeling and interpretation for clinical applications.

Objective: This study aimed to develop and evaluate a novel analytical framework for modeling and interpreting patient
subgroups (MIPS) using a 3-step modeling approach: visual analytical modeling to automatically identify patient subgroups and
their co-occurring comorbidities and determine their statistical significance and clinical interpretability; classification modeling
to classify patients into subgroups and measure its accuracy; and prediction modeling to predict a patient’s risk of an adverse
outcome and compare its accuracy with and without patient subgroup information.

Methods: The MIPS framework was developed using bipartite networks to identify patient subgroups based on frequently
co-occurring high-risk comorbidities, multinomial logistic regression to classify patients into subgroups, and hierarchical logistic
regression to predict the risk of an adverse outcome using subgroup membership compared with standard logistic regression
without subgroup membership. The MIPS framework was evaluated for 3 hospital readmission conditions: chronic obstructive
pulmonary disease (COPD), congestive heart failure (CHF), and total hip arthroplasty/total knee arthroplasty (THA/TKA) (COPD:
n=29,016; CHF: n=51,550; THA/TKA: n=16,498). For each condition, we extracted cases defined as patients readmitted within
30 days of hospital discharge. Controls were defined as patients not readmitted within 90 days of discharge, matched by age, sex,
race, and Medicaid eligibility.

Results: In each condition, the visual analytical model identified patient subgroups that were statistically significant (Q=0.17,
0.17, 0.31; P<.001, <.001, <.05), significantly replicated (Rand Index=0.92, 0.94, 0.89; P<.001, <.001, <.01), and clinically
meaningful to clinicians. In each condition, the classification model had high accuracy in classifying patients into subgroups
(mean accuracy=99.6%, 99.34%, 99.86%). In 2 conditions (COPD and THA/TKA), the hierarchical prediction model had a small
but statistically significant improvement in discriminating between readmitted and not readmitted patients as measured by net
reclassification improvement (0.059, 0.11) but not as measured by the C-statistic or integrated discrimination improvement.

Conclusions: Although the visual analytical models identified statistically and clinically significant patient subgroups, the
results pinpoint the need to analyze subgroups at different levels of granularity for improving the interpretability of intra- and
intercluster associations. The high accuracy of the classification models reflects the strong separation of patient subgroups, despite
the size and density of the data sets. Finally, the small improvement in predictive accuracy suggests that comorbidities alone were
not strong predictors of hospital readmission, and the need for more sophisticated subgroup modeling methods. Such advances
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could improve the interpretability and predictive accuracy of patient subgroup models for reducing the risk of hospital readmission,
and beyond.

(JMIR Med Inform 2022;10(12):e37239) doi: 10.2196/37239
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Introduction

Overview
A wide range of studies [1-9] on topics ranging from molecular
to environmental determinants of health have shown that most
humans tend to share a subset of characteristics (eg,
comorbidities, symptoms, or genetic variants), forming distinct
patient subgroups. A primary goal of precision medicine is to
identify such patient subgroups, and to infer their underlying
disease processes to design interventions targeted at those
processes [2,10]. For example, recent studies on complex
diseases such as breast cancer [3,4], asthma [5-7], and
COVID-19 [11] have revealed patient subgroups, each with
different underlying mechanisms precipitating the disease and
therefore each requiring different interventions.

However, there is a considerable gap between the identification
of patient subgroups and their modeling and interpretation for
clinical applications. To bridge this gap, we developed and
evaluated a novel analytical framework called modeling and
interpreting patient subgroups (MIPS) using a 3-step modeling
approach: (1) identification of patient subgroups, their frequently
co-occurring characteristics, and their risk of adverse outcomes;
(2) classification of a new patient into one or more subgroups;
and (3) prediction of an adverse outcome for a new patient
informed by subgroup membership. We evaluated MIPS on 3
data sets related to hospital readmission, which helped pinpoint
the strengths and limitations of MIPS. Furthermore, the results
provided implications for improving the interpretability of
patient subgroups in large and dense data sets, and for the design
of clinical decision support systems to prevent adverse outcomes
such as hospital readmissions.

Identification of Patient Subgroups
Patients have been divided into subgroups using (1)
investigator-selected variables such as race for developing
hierarchical regression models [12] or assigning patients to
different arms of a clinical trial, (2) existing classification
systems such as the Medicare Severity-Diagnosis Related Group
[13] to assign patients to a disease category for purposes of
billing, and (3) computational methods such as classification
[14-16] and clustering [5,17] to discover patient subgroups from
data (also referred to as subtypes or phenotypes depending on
the condition and variables analyzed).

Several studies have used a wide range of computational
methods to identify patient subgroups, each with critical
trade-offs. Some studies have used combinatorial approaches
[18] (identifying all pairs, all triples, etc), which although
intuitive, can lead to a combinatorial explosion (eg, enumerating
combinations of the 31 Elixhauser comorbidities would lead to

231 or 2147483648 combinations), with most combinations that
do not incorporate the full range of symptoms (eg, the most
frequent pair of symptoms ignores which other symptoms exist
in the profile of patients with that pair). Other studies have used
unipartite clustering methods [16,17] (clustering patients or
comorbidities but not both together), such as k-means and
hierarchical clustering. Furthermore, dimensionality-reduction
methods such as principal component analysis used with
unipartite clustering methods have been used to identify clusters
of frequently co-occurring comorbidities [18-24]. However,
such methods have well-known limitations, including the
requirement of inputting user-selected parameters (eg, similarity
measures and the number of expected clusters) and the lack of
a quantitative measure to describe the quality of the clustering
(critical for measuring the statistical significance of the
clustering). Furthermore, because these methods are unipartite,
there is no agreed-upon method for identifying the patient
subgroup defined by a cluster of variables, and vice versa.

More recently, bipartite network analysis [25] has been used to
address these limitations by automatically identifying biclusters,
consisting of patients and characteristics simultaneously. This
method takes as input any data set, such as patients and their
comorbidities, and outputs a quantitative and visual description
of biclusters (containing both patient subgroups and their
frequently co-occurring comorbidities). The quantitative output
generates the number, size, and statistical significance of the
biclusters [26-28], and the visual output displays the quantitative
information of the biclusters through a network visualization
[29-31]. Bipartite network analysis therefore enables (1) the
automatic identification of biclusters and their significance and
(2) the visualization of the biclusters critical for their clinical
interpretability. Furthermore, the attributes of patients in a
subgroup can be used to measure the subgroup risk for an
adverse outcome, develop classification models for classifying
a new patient into one or more of the subgroups, and develop
prediction models that use subgroup membership for measuring
the risk of an adverse outcome for the classified patient.

However, although several studies [11,28,32-38] have
demonstrated the usefulness of bipartite networks for the
identification and clinical interpretation of patient subgroups,
there has been no systematic attempt to integrate them with
classification and prediction modeling, which is a critical step
toward their clinical application. Therefore, we leveraged the
advantages of a bipartite network to develop the MIPS
framework with the goal of bridging the gap between the
identification of patient subgroups, and their modeling and
interpretation for future clinical applications.
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The Need for Modeling and Interpreting Patient
Subgroups in Hospital Readmission
An estimated 1 in 5 elderly patients (more than 2.3 million
Americans) is readmitted to a hospital within 30 days of
discharge [39]. Although many readmissions are unavoidable,
an estimated 75% of readmissions are unplanned and mostly
preventable [40], imposing a significant burden in terms of
mortality, morbidity, and resource consumption. Across all
conditions, unplanned readmissions in the United States cost
approximately US $17 billion [40], making them an ineffective
use of costly resources. Consequently, hospital readmission is
closely scrutinized as a marker for poor quality of care by
organizations such as the Centers for Medicare & Medicaid
Services (CMS) [41].

To address this epidemic of hospital readmission, CMS
sponsored the development of models to predict the
patient-specific risk of readmission in specific index conditions
such as chronic obstructive pulmonary disease (COPD) [42],
congestive heart failure (CHF) [43], and total hip
arthroplasty/total knee arthroplasty (THA/TKA) [44]. As
numerous studies have shown that almost two-thirds of older
adults have 2 or more comorbid conditions with a heightened
risk of adverse health outcomes [18], the independent variables
in the CMS models included prior comorbidities (as recorded
in Medicare claims data) and demographics (age, sex, and race).
However, although prior studies have shown the existence of
subgroups among patients with hospital readmission [28], none
of the CMS models have incorporated patient subgroups. The

identification and inclusion of patient subgroups could improve
the accuracy of predicting hospital readmission for a patient, in
addition to enabling the design of interventions targeted at each
patient subgroup to reduce the risk of readmission. Therefore,
we used the MIPS framework to model and interpret patient
subgroups in hospital readmission and tested its generality across
the 3 index conditions. Furthermore, to enable a head-to-head
comparison with existing CMS predictive models, we used the
same independent variables as were used in those models, in
addition to patient subgroup membership when developing our
prediction models.

Methods

Overview
Figure 1 provides a conceptual description of the data inputs
and outputs from the 3-step modeling in MIPS. The visual
analytical model identifies patient subgroups and visualizes
them through a network. The classification model determines
the subgroup membership for cases and controls. These
subgroup memberships are then used to measure the risk for
readmission within each subgroup based on the proportion of
cases and juxtaposed with the respective subgroup visualization
to enable clinicians to interpret the readmitted patient subgroups.
Finally, the prediction model uses the subgroup membership
assignment of cases and controls to determine the readmission
risk of a patient. Multimedia Appendix 1 [16,23,25-31,45,46]
provides a summary of the inputs, methods, and outputs for
each model.

Figure 1. Inputs and outputs for the 3-step modeling in MIPS consisting of the visual analytical model, classification model, and prediction model.
MIPS: Modeling and Interpreting Patient Subgroups.
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Data Description

Study Population
We analyzed patients hospitalized for COPD, CHF, or
THA/TKA. We selected these 3 index conditions because (1)
hospitalizations for each of these conditions are highly prevalent
in older adults [39], (2) hospitals report very high variations in
their readmission rates [39], and (3) there exist well-tested
readmission prediction models for each of these conditions that
do not consider patient subgroups [42-44,47,48].

Data for these 3 index conditions were extracted from the
Medicare insurance claims data set. In 2019, Medicare provided
health insurance to approximately 64.4 million Americans, of
whom 55.5 million were older Americans (≥65 years) [49].
Furthermore, 94% of noninstitutionalized older Americans were
covered by Medicare [50], with eligible claims received from
6204 medical institutions across the United States, and is
therefore one of the few data sets that is highly representative
of older Americans and their care.

For each index condition, we used the same inclusion and
exclusion criteria that were used to develop the CMS models
but with the most recent years (2013-2014) provided by
Medicare when we started the project. We extracted all patients
who were admitted to an acute care hospital between July 2013
and August 2014 with a principal diagnosis of the index
condition, were aged ≥66 years, and were enrolled in both
Medicare parts A and B fee-for-service plans 6 months before
admission. Furthermore, we excluded patients who were
transferred from other facilities, died during hospitalization, or
transferred to another acute care hospital. Similar to the CMS
models, we selected the first admission for patients with multiple
admissions during the study period, and we did not use data
from Medicare Part D (related to prescription medications).

Multimedia Appendix 2 [40,44] describes (1) the International
Classification of Diseases, Ninth Version, codes for each of the
3 index conditions selected for analysis and (2) the inclusion
and exclusion criteria used to extract cases and controls for
COPD, CHF, and THA/TKA; the respective numbers of patients
extracted at each step; and how we addressed the small incidence
of missing data. Each modeling method used relevant subsets
of these data, as described in the Analytical and Evaluation
Approach section.

Variables
The independent variables consisted of comorbidities and patient
demographics (age, sex, and race). Comorbidities common in
older adults were derived from 3 established comorbidity
indices: Charlson Comorbidity Index [51], Elixhauser
Comorbidity Index [52], and the Center for Medicare and
Medicare Services Condition Categories used in the CMS
readmission models [53] (the variables in the CMS models
varied across the index conditions). As these indices had
overlapping comorbidities, we derived a union of them, which
was verified by the clinician stakeholders. They recommended
that we also include the following additional variables, as they
were pertinent to each index condition: COPD (history of sleep
apnea and mechanical ventilation), CHF (history of coronary
artery bypass graft surgery), and THA/TKA (congenital

deformity of the hip joint and posttraumatic osteoarthritis). For
each patient in our cohort, we extracted these comorbidities and
variables from the physicians, outpatient, and inpatient Medicare
claims data in the 6 months before (to guard against miscoding)
and on the day of the index admission. The dependent variable
(outcome) was whether a patient with an index admission
(COPD, CHF, or THA/TKA) had an unplanned readmission to
an acute care hospital within 30 days of discharge as was
recorded in the Medicare Provider Analysis and Review file
(inpatient claims) in the Medicare database.

Analytical and Evaluation Approach

Visual Analytical Modeling
The goal of visual analytical modeling was to identify and
interpret biclusters of readmitted patients (cases), consisting of
patient subgroups and their most frequently co-occurring
comorbidities. The data used to build the visual analytical model
in each index condition consisted of randomly dividing 100%
of the cases into training (50%) and replication (50%) data sets
(we use the term replication to avoid confusion with the term
validation typically used in classification and prediction
models). For feature selection, we extracted an equal number
of 1:1 matched controls based on age, sex, race, and ethnicity,
and Medicaid eligibility [45]. These data were analyzed for each
index condition using the following steps (Multimedia Appendix
1 provides additional details for each step):

1. Model training: to train the visual analytical model, we
used feature selection to identify the set of comorbidities
that were univariably significant in both the training and
replication data sets and used bicluster modularity
maximization [26,27] to identify the number, members,
and significance of biclusters in the training data set.

2. Model replication: to test the replicability of the biclusters,
we repeated the bicluster analysis on the replication data
set and used the Rand Index (RI) [46] to measure the degree
and significance of similarity in comorbidity co-occurrence
between the 2 data sets.

3. Model interpretation: to enable clinical interpretation of
the patient subgroups, we used the Fruchterman-Reingold
[29] and ExplodeLayout [30,31] algorithms to visualize the
network. Furthermore, based on a request from our clinician
stakeholder team, for each bicluster, we ranked and
displayed the comorbidity labels with their univariable odds
ratios (ORs) for readmission (obtained from the feature
selection mentioned earlier) and juxtaposed the readmission
risk of the bicluster (obtained from the classification step
discussed in the next section) onto the network visualization.
Clinician stakeholders were asked to use the visualization
to interpret patient subgroups, their mechanisms, and
potential interventions to reduce the risk of readmission.

Classification Modeling
The goal of classification modeling was to classify all cases and
controls from the entire Medicare data set into the biclusters
identified from the visual analytical model. The resulting
bicluster membership for all cases and controls was designed
to (1) develop the predictive modeling described in the next
section and (2) measure the risk of each subgroup to enable
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clinical interpretation of the patient subgroups. The training
data set in each condition consisted of a random sample of 75%
cases with their subgroup membership (output of the visual
analytical modeling) and an internal validation data set
consisting of randomly selected 25% of the cases (with subgroup
membership used to validate the model). These data were used
to develop and use classification models for each index condition
using the following steps (Multimedia Appendix 1 provides
additional details for each step):

1. Model training: to train the classifier, we used multinomial
logistic regression [16] with independent variables
consisting of comorbidities (identified through feature
selection). The accuracy of the trained model was measured
by calculating the percentage of times the model correctly
classified the cases into subgroups using the highest
predicted probability across the subgroups.

2. Model internal validation: to internally validate the
classifier, we randomly split these data into training (75%)
and testing (25%) data sets 1000 times. For each iteration,
we trained a model using the training data set and measured
its accuracy using the testing data set. This was done by
predicting subgroup membership using the highest predicted
probability among all the subgroups. The overall predicted
accuracy was estimated by calculating the mean accuracy
across the 1000 models.

3. Model application: to generate data for the visual analytical
and prediction models, the classifier was used to classify
100% of cases and controls from our entire Medicare data
set (July 2013-August 2014). The resulting classified data
were used to measure the risk of each subgroup (juxtaposed
onto the network visualization to enable clinical
interpretation) and to conduct the following prediction
modeling.

Prediction Modeling
The goal of prediction modeling was to predict the risk of
readmission for a patient, taking into consideration subgroup
membership. The data used to build the prediction models
consisted 100% of cases and 100% of controls, with subgroup
membership generated from the classification modeling. These
data were randomly spilt into training (75%) and internal
validation (25%) data sets. These data were used to train,
internally validate, and compare the prediction models in each
index condition using the following steps (Multimedia Appendix
1 provides additional details for each step):

1. Model training: to train the prediction model, we used
binary logistic regression for developing a Standard Model
(without subgroup membership, similar to the CMS models)
and a Hierarchical Model (with subgroup membership).
The independent variables for both models consisted of
comorbidities (identified through feature selection) and
demographics, and the outcome was 30-day unplanned
readmission (yes vs no).

2. Model internal validation: to internally validate the models,
we used the internal validation data set to measure
discrimination (C-statistic) and calibration
(calibration-in-the-large and calibration slope).

3. Model comparisons: to compare the accuracy of the
Standard and Hierarchical Models, we used the chi-squared
test to compare their C-statistics. Furthermore, to examine
how the Standard Model was applied to each subgroup, we
measured the C-statistics of the Standard Model applied to
each subgroup separately. Finally, because both these
models used comorbidities selected through feature
selection, they differed from the set of comorbidities used
in the published CMS models. Therefore, to perform a
head-to-head comparison with the published CMS models
(COPD [42], CHF [43], and THA/TKA [44]), we developed
a logistic regression model using the independent variables
from the published CMS model (CMS Standard Model)
and compared it to the same model, but which also included
subgroup membership (CMS Hierarchical Model). Similar
to these comparisons, we used the chi-squared test to
compare the C-statistics of the CMS standard and the CMS
Hierarchical Models and additionally measured the
differences between the models using net reclassification
improvement (NRI) and integrated discrimination
improvement (IDI).

Ethics Approval
Medicare data were analyzed using a CMS data-use agreement
(CMS DUA RSCH-2017-51404) and approved by the University
of Texas Medical Branch Institutional Review Board (16-0361).

Results

Data
Table 1 summarizes the number of cases and controls used to
develop the 3 models for each condition.
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Table 1. Training and replication/validation data sets used to develop the three models in each of the 3 index conditions.

TotalReplication/validationTrainingModel

Visual analyticala (cases/controls)

29,016/29,01614,508/14,50814,508/14,508Chronic obstructive pulmonary disease (COPD)

51,550/51,55025,775/25,77525,775/25,775Congestive heart failure (CHF)

16,498/16,9488249/82498249/8249Total hip arthroplasty/total knee arthroplasty (THA/TKA)

Classification (cases)

14,457361510,842COPD

25,672641819,254CHF

701017535257THA/TKA

Prediction (cases/controls)

29,026/157,0157334/39,17621,692/117,839COPD

51,573/244,18812,845/61,09538,728/183,093CHF

16,520/340,25241,44/85,04912,376/255,203THA/TKA

aThe visual analytical models used 1:1 matched controls for the feature selection, and used only cases for the bipartite networks to analyze heterogeneity
in readmission. The numbers shown for the visual analytical models are before removing patients with no comorbidities. The resulting cases-only data
sets were used for the classification modelling as shown.

Visual Analytical Modeling

Overview
Visual analytical modeling of readmitted patients in all 3 index
conditions produced statistically and clinically significant patient
subgroups and their most frequently co-occurring comorbidities,
which were significantly replicated. We report the results for
each index condition.

COPD Visual Analytical Model
The inclusion and exclusion selection criteria (Multimedia
Appendix 2) resulted in a training data set (n=14,508 matched
case-control pairs, of which 51 patient pairs had no dropped
comorbidities) and a replication data set (n=14,508 matched
case-control pairs, of which 51 patient pairs had no dropped
comorbidities), matched by age, sex, race, and Medicaid
eligibility (a proxy for economic status). The feature selection
method (Multimedia Appendix 3) used 45 unique comorbidities
identified from a union of the 3 comorbidity indices, plus 2
condition-specific comorbidities. Of these, 3 were removed
because of <1% prevalence. Of the remaining comorbidities,
30 survived significance and replication testing using Bonferroni
correction. The visual analytical model used these surviving
comorbidities (d=30), and readmitted patients with COPD with
at least one of these comorbidities (n=14,457).

As shown in Figure 2, bipartite network analysis identified 4
biclusters, each representing a subgroup of readmitted patients
with COPD and their most frequently co-occurring
comorbidities. Biclustering had significant modularity (Q=0.17;
z=7.3; P<.001) and significant replication (RI=0.92; z=11.62;
P<.001) of comorbidity co-occurrence. Furthermore, as
requested by the clinician stakeholders, we juxtaposed a ranked
list of comorbidities based on their ORs for readmission in each
bicluster, in addition to the risk for each patient subgroup.

The pulmonologist inspected the visualization and noted that
the readmission risk of the patient subgroups had a wide range
(12.7%-19.6%) with clinical (face) validity. Furthermore, the
co-occurrence of comorbidities in each patient subgroup was
clinically meaningful with interpretations for each subgroup.
Subgroup-1 had a low disease burden, with uncomplicated
hypertension leading to the lowest risk (12.7%). This subgroup
represented patients with early organ dysfunction and would
benefit from using checklists such as regular monitoring of
blood pressure in predischarge protocols to reduce the risk of
readmission. Subgroup-3 had mainly psychosocial
comorbidities, which could lead to aspiration precipitating
pneumonia, leading to an increased risk for readmission (15.9%).
This subgroup would benefit from early consultation with
specialists (eg, psychiatrists, therapists, neurologists, and
geriatricians) who have expertise in psychosocial comorbidities,
with a focus on the early identification of aspiration risks and
precautions. Subgroup-2 had diabetes with complications, renal
failure, and heart failure and therefore had higher disease burden,
leading to an increased risk of readmission (17.8%) compared
with Subgroup-1. This subgroup had metabolic abnormalities
with greater end-organ dysfunction and would therefore benefit
from case management by advanced practice providers (eg,
nurse practitioners) with rigorous adherence to established
guidelines to reduce the risk of readmission. Subgroup-4 had
diseases with end-organ damage, including gastrointestinal
disorders, and therefore had the highest disease burden and risk
for readmission (19.6%). This subgroup would also benefit from
case management with rigorous adherence to established
guidelines to reduce the risk of readmission. Furthermore, as
patients in this subgroup typically experience complications
that could impair their ability to make medical decisions, they
should be provided with early consultation with a palliative care
team to ensure that care interventions align with patients’
preferences and values.
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Figure 2. The chronic obstructive pulmonary disease (COPD) visual analytical model showing 4 biclusters consisting of patient subgroups and their
most frequently co-occurring comorbidities (whose labels are ranked by their univariable odds ratios, shown within parentheses) and their risk of
readmission (shown in blue text). GI: Gastrointestinal disorders; HD: Heart disease; MV: History of mechanical ventilation.

CHF Visual Analytical Model
The inclusion and exclusion selection criteria (Multimedia
Appendix 2) resulted in a training data set (n=25,775 matched
case-control pairs, of which 103 patient pairs with no dropped
comorbidities) and a replication data set (n=25,775 matched
case-control pairs, of which 104 patient pairs with no dropped
comorbidities), matched by age, sex, race, and Medicaid
eligibility (a proxy for economic status). The feature selection
method (Multimedia Appendix 3) used 42 unique comorbidities
identified from a union of the 3 comorbidity indices plus 1
condition-specific comorbidity. Of these, 1 comorbidity was
removed because of <1% prevalence. Of those remaining, 37
survived the significance and replication testing with the
Bonferroni correction. The visual analytical model (Figure 3)
used these surviving comorbidities (d=37) and cases consisting
of readmitted patients with CHF, with at least one of those
comorbidities (n=25,672). As shown in Figure 3, the bipartite
network analysis of the CHF cases identified 4 biclusters, each
representing a subgroup of readmitted patients with CHF and
their most frequently co-occurring comorbidities. The analysis
revealed that the biclustering had significant modularity

(Q=0.17; z=8.69; P<.001) and significant replication (RI=0.94;
z=17.66; P<.001) of comorbidity co-occurrence. Furthermore,
as requested by the clinicians, we juxtaposed a ranked list of
comorbidities based on their ORs for readmission in each
bicluster, in addition to the risk for each of the patient subgroups.

The geriatrician inspected the visualization and noted that the
readmission risk of the patient subgroups, ranging from 15.1%
to 19.9%, was wide, with clinical (face) validity. Furthermore,
the co-occurrence of comorbidities in each patient subgroup
was clinically significant. Subgroup-1 had chronic but stable
conditions and therefore had the lowest risk for readmission
(15.1%). Subgroup-3 had mainly psychosocial comorbidities
but was not as clinically unstable or fragile compared with
Subgroup-2 and Subgroup-4, and therefore had medium risk
(16.6%). Subgroup-2 had severe chronic conditions, making
them clinically fragile (with potential benefits from early
palliative and hospice care referrals), and were therefore at high
risk for readmission if nonpalliative approaches were used
(19.9%). Subgroup-4 had severe acute conditions that were also
clinically unstable, associated with substantial disability and
care debility and therefore at high risk for readmission and
recurrent intensive care unit use (19.9%).
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Figure 3. The congestive heart failure (CHF) visual analytical model showing 4 biclusters consisting of patient subgroups and their most frequently
co-occurring comorbidities (whose labels are ranked by their univariable odds ratios, shown within parentheses) and their risk of readmission (shown
in blue text). CABG: History of coronary artery bypass graft surgery; COPD: Chronic obstructive pulmonary disease; GI: Gastrointestinal disorders;
HD: Heart disease.

THA/TKA Visual Analytical Model
The inclusion and exclusion selection criteria (Multimedia
Appendix 2) resulted in a training data set (n=8249 matched
case-control pairs, of which 1239 patient pairs had no dropped
comorbidities) and a replication data set (n=8249 matched
case-control pairs, of which 1264 patient pairs had no dropped
comorbidities), matched by age, sex, race, and Medicaid
eligibility (a proxy for economic status). Feature selection
(Multimedia Appendix 3) used 39 unique comorbidities
identified from the 3 comorbidity indices plus 2
condition-specific comorbidities. Of these, 11 comorbidities
were excluded because of <1% prevalence. Of the remaining,
11 comorbidities survived significance and replication testing
with the Bonferroni correction. The visual analytical model
(Figure 4) used these surviving comorbidities (d=11) and cases
consisting of readmitted patients with at least one of those
comorbidities (n=7010).

As shown in Figure 4, the bipartite network analysis of
THA/TKA cases identified 7 biclusters, each representing a
subgroup of readmitted patients with THA/TKA and their most
frequently co-occurring comorbidities. The analysis revealed
that biclustering had significant modularity (Q=0.31; z=2.52,
P=.01), and significant replication (RI=0.89; z=3.15; P=.002)
of comorbidity co-occurrence. Furthermore, as requested by the
clinician stakeholders, we juxtaposed a ranked list of

comorbidities based on their ORs for readmission in each
bicluster, in addition to the risk for each patient subgroup.

The geriatrician inspected the network and noted that patients
with total knee arthroplasty, in general, were healthier than
patients with total hip arthroplasty. Therefore, the network was
difficult to interpret when the 2 index conditions were merged
together. Although our analysis was constrained because we
used the conditions defined by CMS, these results nonetheless
suggest that the interpretations did not suffer from a
confirmation bias (manufactured interpretations to fit the
results). However, he noted that the range of readmission risk
had clinical (face) validity. Furthermore, Subgroup-2,
Subgroup-4, and Subgroup-5 had more severe comorbidities
related to the lung, heart, and kidney and therefore had a higher
risk for readmission compared with Subgroup-1, Subgroup-6,
and Subgroup-7, which had less severe comorbidities and
therefore had a lower risk for readmission. In addition,
Subgroup-2, Subgroup-5, Subgroup-6, and Subgroup-7 would
benefit from chronic care case management from advanced
practice providers (eg, nurse practitioners). Finally, Subgroup-2
and Subgroup-5 would benefit from using well-established
guidelines for CHF and COPD, Subgroup-7 would benefit from
mental health care and management of psychosocial
comorbidities, and Subgroup-6 would benefit from care for
obesity and metabolic disease management.
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Figure 4. The total hip arthroplasty/total knee arthroplasty (THA/TKA) visual analytical model showing 4 biclusters consisting of patient subgroups
and their most frequently co-occurring comorbidities (whose labels are ranked by their univariable odds ratios, shown within parentheses) and their risk
for readmission (shown in blue text). CHF: Congestive heart failure; COPD: Chronic obstructive pulmonary disease; OB: Obesity.

Classification Modeling

Overview
The classification model used multinomial logistic regression
for each index condition (Multimedia Appendix 4 for the model
coefficients) to predict the membership of patients using
subgroups (identified from the aforementioned visual analytical

models). The results revealed that in each index condition, the
classification model had high accuracy in classifying all the
cases in the full data set (training data set used in the visual
analytical modeling). Similarly, the internal validation results
using a 75%:25% split of this data set also had a high
classification accuracy (Table 2 with classification accuracy
divided into quantiles). We report the results for each index
condition.

Table 2. Internal validation results showing the percentage of chronic obstructive pulmonary disease (COPD) congestive heart failure (CHF), and total
hip arthroplasty/total knee arthroplasty (THA/TKA) patients correctly-assigned to a subgroup by the classification models in each condition.

Summary, mean (SD; range)QuantilesModels

Q 0.975Q 0.75Q 0.50Q 0.25Q 0.025

COPD

100 (0.02; 99.7-100)100.00100.00100.00100.0099.90Training (n=10842)

99.6 (0.15; 99.1-100)99.8099.6099.6099.4099.30Testing (n=3615)

CHF

99.57 (0.11; 99-99.9)99.8099.6099.6099.5099.40Training (n=19254)

99.34 (0.15; 98.7-99.7)99.6099.4099.3099.3099.00Testing (n=6418)

THA/TKA

100 (0; 100-100)100.00100.00100.00100.00100.00Training (n=5257)

99.86 (0.09; 99.4-100)100.0099.9099.9099.8099.70Testing (n=1753)

COPD Classification Model
The model correctly predicted subgroup membership for 99.9%
(14,443/14,457) of the cases in the full data set. Furthermore,
as shown in Table 2, the internal validation results revealed that
the percentage of COPD cases correctly assigned to a subgroup
in the testing data set ranged from 99.1% to 100%, with a
median (Q.50 as shown in Table 2) of 99.6%, and with 95%
being in the range of 99.3% to 99.8%.

CHF Classification Model
The model correctly predicted the subgroup membership for
99.2% (25,476/25,672) of the cases in the full data set.
Furthermore, as shown in Table 2, the internal validation results
revealed that the percentage of CHF cases correctly assigned
to a subgroup in the testing data set ranged from 98.7% to
99.7%, with a median (Q.50) of 99.3%, and with 95% being in
the range between 99% to 99.6%.
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THA/TKA Classification Model
The model correctly predicted subgroup membership in 100%
(7010/7010) of the cases in the full data set. Furthermore, as
shown in Table 2, the internal validation results revealed that
the percentage of CHF cases correctly assigned to a subgroup
in the testing data set ranged from 99.4% to 100%, with a
median (Q.50) of 99.9%, and with 95% being in the range of
99.7% to 100%.

Application of the Classification Model to Generate
Information for Other Models
The classification model was used to classify 100% of cases
and 100% of controls for use in the prediction model (described
in the next section). Furthermore, the proportion of cases and
controls classified into each subgroup was used to calculate the
risk of readmission for the respective subgroup (Multimedia
Appendix 3). As this subgroup risk information was requested
by the clinicians to improve the interpretability of the visual
analytical model, the risk was juxtaposed next to the respective
subgroups in the bipartite network visualizations (see blue text
in Figures 2-4).

Prediction Modeling

Overview
For each of the 3 index conditions, we developed 2 binary
logistic regression models to predict readmission, with

comorbidities in addition to sex, age, and race: (1) Standard
Model representing all patients without subgroup membership,
similar to the CMS models and (2) Hierarchical Model with an
additional variable that adjusted for subgroup membership.

COPD Prediction Model
The inclusion and exclusion criteria (Multimedia Appendix 2)
resulted in a cohort of 186,041 patients (29,026 cases and
157,015 controls). As shown in Figure 5A, the Standard Model
had a C-statistic of 0.624 (95% CI 0.617-0.631) which was not
significantly (P=.86) different from the Hierarchical Model that
had a C-statistic of 0.625 (95% CI 0.618-0.632). The calibration
plots revealed that both models had a slope close to 1 and an
intercept close to 0 (Multimedia Appendix 5 [42-44]).

As shown in Figure 5B, the Standard Model was used to
measure the predictive accuracy of patients in each subgroup.
The results showed that Subgroup-1 had a lower C-statistic than
Subgroup-3 and Subgroup-4. Although the C-statistics in Figures
5A and Figures 5B cannot be compared as they are based on
models developed from different populations, these results
reveal that the current CMS readmission model for CHF might
be underperforming for a COPD patient subgroup, pinpointing
which one might benefit from a Subgroup-Specific Model.

Figure 5. Predictive accuracy of the Standard Model compared with the Hierarchical Model in chronic obstructive pulmonary disease (COPD), as
measured by the C-statistic. The C-statistic for the Centers for Medicare & Medicaid Services Standard Model is shown as a dotted line. (B) Predictive
accuracy of the Standard Model when applied separately to patients classified to each subgroup. Subgroup-1 has lower accuracy than Subgroup-3 and
Subgroup-4. (C-statistics in A and B cannot be compared, as they are based on models from different populations).

CHF Prediction Model
The inclusion and exclusion criteria (Multimedia Appendix 2)
resulted in a cohort of 295,761 patients (51,573 cases and
244,188 controls). As shown in Figure 6A, the Standard Model
had a C-statistic of 0.600 (95% CI 0.595-0.605), which was not
significantly different (P=.29) from the Hierarchical Model,
which also had a C-statistic of 0.600 (95% CI 0.595-0.606).
The calibration plots revealed that all the models had a slope
close to 1 and an intercept close to 0 (Multimedia Appendix 5).

As shown in Figure 6B, the Standard Model was used to
measure the predictive accuracy of patients in each subgroup.
The results showed that Subgroup-1 had a lower C-statistic than
Subgroup-4. Although the C-statistics in Figures 6A and 6B
cannot be compared as they are based on models developed
from different populations, these results reveal that the current
CMS readmission model for CHF might be underperforming
for a CHF patient subgroup, pinpointing which one might benefit
from a Subgroup-Specific model.
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Figure 6. (A) Predictive accuracy of the Standard Model compared with the Hierarchical Model in congestive heart failure (CHF) as measured by the
C-statistic. The C-statistic for the Centers for Medicare & Medicaid Services Standard Model is shown as a dotted line. (B) Predictive accuracy of the
Standard Model when applied separately to patients classified to each subgroup. Subgroup-1 has lower accuracy than Subgroup-3 and Subgroup-4.
(C-statistics in A and B cannot be compared, as they are based on models from different populations).

THA/TKA Prediction Model
The inclusion and exclusion criteria (Multimedia Appendix 2)
resulted in a cohort of 356,772 patients (16,520 cases and
340,252 controls). As shown in Figure 7A, the Standard Model
had a C-statistic of 0.638 (95% CI 0.629-0.646), which was not
significantly different (P=.69) from the Hierarchical Model,
which had a C-statistic of 0.638 (95% CI 0.629-0.647). The
calibration plots (Multimedia Appendix 5) revealed that both
the models had a slope close to 1 and an intercept close to 0
(Multimedia Appendix 5).

As shown in Figure 7B, the Standard Model was used to
measure the predictive accuracy of patients in each subgroup.
The results showed that Subgroup-1 had a lower C-statistic than
Subgroup-4. Again, although the C-statistics in Figures 7A and
7B cannot be compared as they are based on models developed
from different populations, similar to the results in COPD, these
results reveal that the current CMS readmission model for
THA/TKA might be underperforming for 4 patient subgroups,
pinpointing which ones might benefit from a Subgroup-Specific
Model.

Figure 7. (A) Predictive accuracy of the Standard Model compared with the Hierarchical Model in total hip arthroplasty/total knee arthroplasty
(THA/TKA) as measured by the C-statistic. The C-statistic for the Centers for Medicare & Medicaid Services Standard Model is shown as a dotted
line. (B) Predictive accuracy of the Standard Model when applied separately to patients classified to each subgroup. Subgroup-1 has lower accuracy
than Subgroup-7. (C-statistics in A and B cannot be compared, as they are based on models developed from different populations).

CMS Standard Model Versus CMS Hierarchical Model
Unlike the CMS published models, the models we developed
used only the comorbidities that survived the feature selection.
Therefore, to perform a head-to-head comparison with the
published CMS models, we also developed a CMS Standard
Model (using the same variables from the published CMS
model) and compared it to the corresponding CMS Hierarchical
Model (with an additional variable for subgroup membership)
in each condition. Similar to the models in Figures 5-7, there
were no significant differences in the C-statistics between the
2 modeling approaches in any condition (Multimedia Appendix
5). However, as shown in Table 3, the CMS Hierarchical Model
for COPD had significantly higher NRI but not significantly
higher IDI than the CMS Standard Model, whereas the CMS
Hierarchical Model for CHF had a significantly lower NRI and

IDI than the CMS Standard Model, and the CMS Hierarchical
Model for THA/TKA had a significantly higher NRI but not
significantly higher IDI than the CMS Standard Model.
Furthermore, similar to the results presented in 6B, 7B, and 8B,
when the CMS Standard Model was used to predict readmission
separately in subgroups within each index condition, it identified
subgroups that underperformed, pinpointing which ones might
benefit from a Subgroup-Specific Model (Multimedia Appendix
5). In summary, the comparisons between the CMS Standard
Models and the respective CMS Hierarchical Models showed
that in the 2 conditions (COPD and THA/TKA), there was a
small but statistically significant improvement in discriminating
between the readmitted and not readmitted patients as measured
by NRI, but not as measured by the C-statistic or IDI, and that
a subgroup in each index condition might be underperforming
when using the CMS Standard Model.
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Table 3. Comparison of the Centers for Medicare & Medicaid Services (CMS) Standard Model with the CMS Hierarchical Model across the three
index conditions based on net reclassification improvement (NRI) and integrated discrimination improvement (IDI).

IDINRIModel

P valuez valueIDI (95% CI)P valuez valueContinuous (95% CI)P valuez valueCategorical (95% CI)

.51−0.650.0002 (−0.0004 to
0.0008)

<.001−4.680.059 (0.034 to 0.083)<.001−4.100.023 (0.012 to 0.034)COPDa

<.0013.92−0.0006 (−0.0009 to
−0.0003)

<.0013.92−0.038 (−0.057 to
−0.019)

.0013.27−0.010 (−0.016 to
−0.004)

CHFb

<.0015.88−0.003 (−0.004 to
−0.002)

<.001−7.010.111 (0.080 to 0.142)<.001−4.310.022 (0.012 to 0.032)THA/TKAc

aCOPD: chronic obstructive pulmonary disease.
bCHF: congestive heart failure.
cTHA/TKA: total hip arthroplasty/total knee arthroplasty.

Discussion

Overview
Our overall approach of using the MIPS framework to identify
patient subgroups through visual analytics, and using those
subgroups to build classification and prediction models revealed
strengths and limitations for each modeling approach and for
our data source. This examination provided insights for
developing future clinical decision support systems and a
methodological framework for improving the clinical
interpretability of subgroup modeling results.

Strengths and Limitations of Modeling Methods and
Data Source

Visual Analytical Modeling
The results revealed three strengths of the visual analytical
modeling: (1) the use of bipartite networks to simultaneously
model patients and comorbidities enabled the automatic
identification of patient-comorbidity biclusters and the integrated
analysis of co-occurrence and risk; (2) the use of a bipartite
modularity maximization algorithm to identify the biclusters
enabled the measurement of the strength of the biclustering,
critical for gauging its significance; and (3) the use of a graph
representation enabled the results to be visualized through a
network. Furthermore, the clinician stakeholders’ request to
juxtapose the risk of each subgroup with their visualizations
appeared to be driven by the need to reduce working memory
loads (from having to remember that information when its spread
over different outputs), which could have enhanced their ability
to match bicluster patterns with chunks (previously learned
patterns of information) stored in long-term memory. The
resulting visualizations enabled them to recognize subtypes
based on co-occurring comorbidities in each subgroup, reason
about the processes that precipitate readmission based on the
risk of each subtype relative to the other subtypes, and propose
interventions that were targeted to those subtypes and their risks.
Finally, the fact that the geriatrician could not fully interpret
the THA/TKA network because it combined 2 fairly different
conditions suggests that the clinical interpretations were not the
result of a confirmation bias (interpretations leaning toward
fitting the results).

However, the results also revealed two limitations: (1) although
modularity is estimated using a closed-form equation (formula),
no closed-form equation exists to estimate modularity variance,
which is necessary to measure its significance. To estimate
modularity variance, we used a permutation test by generating
1000 random permutations of the data and then compared the
modularity generated from the real data, to the mean modularity
generated from the permuted data. Given the size of our data
sets (ranging from 7000 to 25,000 patients), this computationally
expensive test took approximately 7 days to complete, despite
the use of a dedicated server with multiple cores, and (2)
although bicluster modularity was successful in identifying
significant and meaningful patient-comorbidity biclusters, the
visualizations themselves were extremely dense and therefore
potentially concealed patterns within and between the subgroups.
Future research should explore defining a closed-form equation
to estimate modularity variance, with the goal of accelerating
the estimation of modularity significance, and more powerful
analytical and visualization methods to reveal intra- and
intercluster associations in large and dense networks.

Classification Modeling
The results revealed two strengths of the classification modeling:
(1) the use of a simple multinomial classifier was adequate to
predict with high accuracy the subgroup to which a patient
belonged; (2) because the model produced membership
probabilities for each patient for each subgroup, the model
captured the dense intercluster edges observed in the network
visualization; and (3) the coefficients of the trained classifier
could be inspected by an analyst, making it more transparent
(relative to most deep learning classifiers that tend to be black
boxes).

However, because we dichotomized the classification
probabilities into a single subgroup membership, our approach
did not fully leverage membership probabilities for modeling
and visual interpretation. For example, some patients have high
classification probabilities (representing strong membership)
for a single subgroup (as shown by patients in the outer
periphery of the biclusters with edges only within their
bicluster), whereas others have equal probabilities for all
subgroups (as shown in the inner periphery of the biclusters
with edges going to multiple clusters). Future research should
explore incorporating the probability of subgroup membership
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into the design of Hierarchical Models for improving predictive
accuracy, and visualization methods for helping clinicians
interpret patients with different profiles of membership strength,
with the goal of designing patient-specific interventions.

Predictive Modeling
The results revealed two strengths of the predictive modeling:
(1) the use of the Standard Model to measure predictive accuracy
across the subgroups helped to pinpoint which subgroups tended
to have lower predictive accuracy than the rest and therefore
which of them could benefit from a more complex but accurate
Subgroup-Specific Model and (2) despite the use of a simple
Hierarchical Model with a dichotomized membership label for
each patient, the predictive CMS models detected significant
differences in the prediction accuracy as measured by NRI in
2 of the conditions, when compared with the CMS Standard
Models. However, the results also revealed that the differences
in predictive accuracy as measured by the C-statistic and NRI
were small, suggesting that comorbidities alone were potentially
insufficient for accurately predicting readmission. Future
research should explore the use of electronic health records and
multiple subgroup-specific models targeted to each subgroup
(enabling each model to have different slopes and intercepts)
to potentially improve the predictive accuracy of the prediction
models.

Data Source
The Medicare claims data had four key strengths: (1) the scale
of the data sets that enabled subgroup identification with
sufficient statistical power; (2) spread of the data collected from
across the United States, which enabled generalizability of the
results; (3) data about older adults, which enabled examination
of subgroups in an underrepresented segment of the US
population; and (4) data used by CMS to build predictive
readmission models, which enabled a head-to-head comparison
with the Hierarchical Modeling approach.

However, these data had two critical limitations: (1) as we
compared our models with the CMS models, we had to use the
same definition for controls (90 days with no readmission) that
had been used, which introduced a selection bias that
exaggerated the separation between cases and controls.
Similarly, by excluding patients who died, this exclusion
criterion potentially biased the results toward healthier patients
and (2) administrative data have known limitations, such as the
lack of comorbidity severity and test results, which could
strongly impact the accuracy of predictive models. Future
research should consider the use of national-level electronic
health record data, such as those assembled by the National
COVID Cohort Collaborative [54] and the TriNetX [55]
initiatives, which could overcome these limitations by providing
laboratory values and comorbidity severity but could also
introduce new as yet unknown limitations.

Implications for Clinical Decision Support That
Leverage Patient Subgroups
Although the focus of this project was to develop and evaluate
the MIPS framework, its application to 3 index conditions,
coupled with extensive discussions with clinicians, led to
insights for designing a future clinical decision support system.

Such a system could integrate the outputs from all 3 models in
MIPS. As we have shown, the visual analytical model
automatically identified and visualized the patient subgroups,
which enabled the clinicians to comprehend the co-occurrence
and risk information in the visualization, reason about the
processes that lead to readmission in each subgroup, and design
targeted interventions. The classification model leveraged the
observation that many patients have comorbidities in other
biclusters (shown by a large number of edges between biclusters)
and accordingly generated a membership probability (MP) of
a patient belonging to each bicluster, from which the highest
was chosen for bicluster membership. Finally, the predictive
model calculated the risk of readmission for a patient by using
the most accurate model designed for the bicluster to which the
patient belonged.

The outputs from these models could be integrated into a clinical
decision support system to provide recommendations for a
specific patient using the following algorithm: (1) use the
classifier to generate the MP of a new patient belonging to each
subgroup; (2) use the predictive model to calculate the risk (R)
of that patient in each subgroup; (3) generate an importance
score (IS) for each subgroup, such as by calculating a
membership-weighted risk [MP x R]; (4) rank the subgroups
and their respective interventions using IS; and (5) use the
ranking to display in descending order, the subgroup
comorbidity profiles along with their respective potential
mechanisms, recommended treatments, and the respective IS.
Such model-based information, displayed through a user-friendly
interface, could enable a clinician to rapidly scan the ranked list
to (1) determine why a specific patient profile fits into one or
more subgroups, (2) review the potential mechanisms and
interventions ranked by their importance, and (3) use the
combined information to design a treatment that is customized
for the real-world context of the patient. Consequently, such a
clinical decision-support system could not only provide a
quantitative ranking of membership to different subgroups and
the IS for the associated interventions, but also enable the
clinician to understand the rationale underlying those
recommendations, making the system interpretable and
explainable. Our current work explores a framework called
Model-based Subtype and Treatment Recommendations
(MASTR) for developing such clinical decision-support systems,
and evaluating them to determine their clinical efficacy in
comparison to standard-of-care.

Implications for Analytical Granularity to Enhance
the Interpretability of Patient Subgroups
Although the visual analytical model enabled clinicians to
interpret the patient subgroups, they were unable to interpret
the associations within and between the subgroups because of
the large number of nodes in each bicluster and the dense edges
between them. Several network filtering methods [56,57] have
been developed to thin out such dense networks such as by
dropping or bundling nodes and edges based on user-defined
criteria, to improve visual interpretation. However, such filtering
could bias the results or modify the clusters resulting from
reduced data.
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An alternate approach that preserves the full data set leverages
the notion of analytic granularity, in which the data are
progressively analyzed at different levels. For example, we have
analyzed patients with COVID-19 [11] at the cohort, subgroup,
and patient levels, and we are currently using the same approach
to examine symptom co-occurrence and risk at each level in
patients with Long COVID. Our preliminary results suggest
that analyzing data at different levels of granularity enables
clinicians to progressively interpret patterns, such as within and
between subgroups, in addition to guiding the systematic
development of new algorithms. For example, at the subgroup
level, we have designed an algorithm that identifies which
patient subgroups have a significantly higher probability of
having characteristics that are clustered in another subgroup,
providing critical information to clinicians about how to design
interventions for such overlapping subgroups. Furthermore, at
the patient level, we have identified patients that are very
dissimilar to their subgroups based on their pattern of
characteristics inside and outside their subgroup. Such dissimilar
patients could be flagged to examine whether they need
individualized interventions compared with those recommended
for the rest of their subgroups. Such analytical granularity could
therefore inform the design of interventions by clinicians in
addition to the design of decision support systems that provide
targeted and interpretable recommendations to physicians, who
can then customize them to fit the real-world context of a
patient.

Implications of the MIPS Framework for Precision
Medicine
Although we have demonstrated the application of the MIPS
framework across multiple readmission conditions, its
architecture has 3 properties that should enable its
generalizability across other medical conditions. First, as shown
in Figure 1, the framework is modular with explicit inputs and
outputs, enabling the use of other methods in each of the 3
modeling steps. For example, the framework can use other
biclustering (eg, nonnegative matrix factorization) [58],
classification (eg, deep learning) [59], and prediction methods
(eg, subgroup-specific modeling) [16]. Second, the framework
is extensible, enabling elaboration of the methods at each
modeling step to improve the analysis and interpretation of
subgroups. For example, as discussed earlier, analytical
granularity at the cohort, subgroup, and patient levels could
improve the interpretability of subgroups in large and dense
data sets. Third, the framework is integrative as it systematically
combines the strengths of machine learning and statistical and
precision medicine approaches. For example, visual analytical
modeling leverages search algorithms to discover co-occurrence
in large data sets, classification and prediction modeling
leverages probability theory to measure the risk of co-occurrence
patterns, and clinicians leverage medical knowledge and human
cognition to interpret patterns of co-occurrence and risk for
designing precision medicine interventions. Therefore, the
integration of these different models with a focus on their
clinical interpretation operationalizes team-centered informatics
[60] designed to facilitate data scientists, biostatisticians, and
clinicians in multidisciplinary translational teams [61] to work
more effectively across disciplinary boundaries with the goal

of designing precision medicine interventions. Our current
research tests the generality of the MIPS framework in other
conditions, such as in Long COVID and poststroke depression,
with the goal of designing and evaluating precision medicine
interventions targeted to patient subgroups.

Conclusions
Although several studies have identified patient subgroups in
different health conditions, there is a considerable gap between
the identification of subgroups and their modeling and
interpretation for clinical applications. Here, we developed
MIPS, a novel analytical framework to bridge this gap, using a
3-step modeling approach. A visual analytical method
automatically identified statistically significant and replicated
patient subgroups and their frequently co-occurring
comorbidities, which were clinically significant. Next, a
multinomial logistic regression classifier was highly accurate
in correctly classifying patients into subgroups identified by the
visual analytical model. Finally, despite using a simple
hierarchical logistic regression model to incorporate subgroup
information, the predictive models showed a statistically
significant improvement in discriminating between readmitted
and not readmitted patients in 2 of the 3 readmission conditions,
and additional analysis pinpointed for which patient subgroups
the current CMS model might be underperforming. Furthermore,
the integration of the 3 models helped to (1) elucidate the data
input and output dependencies among the models, enabling
clinicians to interpret the patient subgroups, reason about
mechanisms precipitating hospital readmission, and design
targeted interventions and (2) provide a generalizable framework
for the development of future clinical decision support systems
that integrate outputs from each of the 3 modeling approaches.

However, the evaluation of MIPS across the 3 readmission index
conditions also helped to identify the limitations of each
modeling method, and of the data. The visual analytical model
was too dense to enable clinicians to interpret the associations
within and between subgroups, and the absence of a closed-form
equation to measure modularity variance required a
computationally expensive process to measure the significance
of the biclustering. Furthermore, the small improvement in
predictive accuracy suggested that comorbidities alone were
insufficient for accurately predicting hospital readmission.

By leveraging the modular and extensible nature of the MIPS
framework, future research should address these limitations by
developing more powerful algorithms that analyze subgroups
at different levels of granularity to improve the interpretability
of intra- and intercluster associations and the evaluation of
subgroup-specific models to predict outcomes. Furthermore,
data from electronic health records made available through
national-level data initiatives, such as National COVID Cohort
Collaborative and TriNetX, now provide access to critical
variables, including laboratory results and comorbidity severity,
which should lead to higher accuracy in predicting adverse
outcomes. Finally, extensive discussions with clinicians have
confirmed the need for decision support systems that integrate
outputs from the 3 models to provide for a specific patient,
predicted subgroup memberships, and ranked interventions,
along with associated subgroup profiles and mechanisms. Such
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interpretable and explainable systems could enable clinicians
to use patient subgroup information for informing the design
of precision medicine interventions, with the goal of reducing

adverse outcomes such as unplanned hospital readmissions and
beyond.
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