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Abstract

Background: Health care organizations are collecting increasing volumes of clinical text data. Topic models are a class of
unsupervised machine learning algorithms for discovering latent thematic patterns in these large unstructured document collections.

Objective: We aimed to comparatively evaluate several methods for estimating temporal topic models using clinical notes
obtained from primary care electronic medical records from Ontario, Canada.

Methods: We used a retrospective closed cohort design. The study spanned from January 01, 2011, through December 31,
2015, discretized into 20 quarterly periods. Patients were included in the study if they generated at least 1 primary care clinical
note in each of the 20 quarterly periods. These patients represented a unique cohort of individuals engaging in high-frequency
use of the primary care system. The following temporal topic modeling algorithms were fitted to the clinical note corpus:
nonnegative matrix factorization, latent Dirichlet allocation, the structural topic model, and the BERTopic model.

Results: Temporal topic models consistently identified latent topical patterns in the clinical note corpus. The learned topical
bases identified meaningful activities conducted by the primary health care system. Latent topics displaying near-constant temporal
dynamics were consistently estimated across models (eg, pain, hypertension, diabetes, sleep, mood, anxiety, and depression).
Several topics displayed predictable seasonal patterns over the study period (eg, respiratory disease and influenza immunization
programs).

Conclusions: Nonnegative matrix factorization, latent Dirichlet allocation, structural topic model, and BERTopic are based on
different underlying statistical frameworks (eg, linear algebra and optimization, Bayesian graphical models, and neural embeddings),
require tuning unique hyperparameters (optimizers, priors, etc), and have distinct computational requirements (data structures,
computational hardware, etc). Despite the heterogeneity in statistical methodology, the learned latent topical summarizations and
their temporal evolution over the study period were consistently estimated. Temporal topic models represent an interesting class
of models for characterizing and monitoring the primary health care system.

(JMIR Med Inform 2022;10(12):e40102)   doi:10.2196/40102

KEYWORDS

clinical text data; temporal topic model; nonnegative matrix factorization; latent Dirichlet allocation; structural topic model;
BERTopic; text mining
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Introduction

Primary Care Text Data
Electronic medical record (EMR) systems are increasingly being
adopted in clinical settings across the globe [1]. As a result,
health care organizations are generating, collecting, and digitally
storing large volumes of routinely collected clinical information.
In this study, we focused on clinical text data commonly
collected in primary care EMR systems. We compared a class
of unsupervised machine learning models—temporal topic
models—used to characterize the latent thematic content of
large document corpora and summarize latent topical dynamics
over time. Temporal topic models have the potential to be
applied to large unstructured clinical document collections,
routinely captured in modern EMR systems, to passively
characterize the primary health care system.

Topic Models
Several methods can be used to estimate a topic model, given
a document collection, and to characterize the evolution of latent
topical bases over time. Latent Dirichlet allocation (LDA) [2,3]
uses a Bayesian probabilistic graphical modeling framework to
define a topic model. Learned topical vectors describe the
affinity of a word (v=1...V) in the corpus for a particular topic
(k=1...K). A latent admixing vector describes the affinity of a
specific document (d=1...D) for a specific topic (k=1...K). The
latent matrices in the LDA model are learned from
document-word co-occurrence statistics empirically collected
from the clinical note corpus. The traditional LDA model is not
intended for modeling temporal document collections; however,
Griffiths et al [4,5] demonstrated how simple time-stratified
estimators can be used to illustrate the evolution of latent topical
vectors over time. The structural topic model (STM), extends
the classical LDA model, allowing either (1) the matrix of
per-document topical prevalence weights or (2) the matrix of
per-topic word probabilities to deterministically vary according
to covariate information parameterized using a generalized
linear model [6]. Several parameterizations of time can be
incorporated into the generalized linear model (eg, discrete,
continuous, or spline effects), allowing the STM to flexibly
model the evolution of topical prevalence vectors over time.
Nonnegative matrix factorization (NMF) [7-9] uses a linear
algebraic framework and principles from constrained
optimization for topic modeling. NMF directly estimates the
parameter matrices of a topic model by factorizing an observed
document term matrix (DTM) into 2 latent nonnegative matrices.
One of the latent parameter matrices describes the affinity of a
document (d=1...D) to a topic (k=1...K), and the other latent
matrix describes the affinity of a word (v=1...V) to a topic
(k=1...K). Post hoc multivariate transformations of the NMF
latent parameter matrices can be used to generate estimates of
topical evolution over time. Recently, neural frameworks have
been developed for topic modeling, such as top2vec [10] and
BERTopic [11]. The BERTopic neural topic models begin by
embedding documents into a latent vector space. A finite number
of clusters (k=1...K) of semantically similar documents are
identified in the embedding space. For each document cluster
(k), the most relevant words describing the cluster or topic are
extracted using a cluster-specific term-frequency

inverse-document frequency (TF-IDF) weighting technique
[11].

Study Objectives
The objective of this study was to compare the performance of
several temporal topic modeling methodologies fitted to a corpus
of primary care clinical notes. We compared the following
temporal topic modeling methodologies: NMF, LDA, STM,
and BERTopic. We examined (1) the overall matrix of per-topic
word probabilities estimated over the corpus and (2) the
multivariate time series structures describing the evolution of
latent topical prevalence weights (k=1...K) over discrete times
(t=1...T). We compared the methods using a data set of
longitudinal primary care clinical notes collected over 5 years
(2011-2015) in Ontario, Canada.

Methods

Mathematically Representing and Computationally
Processing Our Clinical Text Corpus
Topic models use statistical information regarding
document-word co-occurrence frequencies to learn meaningful
latent variable representations from a corpus. Each document
in the collection (d=1...D) is represented as a high-dimensional
length-V vector (v=1...V), where each element is a count of the
number of times a particular word or token (v) in an empirical
vocabulary is observed in a particular document (d). We
represented the collection of document-specific term-frequency
vectors into a matrix X of dimension D*V, called the DTM.
The DTM is a large, sparse matrix. However, the matrix is
overdetermined because many of the rows (representing
document-specific term-frequency vectors) and columns
(representing word or token occurrence frequency over all
documents in the corpus) demonstrate strong intercorrelations.
Dimension-reduction techniques, such as topic models, use
intercorrelated statistical semantic information to estimate
meaningful thematic representations from document collections.
Topic models learn (1) clusters of intercorrelated words
describing the topical content of the corpus and (2) clusters of
correlated documents sharing latent topical concepts.

The most challenging and subjective aspect associated with
construction of the DTM involves specification of the
vocabulary or dictionary (v=1...V) encoding the column space
of the matrix. A priori constructed lexicons or dictionaries (of
dimension V) can be used to determine the study vocabulary.
Specification of appropriate domain-specific dictionaries would
be tasked with subject matter experts on the research team.
Alternatively, an entirely computational approach could specify
a text tokenization or normalization pipeline and
computationally parse the input character sequences into a finite
number of tokens.

In this study, we adopted a hybrid approach to vocabulary or
dictionary specification. We began by tokenizing the clinical
notes on whitespace boundaries (spaces, tabs, newlines, carriage
returns, etc). We normalized tokens using lower-case conversion
and removed all nonalphabetic characters. We removed tokens
with a character length ≤1. Finally, we sorted the list of tokens
or words by decreasing occurrence frequency and manually
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reviewed the sorted list of tokens. Our manual review identified
V=2930 distinct tokens for inclusion in our final vocabulary.
The total number of tokens in the corpus was 3,003,583. The
tokens chosen for inclusion in our final dictionary or vocabulary
were mainly medical terms with precise semantic meanings
(disease names, disease symptoms, drug names, medical
procedures, medical specialties, anatomical locations, etc). We
excluded stop words or tokens (ie, syntactic or functional tokens
with little clinical semantic meaning). Words with low
occurrence frequency were excluded for computational
considerations. All text processing was conducted using R (R
Foundation for Statistical Computing; version 3.6).

Review of Methods for Temporal Topic Modeling

NMF Model
NMF estimates latent topical matrices using the document-word
co-occurrence statistics contained in the empirical DTM. NMF
factorizes the D*V dimensional DTM into 2 latent submatrices
of dimensions D*K (θ) and K*V (Φ). The DTM (X) consists
of nonnegative integers (ie, word frequency counts), whereas
the learned matrices (θ,Φ) consist of nonnegative real values.
Mathematically, the NMF objective involves learning optimal
values of the latent matrices (θ,Φ) that best approximate the
input data set (X ≈ θΦ), subject to the constraint that the learned
matrices contain nonnegative values.

We selected a least square loss function to train the NMF model.
The objective function specifies that the observed data elements

are approximated in a K-dimensional bilinear form . The
analyst must specify the dimensions of the latent space: K (the
number of topics). Seminal articles on NMF include Paatero
and Tapper [7] and Lee and Seung [8,9]. Surveys of NMF and
low-rank models are provided by Berry et al [12] and Udell et
al [13].

Post hoc, the row vectors constituting both θ and Φ, can be
normalized by dividing by their respective row sums. The
resulting normalized vectors can be interpreted as compositional
or probability vectors (ie, each normalized row of θ and Φ
contains nonnegative entries that sum to 1, row-wise). The row
vectors of the matrix Φ encode a set of k=1...K per-topic word
probabilities or proportions (estimated over a discrete set of
v=1...V words in the empirical corpus vocabulary). The row
vectors of the matrix θ encode a set of d=1...D per-document
topic proportions (estimated over a discrete set of k=1...K latent
dimensions), encoding the affinity a given document has for a
particular topic.

For each document d=1...D, assume we observe a time stamp
that allows us to associate each document (and latent
embedding) with a T-dimensional indicator variable denoting
the observation time (t=1...T). We estimated a K-dimensional
multivariate mean topical prevalence vector for each design
point, t=1...T. This resulted in a multivariate time series structure
(a T*K dimensional matrix). Each column (k=1...K) of the

matrix is a length T time series that described the evolution of
a latent topical vector.

The sklearn.decomposition.NMF() function in the Python
SKLearn package (version 0.24.2) was used to fit the NMF
topic model.

LDA Model
LDA is a probabilistic topic model. Probabilistic topic models
assume that a document comprises a mixture of topics. These
(latent) topics represent a probability distribution over a finite
vocabulary of words or tokens. Topic models can also be
described as admixture models. Each document is a soft mixture
of topics (k=1...K), where a topic is itself a probability
distribution over words in the vocabulary (v=1...V). A graphical
model describing LDA is shown in Figure 1 [2].

The LDA graphical model also describes a generative process
for creating a single document in the corpus. This can be
succinctly described using the following sampling notation
[14,15].

To generate a document, we begin by sampling the per-topic
word distributions from a Dirichlet distribution parameterized
by a V dimensional prior concentration parameter (β). Topical
vectors (k=1...K) are shared over the collection of documents.

Next, for each document d=1...D in the collection, we sample
the per-document topic distribution from a Dirichlet distribution
parameterized according to a K-dimensional prior concentration
parameter (α).

For each word in each document, we sample a topical indicator
variable, zd,n. This variable takes an integer value between 1
and K and signifies the per-topic word distribution from which

a specific word, wd,n, is chosen. The index n denotes the nth

word in a variable length document (n=1...Nd).

Finally, we draw a single word token, wd,n, from the topical
distribution associated with zd,n. The word indicator is an
element v=1...V in our empirical dictionary or vocabulary.

The statistical inference problem associated with probabilistic
topic modeling involves inverting the sampling process and
learning model-defined latent parameters given the observed
text data. The latent variables indicate which words are assigned
to which topical indicators (z), which documents have an affinity
for which topics (θ), and which words co-occur with high
likelihood under which topics (Φ). The latent parameters
associated with an LDA topic model are typically estimated
using Bayesian statistical machinery (Gibbs sampling [14],
variational inference [2], and other methods).
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A multivariate transformation of the matrix of per-document
topical prevalence weights generates a multivariate time series
data structure. This object is of dimension T*K, where each
column k=1…K represented a univariate topical time series of

length T. This series describes the evolution of latent topical
vectors over our study period.

The sklearn.decomposition.LatentDirichletAllocation() function
in Python SKLearn (version 0.24.2) was used to fit the LDA
topic model.

Figure 1. Graphical model representation of the latent Dirichlet allocation topic model.

STM Model
The STM is another type of probabilistic topic model. The STM
extends the LDA topic model, allowing latent matrices of (1)
per-document topical prevalence weights or (2) per-topic word
proportions to vary according to a generalized linear model
parameterization [6]. Covariate effects on the latent matrix of
per-document topical prevalence weights are incorporated into
the model using a logistic-normal prior distribution over
per-document topical prevalence vectors, similar to the
correlated topic model [16]. Covariate effects on the latent
matrix of per-topic word proportions are incorporated into the
model using a type of multinomial logit prior. In this study, we
modeled covariate effects (in our study, discrete time effects,
t=1...T) on the matrix of per-document topic prevalence weights.
We did not assume that the matrix of per-topic word proportions
varied according to covariates. The plate notation of STM is
shown in Figure 2. Variational methods are used for posterior
inference in STM [6].

To generate a document under STM, we begin by sampling the
per-topic word distributions from an (intercept-only)
multinomial logit model (where multinomial logit regression
parameters are given sparse “gamma-lasso” prior) [6].

Next, we sample the per-document topic distribution from a
logistic-normal distribution parameterized in terms of a mean
vector and covariance matrix. γ represents a D*T dimensional
design matrix encoding the time point (t=1...T) under which the
document (d=1...D) was observed. The vector γ is a matrix of
dimension T*K and encodes discrete time effects on each of
the per-document topical prevalence weights (a length K vector

for each document d=1...D). Finally, Σ is a K*K dimensional
covariance matrix that encodes correlations between topical
prevalence vectors (parameterized under a logistic-normal
model).

For each word (n=1...Nd) in each document (d=1...D), we sample
a topical indicator variable zd,n. This variable takes an integer
value between 1 and K and signifies the per-topic word
distribution from which a specific word, wd,n, is chosen. It must
be noted that the upper limit Nd suggests that the number of
words used for any given document (d) can vary.

Finally, we draw a single word or token, wd,n, from the topical
distribution associated with zd,n. The word indicator is an
element v=1...V in our empirical dictionary or vocabulary.

The framework for STM naturally allows for the estimation of
temporal effects on topical prevalence weights. In our study,
discrete time effects on topical prevalence can be interpreted
using the coefficient matrix (γ) from the fitted logistic-normal
model. As the temporal effects are encoded in a Bayesian
regression modeling framework, we can also compute inferential
measures (posterior means, highest posterior density intervals,
etc). The single-stage inferential mechanism encoded in STM
is a clear strength over earlier NMF and LDA models.

We used the stm() function in the STM package in R to fit the
STM to our study data.
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Figure 2. Graphical model representation of the structural topic model.

Neural Topic Modeling via BERTopic
Recently, researchers have developed topic models that integrate
neural architectures and related techniques for model
specification and learning. These neural topic models represent
a different class of topic models compared with those introduced
previously. Examples of recently developed neural topic models
include top2vec [10] and BERTopic [11]. In this study, we
focused on the BERTopic model.

BERTopic begins with embedding documents empirically
observed in the study corpus into a latent embedding space.
Many methods exist for embedding discrete linguistic units
(words, sentences, paragraphs, documents, etc) into an
embedding space. For example, words can be embedded in a
vector space using word2vec [17-19], GloVe [20], FastText
[21], ELMO [22], Flair [23], and transformer models [24].
Sentences and documents can be embedded using methods such
as doc2vec [25], universal sentence encoders [26], and
transformers [24]. The BERTopic model used in this study relies
on sentence transformers [27], particularly the MPNet sentence
transformer model [28]. The neural embedding model is a
discrete “hyperparameter” in the BERTopic modeling pipeline.
Different choices of neural embedding models are associated
with their own model-specific hyperparameters (embedding
dimension, context window width, model training or
optimization arguments, etc).

Each document (d=1...D) is embedded in a vector space,
typically of a few hundred dimensions. The uniform manifold
approximation and projection (UMAP) algorithm [29] was used
as a further nonlinear dimension-reduction technique to assist
in the visualization and clustering of document vectors.
Clustering was accomplished in the UMAP-reduced space using
the hierarchical density-based spatial clustering algorithm of
applications with noise (HDBSCAN) [30].

Clusters (k=1...K) of semantically related documents were
identified. Scores over words v=1...V in the vocabulary were
computed using cluster-specific TF-IDF weights. If a cluster
consisted of semantically focused documents, and hence words,
we expect to observe coherent and meaningful words identified
via TF-IDF scoring. The proportion of documents assigned to
each cluster during a specific period (t=1...T) can be used to
generate a T*K dimensional multivariate time series structure,
depicting the evolution of latent topic over our study period.

We fitted the BERTopic model using default hyperparameter
settings. The BERTopic pipeline requires (1) specification of
a document embedding algorithm (in our case, the MPNet
sentence transformer model [28]), (2) the UMAP nonlinear
dimension-reduction algorithm, (3) the HDBSCAN algorithm
for cluster identification, and (4) cluster-specific TF-IDF
scoring. The individual components of the pipeline could involve
substantive hyperparameter optimization. In this study, we used
the default model hyperparameter settings.

We used the Python package bertopic to fit BERTopic models.

Statistical Methods for Corpus Description and
Evaluation of Learned Temporal Topic Models
We used simple counts and percentages to describe the
characteristics of our study sample. We described the number
of unique patients and number of unique clinical notes. Each
patient in our sample was a “high-user” of the primary care
system, in the sense they generated at least one encounter/note
for each of the twenty quarterly time periods between
2011-2015. We described the distribution of the number of notes
per patients. We described demographic characteristics of the
sample (age/sex distributions).

When fitting the NMF, LDA, and STM models, we constructed
a DTM whose row dimension corresponded to the number of
unique patients in the sample (ie, 1727 unique patients)
multiplied by the number of distinct time periods (t=20;
1727×20=34,540). Each term-frequency vector observed in the
DTM was length V (V=2930), and an individual element
counted the number of times a given word was observed for a
given patient in each quarterly period. Across the DTM, we
counted the total number of words and the number of unique
words. We described the counts and percentages of the top 25
most prevalent words in our clinical note corpus. We also
described the sparsity of the DTM.

For each of the NMF, LDA, STM, and BERTopic models, we
constructed a K*T dimensional multivariate time series matrix
(this is the transpose of the T*K data structure described earlier).
Each row corresponds to a latent topic vector and each column
corresponds to a specific quarterly time period. A row vector
is a length T time series describing the evolution of a latent
topical vector across the study periods. Each column corresponds
to a distribution over topics at a particular period (ie, described
which topics are most important at a given period). For each
row k=1...K, we report the top 5 words loading most strongly
on a given topic. The cluster of words was semantically
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correlated and described the essence of the latent topical vector.
A heatmap was used to visualize this high-dimensional
multivariate time series structure; and we hierarchically clustered
the rows of the matrix using a Euclidean distance metric and
Ward agglomeration method (a dendrogram was used to
visualize the cluster structure of the topical series).

The topical structure of each of the NMF, LDA, STM, and
BERTopic model fits was described in terms of the top 5 words
loading most strongly on each of the k=1...K latent topics. In
other words, the topical structure of each model can be described
in terms of a “bag” of 250 words or tokens. We investigated
the topical diversity of the model fits. Topical diversity was
calculated in terms of the number of unique words in the bag
of 250 total words. Furthermore, we investigated the top 5 most
frequently occurring words in the “bag” describing each model
fit. The redundantly occurring words in the topical summaries
provided a rough approximation of the semantic concepts that
the models repeatedly identified as important.

We investigated several measures of topical coherence for the
NMF, LDA, STM, and BERTopic models. We considered the
“UMASS,” “UCI,” and normalized pointwise mutual
information (“NPMI”) metrics described in the surveys of Roder
et al [31] and Rosner et al [32]. These metrics assessed the
internal consistency of the collection of word clusters describing
the topical structure of the NMF, LDA, STM, and BERTopic
models. The theoretical minima or maxima of each coherence
measure varies; however, larger values indicate models that
generated more coherent topical characterizations. Mathematical
details related to the calculation of the aforementioned topical
coherence metrics are provided later and further outlined in the
studies by Roder et al [31] and Rosner et al [32]. In all the
equations used, we assumed that a topical vector is described
in terms of its top-L most probable words or tokens; {wi,wj}
represented distinct words from the top-L set, ε is a small
positive constant to avoid potential numerical issues in
computation; and δ is a weighting term (used in the normalized
NPMI estimates, compared with the unnormalized pointwise
mutual information estimates used in the UCI coherence
measure).

We used a set-based measure of concordance, the Jaccard
coefficient, to assess similarities or differences in the topical
structure describing the NMF, LDA, STM, and BERTopic
models. Each model was described in terms of a “bag” of 250
words or tokens (ie, k=50 topics, described in terms of their top

5 most probable words); consider 2 models generating bags of
words or tokens, b0 and b1. The Jaccard coefficient is defined
as the cardinality of the intersection of b0 and b1 divided by the
cardinality of the union of b0 and b1. In mathematical notation,
the Jaccard coefficient is expressed as follows:

Finally, we described the wall time (in seconds or minutes)
required to fit each of the NMF, LDA, STM, and BERTopic
models. We also discussed the computational issues associated
with hyperparameter tuning of each of the models.

Study Design, Setting, Data Sources, and Inclusion or
Exclusion Criteria
This study used a retrospective closed cohort design. Clinical
notes were obtained from primary care EMR systems
geographically distributed across Ontario, Canada. We included
all clinical notes written by the patient’s primary care provider
between January 01, 2011, and December 31, 2015. We
discretized time into quarterly strata (January-March;
April-June; July-September; and October-December). Patients
were excluded if they did not have at least one clinical note in
each of the 20 quarterly strata over the study period. Hence, the
selected sample of patients reflects a unique set of individuals
who frequently engaged with the primary health care system.

Results

Description of Corpus and Study Sample
Our document collection contained 160,478 clinical notes from
1727 patients. The 1727 patients received primary care services
from 1066 unique primary care physicians at 40 unique primary
care clinics (geographically distributed across Ontario, Canada).
The median age of the patients was 68 (IQR 55-80) years and
ranged from 20 to 103 years (age statistics were calculated using
study baseline as a reference date, January 1, 2011). Female
patients were observed more frequently than male patients
(1157/1727, 67% vs 570/1727, 33%). Table 1 describes the
characteristics of the study sample (in terms of both note-level
and patient-level units of analysis).

The initial note-level DTM had dimensions of 160,478 rows
(one row for each clinical note in the corpus) by 2930 columns
(one column for each unique word or token in the corpus). The
corpus comprised 3,003,583 tokens. The DTM was >99% sparse
(ie, it contained almost all zero elements). We also constructed
a patient-quarter–level DTM by aggregating notes observed on
the same patient within a quarter. This DTM had dimensions
of 1727×20=34,540 rows by 2930 columns and was >98%
sparse. The top 25 most frequently occurring words in the
analytic corpus are listed in Table 2.
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Table 1. Descriptive statistics for study sample, at note-level and patient-level unit of analysis.

Unique patients (n=1727), n (%)Unique notes (n=160,478), n (%)Characteristic

Age (years)

107 (6.1)9713 (6.1)20-40

675 (39.1)63,588 (39.6)40-65

704 (40.8)63,839 (39.8)65-85

241 (14)23,338 (14.5)>85

Sex

570 (33)51,530 (32.1)Male

1157 (67)108,948 (67.9)Female

Year

—a28,012 (17.5)2011

—31,220 (19.5)2012

—33,676 (21)2013

—33,756 (21)2014

—33,814 (21)2015

aNot applicable.
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Table 2. Top 25 most frequently occurring tokens or words in the final analytic primary care clinical note corpora (N=3,003,583).

Occurrence frequency, n (%)Token or word

88,132 (2.93)pain

65,612 (2.18)mg

52,970 (1.76)inr

50,751 (1.69)bp

43,556 (1.45)back

29,861 (0.99)dose

24,736 (0.82)feels

23,211 (0.77)rx

22,256 (0.74)chest

20,914 (0.7)meds

19,409 (0.65)referral

19,398 (0.65)work

19,322 (0.64)wt

17,415 (0.58)feeling

16,121 (0.54)blood

15,905 (0.53)symptoms

15,706 (0.52)prn

14,633 (0.49)urine

13,779 (0.46)bw

13,543 (0.45)lab

13,271 (0.44)clear

12,677 (0.42)knee

12,503 (0.42)pharmacy

12,331 (0.41)sleep

11,945 (0.4)prescription

Comparing Temporal Topic Models Estimated With
NMF, LDA, STM, and BERTopic Models
We comparatively evaluated inferences obtained from fitting
the NMF, LDA, STM, and BERTopic models to our primary
care clinical note corpus. For each model, we varied the number
of topics (K={25,40,45,50,55,60,75}) and observed similar
inferences at various levels of the model complexity parameter
(K). When K was too small, distinct semantic topics tended to
be grouped together, whereas when K was too large,
semantically similar topics tended to be split into arbitrary
clusters (resulting in an overclustering effect). Using human
judgment evaluation, we determined that a model complexity
of K=50 topics balanced a parsimonious, while simultaneously
expressive, characterization of the clinical document corpus.
For each of the NMF, LDA, STM, and BERTopic models, we
reported the results assuming K=50 latent topics.

A summary of the distribution of words over the k=1...50 latent
topics (for each of the 4 models under comparison) is given in
Figures 3-6, respectively. The y-axis in each figure lists the top
5 words loading most strongly on a given topic. For NMF, LDA,

and STM, we reported topical prevalence weights associated
with each word or token (which is approximately the probability
of observing the word or token under a given latent topic). For
the BERTopic model, we reported normalized cluster-specific
TF-IDF scores associated with words under topics (which can
be interpreted similarly to the outputs of the NMF, LDA, and
STM models). The x-axis of these plots represents t=1...20
quarterly periods. A column in the plot represents a topical
prevalence distribution over latent topics at a given time point.
A row in the plot illustrates the evolution of a latent topic over
the study period.

Each of the 4 latent temporal topic models learned a meaningful
representation of the primary care clinical notes corpus. In the
following paragraphs, we discuss (1) topics consistently
estimated across models that demonstrated constant trends in
topical prevalence across quarterly periods and (2) topics
consistently estimated across quarterly periods that demonstrated
interesting seasonal patterns.

Each of the fitted models consistently identified the following
latent primary care topical constructs (and these topics show
constant patterns across quarterly periods): sleep
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(NMF=Topic−45; LDA=Topic-2 or Topic-31; STM=Topic-11;
BERTopic=not applicable); mental health, for example, mood,
anxiety, and depression, (NMF=Topic-33; LDA=Topic-22;
STM=Topic-19; BERTopic=Topic-16); pain (NMF=Topic-1;
LDA=Topic-39, Topic-36, Topic-14, Topic-49, Topic-34, or
Topic-37; STM=Topic-8; BERTopic=Topic-9 or Topic-39);
blood pressure control and monitoring (NMF=Topic-36;
LDA=Topic-9; STM=Topic-21; BERTopic=Topic-31);
respiratory disease, for example, cough, throat, chest, fever, etc
(NMF=Topic-46; LDA=Topic-13; STM=Topic-46;
BERTopic=Topic-1), smoking (NMF=Topic-31;
LDA=Topic-32; STM=Topic-44; BERTopic=Topic-38);
diabetes, for example, blood, sugar, insulin, fbs, etc
(NMF=Topic-5; LDA=Topic-43; STM=Topic-42;
BERTopic=Topic-8); pharmaceutical prescription management
(NMF=Topic-26; LDA=Topic-40; STM=Topic-9;
BERTopic=Topic-36 or Topic-5); and annual influenza
vaccination programs (NMF=Topic-6; LDA=Topic-29;
STM=Topic-36; BERTopic=Topic-50). These thematic areas
represented archetypical patients, conditions, or roles
encountered in the primary health care system. The consistent
extraction of latent themes (represented as semantically
correlated word clusters) suggests that each model can leverage
information regarding word-context co-occurrence to learn
meaningful patterns from a large unstructured clinical document
corpus.

Figures 3-6 illustrate 4 different temporal topic model
multivariate time series structures. For a given plot, the x-axis
represents time (t=1...20 quarterly periods from 2011-2015),
and the y-axis represents a topical vector (k=1...50). The

intensity of color in the cell (t,k) indicates the extent to which
an encounter at time (t) is related to a latent topic (k). Topical
labels are exchangeable and clustered along the y-axis, according
to the similarity of the topical time series (a dendrogram
describing the similarity or differences across topical clusters
is illustrated in Figure 7). Figure 3-6 represent different
multivariate time series structures estimated with NMF (Figure
3), LDA (Figure 4), STM (Figure 5), and BERTopic (Figure
6).

For certain learned topics, seasonal harmonic patterns were
stably estimated over the study period. For example, the annual
influenza vaccination program consistently occurred in the fall
or winter months of the study (NMF=Topic-6; LDA=Topic-29;
STM=Topic-36; BERTopic=Topic-50). Similarly, annual spikes
in respiratory diseases (cough, cold, influenza, etc) are identified
as achieving peaks in the winter months and lows in the summer
months (NMF=Topic-46; LDA=Topic-13; STM=Topic-46;
BERTopic=Topic-1). These findings are illustrated in Figures
3-6; however, we also present individual time series plots of
these topics in Figures 8 and 9, so the reader can better
appreciate the ability of the different temporal topical models
to extract consistent seasonal patterns from the primary care
clinical document corpus. Findings regarding consistent seasonal
variation in primary care roles over time have strong face
validity and are corroborated by complementary data sources
(eg, administrative data). Furthermore, the consistency by which
these patterns are extracted from our large clinical document
collection helps build trust in the opportunity to use
word-context co-occurrence statistics (and topic models) to
characterize and monitor primary care practices and systems.

Figure 3. A heat map of the multivariate time series structure associated with the nonnegative matrix factorization temporal topic model.
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Figure 4. A heat map of the multivariate time series structure associated with the latent Dirichlet allocation temporal topic model.

Figure 5. A heat map of the multivariate time series structure associated with the structural topic model temporal topic model.
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Figure 6. A heat map of the multivariate time series structure associated with the BERTopic temporal topic model.

Figure 7. Dendrograms displaying the clustering structure of the latent multivariate time series objects learned from nonnegative matrix factorization
model (A), latent Dirichlet allocation model (B), structural topic model (C) and BERTopic model (D).
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Figure 8. Descriptive time series plots characterizing the seasonal evolution of annual influenza program topic, as estimated by nonnegative matrix
factorization model (A), latent Dirichlet allocation model (B), structural topic model (C) and BERTopic-models (D).

Figure 9. Descriptive time series plots characterizing the seasonal evolution of the respiratory disease topic, as estimated by nonnegative matrix
factorization model (A), latent Dirichlet allocation model (B), structural topic model (C) and BERTopic-models (D).
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Post Hoc Internal Evaluation of Fitted Temporal Topic
Models
When investigating the top-ranked words associated with
per-word topic distributions in Figures 3-6 we note that each
model can describe the corpus using a “bag” of up to 250 unique
words (K=50 topics multiplied by top 5 words being presented
for each latent topical representation). The number of unique
words—also known as the topic diversity—observed in NMF,
LDA, STM, and BERTopic model fits was 76.4% (191/250),
88.4% (221/250), 87.6% (219/250), and 77.2% (193/250),
respectively. The top 5 most frequently recurring words or
tokens describing the topical structure of each of the NMF,
LDA, STM, and BERTopic models are listed in Table 3.
Recurring words for LDA and STM are similar, suggesting that
primary care issues related to back pain (and other
musculoskeletal pain) are important, as are issues related to
hypertension and feelings (eg, mood disorders). Conversely,
the BERTopic model seems to prioritize primary care issues
related to prescription drugs and laboratory ordering or
management.

We explored the semantic coherence of NMF, LDA, STM, and
BERTopic models using the following metrics: “UMASS,”
“UCI,” and “NPMI” (Table 4) [31,32]. Larger coherence metrics
indicated increasingly internally consistent latent topical

characterizations. The “UMASS” metric favored the STM
model, whereas, the “UCI” and “NPMI” metrics favored the
BERTopic model.

To investigate the differences and similarities in the fitted topic
model, we used the Jaccard coefficient (Table 5). Using the
Jaccard measure of concordance, the Bayesian models (LDA
or STM) were identified as resulting in the most similar fit. The
BERTopic model generated the most distinct topical
representation compared with the other models.

The time required to train each model was reported. For NMF,
LDA, and STM models, we used a single central processing
unit (although Python SKLearn implementations of
decomposition models can be parallelized). For the BERTopic
model, we used a single graphics processing unit for embedding
documents and a single central processing unit for
dimensionality reduction (UMAP) and clustering (HDBSCAN).
Under these settings, the time required to fit the NMF, LDA,
STM, and BERTopic models was 237 seconds, 67 seconds, 879
seconds (14.7 minutes), and 2624 seconds (43.7 minutes),
respectively. The computational requirements of the BERTopic
model exceeded those of the other models, particularly the
highly optimized NMF or LDA implementations in Python
SKLearn.

Table 3. The most frequently occurring tokens observed in each of the bags of 250 words describing the topical structure of latent Dirichlet allocation
(LDA), nonnegative matrix factorization (NMF), structural topic model (STM) and BERTopic model fits (and their occurrence counts in the bag).

Topic modelWord or token

BERTopic (n)STM (n)LDA (n)NMF (n)

inr (11)back (5)back (9)head (4)Word or token-1

mg (9)mg (5)bp (6)mg (4)Word or token-2

lab (5)pain (5)pain (6)ccac (3)Word or token-3

prescription (5)bp (4)chest (3)diabetes (3)Word or token-4

dose (4)feels (3)feels (3)feeling (3)Word or token-5

Table 4. Topical coherence measures (“UMASS,” “UCI,” and normalized pointwise mutual information [“NPMI”]) estimated on each of the nonnegative
matrix factorization (NMF), latent Dirichlet allocation (LDA), structural topic model (STM) and BERTopic models.

Topic modelTopical coherence measure

BERTopicSTMLDANMF

−2.591−2.372−2.488−2.522UMASS

1.4051.1920.9871.220UCI

0.2300.1900.1490.183NPMI

Table 5. Jaccard coefficient metrics of set-based concordance between fitted topic models: nonnegative matrix factorization (NMF), latent Dirichlet
allocation (LDA), structural topic model (STM), and BERTopic.

BERTopicSTMLDANMF

————aNMF

———0.526LDA

——0.5770.491STM

—0.3290.2860.343BERTopic

aNot applicable.
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Discussion

Principal Findings
In this study, we compared several distinct methodologies (ie,
NMF, LDA, STM, and BERTopic) to estimate temporal topic
models from a large collection of primary care clinical notes.
Despite differences in the underlying statistical methodology,
models often converged on a consistent latent characterization
of the corpus. Furthermore, the temporal evolution of latent
topics was reliably extracted from each of the NMF, LDA, STM,
and BERTopic models.

Clinically, our data set represented high-users of the primary
care system. Many of the latent topics emerging from this
analysis are consistent with a high-user archetype, for example,
family counseling or social work, mood disorders, anxiety or
depression, chronic pain, arthritis and musculoskeletal disorders,
neurological conditions, cardiovascular disease and
hypertension, diabetes, cancer screening (breast, cervical,
colorectal, and prostate), laboratory requisitions and blood work,
diagnostic imaging, and pharmaceutical or prescription
management. Topic models also identified numerous acute
health conditions as important latent themes, such as cough,
cold and other respiratory infections, urinary tract infections,
skin conditions, and wound care. NMF, LDA, STM, and
BERTopic models each consistently captured (1) annual primary
care influenza programs and (2) seasonal respiratory conditions,
demonstrating predictable seasonal variation. Findings regarding
primary care use patterns, extracted solely from clinical text
data, were largely corroborated by provincial reporting based
on structured administrative data [33].

We observed that disparate statistical methodologies for
estimating temporal topic models generated a concordant or
consistent latent representation. We interpreted this to mean
that as the signal-to-noise ratio increases in a given clinical text
data set, the subtle choice of statistical methodology seems to
matter less, and any of these methods would extract a
meaningful latent representation of the primary care corpus.
For smaller corpora, where word-document co-occurrence
statistics are less certain, this hypothesis may not hold.

Furthermore, subtle or nuanced differences in model
representations emerged, which may lead analysts to favor
specific modeling strategies in particular settings. For example,
consider Figure 8 for the annual influenza vaccination program.
Models such as NMF and LDA are purely unsupervised and do
not consider external covariate information when formulating
the model objective function. For NMF or LDA models we
noticed that the “grand mean” topical prevalence over time
centers at approximately 2% (ie, 1/50 topics). Conversely, an
STM intentionally incorporates covariate information in the
Bayesian graphical models’ prior structure, and we observed
that for STM, the lows for annual influenza topic are much
closer to 0%, whereas the fall or winter peaks are more
pronounced. The BERTopic model does not intentionally
incorporate covariate information into its objective function(s)
either; however, it adopts a more “local averaging” principle to
estimate topical distributions over time and, as such,
demonstrated similar seasonal harmonic patterns as STM in the

context of the annual influenza program. Similar patterns can
be observed in Figure 9 for seasonal respiratory diseases. This
suggests that different topic models may perform more or less
optimally in certain scientific settings (ie, may be dependent on
the research question, available data, and how these foundational
aspects of a study interplay with model choice). A priori, should
the analyst or researcher expect topical prevalence to vary about
select observable covariates, it may make sense to adopt a more
flexible model that can adequately incorporate this anticipated
behavior. If there is no a priori rationale to believe that topical
prevalence varies as a function of covariates (eg, time in this
study), then the choice of model may become less relevant, as
all models may perform similarly well.

Because of the different statistical principles associated with
each temporal topic modeling methodology, each method is
associated with its own strengths and weaknesses. We have
elaborated on the methodological and computational issues
associated with each class of models.

First, NMF is the most mature and seemingly parsimonious
methodology for topic modeling. NMF is strongly rooted in
linear algebraic principles and is fundamentally based on the
constrained optimization of a simple least squares objective
function. Vanilla NMF is a well-studied statistical methodology
and many efficient computational routines exist for estimating
NMF models. NMF is flexible and can be readily extended.
Possible model extensions can be viewed as discrete tunable
hyperparameters in the model fitting process. Berry et al [12]
and Cichocki et al [34] discussed distinct algorithmic techniques
for estimating the latent parameters of an NMF model, such as
gradient descent, multiplicative updates, and alternating
nonnegative least squares. The choice of algorithm can be
conceived as a discrete tunable hyperparameter. Furthermore,
analysts are often confronted with the choice of whether to
regularize the latent parameter matrices [35]. Ridge, lasso, and
elastic net regularization are commonly encountered, although
more complex regularization can be used to encourage latent
representations with smoothness, minimal volume, and other
characteristics. Furthermore, many researchers have attempted
to introduce coherent generalizations of NMF and related
techniques [13]. For example, generalized low-rank models that
flexibly incorporate different loss functions, functional forms,
weighting of data points, and regularization have been discussed
by Udell et al [13].

LDA and STM are Bayesian topic models. LDA was developed
as a fully Bayesian extension of existing linear algebraic-based
(eg, latent semantic analysis) and maximum likelihood-based
(eg, probabilistic latent semantic indexing) techniques for topic
modeling [2]. LDA has been extended in various ways,
illustrating the flexibility of Bayesian probabilistic graphical
models. For example, STM is a direct extension of LDA, which
allows latent parameter matrices to vary as a function of
observed covariates [6]. Efficient computational fitting routines
have been developed for LDA, and STM to a certain extent.
Analysts face several decisions when fitting LDA and STM
models to empirical data sets, including Bayesian inferential or
computational methods (eg, Gibbs sampling vs variational
inference) and prior distribution specifications.
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BERTopic represents the most novel approach to topic modeling
[11]. The BERTopic model is a pipeline: (1) deep neural
networks (eg, sentence transformer models) embed documents
in a vector space; (2) nonlinear dimension reduction is applied
to latent document vectors (UMAP); (3) document clusters are
identified (HDBSCAN); and (4) representative topics
(collections of semantically correlated words) are extracted
from document clusters using a cluster-specific TF-IDF scoring
method. A disadvantage of the BERTopic pipeline is related to
computational requirements. For large corpora, a graphics
processing unit is required to learn document embeddings within
a reasonable time. In our study, we randomly down-sampled
our data set (3/8 documents were included, whereas 5/8
documents were excluded), even with a graphics processing
unit. That said, the BERTopic model’s strength is related to its
modularity. We observed that the BERTopic model generates
meaningfully coherent topics, and as neural embedding methods
continue to evolve, we anticipate that state-of-the-art document
embedding techniques can be dropped into this pipeline.

Limitations and Future Work
We attempted to be transparent with respect to how our final
vocabulary of words or tokens was selected and accordingly
the DTMs were constructed for this study. Different
computational pipelines could have been used to preprocess our
clinical text corpus. For instance, we could have used different
strategies for tokenization, lemmatization, stemming, stop-word
removal, and frequency-based word or token removal. Different
text preprocessing pipelines would ultimately lead to different
DTM structures (with different vocabularies). Further research
is needed to better understand the implications of these text
preprocessing decisions on downstream study inferences.

Each topic model considered in this study requires specification
of hyperparameters that govern the aspects of model fitting.
Fitting these topic models is computationally intensive for large
input data sets. We focused mainly on the stability and
robustness of inferences with respect to model complexity (K),
a common hyperparameter across all models. We did not explore
the stability of the inferences across other model-specific
hyperparameters.

We did not consider all possible methods for estimating temporal
topic models in this study. Bespoke NMF and LDA variants
exist that are applicable for estimating temporal topic models.
Sequential NMF [36] and dynamic LDA [37] are 2 extensions
which are relevant for estimating temporal topic models. Tensor
factorization models such as the canonical polyadic
decomposition or Tucker decomposition, which factorize a
D*V*T tensor into meaningful latent parameter matrices, may
also be applicable [34,38]. Additional surveys related to topic
modeling are provided in the studies by Churchill and Singh
[39], Zhao et al [40], and Boyd-Graber et al [41].

These works have led us to consider several possible ways of
extending different topic modeling frameworks, including
Bayesian NMF with document-level covariates (similar to the
STM extension of LDA), neural matrix factorization with
(nontemporal) covariates, LDA or STM extensions that allow
per-document topical prevalence weights to vary according to
a flexible generalized linear mixed model or multilevel model
(for modeling dependencies introduced because of the complex
design or sampling mechanism by which documents are created),
and computational methods for improving statistical inference
(eg, interval estimation and hypothesis testing) when engaging
with temporal topic models (eg, resampling methods, bootstrap,
and multiple outputation).

Conclusions
In this study, we compared several statistical techniques for
estimating temporal topic models from primary care clinical
text data. Different temporal topic models have unique strengths
and weaknesses owing to their underlying statistical properties.
Nonetheless, each model consistently estimated a latent variable
representation of a primary care document collection, which
meaningfully characterized high-use primary care patients and
their longitudinal interactions with the primary health care
system. As the adoption of EMRs increases and health care
organizations amass increasingly large volumes of clinical text
data, temporal topic models may offer a mechanism for
leveraging unstructured clinical text data for characterization
and monitoring of primary care practices and systems.
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Abstract

Background: Under the paradigm of precision medicine (PM), patients with the same disease can receive different personalized
therapies according to their clinical and genetic features. These therapies are determined by the totality of all available clinical
evidence, including results from case reports, clinical trials, and systematic reviews. However, it is increasingly difficult for
physicians to find such evidence from scientific publications, whose size is growing at an unprecedented pace.

Objective: In this work, we propose the PM-Search system to facilitate the retrieval of clinical literature that contains critical
evidence for or against giving specific therapies to certain cancer patients.

Methods: The PM-Search system combines a baseline retriever that selects document candidates at a large scale and an evidence
reranker that finely reorders the candidates based on their evidence quality. The baseline retriever uses query expansion and
keyword matching with the ElasticSearch retrieval engine, and the evidence reranker fits pretrained language models to expert
annotations that are derived from an active learning strategy.

Results: The PM-Search system achieved the best performance in the retrieval of high-quality clinical evidence at the Text
Retrieval Conference PM Track 2020, outperforming the second-ranking systems by large margins (0.4780 vs 0.4238 for standard
normalized discounted cumulative gain at rank 30 and 0.4519 vs 0.4193 for exponential normalized discounted cumulative gain
at rank 30).

Conclusions: We present PM-Search, a state-of-the-art search engine to assist the practicing of evidence-based PM. PM-Search
uses a novel Bidirectional Encoder Representations from Transformers for Biomedical Text Mining–based active learning strategy
that models evidence quality and improves the model performance. Our analyses show that evidence quality is a distinct aspect
from general relevance, and specific modeling of evidence quality beyond general relevance is required for a PM search engine.

(JMIR Med Inform 2022;10(12):e40743)   doi:10.2196/40743

KEYWORDS

precision medicine; evidence-based medicine; information retrieval; active learning; pretrained language models; digital health
intervention; data retrieval; big data; algorithm development

Introduction

Traditionally, patients with the same diseases are treated with
the same therapies. However, the treatment effects can be highly
heterogeneous, that is, the benefits and risks may differ
substantially among patient subgroups [1]. The precision

medicine (PM) research initiative [2] takes into account
individual differences in people’s genes, environments, and
lifestyles when tailoring their treatment and prevention
strategies. Under the ideal paradigm of PM, patients of the same
diseases are divided into several subgroups, and different patient
subgroups receive different treatments that are the most suitable
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for them. PM is now widely applied in oncology, since
sequencing techniques can identify considerable genetic
variations in patients with cancer. For example, patients with
non–small cell lung cancer with epidermal growth factor
receptor gene mutations are sensitive to gefitinib therapy [3],
and patients with breast cancer who have human epidermal
growth factor receptor 2 mutations are sensitive to trastuzumab
therapy [4].

PM practices should be guided by the principles of
evidence-based medicine [5], where treatments are based on
high-quality clinical evidence, such as systematic reviews and
randomized controlled trials, instead of individual experiences.
However, as the number of scientific publications is growing
rapidly (eg, about 2700 articles are added to PubMed each day
in 2019), it is difficult for physicians to find clinical evidence
in the literature that supports or reject specific treatment options
for certain patients. Information retrieval (IR) is aimed at
automatically finding relevant documents for users’ queries. IR
has been successfully applied to the general consumer and
biomedical research domain with search engines such as Google
and PubMed. However, most current search engines cannot
process PM queries that contain structured information about
patients and therapies and neither do they rank the documents
based on their significance as clinical evidence.

To facilitate IR research for PM, the Text Retrieval Conference
(TREC) holds the PM Track annually since 2017. From 2017
to 2019, the TREC PM focused on finding relevant academic
papers or clinical trials of patient topics specified by their
demographics, diseases, and gene mutations [6-8]. In 2020, the
TREC PM focus was changed to retrieve academic papers that
report critical clinical evidence for or against a given treatment
in a population specified by its disease and gene mutation [9].
Both supporting and opposing clinical evidence are important,
because they provide valuable guidance to clinical decision
making regarding whether or not to use the treatment. To assist
the practices of PM, such as in the case of the TREC PM task,
the most vital property of a retriever is to rank the relevant
papers by their evidence quality, that is, to what extent they can
assist clinical decision-making. The objective of this work was
to develop a retrieval model that can rank relevant papers by
their evidence quality to a given PM topic.

Traditional IR systems are mostly based on term
frequency–inverse document frequency and its derivatives that
basically rank the documents by their bag-of-word similarities
with the input query. However, biomedical concepts are often
referred to by various synonyms, and multiple studies have
shown the importance of expanding query concepts to their
synonyms before sending them to IR systems [10-12]. To further
model for domain-specific relevance, such as evidence quality
in our case, rerankers are often added to finely rerank the
candidates returned by retrieval systems. However, such
rerankers are typically based on deep learning, and training
them requires a large number of labeled instances [13], which
are prohibitively expensive to collect in the biomedical domain.
Recent large-scale pretrained language models such as
Embeddings from Language Models [14] and Bidirectional
Encoder Representations from Transformers (BERT) [15] show
significant performance improvement over several natural

language processing benchmarks such as General Language
Understanding Evaluation [16]. BERT is basically a transformer
[17] encoder that is pretrained to predict a randomly masked
token in the original input. BERT can be effectively used to
rank documents given a specific query [18].

In this work, we propose the PM-Search model that tackles the
aforementioned problems of traditional search engines to assist
the practice of PM. The PM-Search system has two main
components: (1) a baseline retriever using query expansion and
keyword matching with the ElasticSearch engine; and (2) an
evidence reranker that ranks the initial documents returned by
ElasticSearch based on their evidence quality. The reranking
uses article features as well as pretrained language models under
an expert-in-the-loop active learning strategy, where a
biomedical language model BERT for Biomedical Text Mining
(BioBERT) [19] is fine-tuned interactively with the experts.
Our models participated in the TREC PM 2020 as the
ALIBABA team and ranked the highest in the evidence quality
assessment: PM-Search achieved standard normalized
discounted cumulative gain (NDCG) at rank 30 (NDCG@30)
of 47.80% and exponential NDCG@30 of 45.19%,
outperforming the second-ranking system by large margins.

In summary, our contributions of this work are three-fold:

1. We present PM-Search, which is an integrated IR system
specifically designed to assist precision medicine.
PM-Search achieved state-of-the-art performance in the
TREC PM Track.

2. We used an expert-in-the-loop active learning strategy based
on BioBERT to efficiently derive annotations and improve
model performance. To the best of our knowledge, this is
the first precision medicine search engine that combines
active learning and pretrained language models.

3. We thoroughly analyzed the importance of each system
feature with a full set of ablation studies, where we found
that the most important features included publication types
and active learning. We hope the experiments can provide
some insights into the potential future directions of PM
search engines.

Methods

Data and Materials
The TREC 2020 PM Track provided 40 topics for evaluation.
Each topic represented a PM query that contains three key
elements of a specific patient population: (1) the disease, that
is, the type of cancer; (2) the genetic variant, that is, the gene
mutation; and (3) the tentative treatment. The topics were
synthetically generated by biomedical experts and several
examples are shown in (Table 1). The task used the 2019
PubMed baseline as the official corpus, which contains over 29
million biomedical citations. Each citation is composed of the
title, authors, abstract, etc, of the article. For each topic, we
denoted its disease as , the genetic variant as and the treatment
as . The returned articles were denoted as . Each retrieval result
was a query-article pair that contained , , and . We also used
the publication type and citation count information extracted in
PubMed as additional data sources.
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The evaluation of the task followed standard TREC procedures
of ad hoc retrieval, where participants submitted a maximum
number of 1000 ranked articles and up to 5 different runs for
each topic. The assessments were divided into 2 phases, where
phase 1 was “Relevance Assessment,” judging the relevance of
each article, and phase 2 was “Evidence Assessment,” judging
the evidence quality provided by the article.

Phase 1 assessment was a general IR assessment that only
considered relevance, where the assessors first judged whether
the returned article a is generally related to PM. For the PM
papers, the assessors then assessed whether the d, g, and t were
exact, partially matching, or missing in a. Finally, the results
were classified as “Definitely Relevant,” “Partially Relevant,”
or “Not Relevant” based on a predefined rules of how the d, g,
and t matched. The evaluation metrics used in phase 1 include
precision at rank 10 (P@10), inferred NDCG (infNDCG), and
R-precision (R-prec). P@10 and R-prec are precisions at
different ranks:

where is the number of relevant articles for the query. NDCG
is computed by:

where

reli is the relevance score of article i and |RELn| denotes the
number of relevant articles ordered by the relevance up to
position n. Since not all submitted articles would be judged by
the organizers, there cannot be an exact value of NDCG. To
deal with this issue, a sample set of all articles in the top 30
ranks and a 25% sample of articles in ranks 31-100 was used
to compute the NDCG, that is, infNDCG.

In the phase 2 assessment, the assessors scored the relevant
papers from the phase 1 assessment using a 5-point scale. For
example, the tier 4 results should be “randomized controlled
trial with >200 patients and single drug, or meta-analysis” and
tier 0 should be “Not Relevant” for topic 16. The scale was
tailored for each topic to adjust for the differences in the disease,
genetic variant, and treatment. The main evaluation metric for
phase 2 assessment was NDCG@30. NDCG values at this phase
are exact since all articles in the top 30 ranks are judged. Two
sets of relevance values were used to compute NDCG, the
standard gains (std-gains) and the exponential gains (exp-gains).
Standard gains have scores (ie, reli) of 0, 1, 2, 3, and 4
corresponding to the 5 tiers, whereas exponential gains have
scores of 0, 1, 2, 4, and 8 corresponding to 5 tiers.

Table 1. Examples of the Text Retrieval Conference Precision Medicine 2020 topics.

TreatmentGeneDiseaseTopic

RegorafenibABL proto-oncogene 1Colorectal cancer1

AbemaciclibCyclin dependent kinase 4Breast cancer11

LenvatinibFibroblast growth factor receptor 2Differentiated thyroid carcinoma21

SorafenibNeurotrophic receptor tyrosine kinase 2Hepatocellular carcinoma31

PM-Search Overview
As shown in (Figure 1), PM-Search uses a 2-step approach to
retrieve relevant articles for each given PM topic: (1) a baseline
retriever that is fast and scalable, generating a relatively small
number (eg, thousands) of candidates out of millions of PubMed
articles—the baseline retriever is based on ElasticSearch

(reference) where the original queries are expanded by a list of
weighted synonyms; and (2) an evidence reranker that finely
reranks the retrieved documents based on their evidence
quality—the evidence reranker combines the predictions from
a BioBERT fine-tuned by an expert-in-the-loop active learning
strategy and a feature-based linear regressor.
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Figure 1. The architecture of PM-Search. EBM: evidence-based medicine; PM: Precision Medicine.

Baseline Retriever
We indexed the titles and abstracts of all articles from the
PubMed 2019 baseline provided by the TREC organizers using
ElasticSearch, a Lucene-based search engine. The synonyms
of the disease d and gene variant g were found via the National
Library of Medicine’s web application programming interface
in MedlinePlus [20,21]. We denoted the retrieved synonyms of
d and g as {d1, d2, ... , dm} and {g1, g2, ... , gm}, where d1 = d
and g1 = g. We did not expand the treatment because the
provided term either had no synonym or was used in almost all
articles.

For each synonym d1 and g1, we counted their document
frequency df(di) and df(gi) in the baseline corpus and calculated
the weights of each synonym used in ElasticSearch:

where

We used the normalized document frequency to lower the ranks
of rare terms.

We performed the retrieval in ElasticSearch, which ranks the
documents based on their word-level relevance with the input
query using the Okapi BM25 algorithm [22]. At the highest
level, we queried the ElasticSearch indices using a Boolean
query that must match the disease and treatment query and
should match the gene query. The disease, treatment, and gene
queries were all dis_max queries composed of their synonyms
with the weights as boost factors. The tie_breaker was set to
0.8 and the title field had a 3.0 boost factor, whereas that of the
abstract field was 1.0. In addition, the Boolean query should
match a list of keywords, including words such as “trial” and
“patient” that are chosen empirically to serve as a weak classifier
for evidence-based PM papers.

TREC PM allowed a maximum number of 1000 documents per
topic in the submission. We set the maximum number of
retrieved documents for each topic as 10,000. On average, we

retrieved 1589 candidates from the baseline retriever for each
topic.

Evidence Reranker

Overview
The Evidence Re-ranker scores a given candidate article a based
on its evidence quality for the query q by:

where ri is the output score, which is a weighted sum of: (1) a
linear regressor (LR) using the features of the ElasticSearch
score (es), pretrained BioBERT (pb), publication type (ty), and
citation count (ct); and (2) a fine-tuned BioBERT (FB). wLR

and wFB are the corresponding weights of the LR and FB. The
FB is trained by the expert-in-the-loop active learning strategy,
and the LR is trained by expert annotations.

Expert-in-the-Loop BioBERT
BioBERT [19] is a biomedical version of BERT that is trained
on PubMed abstracts and PubMed Central articles. BioBERT
achieves state-of-the-art performance on several biomedical
natural language processing tasks. We followed the same setting
as Nogueira et al [18] to use BioBERT in this task: to predict
the evidence quality of a candidate article a for the query q, we
first feed the concatenated q and a to the BioBERT, getting the
pair representation h:

where q is the concatenated disease d, gene variant g, and
treatment t in the query; a is the concatenated title and abstract
of the article; and [SEP] is a special token in BERT to mark the
input segments. A sigmoid layer is applied to the [CLS]

representation h to predict the evidence quality :

where σ denotes the sigmoid function, w and b are the layer
weights. During fine-tuning, we minimized the mean square

loss between the predicted evidence quality and the
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expert-labeled score r. BioBERT fine-tuning is implemented
using Huggingface’s transformers Python package [23]. We

use the Adam optimizer [24] with a learning rate of 4 × 10-5,
batch size of 16, and fine-tuning epoch number of 10 in each
iteration.

We show the expert-in-the-loop active learning procedure in
(Figure 2). At each iteration, a biomedical expert (senior MD
candidate) annotates the evidence quality of the highest-ranked
unannotated document for the given query based on the criteria
shown in (Figure 3). This is similar to the top-1 active feedback
setting described in Shen and Zhai [25]. Subsequently, we
fine-tuned the original BioBERT with all available annotations

at this iteration (ie, the newly annotated instances plus all
available annotations from the last iteration) and then used the
fine-tuned BioBERT to update the predictions for all documents,
leading to the new document rankings. Again, the new document
rankings were sent to the expert for annotations. We performed
22 iterations of the expert-in-the-loop active learning, where in
most iterations, 40 new annotations were added (1 for each
topic), resulting in 950 annotations in total. We also randomly
sampled 100 topic-article pairs to be annotated by another
medical doctor. The Pearson correlation was 0.853 between the
annotation scores of 2 annotators, indicating a high level of
interannotator agreement.

Figure 2. The architecture of our expert-in-the-loop active learning strategy. BioBERT: Bidirectional Encoder Representations from Transformers for
Biomedical Text Mining; Y: yes; N: no.

Figure 3. The expert annotation pipeline.

Linear Regressor
We used the expert annotations to train a simple linear
regression model using the following features:

1. es: the relevance scores returned by the ElasticSearch;
2. pb: the relevance scores predicted by a pretrained BioBERT.

We used the annotations from the previous TREC PM
challenges to fine-tune the BioBERT. Specifically, we
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collected 54,500 topic-document relevance annotations
from the qrel files of TREC PM 2017-2019, where the
queries contained disease, gene variant, and demographics
information but not the treatment option. To ensure
consistency, we only used the disease and gene variant
fields of the queries as input and fine-tuned the BioBERT
to predict their normalized relevance in the annotations.
We denoted this as “pretrained” BioBERT since the training
data were formatted differently from the data of TREC PM
2020;

3. ty: the publication type score. PubMed also indexes each
article with a publication type, such as journal article,
review, clinical trials, etc. We manually rated the score of

each publication type based on the judgments of their
evidence quality. Our publication type and score mapping
is shown in Table 2;

4. ct: the citation count score. We ranked the citation count
of all PubMed articles and used the quantile of a specific
article’s citation count as a feature. Similar to but simpler
than PageRank [26], this feature was designed to reflect
the community-level importance of each article.

The linear regression was implemented using the sklearn Python
package, which basically minimizes the residual sum of squares
between the expert annotations and the predictions from the
linear approximation.

Table 2. Mappings between publication types and clinical evidence quality scores.

ScorePublication type

–1Comment

–1Editorial

–2Published erratum

–2Retraction of publication

0English abstract

0Journal article

0Letter

0Review

1Case reports

1Observational study

2Clinical trial

2Meta-analysis

2Systematic review

Experiment Settings
We compared our PM-Search submissions to TREC PM 2020
with models submitted by other teams. We used 5 settings in
the challenge, namely PM-Search-auto-1, PM-Search-auto-2,
PM-Search-full-1, PM-Search-full-2, and PM-Search-full-3.
They use different rerankers to rank the same set of documents
retrieved by the baseline retriever. PM-Search-full-1,
PM-Search-full-2, and PM-Search-full-3 use the evidence
reranker. They use the full PM-Search architecture with different
combining weights in the evidence reranker.

We also used the PM-Search-auto-1 and PM-Search-auto-2
settings that do not use the expert-in-the-loop active learning

strategy. Since these settings do not rely on expert annotations,
they are considered as the “automatic” runs by the TREC
challenge. Specifically, the reranking scores of article a for a
given query in PM-Search-auto-1 and PM-Search-auto-2 are
calculated as a weighted sum of the LR features:

where esa, pba, tya, cta are the features of document a; esmax,
pbmax, tymax, ctmax are the corresponding maximum feature
values among all documents; and wes, wpb, wty, and wct are the
weights associated with different features and are determined
empirically. The feature weights of the submitted systems are
shown in Table 3.
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Table 3. Feature weights in different systems. Participant denotes the system name submitted to the Text Retrieval Conference (TREC) Precision
Medicine (PM).

w FB
fw LR

ew ct
dw ty

cw pb
bw es

a
TREC run IdSystem

PM-Search runs

——g0.01.50.51.0damoespb1PM-Search-auto-1

——0.01.00.51.0damoespb2PM-Search-auto-2

1.01.0–0.005–0.617–0.141–0.465damoespcbh1PM-Search-full-1

2.01.0–0.005–0.617–0.141–0.465damoespcbh2PM-Search-full-2

5.01.0–0.005–0.617–0.141–0.465damoespcbh3PM-Search-full-3

Ablations

——0.00.01.01.0N/AhRetriever + pb

——0.01.00.01.0N/ARetriever + ty

——1.00.00.01.0N/ARetriever + ct

0.01.0–0.005–0.617–0.141–0.465N/ALR

1.00.0–0.005–0.617–0.141–0.465N/AFB

aes: ElasticSearch score.
bpb: pretrained BioBERT.
cty: publication type.
dct: citation count.
eLR: linear regressor.
fFB: fine-tuned BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining).
gNot available.
hN/A: not applicable.

Results

Main Results
The main results of our participating systems in the TREC PM
2020, compared with the other top-ranking systems, are shown
in Table 4 [9].
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Table 4. Topic-wise averaged performance of different settings in the evaluation. All numbers are percentages. Other top-ranking Text Retrieval
Conference (TREC) submissions listed in the table include the systems of BIT.UA [27], CSIROMed [28], and h2oloo [29].

General relevance (phase 1)Evidence quality (phase 2)

R-precdP@10cinfNDCGbNDCG@30, standardNDCG@30a, exponen-
tial

All TREC runs

43.58 [28]56.45 [28]53.25[27]47.80 (ours)45.19 (ours)First

42.07 [27]55.16 [27]53.03 [28]42.38* [29]41.93* [29]Second

32.5946.4543.1625.2928.57Median

PM-Search runs

34.7247.4244.2447.8045.19PM-Search-full-3

34.1047.4243.0447.3044.97PM-Search-full-1

34.1447.1043.8447.4644.95PM-Search-full-2

35.9347.4245.3344.17*42.55PM-Search-auto-1

32.3744.5241.1244.60*42.54PM-Search-auto-2

Ablations

41.2153.8752.2637.04*32.36*Retriever + pbe

29.3740.3237.8043.26*41.46*Retriever + tyf

32.5244.8442.2038.40*35.55*Retriever + ctg

30.7446.1337.6544.86*42.86*Linear regressor

30.5846.4537.0643.81*42.08*Linear regressor, leave-one-out

34.8747.4244.5947.01*44.40*Fine-tuned BioBERTh

33.81*46.45*43.83*46.58*44.15*Fine-tuned BioBERT, leave-one-out

aNDCG@30: normalized discounted cumulative gain NDCG at rank 30.
binfNDCG: inferred NDCG.
cP@10: precision at rank 10.
dR-prec: R-precision.
epb: pretrained BioBERT.
fty: publication type.
gct: citation count.
hBioBERT: Bidirectional Encoder Representations from Transformers for Biomedical Text Mining.
*Significant differences from the PM-Search-full-3. Significance is defined as P<.05 in 2-sided paired t test.

General Relevance (Phase 1)
Our submissions scored higher than the topic-wise median
submission, but the best submission (infNDCG: 0.5325, P@10:
0.5645, R-prec: 0.4358) outperformed our submissions
(infNDCG: 0.4533, P@10: 0.4742, R-prec: 0.3593). Our
PM-Search runs (PM-Search-full-1 to 3; ie, PM-Search) showed
no significant improvements over the runs without active
learning (PM-Search-auto-1 and 2). It is not surprising, since
we focused on modeling evidence quality, and articles that are
highly related to the queries but are of low evidence quality (eg,
narrative reviews) will be ranked lower. As a result, our
submissions performed only moderately in the phase 1
assessment that mainly judges the general relevance.

Evidence Quality (Phase 2)
Our PM-Search system PM-Search-full-3 achieved the highest
scores for standard gain NDCG@30 of 0.4780 and exponential

gain NDCG@30 of 0.4519. As expected, the PM-Search-full
settings outperform the PM-Search-auto settings that only use
the features (0.4503 vs 0.4255 for averaged exponential
NDCG@30). This shows that our expert annotation procedure
as well as the expert-in-the-loop active learning strategy can
improve the performance of evidence quality ranking.
Remarkably, all our settings outperform the second-best system
(0.4238 for standard NDCG@30 and 0.4193 for exponential
NDCG@30) [29], including the PM-Search-auto settings that
do not rely on expert annotations (exponential NDCG@30:
0.4255). The results show that the proposed PM-Search system
is a robust evidence retriever that can be potentially applied to
assist the practice of PM.

Ablations and Feature Importance
We also experimented with different settings and studied the
importance of PM-Search components, including the baseline
retriever, active learning, and the reranking features.
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Baseline Retriever Settings
In Table 5, we show the performance of the baseline retriever
without query expansion or keyword matching. The results
show that query expansion is an important module to improve
the recall of relevant articles. However, we find that boosting
keywords such as “trial” and “patient” do not significantly

change the performance. This is inconsistent with the study of
Faessler et al [10], which shows that boosting a range of
keywords helps improve the performance. One key difference
between our system and Faessler et al [10] is that we only use
2 positive keywords, whereas they use various positive and
negative keywords, so increasing the number and diversity of
keywords could be a future work for improvements.

Table 5. Ablation results of different baseline retriever settings (in percentages).

General relevance (phase 1)Evidence quality (phase 2)Method

R@10kR@1kR@0.5kR@10kcR@1kbR@0.5ka

77.7172.3065.5181.0075.9668.99Baseline retriever

72.90*67.21*61.85*76.94*72.61*66.84*Baseline retriever without query expansion

77.7172.3365.6581.0076.0668.85Baseline retriever without keyword matching

aR@0.5k: recall at the top 500 positions.
bR@1k: recall at the top 1000 positions.
cR@10k: recall at the top 10,000 positions.
*Significant differences than the original retrieval. Significance is defined as P<.05 in 2-sided paired t test.

Active Learning
In Figure 4, we show the performance of the BioBERT
predictions at each iteration in active learning, evaluated with
infNDCG@30 by the evidence quality (phase 2) assessments.
The performance increases with the iteration when the number

of annotations is less than 500 and then converges after the
number of annotations is greater than 500. Interestingly, we
find that the average annotated relevance by our annotator also
reaches its maximum at around 500 annotations, which indicates
that this metric can be empirically used as the stop criterion.

Figure 4. InfNDCG@30 and average annotated relevance at each iteration in active learning. InfNDCG@30: inferred normalized discounted cumulative
gain at rank 30.

Reranker Features
To analyze the importance of the used features, we show the
ablation experiments in Table 4 and Pearson correlations
between them and the official scores in both phases in Table 6.

General relevance (phase 1): BioBERT that is further pretrained
by the annotations of previous TREC PM (pb) had the highest
correlation (0.5771) with the phase 1 scores, and the baseline
retriever with the pretrained BioBERT had the highest
performance (infNDCG: 52.26%) in our ablation experiments.
This is probably because the evaluations of previous tasks are
also based on general relevance. The ElasticSearch scores (es)

achieved the second highest correlation of 0.3892, and the
fine-tuned BioBERT by active learning (FB) had a Pearson
correlation of 0.3733. However, our expert annotations for the
evidence quality only had a Pearson correlation of 0.2157 with
the general relevance scores, which indicates that generally
relevant papers might not have high evidence quality. In
addition, the features of publication types (ty) and the citation
counts (ct), which are designed for the evidence quality ranking
and are positively correlated with the evidence quality, were
negatively correlated with the general relevance scores.

Evidence quality (phase 2): The trends of ablation results and
correlations between features and evidence quality scores were
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similar in both the standard and exponential scores. The most
important features in the evidence quality evaluation included
publication types and active learning. Interestingly, only using
the publication type and the baseline retriever achieves
comparable performance to the second-best system in TREC
PM (0.4146 vs 0.4193 for exponential NDCG@30). BioBERT
fine-tuned by the expert annotations (FB) had the highest
performance in the ablation experiments (exponential
NDCG@30: 0.4440) and its correlation to the official
annotations was close to that of our expert annotations (0.3309
vs 0.2937 for exponential gains; 0.2847 vs 0.3073 for standard
gains). Besides, the fine-tuned BioBERT outperformed the
expert annotations by a large margin (0.3733 vs 0.2157) in the

phase 1 assessment, indicating that it can rerank the documents
by evidence quality while retaining the original general
relevance ranks to some extent. The most correlated features of
phase 1, that is, the pretrained BioBERT (pb) and the
ElasticSearch score (es), had the lowest correlations with the
phase 2 scores, which further confirms that the evidence quality
assessment is distinct from the general relevance assessment.

In summary, the 2 assessment phases might have opposite
considerations since features that are highly related to the score
of one phase tended to be much less related to the score of the
other phase, with the exception of the fine-tuned BioBERT. As
a result, specific modeling of evidence quality beyond general
relevance is required for a PM search engine.

Table 6. Feature correlations to the official scores.

Expert annotationFBfLRectdtycpbbesaFeatures

0.21570.37330.1341–0.0435–0.06210.57710.3892General relevance

Evidence quality

0.29370.33090.27280.06960.25640.06210.0752Standard gains

0.30730.28470.28160.08060.27720.03380.0474Exponential gains

aes: ElasticSearch score.
bpb: pretrained Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT).
cty: publication type.
dct: citation count.
eLR: linear regressor.
fFB: fine-tuned BioBERT.

Discussion

Topic-Level Generalizability Analysis
Each instance used to train the PM-Search reranker contained
a topic-article pair and its relevance score. The main results
show that PM-Search is generalizable at instance-level, where
the model is trained and evaluated by different instances.
However, topic-level generalizability of the PM-Search was not
evaluated since our expert annotations and the official
annotations, that is, the training and evaluation instances, used
the same set of topics.

Here, we analyze how PM-Search generalizes to unseen topics
using a leave-one-out evaluation strategy. Each time, we use
the official annotations of only one topic to evaluate the models

that are trained by our expert annotations without the evaluation
topic. The results of each topic as the evaluation topic are
calculated and the averaged performance is shown in Table 4.
The leave-one-out results are close to the results when all expert
annotations are used for training: 0.4415 versus 0.4440 for
exponential NDCG@30 and 0.4658 versus 0.4710 for standard
NDCG@30. This shows that the model is also generalizable to
unseen topics.

Error Analysis
We show several typical cases in Table 7 to qualitatively analyze
some errors in the evidence quality assessment. It should be
noted that most errors cannot be attributed to a specific cause
since the predictions of BioBERT are not explainable, so
developing explainable models is a vital future direction to
explore.
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Table 7. Typical error cases in the evidence quality assessment. Topics are shown in Table 1.

Error typePMa-Search, rank (normal-
ized relevance)

Official, rank (normal-
ized relevance)

ArticleTopicCase

Concept recognitionN/Ac1 (1.00)PMIDb: 23177515; Title: Efficacy and safety of
regorafenib for advanced gastrointestinal stromal
tumours after failure of imatinib and sunitinib
(GRID): an international, multicentre, randomised,
placebo-controlled, phase 3 trial

11

Different understanding148 (0.47)1 (1.00)PMID: 24150533; Title: Risk of hypertension with
regorafenib in cancer patients: a systematic review
and meta-analysis

12

Unclassified297 (0.29)1 (1.00)PMID: 25213161; Title: Randomized phase III trial
of regorafenib in metastatic colorectal cancer:
analysis of the CORRECT Japanese and non-
Japanese subpopulations

13

Full article visibilityN/A1 (1.00)PMID: 29147869; Title: Hematological adverse
effects in breast cancer patients treated with cyclin-
dependent kinase 4 and 6 inhibitors: a systematic
review and meta-analysis

114

Full article visibility53 (0.50)1 (1.00)PMID: 28540640; Title: A Population Pharmacoki-
netic and Pharmacodynamic Analysis of Abemaci-
clib in a Phase I Clinical Trial in Cancer Patients

115

Different understanding6 (0.71)61 (0.25)PMID: 29700711; Title: Cyclin-dependent kinase
4/6 inhibitors in hormone receptor-positive early
breast cancer: preliminary results and ongoing
studies

116

aPM: precision medicine.
bPMID: PubMed IDentifier.
cN/A: not applicable.

Full Article Visibility
The PM-Search system can only access the title and abstract of
PubMed articles. However, vital article information (eg, detailed
gene variant types, treatments) might only appear in the full
article, especially for meta-analyses and systematic reviews
where abstracts tend to use more general concepts. For example,
PM-Search fails to retrieve the Case 5 article where the queried
disease “breast cancer” is only mentioned in the full article, not
in the abstract. For this, future models can use the full article
information from PubMed Central to better retrieve and rank
relevant papers.

Different Understanding
In some cases, we have a different understanding of how
clinically significant the evidence is that an article provides.
For example, the article “Risk of hypertension with regorafenib
in cancer patients: a systematic review and meta-analysis” in
Case 2 is focused on the hypertension side effect of the therapy,
not the therapeutic effects, which we think is not significant.
However, it was given the highest score in the official evaluation
but ranked much lower in the PM-Search prediction. This issue
should be solved by community efforts for the development of
standards.

Concept Recognition
The baseline retriever of PM-Search uses query expansion to
recognize relevant concepts in the article. However, this step is
error prone since biomedical terms are highly variable and thus

cannot be represented by a list of synonyms. For example, in
Case 1, the “colorectal cancer” in the query appears as
“gastrointestinal stromal tumours” in the article, which was
missed in the query expansion step of PM-Search. As a result,
this article was not returned by the PM-Search but ranked the
highest in the official assessment. Improving similar concept
recognition, such as using distributed representations of
concepts, remains an important direction to explore.

Comparison With Prior Work
Many IR systems for precision medicine have been proposed
in the TREC PM tracks [7-9,30], where the key issue to solve
is that queries and their related documents might use different
terms to describe the same concepts. Some studies [31-33] have
attempted to use BERT-based models for ranking in previous
TREC PM tracks, showing various levels of improvements.
Thalia is a semantic search engine for biomedical abstracts that
is updated on a daily basis [34]. It tackles the vocabulary
mismatch problem by mapping the queries to predefined
concepts by which the documents are indexed. The HPI-DHC
team shows that query expansion associated with hand-crafted
rules improves the retrieval performance [35]. Faessler et al
[10,36] systematically analyze the individual contributions of
relevant system features such as BM25 weights, query
expansion, and boosting settings. PRIMROSE is a PM search
engine that expands the queries with an internal knowledge
graph [37]. Noh and Kavuluru [38] use a basic BERT with
specific components for reranking. Koopman et al [39] present
a search engine for clinicians to find tailored treatments for
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children with cancer. For the vocabulary mismatch issue,
PM-Search uses a similar query expansion strategy to previous
studies. However, PM-Search differs from all prior work in that
it is specifically designed to rank the retrieval results by their
evidence quality, which is an important feature for PM search
engines.

Conclusions and Future Work
In this paper, we present PM-Search, a search engine for PM
that achieved state-of-the-art performance in TREC PM 2020.

PM-Search uses an ElasticSearch-based baseline retriever with
query expansion and keyword matching and an evidence
reranker that uses the BioBERT fine-tuned by an active learning
strategy. Our analyses show that the evidence quality is a distinct
aspect from the general relevance, and thus, specific modeling
of it is necessary to assist the practices for evidence-based PM.

The deployment and evaluation of PM-Search in real clinical
settings remains a clear future direction. It is also worth
exploring the use of dense vectors for baseline retrieval and
incorporating full-text information into the ranking process.
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Abstract

Background: The availability of electronic medical record (EMR) free-text data for research varies. However, access to short
diagnostic text fields is more widely available.

Objective: This study assesses agreement between free-text and short diagnostic text data from primary care EMR for identification
of posttraumatic stress disorder (PTSD).

Methods: This retrospective cross-sectional study used EMR data from a pan-Canadian repository representing 1574 primary
care providers at 265 clinics using 11 EMR vendors. Medical record review using free text and short diagnostic text fields of the
EMR produced reference standards for PTSD. Agreement was assessed with sensitivity, specificity, positive predictive value,
negative predictive value, and accuracy.

Results: Our reference set contained 327 patients with free text and short diagnostic text. Among these patients, agreement
between free text and short diagnostic text had an accuracy of 93.6% (CI 90.4%-96.0%). In a single Canadian province, case
definitions 1 and 4 had a sensitivity of 82.6% (CI 74.4%-89.0%) and specificity of 99.5% (CI 97.4%-100%). However, when the
reference set was expanded to a pan-Canada reference (n=12,104 patients), case definition 4 had the strongest agreement (sensitivity:
91.1%, CI 90.1%-91.9%; specificity: 99.1%, CI 98.9%-99.3%).

Conclusions: Inclusion of free-text encounter notes during medical record review did not lead to improved capture of PTSD
cases, nor did it lead to significant changes in case definition agreement. Within this pan-Canadian database, jurisdictional
differences in diagnostic codes and EMR structure suggested the need to supplement diagnostic codes with natural language
processing to capture PTSD. When unavailable, short diagnostic text can supplement free-text data for reference set creation and
case validation. Application of the PTSD case definition can inform PTSD prevalence and characteristics.

(JMIR Med Inform 2022;10(12):e41312)   doi:10.2196/41312
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Introduction

Primary care providers are typically the first point of contact
for individuals within the health care system. Primary care
services support patients throughout their health care experiences
managing both acute and chronic conditions. Primary care
electronic medical records (EMR) are a rich source of
longitudinal patient data collected by health care providers
throughout an individual’s health care experience. EMR data
can identify clinical phenotypes, describe care pathways, and
inform quality improvement initiatives [1,2]. EMR-derived data
typically include information related to patient characteristics,
diagnoses, prescribed medications, and biometrics. They may
also include information on social history, allergies, and risk
factors for diseases [3-7]. Given the breadth of information
available within EMRs, their use for disease surveillance
continues to grow.

Identification of complex medical conditions may require
multiple data points. Structured data fields such as standardized
diagnosis or medication codes, as well as unstructured free-text
data within the EMR can be assessed to describe complex
conditions. Unstructured free text in the EMR can describe the
observations, assessment, and plan for patient care providing
depth to what is available in structured data fields [8,9]. More
specifically, unstructured and short-text fields describe the
patient context, including sociodemographic, risk behaviors and
allergies, patient experience and interactions with the provider,
and rational for the health care decisions that were made, which
can inform disease surveillance and research [8]. Text analytics
and, more specifically, natural language processing (NLP) of
text data in the EMR can identify symptoms and variable
interactions across multiple tables within data holdings [9-15].
Mining text data from health records typically includes refining
procedures and knowledge extraction, aggregation, abstraction,
and summarization of EMR information to transform text data
into actionable insights such as inform phenotyping, disease
prognosis and management, and disease surveillance [9,16,17].
Free-text information is not always available for research due
to the technical limitations of EMR data systems or analysis,
as well as privacy and data protection restrictions [18]. Due to
this limitation, previous studies have relied on small data sets
or a small number of institutions, preventing evidence of
transferability of the models [17]. Primary care EMR short
diagnostic text fields, more widely available than free-text data,
have been suggested as a method for supplementing diagnostic
definitions when free-text is unavailable [15,19,20].
Supplementation of free-text data with short-text fields, matched
with refined processes for annotation and classification can
support the use of EMR data in research [17].

Posttraumatic stress disorder (PTSD) is a complex mental health
disorder characterized by a constellation of distressing symptoms
that occur after witnessing or experiencing a traumatic event
[21,22]. PTSD involves intrusive thoughts, persistent avoidance,
negative alterations in cognition and mood, and alterations in
arousal and reactivity (eg, irritability, reduced concentration,
and exaggerated startle response) due to trauma recollection,
which occur for greater than 1 month and result in significant
impairment for the individual [20,22-24]. PTSD is associated

with an array of multimodal risk indicators suggesting no single
factor can account for the large variance in PTSD symptoms
[19,20]. When encountered in primary care, PTSD is associated
with considerable functional impairment and health care
utilization [24]. This complex set of symptoms, combined with
an individual’s possible reluctance to seek help, infrequent
patient-clinician interaction, and overlapping symptoms with
other mental health conditions, makes PTSD difficult to
accurately diagnose in primary care [20,22]. Identifying PTSD
requires both depth and breadth to detail the patients’experience
and capture associated factors [19,20].

This study had two objectives, which are as follows: (1) to
compare the quality of capture when using free-text data
compared to short diagnostic text fields from primary care EMRs
for the creation of a reference set for a complex condition such
as PTSD, and (2) test possible PTSD case definitions using
single-province and pan-Canadian EMR reference standards.
This study assesses the performance of 4 PTSD case definitions
against reference standards to assess improved agreement when
structured data fields are supplemented with NLP of EMR short
diagnostic phrases.

Methods

Overview
This retrospective cross-sectional study used EMR data extracted
and processed by the Canadian Primary Care Sentinel
Surveillance Network (CPCSSN). At the time of this study,
there were 1574 consenting primary care providers (ie, family
physicians, nurse practitioners, and community pediatricians)
from 257 clinics representing 1,493,516 patients in 7 Canadian
provinces (British Columbia, Alberta, Manitoba, Ontario,
Quebec, Nova Scotia, and Newfoundland and Labrador) [3,7].

Data Sources
The CPCSSN repository is a pan-Canadian data set that is
updated semiannually from regional practice-based research
networks. The data in the repository comprised deidentified
EMR data from consenting primary care providers that use 11
different EMR systems across Canada. Extracted EMR data are
cleaned and standardized to map prescribed medications to
Anatomical Therapeutic Chemical classification codes,
laboratory tests to Logical Observation Identifiers Names and
Codes, and medical diagnoses to International Classification of
Disease, ninth edition, clinical modification (ICD-9-CM) codes.
The CPCSSN repository also contains unstructured data in the
form of short diagnostic text fields related to diagnoses,
medication instructions, allergies, and social and behavioral
risk factors. Additionally, some regional networks, such as the
Manitoba Primary Care Research Network (MaPCReN), also
extract free-text encounter notes that go through a
deidentification algorithm to anonymize the data. Encounter
notes are narrative entries created by primary care providers,
typically structured in the problem-oriented medical record
format [8]. MaPCReN represents 266 consenting primary care
providers in 48 clinics in Manitoba, Canada. This study accessed
a CPCSSN data set comprised of structured and short diagnostic
text fields, and a MaPCReN data set containing structured, short
diagnostic text fields, and free-text encounter notes.
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Manitoba Primary Care Patients
The MaPCReN database includes 289,523 patients, of which
154,118 (52.23%) were considered active because they had seen
a primary care provider participating in MaPCReN in the prior
2 years (between January 1, 2017, and December 31, 2019)
[25]. In addition to structured and short diagnostic text data
available for all patients, 19.6% (56,795/289,523) of the patients
have free-text encounter notes available in the MaPCReN
repository (2,125,961 encounter notes). Two medical students
conducted a complete review of the medical records of a subset
of patients from the MaPCReN repository. The reviewers were
instructed to use the criteria from the Diagnostic and Statistics
Manual of Mental Disorders, Fifth Edition [26] or specific
documentation to indicate whether a patient was diagnosed with
PTSD. A data extraction form was developed to capture patients
living with PTSD and related signs or symptoms (Multimedia
Appendix 1).

To create the subset for medical record review, we identified
21,713 patients with one more of the following ICD-9-CM
codes in the health condition table of the EMR starting 300
(anxiety), 308 (acute reaction to stress), 309 (adjustment
reaction), or 311 (depression). A total of 373 patients had a

complete record reviewed by 2 students. Medical record review
without free text was also completed by 2 medical students for
15,127 (69.67%) of these 21,713 patients to create positive
reference sets. To identify patients without PTSD (negative
reference set), patients were randomly selected for review by 2
medical students. In the negative reference set, 264/2025
(13.0%) patients had full medical records review (including free
text), and 1761/2025 (87.0%) patients were reviewed without
free-text encounter notes. Patients were labeled as “PTSD,”
“possible PTSD,” or “no PTSD” in the data extraction form
(Multimedia Appendix 1). Any discrepancies were reviewed
by a family physician clinician researcher (AS). The final
reference set included patients who were considered “PTSD”
or “no PTSD” and excluded patients with “possible PTSD.”
This process created the following two MaPCReN reference
standards: (1) a total of 330 patients (n=115, 34.8% positive
and n=215, 65.2% negative) had full medical record review
including free-text data, and (2) a total of 3212 patients (n=1566,
48.75% positive and n=1646, 51.25% negative) had medical
record review without free-text data. There were 327 patients
who were included in both MaPCReN reference sets (Figure 1)
[20].

Figure 1. Flow diagram for creation of posttraumatic stress disorder reference standard in the Manitoba Primary Care Research Network.

Pan-Canadian Primary Care Patients
From the CPCSSN repository, a subset of patient records was
extracted for medical record review to create a pan-Canadian
reference set for PTSD. The CPCSSN repository contains EMR
data for 1,493,516 patients, of which 689,301 (46.15%) were
considered active because they had an appointment within the

previous 2 years [25]. Within CPCSSN, there is no free-text
encounter note data available. Medical record review was
performed by 12 medical students using short diagnostic text
fields. In total, there were 6 cohorts of ~2700 randomly selected
records, each reviewed by 2 medical students for a total of
16,265 records reviewed. We included patients from each of
the 7 participating provinces. There were 13,282 patients with
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an ICD-9-CM code (309, adjustment reaction), of which 7551
(56.85%) were randomly selected for medical record review.
Moreover, there were 8714 patients randomly selected for
creation of the negative reference set. We used the same data
extract table and process as conducted for the MaPCReN
reference set. Discrepancies were reviewed by a family

physician (AS). There were 3518/7551 (46.6%) who were
excluded due to poor interrater agreement or being classified
as “possible PTSD.” Our final reference set had 12,104 patients
(n=4033, 33.32% positive and n=8071, 66.68% negative; Figure
2).

Figure 2. Flow diagram for creation of posttraumatic stress disorder reference standard in the Canadian Primary Care Sentinel Surveillance Network.

Case Definitions
Four case definitions for PTSD were developed by consensus
discussion and evidence review by a research team including
clinicians and researchers. Case definitions included ICD-9-CM
and Anatomical Therapeutic Chemical codes from the health
condition, billing, encounter diagnosis, and medication tables
of CPCSSN (Table 1). The ICD-9-CM code for PTSD is 309.81;
however, some providers use a less specific ICD-9-CM code
309 (adjustment reaction) because of billing rules in some
justifications (ie, Ontario) which require that only the first 3

digits of the ICD-9-CM code be entered. Additionally, during
medical record review, medical students found that patients
with a diagnostic text entry for “PTSD” also had the following
ICD-9-CM codes associated with that encounter: 300 (anxiety),
308 (acute reaction to stress), 309 (adjustment reaction), or 311
(depressive disorder). Medical student reviewers were instructed
to create a list of spelling mistakes, abbreviations, and phrases
that were recorded by primary care providers to identify PTSD
in the short diagnostic text field (Multimedia Appendix 2).
These codes and list were incorporated into data preprocessing
stages prior to applying the case definitions (Table 1).

Table 1. Posttraumatic stress disorder (PTSD) test case definitions.

Case definition 4Case definition 3Case definition 2Case definition 1

≥1 health condition, billing, or encounter
diagnosis for ICD-9-CM 309.81 OR ≥1
health condition, billing, or encounter diag-
nosis for ICD-9-CM starting with 290-316
AND PTSD recorded as the diagnosis name
by the provider (Multimedia Appendix 2)

≥1 health condition for ICD-9-CM 309.81
OR ≥1 billing, encounter diagnosis for ICD-
9-CM 309.81 AND PTSD medication

(ATCb code starting with N05 or N06) OR
≥2 billing, encounter diagnosis for ICD-9-
CM 309.81 separated by at least 1 week

≥1 health condition for ICD-
9-CM 309.81 OR ≥2 billing,
encounter diagnosis for
ICD-9-CM 309.81 separated
by at least 1 week

≥1 health condition, billing,
or encounter diagnosis for

ICD-9-CMa 309.81

aICD-9-CM: International Classification of Disease, ninth edition, clinical modification.
bATC: anatomical therapeutic chemical.

Preprocessing Steps
Primary care EMR data are collected for clinical purposes and
therefore often include domain-specific language and acronyms

as well as spelling and typographical errors. To prepare the data
for validation (ie, capture in case definition 4), we removed stop
words, removed special characters, and adjusted capitalization
in the short diagnostic text fields of the EMR. Short diagnostic
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text fields document diagnosis name and reasons for the
encounter. During medical record review, medical student
reviewers recorded PTSD acronyms and spelling errors that
were later converted into “PTSD” prior to applying the case
definition (Multimedia Appendix 2).

Statistical Analyses
We compared the agreement of EMR free-text encounter notes
and EMR short diagnostic text fields using a 2x2 contingency
table and the following metrics: sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and
overall accuracy. Further, we assessed agreement between the
PTSD case definitions and each of the 3 reference sets
(MaPCReN free text, MaPCReN short diagnostic text, and
CPCSSN) with sensitivity, specificity, PPV, NPV, and overall
accuracy. The equations for these metrics are presented below:

Using the PTSD case definitions, the prevalence and 95%
confidence limits were computed using an exact binomial test
to estimate prevalence of PTSD in a pan-Canadian data set.
Statistical analyses were conducted using SAS V9.4 (SAS
Institute).

Ethics Approval
Ethical approval for this study was obtained from the Health
Research Ethics Board at the University of Manitoba, approval
number HS21053(2017:257).

Results

Manitoba Primary Care Patients
There were 154,118 patients in MaPCReN who attended an
appointment with a participating provider between January 1,

2017, and December 31, 2019. There were 330 patients in
MaPCReN reference set 1 (free-text data), and 3212 patients in
MaPCReN reference set 2 (short diagnostic text). There were
327 patients who were included in both reference sets. There
was a strong agreement between free-text and short diagnostic
text reference sets with an overall accuracy of 93.6% (CI
90.4%-96.0%). There were 20 patients who had ongoing
symptoms of PTSD documented in free-text EMR data (not an
explicit PTSD diagnosis) that were not identified through review
of short diagnostic text fields. Despite this, there was strong
agreement between the 2 reference sets with a sensitivity of
82.5% (CI 74.2%-88.9%) and specificity of 99.5% (CI
97.4%-100%; Table 2).

Case definitions 1 and 4 performed similarly in both MaPCReN
reference sets (Table 3). Reference set 1 had a sensitivity of
82.6% (CI 74.4%-89.0%), specificity of 99.5% (CI
97.4%-100%), PPV of 99.0% (CI 93.1%-99.9%), NPV of 91.5%
(87.8%-94.1%), and accuracy of 93.6% (CI 90.4%-96.0%) for
both case definitions. Similarly, reference set 2 had a sensitivity
of 100% (CI 99.8%-100%), specificity of 98.4% (CI
97.7%-99.0%), PPV of 98.4 (CI 97.6%-98.9%), NPV of 100%,
and accuracy of 99.2% (CI 98.8%-99.5%) for both case
definitions. Within the MaPCReN repository, supplementation
with NLP (case definition 4) did not capture any additional
patients when compared to case definition 1, which focused
only on diagnostic codes for PTSD (ICD-9-CM 309.81).
Requiring a second billing code for PTSD (case definition 2)
or a medication that may be used to treat PTSD (case definition
3) produced lower sensitivity (57.4%, CI 47.8%-66.6% and
79.1%, CI 70.6%-86.2%; Table 3).

Table 2. Agreement between Manitoba Primary Care Research Network (MaPCReN) reference set 1 (with encounter notes) and MaPCReN reference
set 2 (with short diagnostic text fields only; N=327).

Value (95% CI)Performance metrica

93.6 (90.4-96.0)Accuracy

82.5 (74.2-88.9)Sensitivity

99.5 (97.4-100)Specificity

99.0 (93.0-99.9)Positive predictive value

91.4 (87.7-94.0)Negative predictive value

aCell occurrence <5 required suppression of numbers in 2x2 contingency table.

JMIR Med Inform 2022 | vol. 10 | iss. 12 |e41312 | p.38https://medinform.jmir.org/2022/12/e41312
(page number not for citation purposes)

Kosowan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Agreement between patients captured using the posttraumatic stress disorder case definitions and the Manitoba Primary Care Research Network
(MaPCReN) reference sets.

Accuracy (%, CI)hNPV (%, CI)gPPV (%, CI)fSP (%, CI)eSE (%, CI)dFP (n)cFN (n)bTN (n)aTP (n)Case definitions

MaPCReN reference set 1 (with encounter notes; N=330)

93.6 (90.4-96.0)91.5 (87.8-
94.1)

99.0 (93.1-
99.9)

99.5 (97.4-
100)

82.6 (74.4-
89.0)

<5Sup-
pressed

21495Case definition 1

84.9 (80.5-88.5)81.4 (77.9-
84.4)

98.5 (90.3-
99.8)

99.5 (97.4-
100)

57.4 (47.8-
66.6)

<5Sup-
pressed

21466Case definition 2

92.4 (89.0-95.0)89.9 (86.2-
92.7)

98.9 (92.8-
99.9)

99.5 (97.4-
100)

79.1 (70.6-
86.2)

<5Sup-
pressed

21491Case definition 3

93.6 (90.4-96.0)91.5 (87.8-
94.1)

99.0 (93.1-
99.9)

99.5 (97.4-
100)

82.6 (74.4-
89.0)

<5Sup-
pressed

21495Case definition 4

MaPCReN reference set 2 (no encounter notes; N=3212)

99.2 (98.8-99.5)10098.4 (97.6-
98.9)

98.4 (97.7-
99.0)

100 (99.8-
100)

26016201566Case definition 1

86.4 (85.2-87.6)79.2 (77.8-
80.5)

99..5 (98.8-
99.8)

99.6 (99.2-
99.9)

72.5 (70.2-
74.7)

643116401135Case definition 2

96.2 (95.5-96.8)94.4 (93.2-
95.3)

98.3 (97.5-
98.8)

98.4 (97.7-
99.0)

93.8 (92.5-
95.0)

269716201469Case definition 3

99.2 (98.8-99.5)10098.4 (97.6-
98.9)

98.4 (97.7-
99.0)

100 (99.8-
100)

26016201566Case definition 4

aTP: true positive.
bTN: true negative.
cFN: false negative.
dFP: false positive.
eSE: sensitivity.
fSP: specificity.
gPPV: positive predictive value.
hNPV: negative predictive value.

Pan-Canadian Primary Care Patients
In the CPCSSN data set, case definition 4 had the strongest
agreement with our reference set with a sensitivity of 91.1%
(CI 90.1%-91.9%), specificity of 99.1% (CI 98.9%-99.3%),
PPV of 98.1% (CI 97.6%-98.5%), NPV of 95.7% (CI
95.3%-96.1%), and accuracy of 96.4% (CI 96.1%-96.8%). In
comparison, case definition 1 had a sensitivity of 72.3% (CI
70.9%-73.7%), specificity of 99.1% (CI 98.9%-99.3%), PPV
of 97.6% (CI 97.0%-98.1%), NPV of 87.8% (CI 87.2%-88.3%),
and accuracy of 90.2% (CI 89.7%-90.7%). The inclusion of

multiple billing codes (case definition 2) or medications that
can be used to treat PTSD (case definition 3) did not improve
the agreement of the case definitions (Table 4).

When we apply each of the definitions to the CPCSSN data set
of active patients, PTSD prevalence estimates suggest a range
of 0.8% (CI 0.77%-0.81%; n=5565) with case definition 2 to
1.3% (CI 1.25%-1.31%; n=8913) with case definition 4. Case
definition 1, which required at least one specific ICD-9-CM
code 309.81, had a prevalence of 1.1% (CI 1.08%-1.13%;
n=7718).
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Table 4. Agreement between the posttraumatic stress disorder case definitions in the Canadian Primary Care Sentinel Surveillance Network and the
reference data set (N=12,104).

Accuracy (%, CI)NPVh (%, CI)PPVg (%, CI)SPf (%, CI)SEe (%, CI)FPd (n)FNc (n)TNb (n)TPa (n)Case defini-
tions

90.2 (89.7-90.7)87.8 (87.2-88.3)97.6 (97.0-98.1)99.1 (98.9-99.3)72.3 (70.9-73.7)711116800029171

87.1 (86.5-87.7)84.0 (83.5-84.5)99.0 (98.5-99.3)99.7 (99.5-99.8)62.0 (60.5-63.5)261531804525022

90.2 (89.7-90.8)87.8 (87.2-88.3)97.8 (97.2-98.2)99.2 (99.0-99.4)72.3 (70.9-73.7)671116800429173

96.4 (96.1-96.8)95.7 (95.3-96.1)98.1 (97.6-98.5)99.1 (98.9-99.3)91.1 (90.1-91.9)71361800036724

aTP: true positive.
bTN: true negative.
cFN: false negative.
dFP: false positive.
eSE: sensitivity.
fSP: specificity.
gPPV: positive predictive value.
hNPV: negative predictive value.

Discussion

Principal Results
We found strong agreement between reference standards created
through review of EMR free-text encounter notes compared to
EMR short diagnostic text fields. Similar to other studies, we
also found that when available, free-text encounter notes can
capture additional information about a patient for identification
of disease, symptoms, and management strategies [7,12,14,15].
Although free-text encounter notes provided additional
information regarding risk factors and symptoms, when
compared to short diagnostic text fields, their inclusion did not
dramatically impact the validation of algorithms intended to
identify diagnosed cases. Primary care settings in our sample
include regionally or privately operated clinics, different EMR
systems, and privacy and confidentiality regulations that can
make free-text data difficult to obtain [27]. We found that when
free-text encounter notes are unavailable, short diagnostic text
data offer a viable option for identification of a confirmed
diagnosis among primary care patients, even when this condition
is complex such as PTSD.

Comparison With Prior Work
The estimated PTSD prevalence ranged from 0.8% to 1.3%.
Case definition 1, which focused on specific ICD-9-CM code
for PTSD (309.81) found a prevalence of 1.1% but may not be
viable if 5-digit billing codes (ie, ICD-9-CM) are not available.
Within the Manitoba data set, diagnostic code alone and
diagnostic codes supplemented with NLP both had high
agreement with reference sets. Inclusion of free-text encounter
notes during medical record review did not significantly change
agreement metrics. Contrary to similar studies, we did not find
that the inclusion of NLP improved the agreement of our case
definition in Manitoba [7,12,14,15]. However, when we applied
the case definitions to the pan-Canadian CPCSSN reference set,
provincial differences in diagnostic codes and EMR structure
were noticed. Seungwon et al [27] conducted a scoping review
of 274 articles representing 299 algorithms for Charlson
conditions reporting that case validation studies frequently

focused on a single-center, limiting generalizability of created
algorithms. Similarly, we found that our algorithm tested in
MaPCReN, which includes only 3 distinct EMR venders,
performed better than when tested in a pan-Canadian CPCSSN
data set representing 11 different EMR venders across Canada.

Consistent with other literature regarding complex phenotypes,
we found that reliance on diagnostic codes can vary in accuracy
depending on the jurisdiction [14,27]. System-level and
jurisdictional differences in diagnostic coding requirements
reduced the sensitivity of case definition 1 in the CPCSSN
reference set. Depending on the condition, a 3-digit ICD-9-CM
code may still indicate disease presence. For example,
ICD-9-CM 250 indicates diabetes with ICD-9-CM subcodes
indicating the type and severity of the diabetes [28]. However,
the 3-digit ICD-9-CM code for PTSD is 309, indicating an
adjustment reaction which is not specific to PTSD. When using
free-text data to improve PTSD capture, tools such as
well-developed and defined NLP or lasso regression can aid in
the identification of patients [7,12,14,15]. Case definition 4
supplemented specific diagnostic codes with NLP of short
diagnostic text fields in the EMR to identify patients with PTSD.
Similar to other works, we found that combining structured
EMR data and unstructured free text significantly improved
diagnostic capture in our pan-Canadian data set yielding higher
performance [7,15,20,27]. However, we did not ascertain
additional benefit from using free-text encounter notes when
compared to short diagnostic text fields that are more widely
available. Doan et al [12] found that NLP showed comparable
performance in disease identification to clinician manual chart
review. Although literature suggests the need to capture multiple
risk factors for the identification of PTSD [19], in this study,
we focused NLP on explicit PTSD diagnostic text documented
in short diagnostic text fields of the EMR. We demonstrated
that explicit PTSD diagnostic text can improve PTSD capture
in a pan-Canadian data set. NLP can serve as a model for
decision support closing documentation gaps and overcoming
barriers present when only structured data fields are available
[12,15].
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Following free-text encounter note review, 6.1% (20/327) of
patients in our purposefully selected reference standard were
identified as having “possible PTSD.” These patients did not
have an explicit PTSD diagnosis in the text or structured data
fields of the EMR. Characterizing patients with “possible PTSD”
may identify patients who warrant further clinical investigation
to inform diagnosis. Identification of patients with “possible
PTSD” can support patient care by informing diagnostic
investigations, as well as promoting documentation of mental
health symptoms, treatments, and improvements in symptoms
[15]. This may be a role for clinical decision support systems
that can provide passive alerts to primary care providers
indicating the need for further PTSD assessment [7,15].

Depending on study objectives and data set, researchers may
choose to use different combinations of coded and free-text
data, the former being more readily available and commonly
used in many jurisdictions [14,27]. However, previous studies
have demonstrated that using diagnostic codes from one part
of the EMR alone may be problematic due to data quality
concerns [18,29]. Furthermore, changes in terminology and
coding standards can make it difficult to compare and share
algorithms between EMR systems and jurisdictions.
Understanding the health system structure and setting of the
study is crucial in algorithm development [27]. Interpretability
is an important consideration within the clinical domain, which
may suggest the use of an NLP rule-based system, particularly
when a data set has limited free-text information. Despite this,
the supplementation of structured EMR data with NLP-derived
data is important to overcome documentation gaps [9,15,20].
Our pan-Canadian data set only included short diagnostic fields
and did not include free-text encounter notes. The availability
of free-text encounter notes may suggest the use of a pretrained
model for both text representation and classification. Pretrained
model such as the Bidirectional Encoder Representations from
Transformers can transform free-text data into a standardized
form [9]. Specialist models such as MentalBERT have
developed domain-specific pretrained language models in the
area of mental health that can further benefit machine learning
models aimed at capturing mental health conditions [30].
Matching data sets to appropriate methods can balance
interpretability of the model and improve prediction leading to
results that can inform clinical decision-making and health
system planning [9,15,19,20].

Limitations
This study relied on primary care provider documentation in
the EMR. NLP assessment of clinical notes entered by a primary
care provider requires processing of clinical narratives that were
entered by providers with limited time and may therefore include
domain-specific abbreviations and spelling or editorial errors
[7]. Due to variation in primary care provider documentation
and coding, our study may have underestimated the presence
of PTSD in its patient population. Additionally, clinicians
primarily use their EMR for clinical purposes and therefore are
less concerned with the secondary use of specific ICD-9-CM
codes. This may contribute to issues with data capture or
completeness. The use of NLP must be developed within context
to meet organizational challenges of structured data fields [14].
Tools developed through this study can support identification
in a Canadian EMR data repository but have not been validated
in other jurisdictions. CPCSSN represents care received from
a primary care provider and therefore does not represent care
received from a specialist, such as a psychiatrist or psychologist.
Future studies linking this data set to other data holdings
representing care providing by specialist providers may improve
our case definition accuracy by including more dedicated
assessments and information related to PTSD care.

Conclusions
Inclusion of free-text encounter notes during medical record
review did not lead to dramatically improved capture of PTSD
cases, nor did it lead to significant improvements in case
definition agreement. However, incorporating NLP of short
diagnostic text fields into a case definition for a complex
condition, such as PTSD, improved the capture of our case
definition when compared to case definitions that used structured
data fields alone. Depending on the jurisdiction and EMR
systems in use, specific diagnostic codes can still provide a
good estimate of patients with PTSD in a population.

Further research is required to refine NLP algorithms to be able
to detect PTSD from free-text encounter notes lacking a formal
coded diagnosis entry. In this large primary care data set, PTSD
affected between 0.8% and 1.3% of the population,
demonstrating that primary care EMR data are a rich source of
data for this complex condition.

 

Acknowledgments
We would like to thank all of the following medical record reviewers: Alyzia Horsefall, Amy Lam, Anna Liu, Courtney Bell,
Daniel Shenoda, Dhasni Muthurmuni, Gabriel Furman, Hannah Stirton, John Bahng Seokjae, Joseph Asamineq, Katrina Leong,
Mary Pambid, Peter Trokajilo, Shivani Mathur, Suman Lakhi, and Sydnee Tuckett. We also acknowledge the assistance of William
Peeler in data acquisition.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Data extraction form.
[PDF File (Adobe PDF File), 65 KB - medinform_v10i12e41312_app1.pdf ]

JMIR Med Inform 2022 | vol. 10 | iss. 12 |e41312 | p.41https://medinform.jmir.org/2022/12/e41312
(page number not for citation purposes)

Kosowan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v10i12e41312_app1.pdf&filename=2e8a22269c2f02ba152df9d4e8317aac.pdf
https://jmir.org/api/download?alt_name=medinform_v10i12e41312_app1.pdf&filename=2e8a22269c2f02ba152df9d4e8317aac.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 2
Posttraumatic stress disorder terms.
[PDF File (Adobe PDF File), 60 KB - medinform_v10i12e41312_app2.pdf ]

References
1. Cavlan O, Dash P, Drouin J, Fountaine T, Riahi F. Using care pathways to improve health systems. Health International.

2011. URL: https://www.mckinsey.com/client_service/healthcare_systems_and_services/people/~/media/
3EAC5D0AD0D440BD9500799BAD632DE0.ashx [accessed 2022-11-08]

2. Rubin G, Berendsen A, Crawford SM, Dommett R, Earle C, Emery J, et al. The expanding role of primary care in cancer
control. Lancet Oncol 2015 Sep;16(12):1231-1272. [doi: 10.1016/S1470-2045(15)00205-3] [Medline: 26431866]

3. Queenan JA, Williamson T, Khan S, Drummond N, Garies S, Morkem R, et al. Representativeness of patients and providers
in the Canadian Primary Care Sentinel Surveillance Network: a cross-sectional study. CMAJ Open 2016;4(1):E28-E32
[FREE Full text] [doi: 10.9778/cmajo.20140128] [Medline: 27331051]

4. Singer AG, Kosowan L, Nankissoor N, Phung R, Protudjer JLP, Abrams EM. Use of electronic medical records to describe
the prevalence of allergic diseases in Canada. Allergy Asthma Clin Immunol 2021 Aug 18;17(1):85-90 [FREE Full text]
[doi: 10.1186/s13223-021-00580-z] [Medline: 34407859]

5. Singer A, Kosowan L, Loewen S, Spitoff S, Greiver M, Lynch J. Who is asked about alcohol consumption? A retrospective
cohort study using a national repository of Electronic Medical Records. Prev Med Rep 2021 Jun;22:101346-101352 [FREE
Full text] [doi: 10.1016/j.pmedr.2021.101346] [Medline: 33767948]

6. Greiver M, Aliarzadeh B, Meaney C, Moineddin R, Southgate CA, Barber DT, et al. Are We Asking Patients if They
Smoke?: Missing Information on Tobacco Use in Canadian Electronic Medical Records. Am J Prev Med 2015
Aug;49(2):264-268. [doi: 10.1016/j.amepre.2015.01.005] [Medline: 25997907]

7. Demner-Fushman D, Chapman WW, McDonald CJ. What can natural language processing do for clinical decision support?
J Biomed Inform 2009 Oct;42(5):760-772 [FREE Full text] [doi: 10.1016/j.jbi.2009.08.007] [Medline: 19683066]

8. Wright A, Sittig DF, McGowan J, Ash JS, Weed LL. Bringing science to medicine: an interview with Larry Weed, inventor
of the problem-oriented medical record. J Am Med Inform Assoc 2014;21(6):964-968 [FREE Full text] [doi:
10.1136/amiajnl-2014-002776] [Medline: 24872343]

9. Elbattah M, Arnaud É, Gignon M, Dequen G. The Role of Text Analytics in Healthcare: A Review of Recent Developments
and Applications. 2021 Presented at: Proceedings of the 14th International Joint Conference on Biomedical Engineering
Systems and Technologies; February 11-13, 2021; Vienna, Austria p. 825-832. [doi: 10.5220/0010414508250832]

10. Williamson T, Green ME, Birtwhistle R, Khan S, Garies S, Wong ST, et al. Validating the 8 CPCSSN case definitions for
chronic disease surveillance in a primary care database of electronic health records. Ann Fam Med 2014 Jul;12(4):367-372
[FREE Full text] [doi: 10.1370/afm.1644] [Medline: 25024246]

11. Coleman N, Halas G, Peeler W, Casaclang N, Williamson T, Katz A. From patient care to research: a validation study
examining the factors contributing to data quality in a primary care electronic medical record database. BMC Fam Pract
2015 Feb 05;16:11-19 [FREE Full text] [doi: 10.1186/s12875-015-0223-z] [Medline: 25649201]

12. Doan S, Maehara CK, Chaparro JD, Lu S, Liu R, Graham A, Pediatric Emergency Medicine Kawasaki Disease Research
Group. Building a Natural Language Processing Tool to Identify Patients With High Clinical Suspicion for Kawasaki
Disease from Emergency Department Notes. Acad Emerg Med 2016 May;23(5):628-636 [FREE Full text] [doi:
10.1111/acem.12925] [Medline: 26826020]

13. Gigengack MR, van Meijel EPM, Alisic E, Lindauer RJL. Comparing three diagnostic algorithms of posttraumatic stress
in young children exposed to accidental trauma: an exploratory study. Child Adolesc Psychiatry Ment Health 2015;9:14-22
[FREE Full text] [doi: 10.1186/s13034-015-0046-7] [Medline: 25984233]

14. Harrington KM, Quaden R, Stein MB, Honerlaw JP, Cissell S, Pietrzak RH, VA Million Veteran Program and Cooperative
Studies Program. Validation of an Electronic Medical Record-Based Algorithm for Identifying Posttraumatic Stress Disorder
in U.S. Veterans. J Trauma Stress 2019 Apr 22;32(2):226-237 [FREE Full text] [doi: 10.1002/jts.22399] [Medline: 31009556]

15. Shiner B, Levis M, Dufort VM, Patterson OV, Watts BV, DuVall SL, et al. Improvements to PTSD quality metrics with
natural language processing. J Eval Clin Pract 2022 Aug 24;28(4):520-530. [doi: 10.1111/jep.13587] [Medline: 34028937]

16. Hao T, Huang Z, Liang L, Weng H, Tang B. Health Natural Language Processing: Methodology Development and
Applications. JMIR Med Inform 2021 Oct 21;9(10):e23898 [FREE Full text] [doi: 10.2196/23898] [Medline: 34673533]

17. Spasic I, Nenadic G. Clinical Text Data in Machine Learning: Systematic Review. JMIR Med Inform 2020 Mar
31;8(3):e17984 [FREE Full text] [doi: 10.2196/17984] [Medline: 32229465]

18. Singer A, Yakubovich S, Kroeker AL, Dufault B, Duarte R, Katz A. Data quality of electronic medical records in Manitoba:
do problem lists accurately reflect chronic disease billing diagnoses? J Am Med Inform Assoc 2016 Nov;23(6):1107-1112.
[doi: 10.1093/jamia/ocw013] [Medline: 27107454]

19. Karstoft K, Galatzer-Levy IR, Statnikov A, Li Z, Shalev AY, members of Jerusalem Trauma Outreach Prevention Study
(J-TOPS) group. Bridging a translational gap: using machine learning to improve the prediction of PTSD. BMC Psychiatry
2015 Mar 16;15(1):30-37 [FREE Full text] [doi: 10.1186/s12888-015-0399-8] [Medline: 25886446]

JMIR Med Inform 2022 | vol. 10 | iss. 12 |e41312 | p.42https://medinform.jmir.org/2022/12/e41312
(page number not for citation purposes)

Kosowan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v10i12e41312_app2.pdf&filename=80b05af9dd8a0cb5677408f059b6d629.pdf
https://jmir.org/api/download?alt_name=medinform_v10i12e41312_app2.pdf&filename=80b05af9dd8a0cb5677408f059b6d629.pdf
https://www.mckinsey.com/client_service/healthcare_systems_and_services/people/~/media/3EAC5D0AD0D440BD9500799BAD632DE0.ashx
https://www.mckinsey.com/client_service/healthcare_systems_and_services/people/~/media/3EAC5D0AD0D440BD9500799BAD632DE0.ashx
http://dx.doi.org/10.1016/S1470-2045(15)00205-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26431866&dopt=Abstract
http://cmajopen.ca/cgi/pmidlookup?view=long&pmid=27331051
http://dx.doi.org/10.9778/cmajo.20140128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27331051&dopt=Abstract
https://aacijournal.biomedcentral.com/articles/10.1186/s13223-021-00580-z
http://dx.doi.org/10.1186/s13223-021-00580-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34407859&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2211-3355(21)00037-1
https://linkinghub.elsevier.com/retrieve/pii/S2211-3355(21)00037-1
http://dx.doi.org/10.1016/j.pmedr.2021.101346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33767948&dopt=Abstract
http://dx.doi.org/10.1016/j.amepre.2015.01.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25997907&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(09)00108-7
http://dx.doi.org/10.1016/j.jbi.2009.08.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19683066&dopt=Abstract
https://europepmc.org/abstract/MED/24872343
http://dx.doi.org/10.1136/amiajnl-2014-002776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24872343&dopt=Abstract
http://dx.doi.org/10.5220/0010414508250832
http://www.annfammed.org/cgi/pmidlookup?view=long&pmid=25024246
http://dx.doi.org/10.1370/afm.1644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25024246&dopt=Abstract
https://bmcfampract.biomedcentral.com/articles/10.1186/s12875-015-0223-z
http://dx.doi.org/10.1186/s12875-015-0223-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25649201&dopt=Abstract
https://europepmc.org/abstract/MED/26826020
http://dx.doi.org/10.1111/acem.12925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26826020&dopt=Abstract
https://capmh.biomedcentral.com/articles/10.1186/s13034-015-0046-7
http://dx.doi.org/10.1186/s13034-015-0046-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25984233&dopt=Abstract
https://europepmc.org/abstract/MED/31009556
http://dx.doi.org/10.1002/jts.22399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31009556&dopt=Abstract
http://dx.doi.org/10.1111/jep.13587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34028937&dopt=Abstract
https://medinform.jmir.org/2021/10/e23898/
http://dx.doi.org/10.2196/23898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34673533&dopt=Abstract
https://medinform.jmir.org/2020/3/e17984/
http://dx.doi.org/10.2196/17984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32229465&dopt=Abstract
http://dx.doi.org/10.1093/jamia/ocw013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27107454&dopt=Abstract
https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-015-0399-8
http://dx.doi.org/10.1186/s12888-015-0399-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25886446&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


20. Zafari H, Kosowan L, Zulkernine F, Signer A. Diagnosing post-traumatic stress disorder using electronic medical record
data. Health Informatics J 2021 Nov 24;27(4):14604582211053259 [FREE Full text] [doi: 10.1177/14604582211053259]
[Medline: 34818936]

21. Koenen KC, Ratanatharathorn A, Ng L, McLaughlin KA, Bromet EJ, Stein DJ, et al. Posttraumatic stress disorder in the
World Mental Health Surveys. Psychol. Med 2017 Apr 07;47(13):2260-2274. [doi: 10.1017/s0033291717000708]

22. Van Ameringen M, Mancini C, Patterson B, Boyle MH. Post-traumatic stress disorder in Canada. CNS Neurosci Ther
2008;14(3):171-181 [FREE Full text] [doi: 10.1111/j.1755-5949.2008.00049.x] [Medline: 18801110]

23. Sareen J, Cox BJ, Stein MB, Afifi TO, Fleet C, Asmundson GJG. Physical and mental comorbidity, disability, and suicidal
behavior associated with posttraumatic stress disorder in a large community sample. Psychosom Med 2007 Apr;69(3):242-248.
[doi: 10.1097/PSY.0b013e31803146d8] [Medline: 17401056]

24. Stein MB, McQuaid JR, Pedrelli P, Lenox R, McCahill ME. Posttraumatic stress disorder in the primary care medical
setting. Gen Hosp Psychiatry 2000;22(4):261-269. [doi: 10.1016/s0163-8343(00)00080-3] [Medline: 10936633]

25. Menec V, Black C, Roos N, Bogdanovic B, Reid R. Defining practice populations for primary care: methods and issues.
Manitoba Centre for Health Policy and Evaluation. 2000 Feb. URL: http://mchp-appserv.cpe.umanitoba.ca/reference/roster.
pdf [accessed 2022-11-08]

26. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth edition (DSM-5). Washington,
DC, USA: American Psychiatric Association Publishing; 2013.

27. Lee S, Doktorchik C, Martin EA, D'Souza AG, Eastwood C, Shaheen AA, et al. Electronic Medical Record-Based Case
Phenotyping for the Charlson Conditions: Scoping Review. JMIR Med Inform 2021 Feb 01;9(2):e23934 [FREE Full text]
[doi: 10.2196/23934] [Medline: 33522976]

28. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). Centers for Disease Control
and Prevention. URL: https://www.cdc.gov/nchs/icd/icd9cm.htm [accessed 2022-02-03]

29. Singer A, Kroeker AL, Yakubovich S, Duarte R, Dufault B, Katz A. Data quality in electronic medical records in Manitoba:
Do problem lists reflect chronic disease as defined by prescriptions? Can Fam Physician 2017 May;63(5):382-389 [FREE
Full text] [Medline: 28500199]

30. Ji S, Zhang T, Ansari L, Fu J, Tiwari P, Cambria E. MentalBERT: Publicly available pretrained language models for mental
healthcare. 2022 Presented at: Proceedings of the Language Resources and Evaluation Conference; June 21-23, 2022;
Marseille, Francce p. 7184-7190. [doi: 10.48550/arXiv.2110.15621]

Abbreviations
CPCSSN: Canadian Primary Care Sentinel Surveillance Network
EMR: electronic medical record
ICD-9-CM: International Classification of Disease, ninth edition, clinical modification
MaPCReN: Manitoba Primary Care Research Network
NLP: natural language processing
NPV: negative predictive value
PPV: positive predictive value
PTSD: posttraumatic stress disorder

Edited by C Lovis, A Benis; submitted 21.07.22; peer-reviewed by M Elbattah, J Candeliere; comments to author 18.09.22; revised
version received 09.11.22; accepted 13.11.22; published 13.12.22.

Please cite as:
Kosowan L, Singer A, Zulkernine F, Zafari H, Nesca M, Muthumuni D
Pan-Canadian Electronic Medical Record Diagnostic and Unstructured Text Data for Capturing PTSD: Retrospective Observational
Study
JMIR Med Inform 2022;10(12):e41312
URL: https://medinform.jmir.org/2022/12/e41312 
doi:10.2196/41312
PMID:36512389

©Leanne Kosowan, Alexander Singer, Farhana Zulkernine, Hasan Zafari, Marcello Nesca, Dhasni Muthumuni. Originally
published in JMIR Medical Informatics (https://medinform.jmir.org), 13.12.2022. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is

JMIR Med Inform 2022 | vol. 10 | iss. 12 |e41312 | p.43https://medinform.jmir.org/2022/12/e41312
(page number not for citation purposes)

Kosowan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://journals.sagepub.com/doi/abs/10.1177/14604582211053259?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/14604582211053259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34818936&dopt=Abstract
http://dx.doi.org/10.1017/s0033291717000708
https://europepmc.org/abstract/MED/18801110
http://dx.doi.org/10.1111/j.1755-5949.2008.00049.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18801110&dopt=Abstract
http://dx.doi.org/10.1097/PSY.0b013e31803146d8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17401056&dopt=Abstract
http://dx.doi.org/10.1016/s0163-8343(00)00080-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10936633&dopt=Abstract
http://mchp-appserv.cpe.umanitoba.ca/reference/roster.pdf
http://mchp-appserv.cpe.umanitoba.ca/reference/roster.pdf
https://medinform.jmir.org/2021/2/e23934/
http://dx.doi.org/10.2196/23934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33522976&dopt=Abstract
https://www.cdc.gov/nchs/icd/icd9cm.htm
http://www.cfp.ca/cgi/pmidlookup?view=long&pmid=28500199
http://www.cfp.ca/cgi/pmidlookup?view=long&pmid=28500199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28500199&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.2110.15621
https://medinform.jmir.org/2022/12/e41312
http://dx.doi.org/10.2196/41312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36512389&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well
as this copyright and license information must be included.

JMIR Med Inform 2022 | vol. 10 | iss. 12 |e41312 | p.44https://medinform.jmir.org/2022/12/e41312
(page number not for citation purposes)

Kosowan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Natural Language Processing and Graph Theory: Making Sense
of Imaging Records in a Novel Representation Frame

Laurent Binsfeld Gonçalves1, MA; Ivan Nesic1, MSc; Marko Obradovic1, MSc; Bram Stieltjes1, MD, PhD; Thomas

Weikert1, MD; Jens Bremerich1, MD, PhD
Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland

Corresponding Author:
Laurent Binsfeld Gonçalves, MA
Clinic of Radiology & Nuclear Medicine
University Hospital Basel
University of Basel
Petersgraben, 4
Basel, 4031
Switzerland
Phone: 352 621517916
Email: laurent.binsfeld@gmail.com

Abstract

Background: A concise visualization framework of related reports would increase readability and improve patient management.
To this end, temporal referrals to prior comparative exams are an essential connection to previous exams in written reports. Due
to unstructured narrative texts' variable structure and content, their extraction is hampered by poor computer readability. Natural
language processing (NLP) permits the extraction of structured information from unstructured texts automatically and can serve
as an essential input for such a novel visualization framework.

Objective: This study proposes and evaluates an NLP-based algorithm capable of extracting the temporal referrals in written
radiology reports, applies it to all the radiology reports generated for 10 years, introduces a graphical representation of imaging
reports, and investigates its benefits for clinical and research purposes.

Methods: In this single-center, university hospital, retrospective study, we developed a convolutional neural network capable
of extracting the date of referrals from imaging reports. The model's performance was assessed by calculating precision, recall,
and F1-score using an independent test set of 149 reports. Next, the algorithm was applied to our department's radiology reports
generated from 2011 to 2021. Finally, the reports and their metadata were represented in a modulable graph.

Results: For extracting the date of referrals, the named-entity recognition (NER) model had a high precision of 0.93, a recall
of 0.95, and an F1-score of 0.94. A total of 1,684,635 reports were included in the analysis. Temporal reference was mentioned
in 53.3% (656,852/1,684,635), explicitly stated as not available in 21.0% (258,386/1,684,635), and omitted in 25.7%
(317,059/1,684,635) of the reports. Imaging records can be visualized in a directed and modulable graph, in which the referring
links represent the connecting arrows.

Conclusions: Automatically extracting the date of referrals from unstructured radiology reports using deep learning NLP
algorithms is feasible. Graphs refined the selection of distinct pathology pathways, facilitated the revelation of missing comparisons,
and enabled the query of specific referring exam sequences. Further work is needed to evaluate its benefits in clinics, research,
and resource planning.

(JMIR Med Inform 2022;10(12):e40534)   doi:10.2196/40534

KEYWORDS

radiology; deep learning; NLP; radiology reports; imaging record; temporal referrals; date extraction; graph theory; health care
information system; resource planning.
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Introduction

Radiology departments generate tremendous amounts of reports
every day. Narrative radiology reports are the primary
communication medium between radiologists and referring
physicians, thus playing a central role in patient care and
containing a large variety of health care information [1,2]. From
1996 to 2010, image study volume for computed tomography
(CT) and magnetic resonance imaging (MRI) increased by 280%
to 380% [3]. Radiology embraced digital workflows and
electronic information transfer to referring colleagues early on,
which virtually eradicated analog data in this field [4]. This
early commitment provides enormous quantities of digitalized
reporting data containing interpretative image descriptions.
However, the extraction of this information is hampered because
unstructured reports are poorly computer-readable [5]. Semantic
reports contain valuable information at a granular level (eg,
multiple temporal referrals) that can be evoked for the overall
report or specific findings in multiple document locations. This
multilocular information cannot easily be determined on a whole
document level [6].

Natural language processing (NLP) is one solution to the
problem of extracting specific information from the plethora of
free-text radiology reports. NLP is defined as the analysis of
linguistic data, most commonly in the form of textual data, using
computational methods [7-13]. NLP has evolved from rule-based
to machine learning algorithms [14-20], deep learning being a
subset of the latter that applies multilayer neural networks
[21,22]. Its capability to automatically extract structured
information has been described in many medical research
settings [23-29]. Especially in radiology, there are numerous
instances where it has demonstrated excellent text mining
performances, including the detection of incidental findings and
recommendations [30-32], actionable findings [33], specific
findings [34-41], quality assessment of reports [42,43], and the
generation of curated data sets [44-49]. 

The quantitative accumulation of radiology reports per patient
over the years has led to a highly interconnected network of
exams. Modern picture archiving and communication systems
(PACS) represent the different exams as a list sorted by their
acquisition date. Most systems can highlight the previous exams
of roughly the same region in the study description to the user.
This type of comparative visualization does not consider
multiregional studies or often-encountered findings at the
margins of the acquired field of view. It does not foreground
the dates to which the radiologist compared his findings in the
report. This last part especially is a significant shortcoming for
clinicians reviewing patient history. They have to read every
report carefully to see to which point in time the radiologist
compared tumor progress, for example, or if the images from
an external institute were available to the radiologist at the exact
time when reading the follow-up exam.

One crucial connection in this context is dated referrals to prior
exams. The good practice guidelines for radiological reporting
from the European Society of Radiology [50] and the 2020
revised American College of Radiology practice parameter for
communication of diagnostic imaging findings emphasize the

need for comparison with previous investigations, including the
date of previous reports and mentioning the absence of previous
imaging. By using comparison studies, radiologists make more
observations, gain confidence in their interpretation, and provide
more diagnoses [51-55]. One study found that the diagnostic
accuracy, sensitivity, and specificity in mammography increased
as the false-positive rate decreased [56]. Various recent studies
relied on NLP techniques to extract the temporality of
measurements in imaging reports (ie, attributing an observation
on the current or prior exam) [39-62]. However, to the best of
our knowledge, no methods that extract every referring date
from semantic radiological texts have been researched.
Moreover, no studies in the literature have focused on the overall
temporal indexing of the report assessed, in most instances, by
the radiologist at the beginning of the report.

One solution to displaying connections between a multitude of
different reports is graph representation. Graph theory defines
graphs as a set of properties stored in nodes connected by edges,
which represent a relationship between the connected nodes
[63,64]. A review paper from 2020 found that graphs, as defined
by graph theory, are hardly used to represent patient data in a
clinical context; in the literature review, only 11 papers matched
the description [65]. 

This study aimed to develop a novel and concise visualization
framework of related reports.

To this end, we applied a self-designed NLP algorithm capable
of extracting the referencing dates from unstructured radiology
reports on all the reports generated for 10 years at a university
hospital. This information was an essential input for a relational
graph in which the nodes represent the radiology reports with
their associated metadata and the dated referrals are their
connecting edges. Finally, we investigated the potential benefits
of such a graph representation and storage for clinical and
research purposes.

Methods

Ethics Approval
Institutional review board approval and the requirement for
informed consent were waived (institutional review board:
Ethikkommission Nordwest- und Zentralschweiz) since no
patient identifiers were used. Collected data consisted of plain
text from radiology reports and randomized metadata, neither
of which could be tracked back to radiologists, individual
patients, nor referring clinicians.

Data Set Acquisition and Description
We extracted all radiology reports from January 2011 to
December 2021 as well as a selection of their associated Digital
Imaging and Communications in Medicine (DICOM) metadata
(ie, randomized patient ID, modality type, body region, study
date) from the hospital database. All reports were written in
German and derived from all the imaging modalities (ie,
ultrasound, radiography, mammography, x-ray angiography,
CT, MRI, nuclear medicine exams, and positron emission
tomography [PET]-CT). The reports were a mix of unstructured
free-text reports and standardized templates, either containing
subheadings for distinct organs with prewritten normal findings
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(eg, CT chest-abdomen) or checklists for standardized reporting
features (eg, Liver Imaging Reporting and Data System for liver
MRI). The broad structure of the reports was usually divided
into 5 sections: medical history, medical question, examination
protocol, radiological finding, and impression. 

Every radiology exam had a predefined body region and
modality type in its DICOM metadata. There were 14 body
regions and 9 modalities (see Multimedia Appendix 1).

Construction of a Temporal Reference Extraction
Algorithm 

Data Selection for Training
We randomly selected 5187 reports from the previously
extracted radiology reports.

Data Annotation
An internally developed data annotation tool, “xtag,” was used.
A second-year medical resident (LBG) manually labeled 5187
reports with 5 classes indicating the temporal reference (Table
1). The annotation classes “date,” “today,” “yesterday,” and
“no previous” were applied on the text sequence level (ie,
annotating sequences of numbers or words). The annotation
class “missing” was applied at the document level and was
exclusive, meaning that no other annotation could be applied.
On the other hand, “date,” “today,” “yesterday,” and “no
previous” could be applied multiple times per report. To assess
the necessity of a second reading, a fifth-year medical resident
in radiology (TW) annotated 100 randomly selected reports.
This process yielded 100% agreement among readers.
Considering the simplicity of the task and based on this result,
we refrained from a second reading of the whole data set.

Table 1. Annotated classes and their defined meaning. 

MeaningClass

Precise numerical date referring to a comparative exam; any numerical or partially numerical format was accepted.Date

Non-numerical temporal reference to a comparative study done on the same day as the actual report (ie, any literal expression
meaning today)

Today

Non-numerical temporal reference to a comparative study done on the day before the actual report (ie, any literal expression
meaning yesterday)

Yesterday

Explicit statement that no comparable previous exams are availableNo previous

No mention of a comparative studyMissing

Data Format
The training pipelines required the annotations to conform to
the IOB2 format [66,67]. The predictions were also produced
in the same format (further technical information can be found
in Multimedia Appendix 2 [5,68-72]).

Algorithm Training and Testing
We excluded 2392 reports from the annotated data set, as they
did not contain temporal links. We split the data into a
training/validation data set of 2646 reports (94.6%) and an
independent test data set of 149 reports (5.4%). We estimated
that 5% for an independent and second test data set is a valid
representation, as we verified the algorithm's robustness using
the 5-fold cross-validation [73]. We also considered the low
output variability of the problem to be solved. We used the
Spacy sentencizer to text into sentences before training. We
then used the ktrain library to produce a bidirectional long
short-term memory (LSTM) [74] model starting with pretrained
fastText word embeddings [75] (for details, see Multimedia
Appendix 2). We applied various rule-based date extraction
algorithms on the predicted date sequences to extract as many
dates as possible. The non-numerical classes today and yesterday
were converted into a numerical format using the date of the
referring report as a reference. The dates missing the year
specification were assigned the same year as the referencing
report. The prediction was ignored if the day or month was
missing. A grid search algorithm tested different combinations
of learning rates and batch sizes to find the near optimal
parameters for our training algorithm. A 5-fold cross-validation
[76] of the training data set with 20% of the reports as validation

in each round was performed to evaluate the model's
performance on large independent data sets. The data set split
into folds was done at the report level. The model was tested
on the independent test data set in a final evaluation step. The
following performance evaluation metrics were used to assess
the trained model's quality: precision, recall, and F1-score [77].

Extraction of the Referenced Modality and Body Region 
The referenced modality was extracted using a simple rule-based
approach. After extracting the temporal references from the
report, the algorithm searched for a mention of the modality in
the sentence with the date reference. The previous report's body
part was derived from its metadata and was assumed to be the
same as the referencing report's body region. 

Graduation of the Predicted Link's Confidence
We graduated the prediction's confidence as follows: (1) date,
modality, and body part; (2) date and modality; (3) date and
body part; (4) date. This confidence graduation was established
as a link property, in which 1 was the most confident and 4 was
the least confident. The link was discarded if it was impossible
to generate it based on these 4 principles. This approach
permitted narrowing and increasing the accuracy of the
referenced reports if more than one exam was acquired on the
referenced date. 

Algorithm Application and Data Extraction on the
Complete Data Set
The preparatory steps for extraction of the temporal information
by the trained model were the same as for the training part. The
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result of the model's application to all the reports from 2011 to
2021 was a per-token table with labels for each token in the
IOB2 format. Predictions that did not comply with the IOB2
format were removed. 

Populating the Graph Database
The graph database system used was Neo4j (Version 4.4.). All
the reports and a selection of their associated metadata from
2011 to 2021 were imported via the py2neo library. The
metadata consisted of the exam's acquisition date, name,
modality, and body region, as well as its randomized patient
ID. The reports and their metadata were assigned to the vertices,
and unidirectional edges from referencing reports to referenced
reports were created. We assigned 3 properties to the edges:
The first consisted of the inferred class called “reference class,”
the second showed the extracted string, and the third displayed
the prediction's confidence.

Interactive Exploration of the Graph 
The assessment of the potential benefits of patient data
visualization in a graph was explored interactively. The aim
was to offer, at one glance, a well-ordered overview of the
patient's imaging history with the related reports; enable

comparison to previous exams; and represent the desired
pathology pathway in a concise way (eg, oncological or
postoperative follow-up imaging). In addition, it reveals to the
clinician and the radiologist at what point in time the radiologist
made his or her comparison. The user should be able to restrict
his or her search to individually adaptable filters in the report's
metadata (eg, body region, modality type, report date, or
keywords in the reports' text). Another important feature would
be to provide precisely filtered examinations in a concise order,
in which every exam has its precisely defined position in a
sequence. A final goal was to assess missed comparisons to
previous exams, which was hoped to be achieved visually by
spotting the missing link in the graph and by self-designable
search algorithms.

Results

Data Set 
In total, 1,684,635 reports from 264,655 distinct patients were
extracted. We excluded 170,415 (10.1%) reports from the
metadata analysis because they consisted of consultation notes
and external referrals (detailed count in Multimedia Appendix
3).  Figure 1 shows the detailed methodical flowchart.

Figure 1. Study flowchart of 1,684,635 patient reports retrieved from the hospital database (2011 to 2021). NLP: natural language processing.

Annotation Distribution 
A total of 7860 annotations were applied to 5187 reports from
2011 to 2019. Class distribution of the training data set was as
follows: 44% date reference, 27% no previous comparative
exam, 23% missing temporal link and 6% referral class “today.”
We removed the semantic referencing class “yesterday” from
our data set as there were not enough training samples (34/5187,
0.7%). 

Temporal Information Extraction Algorithm

Hyperparameter Optimization 
The algorithm's output yielded an optimal learning rate of 1e-2
and a batch size of 1024. The random state was fixed for
reproducibility. The maximal number of training epochs was
limited to a never reached limit of 30. 

Training and Testing
The stagnation in the validation performance of 3 epochs was
targeted for the early stopping. During training, the model is
stored after each epoch. After the completion of the training
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process, the best-performing epoch weights were used for the
final model. The same procedure was used for all the steps in
which training was involved. After 5-fold cross-validation

(results in Multimedia Appendix 4), the algorithm's performance
was tested on the previously unused test data set (Table 2).

Table 2. Test results on 149 previously unused reports.

F1-score (95% CI)Recall (95% CI)Precision (95% CI)Variable

0.93 (0.91-0.94)0.9 (0.86-0.93)0.93 (0.89-0.93)Date

0.96 (0.93-0.98)0.98 (0.96-0.98)0.94 (0.95-0.97)No previous

0.83 (0.79-0.93)0.85 (0.79-0.90)0.76 (0.73-0.88)Today

0.94 (0.89-0.93)0.92 (0.90-0.95)0.93 (0.91-0.94)Micro average

0.91 (0.80-0.94)0.91 (0.87-0.95)0.86 (0.84-0.95)Macro average

0.94 (0.91-0.95)0.93 (0.90-0.94)0.93 (0.91-0.94)Weighted average

Temporal Referencing Analysis 
A temporal reference to comparable exams was mentioned in
53.3% (656,852/1,232,297), explicitly stated as not available
in 21.0% (258,386/1,232,297), and omitted in 25.7%
(317,059/1,232,297) of the reports. Variability over the years
was asserted (Figure 2). The modalities with the least amount
of missing references were mammography (41,197/545,636,
7.6%), PET/CT (1850/18,500, 10.3%), and CT
(278,286/2,399,017, 11.6%). On the other hand, angiography
(33,924/40,872, 83.2%) and ultrasound (94,080/254,270, 37.2%)
had the most missing references (Table S4 in Multimedia
Appendix 5). The body regions with the lowest amount of

missing references were trunk (3072/39,639, 7.8%), breast
(5727/70,617, 8.1%), and thorax (25,646/276,060, 9.3%). On
the other hand, the heart (19,030/26,090, 72.9%) and neck
(14,716/23,230, 63.4%) regions had the most missing links
(Table S5 in Multimedia Appendix 5). Modalities primarily
referred to the same modality except for angiography referring
to plain radiographs in 39.8% (1790/4503), PET/CT referring
to MRI in 45.1% (456/1013), and nuclear medicine exams
referring to CT in 33.9% (3500/10294; Table S6 in Multimedia
Appendix 5). Every body region predominantly referred to the
same body region. The most extreme example was “breast,”
which was referenced in 99.0% (59,619/60,221) of the cases
by the other breast studies.

Figure 2. Temporal reference of the reports (n=1,514,220) over the years.

JMIR Med Inform 2022 | vol. 10 | iss. 12 |e40534 | p.49https://medinform.jmir.org/2022/12/e40534
(page number not for citation purposes)

Binsfeld Gonçalves et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Analysis of the Median Time Period of the Referencing
Reports
The median period between referencing reports from 2011 to
2021 was determined in days, per modality (Table 3) and body

region (Table 4). The most extended periods were found in
mammography (372 days) and the corresponding body region
breast (370 days). The shortest periods were observed in plain
radiograph reports (19 days) and the thorax region (10 days). 

Table 3. Median time period between referencing reports (n=757,249) per modality.

P valueIQRTime period (days), median (Q1-Q3)Modality

<.00111619 (2-118)Computed radiography

.04813035 (7-137)X-ray angiography

<.00122842 (3-231)Computed tomography (CT)

.00234165 (3-344)Magnetic resonance

.06432114 (8-440)Nuclear medicine

<.001336129.5 (30-366)PETa/CT

.002362344 (24-386)Ultrasound

.03368372 (352-722)Mammography

aPET: positron emission tomography.

Table 4. Median time period between referencing reports (n=757,249) per body region.

P valueIQRTime period (days), median (Q1-Q3)Body region

.0115410 (2-156)Thorax

.014711 (1-48)Upper extremity

.00623335 (4-237)Abdomen

<.00120435 (3-207)Spine

.00114339 (3-146)Pelvis

.0113042 (6-136)Lower extremity

<.00136265 (2-364)Head

.0316289 (34-196)Trunk

=.40370125 (8-378)Heart

<.001419.3128 (8-427.3)Whole body

.045366182 (29-395)Neck

.009202370 (348-550)Breast

Exploration of Imaging Records in a Graph

General Overview 
All the imaging reports and metadata from 2011 to 2021 were
successfully loaded into a directed graph. The blue nodes
represented the different patient reports labeled with their
examination name (eg, CT-chest or MRI-head), and the

connecting links were their automatically extracted referral
dates. The interface was individually adaptable (eg, the user
could freely position the nodes as desired, and the colors of the
individual components and displayed metadata were
customizable). The total number of distinct patient reports could
be selected at the beginning of any query. This view permitted
a rapid visual assessment of the earliest comparison exam
(Figure 3).
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Figure 3. Single patient case example (lung cancer with cancer-related studies) including the full user interface in which the blue box in the top left is
the query interface; the blue nodes contain the examination name, represent all the imaging studies stored in the picture archiving and communication
system (PACS), and are ordered from oldest on the left to newest on the right; the connecting blue arrows represent their referral links; and a node’s
metadata (examination name, acquisition date, text of the selected and referenced reports, and finding and impression sections) appears on the right side
when the node is clicked on. CT: computed tomography; MRI: magnetic resonance imaging; PET: positron emission tomography; RX: x-ray; US:
ultrasonography; WB: whole body.

Multiparametric Filtered Representations 
Narrowing the reports down to the most relevant and thus
facilitating visualization are of utmost relevance with the high
number of exams per patient. By clicking on the node of interest,
the user could opt to display solely the linked reports (visualized
in Figure 4). Another possible method of restricting the view

and looking for specific findings was a search filter related to
the associated metadata and specific words in the report's text.
One possible concept would be to look for specific exams with
no previous reference and a defined pathologic condition as a
keyword in the report's text, which would speed up the selection
of the first exam associated with this condition.
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Figure 4. Filtered representation of related studies as a partial screenshot within the user interface, in which all the related prior exams appear at one
glance by clicking on the last node referring to a lung cancer (red arrow). Although the user selected the most recent study, clicking on every other node
in this network would have resulted in the same view. CT: computed tomography; MRI: magnetic resonance imaging; PET: positron emission tomography;
US: ultrasonography; WB: whole body.

Specific Exam Sequence Selection
Selecting highly customizable sequences of referring exams
with specific metadata attributes (eg, chest x-ray followed by

chest CT) was possible. This can be refined, for example, with
a period restriction or restricted time interval between the related
exams (Figures 5 and 6).

Figure 5. Specific exam sequence selection as a partial screenshot within the user interface, in which we used the query field to randomly select 300
reports (blue nodes) of head computed tomography (CT) referenced by a head magnetic resonance image (MRI) that was acquired no longer than 3
days later and contained the keyword “infarct” in the impression field.
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Figure 6. Chord diagram representing the connections between modalities in the head region referencing a head computed tomography (CT) image
(light blue rim) during the 7 days after its acquisition. The size of the arc is proportional to the number of referenced reports. Most referring reports are
head magnetic resonance images (MRIs), followed by other head CT images. CR: computed radiography; MR: magnetic resonance; NM: nuclear
medicine; OT: other; PT: positron emission tomography; US: ultrasound.

Visual and Filter-Aided Detection of Missing
Comparative Connections
Selective queries with sequential filters and graph visualization
permitted a rapid assessment of situations in which referral links
were missing (Figure 7). This feature was helpful when

preceding comparative exams had been overlooked due to the
poor list-like appearance of exam history in PACS or radiology
information systems as well as when previous external images
were imported into the PACS after the acquisition and reading
of the following exam.
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Figure 7. Single patient case example illustrating a missing temporal reference (red arrow) between subsequent reports (blue nodes, ordered by the
earliest acquisition on the left to the latest on the right) of computed tomography (CT) studies of the thorax (green boxes). It is easy to detect a suspected
missed link between the earlier CT-Thorax report at the top was not referenced by the later CT-Thorax report at the bottom right as well as via the search
queries exposing temporal inconsistencies in the referrals (blue box at the top). PET: positron emission tomography; US: ultrasonography; WB: whole
body.

Discussion

Principal Findings
As shown in this paper, representing imaging records in a
directed graph is feasible. Connecting them via their referring
dates improved visualization of related imaging pathways and
detected missed exam comparisons. We also showed that
automated extraction of referring dates from written radiology
reports using a deep learning–based NLP algorithm, the
groundwork needed to create the representation, is feasible and
achievable with high significance (F1-score of 0.94).

Considering the extraction of concepts of temporality using
NLP, our method can be compared with a publication from
2019 by Bozkurt et al [60]. Their main focus was extracting
measurements and their core descriptors, among other things,
their temporal context, for which they used rule-based NLP
with predefined regular expressions. They solely focused on 2
temporal aspects (ie, current or prior), and their pipeline had a
high F1-score of 0.85. Our approach uses a date-extracting
LSTM. It focuses on all the referring dates in a written report,
including the ones without a precise measurement, for example,
the lesions that cannot be measured due to an amorphous
configuration or the overall comparison date of the report. In
addition, our algorithm has the crucial and unique advantage
of detecting the explicit absence and missingness of a
comparative exam from written text. Furthermore, we extracted
every date of comparison from the report, thus permitting a
comminuted and precise linkage for constructing a general
graph.

Our approach, however, has the main disadvantage of not
attributing the comparison date to specific findings or

measurements, which will slow down the focused review of
specific entities in complex patient histories. Another
disadvantage of our more granular extraction method is the high
complexity of the task, which consecutively increases its
dependency on correctly spelled referencing dates. Following
this logic, omitted or wrongly chosen dates would have a greater
impact on the integrity of the machine learning model and the
graph in addition to the effect of varying writing habits or report
templates between different institutions or radiologists. Although
the reporting guidelines favor precisely dated comparisons, the
radiologist does not always explicitly write the exact date of
the compared finding in the text. As this omission mostly
happens in comparison to the most recent report, which would
be mentioned at the beginning of the report as the last referenced
report, our method covers the majority of these cases. These
aspects may render the overall applicability of our model more
complex and susceptible to smaller errors than the temporality
extraction algorithms developed so far.

In 2006, Lakhani et al [78] explored, in their large-scale database
analysis of 1.8 million reports, how often radiologists compared
with prior studies using a SQL approach. They found that 42.5%
of reports completely omitted any reference to previous studies,
38.7% mentioned a comparison, and no relevant comparison
was explicitly pointed out in only 18.8%. Although not entirely
comparable, as they focused on a purely semantic approach of
referring information extraction, it provides a good
approximation, because if the reports contained phrases hinting
toward a comparison, the date of the compared exam was most
probably mentioned. In our study, reports referenced the date
of a comparable exam (53%), explicitly stated that there was
no previous exam (21%) more often, and were less prone to
miss the referring link (26%). The best year for indicating
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temporal references was 2021, with only 17.9% of reports
missing a reference, down from 30.4% in 2019 and 28.8% in
2020. This tendency toward more temporal referrals could result
from the increased emphasis on comparison exam consultation
and report structuring in current reporting guidelines and
digitalization, with many previous studies easily accessible.
However, these percentages of prior exam consultation based
on the written references in radiology reports are most probably
underestimates. Haygood et al [79] concluded in their study
from 2018 that the assumption that an older radiologic image
or medical document was not consulted during radiologic
interpretation merely because it is not cited in the report was
not valid. This causes medicolegal issues for the reader.
Radiologists were found negligent by juries for failure to
compare a new chest radiograph with all previous chest
radiographs [80]. Without written proof, this gets more difficult
to defend. Another relevant aspect is the different extraction
approaches. Our sentence-based named-entity recognition
system analyzed data on a granular level, thus not missing single
dates meant for comparison in parenthesis or other dates without
a clear semantic indication of referral like the SQL approaches
required. 

Studies analyzing errors in the radiology reporting process
emphasized the importance of comparing findings [52-56]. The
good practice guidelines from the European Society of
Radiology [50] and the 2020 revised American College of
Radiology practice parameter for communication of diagnostic
imaging findings support this affirmation. Kim and Mansfield
[55] found that 5% of all errors in radiology resulted from failure
to consult prior radiographic studies that could have led to the
correct diagnosis. However, a critical review of the previous
radiologists' findings or impressions should prevail when
comparing previous exams. One must be careful not to follow
an incorrect path; this error, called “satisfaction of report,”
accounted for 6% of all errors reported in radiology in the study
by Kim and Mansfield [55]. The widespread availability of
previous exams in modern PACS renders an excuse for failing
to compare findings with prior exams obsolete. The automatic
selection of comparative exams offered by modern PACS is
inherently biased because it primarily considers the locoregional
aspect, thus losing focus on multiregionality. For example, a
CT of the cervical spine or shoulder may be overlooked as a
potential comparison source when evaluating apical lung masses,
or abdominal radiographs when interpreting hips. The same
logic applies to clinicians or radiologists reviewing the imaging
history of a given finding, especially in oncology, which has
many multiregional studies and findings.

These complex considerations call for a well-arranged and
organized visualization system. Poor usability and hampered
visualization of patient data reduce the motivation of thoroughly
reviewing them, which remains a challenge in health care and
is associated with increased error rates due to missing pertinent
details, user fatigue, and frustration [78,79]. A study from 2022
analyzing the impact of intensive care unit clinical information
systems showed that poor interface design and visual
representations are major sources of dissatisfaction among users
[80]. Our explorations indicate that grouping related exams

together in a graph could help improve this fundamental and
increasingly pressing user-friendliness issue. 

We hope that, by reinforcing the radiologist's organizing role
and improving the case overview by replacing the list
appearance of imaging history, he or she will tend to omit the
referring links less often, thus minimizing comparison error.
Another critical aid is the improved detection of omitted
connections in situations in which, for example, previously
acquired external scans were loaded into the PACS after reading
the following exam. This would be of great value for the
subsequent physicians reviewing the imaging history. Temporal
referrals in a report prove to the reader that the radiologist has
not forgotten to compare a specific finding. This is a valuable
asset, considering that a finding's relevance is often determined
by its temporal course. For example, lung nodules, brain atrophy
changes, or vascular aneurysms showing no dynamic changes
over a long period are less alarming, especially in infants and
older adults, for whom noninvasive imaging follow-ups are
favored over invasive medical investigations. Optimizing
visualization with a graph representation could save time as
well as decrease unnecessary exams and radiation exposure for
patients.

In specialized medicine, clinicians are more focused on specific
regions or findings. Manually filtering out the irrelevant exams
adds work and a source of potential error (eg, an orthopedic
surgeon is more inclined to investigate images implying the
healing process of a fracture or a neurologist the exams related
to cerebral or spinal findings). Our graph enables the user with
an exam of interest to select all the related studies and to omit,
if desired, all the unrelated reports, thus substantially and
instantly reducing the number of studies to be reviewed.

Our system can assist quality control and review of guideline
adherence by rapidly filtering out selectable sequences of exams
(eg, CT performed after an x-ray) refined by the possibility of
restricting the search for an interstudy period. This highly
customizable review based on the reports' metadata could also
help research projects. For example, when evaluating the
features of a brain lesion over time, one could filter out all the
reports in the database in which the finding is described in the
report text; these reports will then be shown, if desired
independently of the patient, with their respective related reports.
This approach rapidly and intuitively speeds up an otherwise
fastidious query, offering the researcher a follow-up and quick
method for taking the measurement steps on the associated
images. The quantitative and qualitative predictions as well as
the period of the related following radiology exams could be
of great value for clinical management purposes, permitting
optimal prediction of the necessary human and material
resources.

Limitations
Our study has several limitations. The main limitation was that
the analysis was based on a single tertiary care university
hospital and depended strongly on our reporting customs.
Second, reports were labeled by only 1 reader (a second-year
resident). Given the low grade of complexity in labeling the
referencing dates and the 100% agreement in a subset of 100
reports, we refrained from a second reading of the whole data
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set. The more challenging task of determining the comparative
study was done during the reporting process by at least one
board-certified radiologist. Third, there were insufficient
samples to train the non-numerical referencing dates expressing
“yesterday.” This should be addressed in future work. One
solution could be to use active learning algorithms prioritizing
the model's most uncertain predictions. Fourth, there was a lack
of external validation. Also, to our knowledge, there is no
comparable study in the literature. Nevertheless, the
methodology should be reproducible in other radiology
department setups to allow for future comparison. To this end,
we have also made the codebase that allows for internal testing
available (Multimedia Appendix 2). Fifth, the focus here was
on the feasibility of an entire pipeline, including extraction and
representation. Thus, we did not thoroughly evaluate its clinical
usefulness but, instead, illustrated the potential usefulness in
several use cases.

Future Prospects
The high performance of our NLP-based model at processing
immense amounts of free-text data underlines its potential for
future research projects. The process of filtering out comparative
studies could be accelerated substantially, which could greatly
benefit the development of image detection–based and
NLP-based algorithms. The concept of a related graph database
could optimize the engineering and designing of other medical
software tools in radiology by improving visualization and
user-friendliness, accelerating data selection in research projects,

and enhancing quality control and clinical review processes.
An important amelioration could be the connection of the dates
to the specific findings or measurements to which they are
referring. Furthermore, it could enable resource planners to
separately predict the necessary human and material resources.
A significant asset of these databases is the easy-to-implement
expansions (eg, integration of pathology reports or associated
images). By giving users the possibility of correcting and adding
links, it would be conceivable to create a continuously
self-improving algorithm.

Conclusion
We established a proof of concept of an NLP-based algorithm
capable of accurately extracting the dates of referrals on a
granular level from unstructured radiology reports. We
successfully generated customizable graphs of referring
radiology reports, in which multiple filters may freely be
applied, providing a well-arranged visual overview. This type
of visualization permitted new possibilities for querying specific
exam sequences, facilitated the detection of missed comparisons
by the radiologist, and offers health care professionals a wide
range of review opportunities. The radiologist's awareness and
motivation for the comparative aspect of his or her findings
could be increased, and his or her worth for clinicians could be
augmented by not solely providing information but also actively
helping to organize it. Further work is needed to expand its
features and evaluate its definite benefits in day-to-day clinical
practice. 
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Abstract

Background: Diabetes needs to be under control through management and intervention. Management of diabetes through
mobile health is a practical approach; however, most diabetes mobile health management systems do not meet expectations,
which may be because of the lack of standardized management processes in the systems and the lack of intervention implementation
recommendations in the management knowledge base.

Objective: In this study, we aimed to construct a diabetes management care pathway suitable for the actual situation in China
to express the diabetes management care pathway using ontology and develop a diabetes closed-loop system based on the
construction results of the diabetes management pathway and apply it practically.

Methods: This study proposes a diabetes management care pathway model in which the management process of diabetes is
divided into 9 management tasks, and the Diabetes Care Pathway Ontology (DCPO) is constructed to represent the knowledge
contained in this pathway model. A telehealth system, which can support the comprehensive management of patients with diabetes
while providing active intervention by physicians, was designed and developed based on the DCPO. A retrospective study was
performed based on the data records extracted from the system to analyze the usability and treatment effects of the DCPO.

Results: The diabetes management pathway ontology constructed in this study contains 119 newly added classes, 28 object
properties, 58 data properties, 81 individuals, 426 axioms, and 192 Semantic Web Rule Language rules. The developed mobile
medical system was applied to 272 patients with diabetes. Within 3 months, the average fasting blood glucose of the patients
decreased by 1.34 mmol/L (P=.003), and the average 2-hour postprandial blood glucose decreased by 2.63 mmol/L (P=.003);
the average systolic and diastolic blood pressures decreased by 11.84 mmHg (P=.02) and 8.8 mmHg (P=.02), respectively. In
patients who received physician interventions owing to abnormal attention or low-compliance warnings, the average fasting blood
glucose decreased by 2.45 mmol/L (P=.003), and the average 2-hour postprandial blood glucose decreased by 2.89 mmol/L
(P=.003) in all patients with diabetes; the average systolic and diastolic blood pressure decreased by 20.06 mmHg (P=.02) and
17.37 mmHg (P=.02), respectively, in patients with both hypertension and diabetes during the 3-month management period.

Conclusions: This study helps guide the timing and content of interactive interventions between physicians and patients and
regulates physicians’ medical service behavior. Different management plans are formulated for physicians and patients according
to different characteristics to comprehensively manage various cardiovascular risk factors. The application of the DCPO in the
diabetes management system can provide effective and adequate management support for patients with diabetes and those with
both diabetes and hypertension.
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Introduction

Background
Diabetes mellitus is one of the most common chronic diseases
in China [1]. People with diabetes have an increased risk of
developing serious health problems [2]. In patients with diabetes,
consistent high blood glucose (BG) levels can lead to serious
diseases affecting the heart and blood vessels [3]. The
combination of lifestyle modifications and self-care therapies
as part of diabetes management can significantly increase the
treatment rate of diabetes, reduce the incidence of cardiovascular
disease, and improve the quality of life of patients [4]. The
chronic care model is the most widely used chronic disease
management model, which emphasizes that physicians and
patients participate in the management process together for
collaborative management [5,6]. The purpose of the chronic
care model is to remind physicians to provide patients with
timely and efficient management, which means the physician
will immediately intervene and give feedback on the patient’s
behavior when the patients complete the management tasks [7].
However, the traditional diabetes management method cannot
meet the long-term management needs of patients owing to time
and space constraints [8]. In addition, most patients with diabetes
have multiple cardiovascular risk factors, such as hypertension,
hyperglycemia, and obesity, which are the main causes of death
in patients with diabetes [9]. Therefore, in addition to the
comprehensive management of patients with diabetes based on
the BG level, interventions to control multiple cardiovascular
risk factors are also required. With the development of mobile
internet technology, diabetes management tends to be
digitalized, which relieves the time and space limitations of
traditional management methods and realizes the dynamic
monitoring and maintenance of patients throughout the entire
process managed by medical service providers [10].

Previous Work
Compared with traditional diabetes management methods, the
application of mobile medical technology can change the role
of patients from passively accepting management services to
having the core role in management work, positively improving
their self-management awareness. Wyne et al [11] used mobile
health technology to manage patients with type 2 diabetes
mellitus (T2DM) and effectively prevented serious
complications, demonstrating that mobile health technology
improved the management of patients with diabetes. Quinn et
al [12] conducted a cluster-randomized trial using the BlueStar
diabetes care system (WellDoc Inc). The trial results showed
that the glycosylated hemoglobin level was significantly reduced
and the depression levels and other physiological indicators
(blood pressure [BP], lipids, etc) were also improved in the
patients engaged in the care and intervention of this system over
a 1-year treatment period.

It is necessary to transform medical knowledge and clinical data
into computer-recognizable knowledge models using the
Semantic Web. As a formal representation of knowledge that
can accurately describe the relationship between concepts,
ontology has gradually become a key technology for realizing
the Semantic Web. The use of ontology to express domain
knowledge can facilitate knowledge sharing and dissemination.
It is also key to realizing a complete knowledge base and an
intelligent clinical decision support system. El-Sappagh et al
[13] constructed the Diabetes Diagnosis Ontology based on
diabetes clinical practice guidelines and principles of standard
medical terminology, established Semantic Web Rule Language
(SWRL) diagnostic rules, and used an inference engine to
perform diagnostic inference on the T2DM diagnostic
knowledge base. Krishnan et al [14] constructed the Diabetes
Mellitus Treatment Ontology as a basis for sharing semantic,
domain-specific, standard, machine-readable, and interoperable
knowledge related to T2DM treatment. Fast Healthcare
Interoperability Resources and Semantic Sensor Network–based
type 1 diabetes mellitus Ontology is designed for managing
patients with type 1 diabetes, which has the Health Level 7-Fast
Healthcare Interoperability Resources standard and Semantic
Sensor Network sensor ontology integrated, and provides
patients with a complete and personalized treatment plan based
on the complete patient information [15]. Sherimon et al [16]
proposed an ontology-based clinical decision support system
for patients with diabetes, which predicts the risk of patients
according to various risk factors, including smoking, alcohol
consumption, and cardiovascular family history. Chen et al [17]
proposed an ontology-based model for the diagnosis and
treatment of patients with diabetes who are in hospital, and it
can help reduce medication errors.

Key Issues
Previous studies have used diabetes clinical practice guidelines
as the theoretical basis for the use of ontologies and considered
patient profile data in knowledge-based systems for decision
support in hospitals and in-home diabetes monitoring and
management, including patient self-monitoring, data recording,
and physicians’ simple management advice. However, because
of the lack of clear regulations on physician-patient interaction
and intervention feedback mechanisms in medical guidelines,
these studies ignore the importance of physicians’ active
intervention on patients, do not define the interactive
intervention mechanism between physicians and patients, and
lack active intervention time and initiative [15-17]. The
definition of intervention content and digital management
recommendations failed to combine standardized processes and
evidence-based medical knowledge, resulting in the inability
of patients with diabetes to receive effective intervention
guidance promptly in actual management. No research has
considered the appropriate timing and details of physician
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intervention in patients with diabetes when constructing diabetes
management ontology.

Furthermore, the existing ontology construction process focuses
on hyperglycemia control in patients with diabetes, ignoring
the importance of controlling and managing other cardiovascular
risk factors and treating these factors as patient-related indicators
without targeted attention and guidance in the care process.

Objective
A previous study proposed the concept and construction method
for the Chronic Disease Management Pathway (CDMP) [18,19].
CDMP has been proven effective in the treatment of
hypertension and chronic obstructive pulmonary disease [20,21].
It is becoming one of the practical approaches for chronic
disease management owing to its continuous, closed-loop, and
standardized features and provides reliable implementation
guidelines for chronic disease management. The introduction
and application of the CDMP offer a new solution for the digital
management of patients with diabetes.

In this study, we extracted the key issues in diabetes
management through evidence-based medical guidelines and
expert recommendations, combined the issues with the CDMP
approach, and constructed the Type 2 Diabetes Mellitus
Management Pathway (T2DMMP) model. A closed-loop Type
2 Diabetes Mellitus Management System (T2DMMS) was
developed based on the T2DMMP model, which was expressed
by ontology modeling to ensure that computer operations could
execute it. Our management pathway was shown to be usable
and effective in clinical diabetes management as an
implementable intervention mechanism for physician-patient
interactions.

Methods

Type 2 Diabetes Mellitus Management Pathway Model

Overview
The diagnosis and management of diabetes mellitus is a complex
process. To help with the diabetes management process, in this
study, the T2DMMP was constructed based on numerous
diabetes prevention guidelines and other cardiovascular risk
factors, focusing on clarifying the responsibilities of
management roles and providing a standardized and complete
management pathway for comprehensive diabetes management.
The T2DMMP is a process that divides management tasks into
physician intervention plans and patient self-management plans
by defining 2 different management roles for physicians and
patients.

Summary Extraction of Task Sets
The following literature on current diabetes prevention and
management guidelines with high recognition was collected
through literature research, and the task sets were extracted from
them: Guidelines for the prevention and control of type 2

diabetes in China (2017) Edition [22], National guidelines for
the prevention and control of diabetes in primary care (2018)
[23], the comprehensive type 2 diabetes management algorithm
[24], Management of Hyperglycemia in Type 2 Diabetes [25],
and Diabetes Canada Clinical Practice Guidelines Expert
Committee [26]. The analysis of the core content of diabetes
management was performed based on the guidelines for the
prevention and control of type 2 diabetes in China (2017
Edition) and National guidelines for the prevention and control
of diabetes in primary care (2018).

Type 2 Diabetes Mellitus Management Pathway
With regard to the CDMP model, 9 common tasks were defined
in the T2DMMP, which could be grouped into 3 parts as
follows: the task set for regular management, task set for
pathway variation, and task set for self-management support.
A pathway map of T2DMMP is shown in Figure 1. When a
patient is diagnosed with diabetes, they will enter the diabetes
management care pathway. A comprehensive cardiovascular
risk assessment will be conducted subsequently, and different
management levels will be formulated according to the
assessment results as follows: patients with stable blood sugar
are at routine first-level management; patients with
unsatisfactory blood sugar are at routine second-level
management; and patients with fasting BG (FBG) >11.1 mmol/L
are in intensive third-level management. Different management
plans are provided to patients at different management levels.
The patient’s condition will be periodically evaluated according
to the patient’s self-monitoring data, and the patient will be
dynamically adjusted to the appropriate management level in
the management path.

The task set for pathway variation consists of 2 tasks as follows:
abnormal attention and compliance management. Once the
patient’s self-monitoring data (such as BG or BP) is abnormal,
the caregiver needs to intervene immediately and appropriately.
Once the patient’s compliance is low, the care provider needs
to conduct additional follow-up to motivate the patient.

The task set for self-management support consists of the
following 3 tasks: medication guidance, lifestyle guidance, and
health education. Medication guidance is designed to provide
medication treatment plans, whereas lifestyle guidance provides
non–drug treatment plans such as diet and physical activity.
Health education aims to increase patients’ awareness of the
disease, thereby improving their self-management skills.

Two parties will play a role in management: the care provider
and the patient. The care provider team comprises general
practitioners, case managers in community health services, and
specialists in secondary or tertiary hospitals. According to this
pathway, care providers should work collaboratively for
day-to-day management, such as regular follow-up and
interventions for abnormal conditions. Patients need
self-monitoring according to their self-management plans and
receive timely intervention from their care providers.
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Figure 1. Diagram of the type 2 diabetes mellitus management pathway.

Construction of Diabetes Care Pathway Ontology

Overview
Ontology represents domain knowledge in a machine-readable
and formal format [27]. It can be incorporated into a clinical
decision support system as a knowledge base [28,29]. The

Diabetes Care Pathway Ontology (DCPO) was constructed to
describe the concept of T2DMMP. As shown in Figure 2, the
DCPO is divided into 3 phases. Stages 1 and 2 follow the
ontology engineering approach widely used to represent the
structural information of the model, whereas stage 3 incorporates
the medical knowledge of the model through external semantic
rules.

Figure 2. The Diabetes Care Pathway Ontology (DCPO) construction methodology. SWRL: Semantic Web Rule Language.

Stage 1: DCPO Framework Design
At this stage, a set of questions that the ontology should answer
the domain and scope of the DCPO are listed—the so-called
capability questions. In this step, the DCPO will be identified
as a representative of the T2DMMP model. The expected output
of the DCPO is the monitoring and management of patients
with diabetes, which includes individualized treatment plans
and specific management tasks for physicians and patients.

On the basis of the scalability, standardization, and reusability
of the ontologies, already existing diabetes ontologies were
considered reusable. Keywords such as “diabetes management,”
“diabetes ontology,” “diabetes medication ontology,” “diabetes
diet ontology,” and “diabetes treatment ontology” were used to
search for content on the BioPortal and PubMed websites.

Diabetes Diagnosis Ontology and Diabetes Mellitus Treatment
Ontology were also identified for use. To achieve the diabetes
management path, the TIME.owl ontology of the W3C (World
Wide Web Consortium) standard was used as the temporality
module. It defines the timing of the management tasks by
defining the time intervals and moments. Broad coverage of
diabetes treatment medication drugs was introduced, and the
drug-drug interaction ontology was reused to describe the types
of drugs in the medication guidance module. The lifestyle
module included a diet plan and an exercise plan. The diet plan
was a set of dietary recommendations for the patient; therefore,
the OntoFood ontology was reused. On the basis of the
T2DMMP model, the DCPO model is defined as a class and
class hierarchy and is divided into the following 2 primary levels
of abstraction: the first level for the core concepts in the path
and the second level for the detailed elements of the first-level
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classes. The first-level core concepts include patient profile,
management roles, management plans, management tasks, and
chronological expressions. The patient’s self-management plan
and the physician’s diagnosis and treatment plan defined under
the management plan are the contents of the second level. This
definition can accurately describe the real world and is widely
used in ontological design. The DCPO was merged with 2
top-level ontologies—Basic Formal Ontology and Ontology
for General Medical Science—in a method of merging top-level
ontologies that are often used by researchers [30-32]; it has been
shown to facilitate the reuse of terms from existing ontologies
constructed under top-level ontologies [33].

Stage 2: DCPO Model Initialization
In the second stage, class attributes are defined to describe the
internal structure of concepts because the class hierarchy is
insufficient to distinguish the relationships between concepts.
These attributes include object attributes that describe the
relationship between 2 individuals and data attributes that
describe the relationship between an individual and a data value
[34,35]. The precise semantics of restricting classes by adding
attributes is accomplished, and these restrictions are expressed
as a set of axioms. These axioms include property axioms that
describe aspects of properties such as domain and range and
individual axioms that describe anonymous individual classes.
The instances of each class are created in the hierarchy. The
core part of an instance is a class called the patient profile.
Related feature instances are created and bound to the patient
profile instance for further rule-based reasoning.

Stage 3: Rule Definition
In the third phase, external semantic rules are used to implement
the complex deductive reasoning required for path-driven
decision support. In this study, the SWRL rules are used to
incorporate the medical knowledge of the pathway model. The
input and output of the rule and the state representation of the

reasoning are defined. The inputs and outputs of the rules vary
significantly for different pathway tasks. On the basis of the
basic DCPO and predefined SWRL rule sets, various pathway
tasks will be generated based on raw patient data and then
converted into executable management plans, including
physician intervention plans and patient self-management plans.
This is a crucial part of the knowledge-based clinical decision
support system engines.

System Deployment
A DCPO-based closed-loop diabetes management system was
designed and applied to evaluate the practical applications of
the research results. The T2DMMS is involved in a diabetes
management service scenario to achieve comprehensive
management and intervention guidance for patients with type
2 diabetes.

System Framework Design
The architecture of the T2DMMS is shown in Figure 3, which
includes 3 parts as follows: an intelligent service engine, a
physician-oriented client, and a patient-oriented client. The
service engine runs on the cloud server and is the core module
of T2DMMS. Its primary function is to integrate the ontology
knowledge base with the SWRL rule base and patient data; it
also plays a role in realizing logical reasoning and providing
the web service interface to interact with physician-oriented
clients and realize decision support based on the T2DMMP.
Physician-oriented clients are mainly responsible for displaying
patients’ health data. Physicians can complete a comprehensive
assessment of patients by viewing the data and complete
management tasks by providing intervention guidance and
improving patient compliance efficiently. For patient-oriented
clients, patients can view their self-management plans and
complete their daily management tasks by uploading their health
data records. In addition, patients can communicate with their
physicians through their clients.
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Figure 3. The Type 2 Diabetes Mellitus Management System architecture. API: application program interface; REST: representational state transfer;
SWRL: Semantic Web Rule Language.

Development Tools
The intelligent service engine is based on the
SpringBoot+MyBatis+MySQL design architecture. The
presentation form on the physician-oriented client is a Webpage
and WeChat Mini Program (Tencent). The patient-oriented
client is mainly the WeChat Mini Program.

Retrospective Evaluation
As the initial dates of patients’ inclusion in the closed-loop
diabetes management system for management were different,
the date of each patient’s inclusion in the management was used
as the start of the study, whereby the management data for the
following 3 months were recorded. If the management period
was longer than 3 months, only the data for the first 3 months
were collected for analysis. All patient data in this study were
analyzed statistically using SPSS software (version 24.0; IBM
Corp). The continuous assessment indexes were analyzed for
significant differences in the management process using
Student’s t test (2-tailed), and the assessment indexes for the

attainment rate were analyzed using the chi-square test to
determine whether the data had significant differences.

The study involved 272 patients with diabetes who were
included in the T2DMMS for typical management from January
2020 to August 2020 in the Ning-xia Medical University General
Hospital Group. The patient inclusion criteria were as follows:
(1) patients who signed informed consent form for the trial, (2)
patient whose management time >3 months, and (3) patients
whose BP and BG recorded >3 times. The patient exclusion
criteria were as follows: (1) patients whose BG was not recorded
after inclusion in management, (2) patients who were lost to
follow-up, (3) patients with complex and severe comorbidities,
and (4) patients with mental cognitive or physical dysfunction.

Ethics Approval
All the patients who entered the telehealth system signed an
informed consent form. The nursing staff also signed informed
consent forms. All the procedures were conducted according to
the ethical guidelines for biomedical research involving humans
at Ning-xia Medical University. Ethics approval was granted
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by the Ethics Committee for the Conduct of Human Research
at the General Hospital of Ning-xia Medical University
(NXMU-GH-2017-273).

Results

Ontology Construction and Evaluation
The DCPO was developed in the Web Ontology Language file
format by the ontology editor Protégé 5.5.0. A snapshot of the
DCPO is shown in Figure 4. The newest version of the DCPO
contains 119 newly added classes, 28 object properties, 58 data
properties, 81 individuals, and 426 axioms. In addition, 192
SWRL rules were newly added to implement the diabetes
management care pathway. The SWRL rules are divided into
10 modules, with 22.9% (44/192) of rules based on clinical
expert experience, 43.2% (83/192) based on medical guidelines,
and 33.9% (65/192) based on both clinical expert experience
and medical guidelines. Table 1 presents the specific
distributions. The complete SWRL is presented in Multimedia
Appendix 1.

The class diagram of the main core of the DCPO is shown in
Figure 5. The DCPO mainly consists of the following 3 levels:
level 0 includes several common top-level ontologies, which
are regarded as standard to implement and improve the
interoperability of other ontologies; level 1 consists of 5 terms
that described the core concepts in the diabetes management
pathway model; and level 2 is the detailed elements for each
level-1 term.

First, the patient profile class is used to generate the instance
of the patient condition through the object properties to connect
to other main class instances. The management task represented
the main content of the diabetes management pathway model,
and it was synergistic and sequential, covering the whole process
of diabetes diagnosis and treatment. In addition, the DCPO can
generate management tasks with different contents for patients
with different characteristics using instances and a set of SWRL
rules. The content of the generated management tasks is
converted into management plans.

Figure 4. The snapshot of Diabetes Care Pathway Ontology (DCPO) from the Protégé 5.5.0.

Table 1. Semantic Web Rule Language rule construction results.

Derived from both clinical expert experience
and medical guidelines (n=65), n (%)

Derived from medical guidelines
(n=83), n (%)

Derived from clinical expert expe-
rience (n=44), n (%)

Rules module

0 (0)10 (12)0 (0)Diagnosis patterns

28 (43)12 (14)11 (25)Risk assessment

3 (5)6 (7)0 (0)Control objectives

0 (0)0 (0)18 (41)Hierarchical management

18 (28)0 (0)0 (0)Self-monitoring

8 (12)0 (0)0 (0)Regular follow-up

0 (0)0 (0)15 (34)Abnormal attention

0 (0)45 (54)0 (0)Medication guidance

3 (5)10 (12)0 (0)Lifestyle guidance

5 (8)0 (0)0 (0)Compliance management
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Figure 5. The class diagram of Diabetes Care Pathway Ontology (DCPO)’s main core. BFO: Basic Formal Ontology; BP: blood pressure; BG: blood
glucose; DMTO: Diabetes Mellitus Treatment Ontology; OGMS: Ontology for General Medical Science.

System Interaction
The physician-oriented client of the T2DMMS is operated by
the medical service provider on the web page, and the
patient-oriented client is displayed in the form of a WeChat
applet. The 2 clients are coordinated by the diabetes
management path in the intelligent service engine to efficiently
complete the management work and improve patient
compliance.

As shown in Figure 6, the physician-oriented client assists
physicians in diagnosis and treatment tasks, including risk
assessment, initial management, regular follow-up, abnormal
attention, and compliance management for patients. A
closed-loop path is formed between risk assessment, initial
management, and follow-up, which can provide long-term
management for patients. The physician only needs to operate
in a certain order on the client terminal to manage the patient.
In addition, the physician-oriented clients can modify the
process, timing, and content of physician interventions to guide
patients in the diabetes management path.

The patient-oriented client receives the personalized
management plan analyzed by the intelligent service engine and
displays the corresponding generated individualized
management plan to the patients in the form of daily tasks,
reminding the patient to follow the physician’s instructions to
complete the management plan. According to the prompts of
daily tasks, patients can record their own health data every day
through the WeChat applet; they can not only obtain real-time
feedback and intervention from the engine but also receive
feedback and intervention guidance from physicians.

Patient health data records mainly include BG levels, BP levels,
discomfort symptom, weight, diet, and medication guidance
records. The patient’s health data records will be used as the
data input for the intelligent service engine to evaluate and
analyze the patient. When an abnormal attention occurs, the
engine will provide real-time intervention guidance push and
send the emergency situation of the patient to the physician to
remind the physician to intervene.
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Figure 6. Schematic of system interaction.

Retrospective Study Data

Overview
In this study, 272 patients with a mean age of 58.24 (SD 9.81)
years were selected, of which 156 (57.4%) patients had diabetes
only, and 116 (42.6%) patients had both hypertension and
diabetes. According to the guidelines’ recommendations, the
initial BG levels were assessed in all 100% (272/272) of patients
with diabetes. The BG levels were normal in 34.9% (95/272)
of patients and abnormal in 65.1% (177/272) of patients. The

initial BP was also assessed in 42.6% (116/272) of patients with
hypertension and diabetes. The BP was normal in 30.2%
(35/116) of patients and abnormal in 69.8% (81/116) of patients.
Detailed patient data are presented in Table 2.

The management data of all patients were extracted from the
T2DMMS during the 3-month management period. The data
were analyzed from the following 2 perspectives: the
investigation of physician work and analysis of patients’
indicators.

Table 2. Experimental subject details (N=272).

ValueCharacteristics

Sex, n (%)

147 (54)Male

125 (46)Female

Disease type, n (%)

156 (57.4)Diabetes only

116 (42.6)Both diabetes and hypertension

Initial assessment, n (%)

95 (34.9)Normal blood glucose level

177 (65.1)Abnormal blood glucose level

35 (30.2)Normal blood pressurea

81 (69.8)Abnormal blood pressurea

58.24 (9.81)Age, mean (SD) years

Special groups, n (%)

7 (2.5)Adolescent

2 (0.7)Disabilities

an=116, which is the number of patients with hypertension.
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Investigating Physician Work
Figure 7 shows overall intervention records and patients’
self-monitoring data through the engine and system following
the diabetes management care pathway. Compared with the
usual patient management approach based on guidelines only,
T2DMMP added abnormal data attention and low-compliance
management. As shown in Table 3, during the 3-month
management cycle, the physician provided 904 follow-up visits
in the usual patient management approach based on guidelines,
and they followed up patients 939 times in T2DMMP
management system, including 317 (33.8%) regular follow-up
visits; 303 (32.3%) follow-up visits caused by abnormal
attention that included 75 (24.8%) BG warning, 150 (49.5%)
BP warning, 33 (10.9%) disorder warning, and 45 (14.9%) heart
rate warning, and 319 (34%) follow-up visits for low-compliance
management. The results showed that not only the physician’s
work contents were refined but also the number of follow-ups
by the physician were changed in the T2DMMP-based
management approach. The changes improved the attention and
number of interventions for patients with poorer conditions.

The physician had not fully completed the intervention plan
because some of the warnings were repeated, and the regular
follow-up plan of patients who had hypertension and diabetes
was incorporated.

The actual number of follow-up visits was 939 by physicians
based on pathway prompts. Of the 272 patients, the number of
follow-up visits was 855 (91.1%) in 242 (89%) patients whose
initial BG level or BP was abnormal, and each patient was
followed up 3.53 (SD 1.07) times on average. The number of

follow-up visits was 84 (18.9%) in 30 (11%) patients whose
initial BG level or BP was normal, and each patient was
followed up with 2.8 (SD 0.59) times on average. Of the 855
follow-up visits owing to initial abnormalities in BG or BP, the
real number of follow-up visits made by physicians to patients
was classified into the following 3 levels: the number of
follow-up visits >3 times was defined as high-intervention level;
the number of follow-up visits equal to 3 times was defined as
medium-intervention level; and the number of follow-up visits
<3 times was defined as low-intervention level. Of the 242
patients with 855 interventions, there were 55 (22.7%) patients
with high-intervention level, (398/855, 46.5%) and an average
of 7.2 follow-ups per patient; there were 30 (12.4%) patients
with medium-intervention level (154/855, 18%) and an average
of 3.1 (SD 0.67) follow-ups per patient, 157 (64.9%) patients
with low-intervention level (303/855, 35.4%), and an average
of 1.9 (SD 1.25) follow-ups per patient. The guidelines state
that physicians should follow-up at least once a month for
patients with substandard BG, so physicians should follow-up
each substandard patient 3 times within a 3-month management
cycle. The above analysis results showed that a series of work
can be dynamically adjusted according to the actual condition
control of patients in the diabetes management pathway
constructed in this study, including the follow-up schedule,
prompting physicians to give different interventions and
attention to patients with different management statuses. The
adjusted changes can help patients whose condition control is
poor obtain limited medical resource services more efficiently.
Diabetes management pathways can improve physicians’
working efficiency compared with the management style of
managing patients based on guidelines only.

Figure 7. Overall management records of patients and physicians during the 3-month period.

Table 3. Comparison of the number of follow-up visits to patients with different management models.

Follow-up visits using management models

Based on the diabetes management care pathway (n=939),
n (%)

Based on diabetes management guidelines (n=904),
n (%)

317 (33.8)904 (100)Regular follow-up

303 (32.3)0 (0)Abnormal attention

319 (34)0 (0)Compliance management
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Analysis of Patient Indicators
The core goal of this study was to achieve effective management
of patients with diabetes and comprehensive management of
multiple cardiovascular risk factors. Whether the patients’ BG
or BP decrease is the key metric to evaluate the application
effect of the diabetes management model and DCPO designed
in this study. The BG data records, which were uploaded by
patients, were analyzed in all 100% (272/272) of patients during
the 3 months, including FBG and postprandial BG (PBG). In
addition, BP data (systolic BP [SBP] and diastolic BP [DBP])
were analyzed in 116 (42.6%) patients with hypertension and
diabetes. All BG and BP data were obtained from the T2DMMS
database. The FBG level of patients was recorded 2 hours before
meals, and the PBG was recorded 2 hours after meals. The
patients’ BP was recorded between 8 AM and 10 AM. We
analyzed the mean trend of all patients over the 3-month
management period. Figures 8 and 9 show the patients’monthly
average BG and BP records during the 3-month management
period. Figure 8 showed the monthly mean FBG level decreased
by 1.34 mmol/L (P=.003) and the monthly mean PBG level
decreased by 2.63 mmol/L (P=.003) in all (272/272, 100%)
patients with diabetes during the 3-month management period.
Figure 9 shows that the monthly mean BP level also decreased
significantly and finally reached a stable level in all (116/272,
42.6%) patients with both diabetes and hypertension during the

3-month management period in which the monthly mean SBP
decreased by 11.84 mmHg (P=.02), and the monthly mean DBP
decreased by 8.8 mmHg (P=.02).

We screened patients who received physician interventions
during the management cycle owing to abnormal attention or
low-compliance warnings from the trigger system. In patients
with diabetes only, trends in FBG and PBG levels were
analyzed. For patients with both hypertension and diabetes,
trends in SBP and DBP were analyzed. As can be seen from
the statistics in Figures 10 and 11, the mean monthly BG and
BP values of the patients decreased significantly with respect
to additional physician interventions. The monthly mean FBG
level decreased by 2.45 mmol/L (P=.003) and the monthly mean
PBG level decreased by 2.89 mmol/L (P=.003) in all (272/272,
100%) patients with diabetes during the 3-month management
period; the monthly mean SBP decreased by 20.06 mmHg
(P=.02) and the monthly mean DBP decreased by 17.37 mmHg
(P=.02) in patients (116/272, 42.6%) with both hypertension
and diabetes during the 3-month management period.

The analysis of the above results proves that the DCPO
constructed in this study positively stabilizes the patient’s
condition by defining the management responsibilities
corresponding to different management roles and adding the
physician’s intervention plan. It can also effectively help
physicians manage patients with diabetes comprehensively.

Figure 8. The records of patient’s blood glucose changes during the 3-month management period. BG: blood glucose; FBG: fasting blood glucose;
PBG: postprandial blood glucose.
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Figure 9. The records of patient’s blood pressure changes during the 3-month management period. BP: blood pressure; DBP: diastolic blood pressure;
SBP: systolic blood pressure.

Figure 10. The records of intervened patient’s blood glucose during the 3-month management period. BG: blood glucose; FBG: fasting blood glucose;
PBG: postprandial blood glucose.
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Figure 11. The records of intervened patient’s blood pressure during the 3-month management period. BG: blood glucose; DBP: diastolic blood
pressure; SBP: systolic blood pressure.

Discussion

Principal Findings
In this study, we proposed and constructed the T2DMMS for
monitoring and managing patients with type 2 diabetes. The
T2DMMS could realize the comprehensive management and
physician-patient interaction and intervention by defining
different management roles corresponding to different
management responsibilities proposed and defined in the
diabetes management pathway. In addition, we implemented a
telehealth system based on the T2DMMS and applied it to actual
diabetes management. According to the retrospective analysis
of the patient profile data records, the T2DMMS could realize
the comprehensive evaluation and management of patients with
diabetes and positively impact the comprehensive indicators of
patients. Patients can self-manage according to the diabetes
management care pathway and receive intervention guidance
from physicians. The results indicated that the comprehensive
indicators of patients certainly improved after the intervention.

To construct the T2DMMS, we first designed and implemented
the diabetes management care pathway (T2DMMP) model. We
summarized the diabetes management process into 9 core
management tasks based on the CDMP concept and integrated
these into a sequential and closed-loop diabetes management
pathway model. Meanwhile, we defined the different
management roles of physicians and patients, clarified their
respective responsibilities, and realized an excellent
physician-patient interaction intervention mechanism. Then,
we referred to the top-down ontology construction method to
construct the DCPO and realized the digitization of the
T2DMMP expression process and construction results. By

combining the top-level ontology and the existing standard
ontology, we defined the main terms of the DCPO as subclasses
of these top-level ontologies and finally built the DCPO with a
3-level hierarchy. To achieve more complete diabetes
management, we formulated the SWRL rules in the standard
coding method to achieve the timing between the management
tasks in the T2DMMP.

From the system’s retrospective evaluation results, we identified
several aspects and features. First, the monthly mean BG levels
of all patients under regular management showed a downward
trend. For patients with diabetes and hypertension, the monthly
mean BP levels also decreased substantially. Second, the work
content of physicians was defined by the diabetes management
care pathway, including regular follow-up, abnormal warning,
and compliance follow-up intervention. The system will remind
physicians to implement interventional guidance. The data
analysis showed that patients who had received additional
interventions such as abnormal warning or compliance
intervention had a more significant reduction in monthly mean
BG and BP than patients who only received intervention
guidance from regular follow-up.

Comparison With Previous Work
Table 4 provides a comparison between the DCPO and 3 other
diabetes management ontologies based on the 10 dimensions.
As shown in the table, all 3 compared ontologies were limited
to patients’ comprehensive diabetes management, and the
management plan mainly focused on patients, ignoring the
responsibility of physicians and importance of physicians’
intervention. The DCPO can standardize and guide the
comprehensive and complete management of patients with
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diabetes in primary care institutions in China. In addition, the
DCPO performs well in terms of reusability, extensibility, and
semantic interoperability.

Compared with previous work, our study is considered
innovative in the following aspects: (a) For management, we
innovatively introduced the concept of the pathway and then
combined it with the information system to establish a
standardized and executable management model. This system
provides a one-stop platform for physicians and a fully
functional terminal for patients. Physicians can perform almost

all the daily work on the platform, and patients are able to
monitor their BP and BG and receive management advice from
their physicians. These 2 clients are connected by an engine
that provides automatic decision support during the management
process. To the best of our knowledge, such a fully functional
and highly usable system for diabetes management in China
has not yet been reported in the literature. (b) For the trial
design, we proposed 2 perspective outcome measures as follows:
physician work content analysis and control of comprehensive
patient indicators. Controlling comprehensive patient indicators
is an effective treatment for patients with diabetes.

Table 4. Comparison of Diabetes Care Pathway Ontology and other diabetes treatment ontologies.

DDOdOMDPcDMTObDCPOaDimension

T2DM treatmentT2DM treatmentT2DM treatmentT2DMe treatmentPurpose

YesYesYesYesBased on top-level ontolo-
gy

DiagnosisPrognosis, diagnosis, and
treatment plan

Diagnosis and treatment by
drug, food, exercise, and edu-
cation

Diagnosis, risk assessment,
hierarchical management,
regular follow-up, abnormal
warning, medication guid-
ance, lifestyle guidance,
health education, and compli-
ance management

Integration of the pathway
tasks

Based on the patient’s
blood glucose and other
laboratory tests

Based on the patient’s labora-
tory test results

Based on the patient’s whole
profile, including laboratory
tests

Based on the risk results,
management level, and past
and current index of patient

Treatment decision-mak-
ing

NoNoYesYesModeling temporal seman-
tics

Diabetic ketoacidosis and
coronary heart disease

No clear definitionDiabetic nephropathy,
retinopathy, and other compli-
cations

Hypertension, hyperlipidemia,
hypoglycemia, and hyper-
glycemia

Modeling comorbidities
and complications

No management role de-
fined

No management role definedNo management role definedDefining both physician and
patient

Model of management
roles

No applicationNo applicationNo applicationSupported by an intelligent
service engine

Application in telehealth
environments

Drugs affecting blood
glucose

Antidiabetes drugs and other
drugs used for complications

Antidiabetes drugs, diabetes
complication drugs, and the
drug-drug interactions

Antidiabetes drugs, hyperten-
sion drugs, and lipid drugs

Drug modeling in the ontol-
ogy

No SWRL rulesSeparate use of medical
guidelines

No SWRL rulesCombining clinical experts
and medical guidelines

SWRLf rule sources in the
ontology

aDCPO: Diabetes Care Pathway Ontology.
bDMTO: Diabetes Mellitus Treatment Ontology.
cOMDP: Ontology-Based Model for Diagnosis and Treatment of Diabetes Patients.
dDDO: Diabetes Diagnosis Ontology.
eT2DM: type 2 diabetes mellitus.
fSWRL: Semantic Web Rule Language.

Conclusions
In this study, a diabetes management pathway model was
constructed, a diabetes management ontology for comprehensive
diabetes management was developed to achieve
physician-patient intervention, and a telehealth system based
on this ontology was developed by summarizing the important
process and core content of diabetes management. The DCPO
was constructed on the basis of the general semantic definition

of the standard top-level ontology, which contained 119 newly
added classes, 28 object properties, 58 data properties, 81
individuals, 426 axioms, and 192 SWRL rules; this covered the
entire process of diabetes management and managed multiple
cardiovascular risk factors for patients with diabetes. Further
research should be considered to deal with the ambiguity of
medical semantics using fuzzy ontology; enhance the accuracy
and reasoning ability of the system; introduce data-driven
technology, considering the semantic interoperability with the
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electronic health record system; and obtain more clinical
information from patient information to achieve a more

personalized management plan.
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Abstract

Background: Reliable and interpretable automatic extraction of clinical phenotypes from large electronic medical record
databases remains a challenge, especially in a language other than English.

Objective: We aimed to provide an automated end-to-end extraction of cohorts of similar patients from electronic health records
for systemic diseases.

Methods: Our multistep algorithm includes a named-entity recognition step, a multilabel classification using medical subject
headings ontology, and the computation of patient similarity. A selection of cohorts of similar patients on a priori annotated
phenotypes was performed. Six phenotypes were selected for their clinical significance: P1, osteoporosis; P2, nephritis in systemic
erythematosus lupus; P3, interstitial lung disease in systemic sclerosis; P4, lung infection; P5, obstetric antiphospholipid syndrome;
and P6, Takayasu arteritis. We used a training set of 151 clinical notes and an independent validation set of 256 clinical notes,
with annotated phenotypes, both extracted from the Assistance Publique-Hôpitaux de Paris data warehouse. We evaluated the
precision of the 3 patients closest to the index patient for each phenotype with precision-at-3 and recall and average precision.

Results: For P1-P4, the precision-at-3 ranged from 0.85 (95% CI 0.75-0.95) to 0.99 (95% CI 0.98-1), the recall ranged from
0.53 (95% CI 0.50-0.55) to 0.83 (95% CI 0.81-0.84), and the average precision ranged from 0.58 (95% CI 0.54-0.62) to 0.88
(95% CI 0.85-0.90). P5-P6 phenotypes could not be analyzed due to the limited number of phenotypes.

Conclusions: Using a method close to clinical reasoning, we built a scalable and interpretable end-to-end algorithm for extracting
cohorts of similar patients.

(JMIR Med Inform 2022;10(12):e42379)   doi:10.2196/42379

KEYWORDS

natural language processing; similar patient cohort; phenotype; systemic disease; NLP; algorithm; automatic extraction; automated
extraction; named entity; MeSH; medical subject heading; data extraction; text extraction
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Introduction

Background
Extracting clinical phenotypes from large electronic health
record (EHR) databases, also known as clinical data warehouses,
is a key step for several medical applications from
epidemiological research [1] to prognosis prediction [2,3] and
therapeutic decision support [4,5]. Reliable automatic extraction
of patient phenotypes from large EHR databases remains a
challenge, especially in languages other than English [6]. The
actual identification of patients’phenotypes is still largely done
via the International Classification of Diseases, Ninth/Tenth
Revision (ICD-9/ICD-10) code extraction, reading of clinical
notes, or extraction of entities via regular expressions. However,
as shown by Farzandipour et al [7] on more than 300 EHR
ICD-10 codes, 22.7% presented errors in principal diagnosis
codes, of which 33.3% were major errors. Benkhaial et al [8]
also showed in a study of 200 patients, ICD allergy codes were
present for 18 patients, while 51 had allergy information in a
written note, indicating that only 35% of the allergies were
correctly coded. These identification methods thus lack precision
and require important human control.

With the improvement of natural language processing over the
last 10 years, new language models such as Word2vec [9],
GloVe [10], FastText [11] and, more recently, Bidirectional
Encoder Representations from Transformers (BERT) [12] have
allowed significant progress for various natural language
processing tasks such as translation, question-answering, and
named-entity recognition via an efficient word representation.
Named-entity recognition corresponds to the extraction of
certain classes of entities in a raw text. In the medical domain,
it can be “signs and symptoms,” “disorders,” “chemicals and
drugs,” etc.

Many research teams have developed new algorithms based on
these word models to allow automatic patient phenotyping. De
Freitas et al [13] proposed Phe2vec, a data-driven, unsupervised
disease phenotyping algorithm. In their study, disease
phenotypes correspond to the word representation of ICD-10
core concepts (or seed concepts) and their closest neighbors. A
patient’s clinical history is summarized by aggregating all the
word vector representations of the medical concepts. Mapping
a patient to a disease is then done by computing a cosine
distance between the patient with each disease phenotype. In
their method, the medical concept extraction step from clinical
notes is performed based on 1 ontology [14]. Ferté et al [15]
also proposed an algorithm for automatic phenotyping of EHRs
by using ICD-10 codes and a dictionary-based entity recognition
tool to extract interesting terms from clinical notes. Extracted
terms were then mapped to their unified medical language
system concept unique identifier as a feature for classification
to provide an interpretable parametric predictor. Their work
showed particularly interesting results for chronic conditions.

In this work, we extracted similar patients by focusing on 4
systemic diseases as a proof of concept: systemic lupus
erythematosus (SLE), systemic sclerosis, antiphospholipid
syndrome (APS), and Takayasu arteritis. SLE is an autoimmune
disease that can affect a large number of organs: the skin

(specific malar rash, photosensitivity, etc), kidneys (nephrotic
syndrome and glomerular nephropathy), joints (most often
without deformation), brain (with neuropsychiatric forms), etc.
It is a rare disease that affects 41 in 100,000 people in France
[16], and 9 women for 1 man in generally young (18-30 years
old) adults. Systemic sclerosis can also involve various organs:
the skin (sclerosis leading to significant functional impotence),
the lungs (interstitial lung disease [ILD], fibrosis, and
hypertension), the digestive system (reflux and chronic intestinal
obstruction), etc. Its frequency is 1/5000 in France, and it
preferentially affects women (4 women for 1 man) aged between
40 and 50 years. APS is a disease that causes venous and arterial
thrombosis as well as obstetrical complications. Approximately
20%-30% of patients with lupus develop APS. Its frequency is
approximately 1 in 12,000 [16]. Takayasu arteritis is an
inflammatory disease that affects large vessels in young people.
It is a very rare disease affecting 1.2 to 2.6 cases/million/year
in France. It affects 4.8 women for 1 man between 20 and 40
years of age [17]. These 4 diseases were chosen because of their
large spectrum of signs and symptoms and their similarity
(especially for lupus and APS in terms of apparition frequency
and APS and Takayasu for their arterial manifestations).

Goal of This Study
In this study, we aimed to develop an automated end-to-end
extraction of similar patient cohorts from electronic medical
records. Specifically, we place ourselves in the following use
case: we have a patient to treat with clinical information in a
text document (mentioned as index patient in this paper), and
we automatically search for the set of patients with similar
symptoms and diseases mentioned in their hospitalization
reports. To evaluate our method, we extracted cohorts of similar
patients from index patients with certain phenotypes described
in their textual reports, arbitrarily selected, and manually
annotated by a clinician. Our main contribution in this paper is
the development of an algorithm for the automatic construction
of similar patient cohorts by a method close to clinical reasoning,
as we argue in the Discussion section.

Methods

Algorithm Steps
In this section, we detail the main steps of our algorithm.
Similarity is defined here as a patient with identical or closely
related signs, symptoms, and disorders. The key steps for
extracting these events from the text are a named-entity
recognition step to extract medical concepts, a multilabel
classification on each extracted term, and an average distance
computation on an appropriate representation of all the terms
on each label. We validated our interpatient distance by
clustering 6 a priori defined phenotypes of interest: osteoporosis,
nephritis in SLE, ILD in systemic sclerosis, lung infection,
obstetric APS, and Takayasu arteritis. With the same interpatient
distance, we then constructed similarity cohorts from index
patients for each of these phenotypes.
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Overview of the Algorithm
For readability, in the remainder of this paper, we use the term
“patient” to refer to the “hospitalization report related to the
patient.”

The main steps of the algorithms are shown in Figure 1,
considering an index patient:

1. Symptoms and diseases were extracted from a raw text
while filtering out all negated, hypothetical, and belonging
to family terms.

2. All extracted terms were classified into broad organ
categories, that is, cardiovascular, immune, ophthalmologic,

digestive, etc, by a multilabel classification step using our
previously developed algorithm [18].

3. A vector (embedding) representation for all extracted terms
was obtained leading to the index patient representation.

4. From this representation for other patients, the distance for
each label of the index patient to the other patients was
computed. Then, the average of the distances of all the
labels was determined.

5. A cohort of similar patients was built from the patients
closest to the index patient for each annotated phenotype.

We will refer to this patient’s hospitalization report (Figure 1,
index_patient) as a running example throughout the steps
described below.

Figure 1. Overview of the algorithm to obtain a representation of the patients’ electronic health records and to compute a distance from other patients’
electronic health records. First, a named-entity recognition step is performed on a patient's electronic health record (to extract symptoms and disorders
and filter all negated, hypothetical, and someone else’s terms). Second, a multilabel classification step is performed for each extracted term to allow
more clinical interpretation. Third, this leads to an electronic health record model containing all the extracted terms with their respective labels and
embedding representations (last column of the model). Fourth, this allows a distance computation on each of the 22 labels (Dnervous corresponds to
the distance between embeddings of all terms labelled nervous, Dimmune on the immune label, etc). Fifth, a similarity cohort computation is performed.
EHR: Electronic Health Record.
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Data Sets and Annotation Rules
The data set of this study was obtained from the Assistance
Publique-Hôpitaux de Paris (AP-HP) data warehouse. Patients
were informed that their EHR information could be reused after
an anonymization process, and those who objected to the reuse
of their data were excluded. All methods were carried out in
accordance with relevant guidelines (reference methodology
MR-004 of the Commission Nationale de l’Informatique et des
Libertés [19]).

The data set contained all hospitalization reports, consultation
reports, test results, prescriptions, etc of all patients older than
15 years with lupus, scleroderma, APS, and Takayasu arteritis
who made at least one visit to AP-HP hospitals since 2017. The
data set constitutes a set of 2 million pseudonymized clinical
records. It was extracted using only the ICD-10 codes of the
principal diagnosis for lupus (M320, M321, M328, M329, L930,
L931, corresponding to 5176 patients), systemic sclerosis
(M340, M341, M348, M349, corresponding to 2833 patients),
APS (D686 corresponding to 1250 patients), and Takayasu
arteritis (M314, corresponding to 287 patients).

An internist physician annotated a training subset of 151 clinical
notes (40 lupus, 35 APS, 37 systemic sclerosis, and 39
Takayasu) with symptoms or disorders by using specific
attributes “negated,” “hypothetical,” and “belonging to family”
when relevant. Guided by a clinical logic, we chose not only to
annotate the negated terms as negation (eg, no fever, no
diabetes) but also all the physiological descriptions (eg,
peripheral pulse present, vesicular breath sounds present and
symmetrical, regular heart sounds). All of these physiological
findings were annotated as negative, because in clinical
reasoning, we focus primarily on pathological signs. We adopted
this approach also because the language models we use are able
to capture both the syntactic and semantic levels of language.
The medical subject heading (MeSH) category C [20] head
chapters (eg, cardiovascular, immune, digestive) were also
annotated at the entity level. This annotated data set was used
to train both the named-entity recognition step with the
symptoms and disorders labels and the multilabel classification
step with MeSH [20] category C chapter head labels. Another
test set of 256 hospitalization reports was annotated with one
or more of the 6 phenotypes of interest, that is, osteoporosis,
nephritis in SLE, ILD in systemic sclerosis, lung infection,
obstetric APS, and Takayasu arteritis by another internist
physician with no common patients between the training and
testing data sets.

The annotation rules were defined before starting. First, a
phenotype was only positively annotated if it was explicitly
written, and no interpretation was made of signs and test results
to guess the phenotype. For example, for osteoporosis, neither
bone mineral density nor the number of vertebral fractures was
interpreted, and the only terms retained positively were
osteoporosis and corticosteroid-induced osteoporosis. Detailed
examples can be found in Figure S1 of Multimedia Appendix
1. We selected these phenotypes for their clinical significance
both in the 4 pathologies of interest studied and globally in
terms of osteoporosis and lung infection phenotypes. These

phenotypes were selected as an example, but our algorithm can
be generalized to handle very different phenotypes.

Word Representations
Two word representation models were used for this work. First,
a French BERT model [12], camemBERT, trained by Martin
et al [21] on a wide variety of French documents was used for
the named-entity recognition and multilabel classification steps.
Second, a FastText model developed by Bojanowski et al [11]
was used for the patient model to calculate the interpatient
distance. Both methods convert words into vectors of real
numbers (called embeddings). BERT produces embeddings that
take into account the context (other words in the phase), while
FastText produces fixed embeddings (a word corresponds to a
vector independently of the surrounding text). For our study,
we had 2 million documents of all types (consultation records,
hospitalization records, discharge summaries, etc), which
correspond to a volume of 5 gigabytes of text. These data
allowed us to train the FastText model from scratch. The
camemBERT model was too large to train from scratch, but we
fine-tuned it on our data, that is, we retrained its final layers.
As a result, it was able to learn a context-appropriate vector
representation (particularly effective for the feature extraction
step 1); nevertheless, its initial vocabulary did not contain all
the medical concepts, unlike the FastText model, which we used
for the patient representation for the interpatient distance
calculation.

Named-entity Recognition
This first step enables us to extract positive symptoms
(pathologic signs) and disorders, filtering all terms
corresponding to hypothetical, negated, and family-related
elements. For instance, in Figure 1 (index_patient), the extracted
terms were “parietal focal status epilepticus,” “frontoparietal
hematoma,” and “systemic lupus erythematosus,” whereas
“angioedema” was not kept since it was only hypothetical. The
algorithm used for this first step is based on an encoder (with
BERT layers) and a bidirectional long short-term
memory decoder. This neural named-entity recognition model,
described in [18], obtains an exact F-measurement of 0.931 on
the English CoNLL data set [22], using the BERT-large
embeddings [12], and 0.784 on GENIA [23], using the
BioBERT-large model [24].

Multilabel Classification
To improve clinical interpretability and to analyze patients along
several medical dimensions (ie, labels), we chose to perform a
multilabel classification of all the terms. The corresponding
class is all the MeSH-C head chapters, corresponding to 22
medical fields: infections, ophthalmologic, stomatology,
cardiovascular, digestive, respiratory, nervous, etc. A BERT
model for the sequence classification was used and trained on
all annotated entities and all MeSH terms and their synonyms.
Synonyms of MeSH terms were obtained by extracting all the
French terms sharing the same code unique identifier in the
unified medical language system defined by their authors as a
“set of files and software that brings together many health and
biomedical vocabularies to enable interoperability between
computer systems” [25]. This multilabel classifier has been
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described in our previous study and evaluated on an external
challenge with an F1-score from 0.809 to 0.811 depending on
the model used [18]. For instance, for our index_patient in
Figure 1, parietal focal status epilepticus is labelled as nervous,
and systemic lupus erythematosus is labelled as immune and
skin.

Distance Computation
We used FastText to obtain an embedding representation of
each extracted term. With all the patients represented as a list
of embeddings for each label, the distance between the patients
can be computed based on one particular label of interest
(cardiovascular, urogenital, etc), or several, or all. However, 2
patient records may contain different numbers of terms (ie,
vectors) per label. For example, index_patient on Figure 1 only
presents 1 term on the cardiovascular label (lupus pericarditis),
whereas patient_2 may present many cardiovascular terms such
as coronary syndrome, hypertension, and stroke.

Following Kusner et al’s [26] idea, we decided to use the earth
mover’s distance, a distance that minimizes the cost to be paid
to transform one distribution into another. We compute this
distance for each label. In our case, the distributions correspond
to the set of terms per label, and each term corresponds to a
point. The size of the point corresponds to the frequency of
occurrence of the term, and the distance between the points
corresponds to the cosine distance between the FastText
embeddings of the terms. In our example, the immune label for
index_patient is made of the terms SLE (1 occurrence), Raynaud
(1 occurrence), Gougerot-Sjögren (1 occurrence), and lupus
pericarditis (1 occurrence).

Having a distance, we are now able to compare patients’clinical
notes on each label (provided that the patient’s record has at
least one term present for this label) or globally. To compare 2
patients globally, we summed the earth mover’s distances of
the 2 patients across each label and weighted them with the
corresponding number of terms for each label. Equations (1)
and (2) below specify the weighting term, where HR1 and HR2

denote 2 different hospitalization reports, and EMD() denotes
the earth mover’s distance between the 2 notes for a specific
label i.

D(HR1, HR2) = (1/nlabels)*Σ (λi EMD(HR1(labeli),
HR2 (labeli)) (1)

with λi = (nHR1(labeli) + nHR2(labelj)) / (nHR1 +
nHR2) (2)

where HRj(labelj) is the list of terms from HRi involving labelj
and nHR is the number of terms in the term subset HR.

Evaluation
We evaluate our approach with the 6 use cases described earlier,
each being associated with specific MeSH-C labels. For
example, to obtain similar patients for the osteoporosis
phenotype (labelled musculoskeletal and nutritional according
to MeSH classification), we computed the earth mover’s distance
of the hospitalization reports only on these 2 labels. Similarly,
for ILD in systemic sclerosis, we focused on the respiratory and
immune labels. For lung infection, we focused on the respiratory
and infections labels, and so on. However, our algorithms can
be applied to any new use case and to any set of MeSH-C labels.

Clustering
To visualize our results and to confirm the relevance of our
approaches, we performed an unsupervised hierarchical
clustering of all patients in the training data set on each label
and globally, checking if patients with similar phenotypes
belonged to the same clusters. We used agglomerative
hierarchical clustering (each hospitalization report is initialized
as a singleton cluster, and clusters are merged two-by-two) with
Ward’s criterion, which minimizes the variance of the clusters.
The same method was used for our 6 use case phenotypes. We
used the SciPy library [27].

Selection of a Cohort of Similar Patients From an Index
Patient
We approach the problem of building a cohort of similar patients
as an information retrieval problem, where the patient’s
document (index patient) is a query. We then evaluate the ability
of the system to return a ranked list of documents, with the most
relevant/similar at the top of the list. Figure 2 gives an overview
of this selection on the example of a patient with the phenotype
“Nephritis in SLE.” We evaluate the precision-at-k (percentage
of correct phenotype prediction in the first k closest documents
of distinct patients), the recall (percentage of all correct
phenotypes that are selected in the first n closest patients, n
being the number of patients in each phenotype), and the average
precision. The average precision computes the average value
of the precision for recall values over 0 to 1. It considers the
order in which the patients are selected and corresponds to an
estimate of the area under the precision-recall curve. For each
phenotype, each patient from the test set is chosen in turn as an
index patient, and the final results are an average over all
patients. Confidence intervals were calculated using the normal
distribution approximation.
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Figure 2. Example of document selection for the phenotype "Nephritis in systemic lupus erythematosus." First, from the clinical observation of the
index patient, symptoms and diseases are extracted and classified according to medical subject heading-C chapter headings (step 1). Then, the distance
is calculated on the UroGen and immune classes (specifically for this phenotype, step 2). Finally, the closest documents are those with the same written
phenotype, corresponding to the patients in red in the figure, leading to a ranked list of the closest documents of distinct patients (step 3). SLE: Systemic
lupus erythematosus; HR: Hospitalization report.

Visualization
A distance-based search result was also constructed to select
the most similar patient to an index patient, with clickable labels
where clinicians can choose any labels of interest they want to
select (as in our phenotype examples). This search result returns
the most similar patients on the selected labels in the descending
order of similarity. A demonstration can be found in this
following link [28], with 4 use cases with word clouds of
medical terms enabling the similarity decision. All our codes
are available on GitHub [29].

Ethics Approval
The results shown in this study are derived from the analysis
of the AP-HP data warehouse. This study and its experimental
protocol was approved by the AP-HP Scientific and Ethical
Committee (IRB00011591 decision CSE 20-0093). All methods
were carried out in accordance with relevant guidelines
(reference methodology MR-004 of the Commission Nationale
de l’Informatique et des Libertés [19]). All medical records
have been pseudonymized. Patients are informed by the AP-HP
data warehouse that the data are pseudonymized and that they
can object to their sharing. Their consent was therefore collected
prior to our study.

Results

Clustering
The results of the unsupervised hierarchical clustering on our
training data set of 151 EHRs are shown in Figure 3, Figure 4,

and Figure 5. Each cluster is enhanced with its corresponding
word cloud (highlighting the frequencies of occurrence of terms
within each cluster). Interestingly, on the immune label (Figure
3), we were able to properly separate patients with scleroderma
(left, orange cluster) from patients with lupus or lupus with APS
(green clusters). As mentioned earlier, 30% of APS is secondary
to systemic lupus, and indeed, several patients with APS in our
data set also had lupus. Similarly, on the digestive label (Figure
4), we were able to separate upper digestive manifestations (left
cluster) from liver issues (left clusters). With regard to the global
clustering (using equations 1 and 2 above), we obtained 4
different clusters, as shown in Figure 5. Scleroderma is clustered
separately with forms of cutaneous lupus (right, purple cluster)
from lupus with thromboembolic manifestations and APS
(middle, red cluster) from Takayasu (second left, green cluster).
Interestingly, scleroderma with pulmonary arterial hypertension
(left, little orange cluster) is close to the Takayasu cluster with
arterial complications. The test set included 100 patients with
lupus, 87 with scleroderma, 51 with APS, and 18 with Takayasu
arteritis. Only 4 Takayasu stroke were labelled and 7 obstetrical
APS, which did not allow us to perform clustering or other
performance computations. The clustering results for phenotypes
osteoporosis and lung infection with ground truth labelled
documents are shown as examples in Figure 6 and Figure 7,
respectively.
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Figure 3. Unsupervised hierarchical clustering based on electronic health record earth mover's distance on the “immune” label. Word clouds of electronic
health records words are plotted on each respective cluster. Interestingly, patients with systemic scleroderma all belong to the same cluster (orange).
Only patients who were labelled “immune” are clustered; we thus represent 129 patients out of 151.

Figure 4. Unsupervised hierarchical clustering based on earth mover's distance of electronic health records on the label “digestive.” The word cloud
of the electronic health records is shown on each respective cluster. Interestingly, the left cluster reports upper digestive manifestations (oesophagitis,
gastroesophageal reflux or RGO in French), and the rightmost cluster represents patients with liver diseases (brown cluster: cytolysis, hepatitis, hepatic),
whereas the middle cluster represents patients with both conditions. Only patients who were labelled digestive are clustered; we thus represent 89
patients out of 151.
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Figure 5. Unsupervised ascending hierarchical clustering based on the overall earth mover's distance of the electronic health records from equations
(1) and (2). Word clouds of term frequency in the electronic health records are plotted on each respective cluster.

Figure 6. Unsupervised ascending hierarchical clustering based on earth mover's distance of electronic health records on the “osteomuscular” and
“nutritional” labels (derived from the medical subject heading classification); only patients having the labels “osteomuscular” and “nutritional” are
represented here (corresponding to 119 patients, not 256). All patients with osteoporosis were labelled “OSTEO” in the orange cluster. Other patients
present in this cluster without explicitly written osteoporosis present “osteopenia” (all 4 first patients) of several vertebral fractures.
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Figure 7. Unsupervised ascending hierarchical clustering based on earth mover's distance of electronic health records on the respiratory and infection
axes (derived from the medical subject heading classification). All patients with lung infections were labelled “LUNG_INF” in the green cluster. Some
outliers may be noticed; on the very left, the patient had purulent pleurisy, and one had pulmonary tuberculosis. The remaining patients on the left of
the green cluster all had other linked manifestations such as bronchitis, parainfluenza infection, and bronchoalveolar lavage positive for Klebsiella
pneumoniae and oropharyngeal flora.

Selection of a Cohort of Similar Patients From an
Index Patient
The performance of cohort construction for the first 4
phenotypes is presented in Table 1. The last 2 phenotypes
(P5-P6) could not be analyzed due to a limited number of
phenotypes at the annotation stage (7 and 4, respectively).

Overall, we obtained an average precision ranging from 0.58
to 0.88, precision@10 from 0.65 to 0.98, and recall from 0.53
to 0.83. However, the average precision was lower for P3 (ILD
in systemic sclerosis) owing to the higher diversity of terms
used to describe the lung condition, that is, fibrosis, ILD,
scleroderma with pulmonary involvement, etc, and to the fact

that the phenotype annotations were very specific. As an
example, sclerodermatomyositis or mixed connective tissue
disease with lung involvement, which are very close to this
phenotype were not annotated positively. An error analysis with
mention encountered on close patients can be found in Table
S1 of Multimedia Appendix 1. For the 4 phenotypes P1-P4, the
precision-recall curves (means for all patients within each
phenotype) were computed and are shown in Figure S1 of
Multimedia Appendix 1, which is another way of showing the
average precision performances. We showed very good results
for the P1-P2 and P4 phenotypes and satisfactory results for the
P3 phenotype since the patients had to present exactly the same
disease.

Table 1. Performance results for phenotype similarity (mean and 95% CI) for all patients of a phenotype. For each phenotype, each patient in the test
set is chosen in turn as an index patient, and the final results are an average of all patients.

P4, lung infections (n=33)P3, interstitial lung disease
in systemic sclerosis (n=20)

P2, nephritis in systemic lu-
pus erythematosus (n=48)

P1, osteoporosis (n=23)

0.92 (0.84-0.99)0.85 (0.75-0.95)0.99 (0.98-1.0)0.97 (0.91-1.0)Precision@3a

0.86 (0.81-0.92)0.65 (0.58-0.72)0.98 (0.97-0.99)0.95 (0.91-0.99)Precision@10

0.72 (0.69-0.75)0.58 (0.54-0.62)0.85 (0.83-0.87)0.88 (0.85-0.90)Average precision

0.66 (0.64-0.68)0.53 (0.50-0.55)0.79 (0.77-0.80)0.83 (0.81-0.84)Recallb

aPrecision@3 patients (precision@10) is presented, which represents the obtained precision calculated on the 3 (or 10) patients closest to the index
patient (ie, with the minimum distance).
bRecall is the recall calculated for all patients to be found with the same phenotype (ie, recall calculated on the 23 closest patients for osteoporosis, the
48 closest patients for nephritis in systemic lupus erythematosus, etc). Precision-recall curves for the 4 phenotypes are shown in Figure S1 of Multimedia
Appendix 1.

Visualization
As an illustration, Figures 8 and 9 below show the search results
described earlier for a patient with ILD in systemic sclerosis
and nephritis in SLE, respectively. We see that for an index

patient with ILD in systemic sclerosis (Figure 8), choosing the
immune and respiratory labels led to the finding of 10 patients
out of the 15 first, having the same condition. Interestingly,
among these 15 samples, the 5 unlabeled patients had a disease
very close to the expected one: “ILD evolving to fibrosis” and
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a “mixed connective tissue disease” for the first one (note_98,
rank 4) and “sclerodermatomyositis” and “interstitial lung
disease” for the second (note_182, rank 5). Further analysis of
the errors is presented in Table S1 of Multimedia Appendix 1.
A more extensive error analysis can be found in Table S1 of

Multimedia Appendix 1. Figure 9 shows the search results for
an index patient with nephritis in SLE. All the 21st closest
patients on labels “immune” and “urogenital” showed nephritis
in SLE.

Figure 8. Search results of an index patient with interstitial lung disease; the darker the color is, the closer the patients are to that particular label. Here,
the selected labels “immune” and “respiratory” in 8 of the 10 first patients are labelled with “PINS_Sclerodermie” (in French, ie, interstitial lung disease
in systemic sclerosis).

Figure 9. Search results of a patient with nephritis in systemic lupus erythematosus. The darker the color is, the closer the patients are to that particular
label. Here, the selected labels “immune” and “urogenital” in all the 20 first closest patients are labelled with the right phenotype nephro_lupus.

Discussion

Summary
In this study, we developed a novel end-to-end algorithm from
raw clinical notes to cohort similarity extraction. We have shown
that we can cluster very specific phenotypes on an annotated
data set and build similarity cohorts with good mean average
precision results. These phenotypes and diseases were chosen
as a proof of concept, with 2 general phenotypes such as
osteoporosis and lung infection and 2 very specific phenotypes
with nephritis in SLE and ILD in scleroderma. However, our
algorithm can be applied to other phenotypes or diseases as
well. Furthermore, our system can be applied to any other data
warehouse and does not contain any handcrafted rules. An
interactive demo is available online [28], and all our codes are
available on GitHub [29].

Advantages of Our Approach
The main advantage of our approach is the proximity to clinical
reasoning—the named-entity recognition step focusing on the
distinction between physiological and pathological signs and
the observations of the patients on the 22 main medical domains
(cardiovascular, pulmonary, hemic, immune)—thereby allowing
clinicians to choose on which aspect patients should be similar.
This analysis provides interpretable results to clinicians as well
as high modularity, which is essential in the field of therapeutic
decision support. In clinical practice, this algorithm would
enable the physician to automatically extract similar patients,
evaluate their clinical evolution, and extrapolate them to the
patient they want to treat. Our algorithm focuses on 1 patient’s
hospitalization report rather than on the entire patient’s record
(EHR), as we want to extract patients with similar conditions
and similar acute complications at a time. This algorithm is also
able to compare along very fine-grained characteristics. For
example, 2 patients with osteoporosis complicated by a bone
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fracture will be closer than 2 patients with osteoporosis without
a fracture. In addition, although our algorithm does not directly
consider biological results in a quantitative manner, the
clinician’s interpretation of these results in the text is
systematically integrated and analyzed as a symptom, for
example, anemia, hypoalbuminemia, and positive antibodies.
Similarly, the pathological description of imaging reports, such
as an alveolar condensation in radiology images or an abnormal
left ventricular ejection fraction in echocardiograms will be
taken into account in our algorithm. We show very good results
in terms of precision and average precision for selecting similar
patient cohorts. The robustness of the algorithm is demonstrated
on the one hand by the evaluation of the precision-to-3, which
is calculated here not for the construction of the cohort but rather
to show that there is, as expected, a gradient of similarity from
the closest to the most distant patients, and on the other hand,
as shown in the error analysis, patients close to a given index
patient had very similar disease, even if the exact phenotype
was not encountered.

Comparison With Previous Work
Other studies have focused on patient similarity cohorts; for
instance, in the French language, Garcelon et al [30] used a
patient representation and a similarity measure to try to find
patients with rare diseases in the Dr Warehouse database [31].
Although their objective is quite similar to ours, they used a
different representation based on the term frequency–inverse
document frequency weights of the extracted concept in each
clinical note, and the concept extraction is based on handcrafted
rules. They obtained a percentage of 71%-99% of indexed
patients returning at least one similar true-positive patient within
the first 30 similar patients, and the average number of patients
with exactly the same disease among the 30 patients was 51%.
In a second study based on the same term frequency–inverse
document frequency similarity metric, they evaluated the
association between clinical phenotypes and rare disease and
measured the relevance of the first 50 similar patients by a
domain expert a posteriori; they obtained average precision
from 0.55 to 0.91 on 6 phenotypes with mean average precision
of 0.79 [32]. The main differences from our method are that we
focus on clinical interpretability, and our metric computation
is based on one of the most recent and performant language
models [12]. Moreover, in our case, the test set was annotated
a priori. Jia et al [33] also proposed an interesting algorithm for
diagnostic prediction based on patient similarity, but unlike our
method, their named-entity recognition step is based on a
dictionary of symptoms, while disorders are extracted from
ICD-10 coding. The similarity regarding symptoms is binary:
1 if the symptom is shared by both patients and 0 if otherwise.
The similarity of diseases is based on their respective ICD-10
similarity (using the ICD-10 coding tree structure).

Ng et al [34] presented an insightful method based on a precision
cohort (ie, patient-similarity cohorts) to help clinicians make
treatment decisions for chronic diseases. They trained a global
similarity model on a set of thousands of predefined variables
(disease variables were constructed using their ICD-9 and
ICD-10 codes, laboratory variables with their Logical
Observation Identifiers Names and Codes, etc) that learns a
disease-specific distance (for the 3 chronic diseases presented:

hypertension, type 2 diabetes mellitus, and hyperlipidemia),
with significant manual work to build the training data set. The
authors did not compute direct measures of similarity cohorts
but the direct impact of their method, with 75%, 74%, and 85%
of decision points in hypertension, diabetes, and hyperlipidemia,
respectively, and with at least one significantly better treatment.
In contrast, our method focused on the performance of the
similarity cohorts with metrics used in the information retrieval
field, does not rely on manual variable definition, and does not
learn disease-specific distance but a completely generic distance.
One of the main advantages of our work is the original
calculation of distance per class between patients; to the best
of our knowledge, there is no similar work in the literature to
compare our work to. However, we show that the named-entity
recognition algorithm obtained state-of-the-art results, and the
multilabel classification obtained the same performance as the
best team of a French national challenge [18].

Limitations
Our work has several limitations. First, it does not cover mental
health diseases, which are a completely different branch of the
MeSH classification. However, training the multilabel classifier
with a new label for mental health diseases with MeSH terms
and synonyms can be done fairly directly based on our
framework. In addition, due to time constraints, the data used
in this paper were labeled by only 1 internist, and the quality
of the data labeling cannot be assessed. In addition, one could
argue that we did not compare our clustering and cohort
similarity extraction with an ICD-10 extraction. However,
because we built our initial data set with ICD-10 codes for our
4 main pathologies, we had an initial bias that we could not
overcome for fair comparison. In addition, nephritis in SLE,
ILD in systemic sclerosis, and lung infections do not have direct
ICD-10 codes used in clinical practice. For example,
“glomerular disease with SLE” has the ICD-10 “M3214” but
in the entire database of 39 different hospitals, no patient had
this particular code. This is because the coding is primarily done
to describe the severity of the patient being managed, and this
last code, in particular, does not reflect the severity of the renal
involvement (in our case, codes for nephritis usually used would
be N03, N04, or N05 and M320, M321, M328, and M329 for
SLE). Similarly, scleroderma with pulmonary involvement has
an ICD-10 code M348 that also does not appear in our database.

Assuming that an important clinical fact is repeated several
times in a clinical report (eg, a patient hospitalized for acute
coronary syndrome will have many cardiovascular terms linked
to his/her cardiac condition), our distance computation from
equations 1 and 2 depends on the number of terms in the
document. Hence, 2 patients with the same major (repeated)
problem would be relatively close. However, sometimes,
repeated terms are not directly derived from a major clinical
fact (for instance, medical history may be repeated several times
without clinical relevance).

Conclusion
In this work, we have presented a novel end-to-end interpretable
algorithm to automatically extract similar patients from an index
patient based on clinical note analysis. Our algorithm shows
good performance results for 4 specific phenotypes in the
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context of 4 systemic diseases. In this work, we focused only
on pathological signs, but in clinical practice, one could also
be interested in negative signs (for instance, the absence of
Raynaud syndrome is very atypical in systemic sclerosis). This
will be added in our future work, thereby adding a new
physiological dimension to patients. In future work, the drug
information will also be added for patient comparison, and

similar to our presented approach, the clinician will then be able
to focus only on treatments or on treatments and signs and
symptoms. Finally, we will consider patients as a set of multiple
longitudinal hospitalization reports (EHRs). An important
perspective of this work is also to evaluate this tool in clinical
practice.
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Abstract

Background: Although a great number of teleconsultation services have been developed during the COVID-19 pandemic,
studies assessing usability and health care provider satisfaction are still incipient.

Objective: This study aimed to describe the development, implementation, and expansion of a synchronous teleconsultation
service targeting patients with symptoms of COVID-19 in Brazil, as well as to assess its usability and health care professionals’
satisfaction.

Methods: This mixed methods study was developed in 5 phases: (1) the identification of components, technical and functional
requirements, and system architecture; (2) system and user interface development and validation; (3) pilot-testing in the city of
Divinópolis; (4) expansion in the cities of Divinópolis, Teófilo Otoni, and Belo Horizonte for Universidade Federal de Minas
Gerais faculty and students; and (5) usability and satisfaction assessment, using Likert-scale and open-ended questions.

Results: During pilot development, problems contacting users were solved by introducing standardized SMS text messages,
which were sent to users to obtain their feedback and keep track of them. Until April 2022, the expanded system served 31,966
patients in 146,158 teleconsultations. Teleconsultations were initiated through chatbot in 27.7% (40,486/146,158) of cases.
Teleconsultation efficiency per city was 93.7% (13,317/14,212) in Teófilo Otoni, 92.4% (11,747/12,713) in Divinópolis, and
98.8% (4981/5041) in Belo Horizonte (university campus), thus avoiding in-person assistance for a great majority of patients. In
total, 50 (83%) out of 60 health care professionals assessed the system’s usability as satisfactory, despite a few system instability
problems.

Conclusions: The system provided updated information about COVID-19 and enabled remote care for thousands of patients,
which evidenced the critical role of telemedicine in expanding emergency services capacity during the pandemic. The dynamic
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nature of the current pandemic required fast planning, implementation, development, and updates in the system. Usability and
satisfaction assessment was key to identifying areas for improvement. The experience reported here is expected to inform
telemedicine strategies to be implemented in a postpandemic scenario.

(JMIR Med Inform 2022;10(12):e37591)   doi:10.2196/37591
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Introduction

The COVID-19 pandemic has brought dramatic transformative
changes in economies, societies, and health care, with an
unprecedented challenge to public health worldwide [1]. The
need to avoid patient crowds in health services and offer
alternative ways for patient assistance while preserving physical
distancing and isolation, as well as the prioritization of
emergency departments and intensive care units, have proven
to be important drivers for the urgent need and quick adoption
of telemedicine.

Telehealth services were growing exponentially prior to
COVID-19 [2]. However, it was during the pandemic that they
received a major boost. Governments from different countries
were urged to promote telehealth and make provisions to address
some of the previously encountered barriers, and they quickly
updated law restrictions and reimbursement policies [3]. In
Brazil, telehealth has been consolidated over the years, but it
was only after the spread of COVID-19 that a legal and
regulatory framework emerged, authorizing remote medical and
other professional health consultations. The Telehealth Network
of the State of Minas Gerais (TNMG) in Brazil—one of the
largest public telehealth services in Latin America [4,5]—was
quick to implement telemedicine services for the care of patients
with suspected novel coronavirus infection soon after the first
patient was diagnosed with COVID-19 in the country.

Although a great number of teleconsultation services have been
developed, studies assessing usability and satisfaction from the

health care provider’s perspective are still incipient. Concerns
have been raised regarding challenges posed by diagnosing
without an actual physical examination and the negative impact
on patient-provider rapport [6]. In the aftermath of COVID-19,
when telehealth services are expected to remain in use and health
care provider satisfaction is a key feature for telehealth
sustainability, usability assessment is particularly relevant as a
source to be tapped for lessons to be learned.

Our aim was to assess the feasibility of the development,
implementation, and expansion of a synchronous
teleconsultation service for care provided to patients with
symptoms of COVID-19, as well as to perform assessments of
usability and health care professionals’ satisfaction.

Methods

Study Design
This mixed methods study was developed in 5 phases (Figure
1), following guidance from the Medical Council Framework
[7]:

1. Identifying intervention components through discussions
with experts;

2. System development and validation;
3. Pilot-testing;
4. Expansion; and
5. Usability and satisfaction assessment.

Each phase is briefly explained in the following subsections.

Figure 1. Project phases. UFMG: Universidade Federal de Minas Gerais.
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Identifying Intervention Components Through
Discussions With Experts
To identify components in the intervention, information was
extracted from guidance issued by the Brazilian Ministry of
Health [8,9] and evidence available at the onset of the pandemic,
as well as discussions among an interdisciplinary team of IT
specialists, clinicians with long-term expertise in telemedicine
[4,5], infectious diseases specialists, and nurses.

The workflow suggested by the Brazilian Ministry of Health
was adapted to improve the assistance flow, offer agility for the
teams and data security, and reduce the burden of patients who
need in-person consultations at primary care centers. The
municipality where the system was planned to run
initially—Divinópolis—had a telephone service dedicated for
the general population to answer queries related to COVID-19
and for primary care practitioners, medical university professors,
and undergraduate medical students working in a monitoring
program. All available resources were used to design an
integrated teleassistance flow, which assisted patients from their
initial doubt through to clinical assistance and monitoring, at 4
levels: level 1, performed by local health care professionals
(nursing technicians, physiotherapists, nutritionists, and
psychologists); level 2, performed by nursing staff; level 3,
performed by medical staff; and level 4, telemonitoring that
was performed by students under medical supervision.

Although this teleassistance flow was not fully integrated into
the local emergency departments, upon concluding
teleconsultations, when face-to-face assessments were deemed
necessary, the patients could be referred to face-to-face medical
consultations with a specific clinical report.

An internal medicine specialist, a nurse, a doctor with long-term
experience in telemedicine, and an IT specialist identified the
main components in the intervention to map the main needs,
steps in the process of care, and specificities of each screen and
functionality in the system. These health care professionals
worked alongside the IT specialist to discuss and propose
changes and improvements to the system throughout the iterative
development cycle adopted. Unfortunately, due to the necessary
urgency of the actions—the platform was offered for use just 2
months after the start of its development—it was not possible

to involve patients in the development of the self-assessment
tools.

A management model based on the Plan-Do-Check-Act cycle
and a monitoring system based on key performance indicators
were developed. The nurse and the doctor with long-term
experience in telemedicine defined the indicators to be
monitored (Table S1 in Multimedia Appendix 1).

System Development and Validation
The system was developed and validated following an agile
software methodology. Its backend was built using the Java
programming language (version 1.8) with the Spring Boot and
Hibernate frameworks, whereas the system’s user interface was
built using the Angular user interface framework.

The system, named TeleCOVID-MG, started being developed
in March 2020. Throughout March and April, the team of
analysts met weekly with the clinical team to assess new
requests that arose. Meanwhile, the development team delivered
weekly packages that were internally tested and, on weekends,
were validated and approved by professionals from the clinical
team. Thus, in May 2020, the first version was released into a
production environment. From then on, fortnightly sprints were
adopted, generating deliveries for testing and approval.

The software runs on a web environment, which allows the full
recording of activities. It is composed of an application server,
which runs the main application backend and serves the frontend
to the users’ client browsers, and an SQL relational database
(Postgres). The frontend has 2 main interfaces: 1 for
teleconsultation, which is used by the health care professionals,
and another for monitoring the service queue, which is a
dashboard used by the team of moderators, who identify the
need for additional health care professionals in the shift to
reduce the response time. A chatbot, developed using the BLiP
platform (Take), was aimed to be a first point of contact for
patients with the telehealth service [10,11]. It assisted in
screening the severity of respiratory and flu-like symptoms and
queuing patients for teleconsultation based on warning-sign
severity [10,11]. There is a module for importing data from the
chatbot into the database and a module for sending messages
to patients (Figure 2).
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Figure 2. System architecture overview.

Teleconsultation and Telemonitoring Services
TeleCOVID-MG has 3 main goals: (1) assessing and managing
patients with respiratory or flu-like symptoms, (2) monitoring
patients with COVID-19, and (3) providing the general
population with updated information about COVID-19. The
system enables performing consultations either with or without
videoconferencing, issuing medical prescriptions and reports,
as well as issuing orders for diagnostic COVID-19 tests (Figure
3) by nurses and physicians from the TeleCOVID-MG

teleconsultation team, following the Ministry of Health and
local clinical protocols. All these documents generated during
the teleconsultation can be easily downloaded as PDF files by
the patients. The software also enables the generation of the
compulsory report of COVID-19 cases, in compliance with
requirements by the Brazilian Health Ministry, as well as
teleconsultations scheduling, patient referral to telemonitoring
services, or face-to-face consultations at other levels of care
(Figure 4 and “TeleCOVID-MG service workflow” in
Multimedia Appendix 1 [6,9,12]).
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Figure 3. Screenshots of TeleCOVID-MG. User registration form: (1) patient personal information tab; (2) patient clinical condition tab recording
warning signs; and (3) video call tab; (4) form tab (for prescriptions, reports, and test orders); and (5) record of past teleconsultations.
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Figure 4. TeleCOVID-MG service workflow.

Pilot-testing
The pilot study was carried out in Divinópolis, a
213,016-inhabitant city with a human development index of
0.76, from May 18 to 28, 2020 [12]. The team responsible for
teleconsultations and telemonitoring in Divinópolis comprised
physicians, nurses, and students from Universidade Federal de
São João del-Rei. An instruction manual was prepared, and
participating health care professionals received web-based
clinical training, based on the best available scientific evidence
at that time. They were also trained to use the system before
starting the activities.

Expansion
The project was expanded to the Teófilo Otoni, a
140,937-inhabitant city with a human development index of
0.70 [11], and subsequently to faculty and students at
Universidade Federal de Minas Gerais (UFMG), a federal
university where the coordination center of the TNMG is
located. It has over 45,000 students and 7400 faculty members.

The team responsible for the teleconsultations comprised
physicians and nurses from the TNMG, and, in the case of
Teófilo Otoni, also included nurses from that city. The team
responsible for telemonitoring comprised medical students
supervised by medical professors and nurses. All of them
received technical training to operate the system and theoretical
training, as aforementioned. Weekly meetings were held with
local coordinators to discuss indicators, identify deviations from
planned targets, and plan and implement corrective actions.

Once patients entered the system, after the initial
teleconsultation, a follow-up plan that involved monitoring or
new consultations was defined based on the assessment of their
situation. Teleconsultation efficiency was calculated as the
number of patients who were provided with consultation and
did not need to be referred to face-to-face consultations divided
by the total number of patients who were provided with
consultation.

For reporting expansion results, all records of patients who were
provided with consultation at the 3 locations from May 2020
to April 2022 were eligible.
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Usability and Satisfaction Assessment
A questionnaire was developed to assess health care
professionals’ satisfaction and the usability of the system, as
they were the primary immediate users. It included eight 5-point
Likert-scale questions that focused on aspects regarding user
satisfaction and usability and open-ended questions that focused
on the perceived strengths and weaknesses of the system,
features to be improved, and comments about their experience
with the system. All health care professionals who worked in
the service and used the TeleCOVID-MG system were eligible
(n=60). A thematic analysis was conducted for the open-ended
questions.

Ethics Approval
Ethical approval was obtained from the UFMG Research Ethics
Committee (CAAE: 35953620.9.0000.5149). Informed consent
was obtained from study participants.

Results

Through the study, the system served 31,966 patients, totaling
146,158 teleconsultations covering the first and subsequent
consultations performed for each patient, since the same patient
could be assessed more than once by nurses, physicians, and
the telemonitoring team. The accumulated number of
teleconsultations and patients assisted by location and service
efficiency are displayed in Figure 5. Other indicators that were
monitored weekly and monthly are shown in Table S2 in
Multimedia Appendix 1. The real-time analysis of these data
allowed system and service workflow adjustments as necessary.

As shown in Figure 2, both the chatbot and telephone number
were the gateway to the program. The telephone was primarily
used, and teleconsultations were initiated through the chatbot
in 27.7% (40,486/146,158) of cases. Additionally, the main
method used to carry out the teleconsultations was via telephone
call, with videoconferencing showing a very low usage rate
(only 192 [0.13%] videoconferencing teleconsultations in total).
When carried out, videoconferencing was performed via
smartphone, using patients’ preferred software that was

previously installed on their device. The main challenge faced
during the expansion phase in Teófilo Otoni was the difficulty
in reaching patients, even by telephone call, which may be due
to the instability of the local telephone network and the fact that
part of the population lives in rural areas and lack familiarity
with telecommunication tools. Due to these same logistical and
cultural reasons, the use of videoconferencing and other
technologies such as chatbot was even more challenging.

Another difficulty was aligning the clinical guideline developed
for remote care with the practice carried out in the city. To face
this challenge, training meetings were held with local health
teams, and several seminars addressing theoretical issues related
to the management of patients with COVID-19 were carried
out. The number of assessments initiated via chatbot was low
in Teófilo Otoni, which may be due to the low socioeconomic
level of the population and their limited digital literacy when
dealing with new technologies. However, the number of calls
via chatbot was extensive among the university community at
UFMG, which is consistent with college users who have the
digital skills needed to deal with chatbots.

Of the 60 health care professionals who used the system when
the assessment was performed, 50 (83%) answered the
questionnaire (age: median 35, IQR 31-40 years; women: n=43,
86%). Of these professionals, 42% (n=21) were physicians and
54% (27) were nurses (Table S3 in Multimedia Appendix 1).

Overall, the system was evaluated as satisfactory (Table 1 and
Figure S1 in Multimedia Appendix 1). The only exception was
for the statement “The system is stable, and no errors occur
during use,” which had a median score of 4 (IQR 2-4). We
believe this score reflects technical infrastructure problems and
the short time taken to put the system into production, which
prevented debugging. With regard to the open-ended questions,
35 participants answered at least one question, 44 commented
on the system’s strengths, 41 mentioned weaknesses, 37 made
suggestions, and 16 commented on their experience with the
system (see “Responses to the open-ended questions” in
Multimedia Appendix 1).
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Figure 5. Percentage of teleconsultation distribution efficiency among the 3 cities in our study. UFMG: Universidade Federal de Minas Gerais.

Table 1. Usability and satisfaction assessment (n=50). Likert-scale responses range from 1 to 5: 1=totally disagree, 2=partially disagree, 3=indifferent,
4=partially agree, and 5=totally agree.

MeanMedian (IQR)Item

4.95 (5-5)System screens can be easily understood.

4.645 (4-5)The system allows recording all relevant data on patient consultation.

4.865 (5-5)By following the screen prompts, I was able to provide patient care with quality.

4.845 (5-5)The system fields are easy to fill out.

4.425 (4-5)The system is intuitive to use.

4.965 (5-5)I believe that the system can be useful in clinical practice, for the care of patients with suspected
COVID-19.

3.34 (2-4)The system is stable, and no errors occur during use.

4.645 (4-5)I was satisfied with the use of the system.

Discussion

Principal Findings
Our study presents a novel telehealth tool from its
conceptualization through its development, validation,
implementation, and rapid expansion. When planning the
teleconsultation system, 2 major barriers to the implementation
were identified. First, the lack of local experience with the
functionalities needed for synchronous teleconsultation. Despite
the TNMG’s long experience with other telehealth tools, it was
only after the spread of COVID-19 that a legal and regulatory
framework emerged, authorizing remote medical and other
professional health consultations in Brazil [13]. Second, as
COVID-19 was a new disease, information about it was still
scarce. Due to the successive emergence of new evidence, the
system’s initial matrix had to be progressively changed over
time. Thus, a continuous development and validation process

was of utmost importance to guarantee that the system was kept
in line with updated evidence.

The use of the TeleCOVID-MG system made it possible to
clarify queries about the novel coronavirus and deliver remote
care to thousands of patients, thus reducing the circulation of
individuals with respiratory or flu-like symptoms, minimizing
the burden on health services, and increasing patient access to
care in places with scarce health resources; together, these
possibilities evidence the critical role of telemedicine in
expanding emergency services capacity during a pandemic. The
system also contributed to the updating of several health care
professionals on the main topics related to COVID-19.

Doubts and concerns about the use of teleconsultations,
especially teleconsultations performed by telephone calls (which
was the most frequently used medium in our context), were
already present even before the pandemic. Impossibility to
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perform the physical examination, compromised
physician-patient relationship, difficulty in performing a global
assessment of the patient that only focus on acute complaints,
and uncertainty in the quality of information are some of the
challenges reported in studies that evaluated the perception of
health care professionals about the use of teleconsultations
[14-17]. With the pandemic, providers and patients were forced
into a new normal that included communicating with each other
through video and audio [18], and studies have demonstrated
that the COVID-19 pandemic affected the way physicians use
and perceive telehealth and increased telehealth activities use
both in type and frequency [19] despite the aforementioned
limitations. Through their experience during the pandemic,
physicians became more convinced of the efficacy, efficiency,
and safety of telemedicine, as well as their ability to meet their
patients’ needs remotely. Although there was a shift in
physicians’ activities and perceptions, concerns about the
effectiveness of remote consults and the lack of adequate legal
frameworks remain [17]. Negative aspects related to
teleconsultations reported in the literature include concerns
about the absence of visual clues, inability to perform a physical
examination, and thus the lack of comprehensive assessments
[17,18].

Health care professionals with no experience in telehealth
needed to quickly develop skills in web-based rapport building
[19]; therefore, assessing the usability and provider satisfaction
of each implemented system is of utmost importance. The
analysis of usability and satisfaction of health care professionals
with our system showed that most of them agreed that the system
is intuitive and easy to understand and operate; allows them to
provide care with quality; and is useful for evaluating patients
with COVID-19. The social function of the systems was
highlighted for the way it guaranteed the expansion of access
to health care and decreased the burden in local health care. In
addition, the systems allow interdisciplinarity and the
development of a continuum of care until the patient’s complete
recovery.

Our results are in line with other studies [4,20-22], which
showed high levels of satisfaction with telemedicine
implemented during the pandemic. A recent integrative review
has found 5 studies assessing provider satisfaction, all of them
in outpatient clinics for specialized care during the pandemic
for other conditions, and satisfaction ranged from 78% to 93%
among the studies [23]. The evidence presented here suggests
the feasibility of incorporating synchronous teleconsultations
for the management of other health conditions. For this
application to be possible, we emphasize the need for constant
improvements in the systems and the importance of integrating
remote care with face-to-face care.

Bearing in mind that the uptake and sustainability of telehealth
interventions are the ultimate goals when implementing them,
we highlight the following as takeaway lessons:

• Previous expertise is important for the successful
development of a new system, particularly when
implementation within a short amount of time is needed;

• The engagement of end users, in this case health care
professionals, in system design and development is of

utmost importance to ensure the fulfillment of user needs
and usability;

• Health care professionals’ perception of telehealth was
positively impacted by the pandemic setting, as shown by
their reported high levels of satisfaction; and

• In remote or resource-constrained locations with unstable
internet, having an alternative way to perform
teleconsultation (such as using telephone calls) is of utmost
importance.

The main challenges faced in the usability of the
TeleCOVID-MG system were related to the instability of the
local telephone network, the need to align the clinical guideline
developed for remote care with the practices carried out in the
municipalities, and continually adjusting the system to the new
scientific evidence and practices arising through the course of
the pandemic.

As limitations of the TeleCOVID-MG system, we should remark
that the lack of integration with data from face-to-face assistance
were reported. The need for an interoperable health care system
became blatantly evident worldwide during the COVID-19
pandemic to avoid duplicating work and improve
decision-making. Although not designed for interoperability,
the system architecture allowed the on-demand generation of
customized queries and reports.

With great growth in the use of teleconsultations as a way to
fight the pandemic, several entities have published guidelines
to help health care professionals in remote patient care [24].
Furthermore, studies have been published focusing on evaluating
the use of this telehealth tool and proposing adjustments for
expansion in the postpandemic period [18,20].

Limitations
With regards to the efficiency assessment, although the team
performed a thorough assessment of referrals and nonreferrals,
there might be cases in which patients did seek face-to-face care
despite not having been recommended to do so. Patient and
caregiver experience, as well as patient digital literacy and
satisfaction with the TeleCOVID-MG service, has not been
formally addressed yet. We opted to restrict our analysis to
health care professionals due to 2 main reasons: (1) they had to
adapt their work routine very quickly due to the pandemic; and
(2) they were the primary users of the teleconsultation system,
as they had to fill out the patients’ electronic record and issue
medical prescriptions, reports, and orders for diagnostic
COVID-19 tests through the system. Despite the lack of formal
assessment with patients, the assisting health care professionals
reported spontaneous comments from patients on how they felt
welcomed and listened to in a better way than in face-to-face
consultation, as they had time to report everything they wanted,
without the time constraints present in face-to-face consultations.
This finding supports the idea that it is indeed possible to
provide humanized care in telehealth. We are currently
conducting a formal patient satisfaction analysis for
TeleCOVID-MG.

Due to the pandemic scenario and the goal of including as many
health care professionals who were using the system as possible
in our usability and satisfaction assessment, our analysis was
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centered mainly on our questionnaire. A more thorough analysis
about satisfaction drivers using a more in-depth qualitative study
could provide additional lessons.

Conclusion
This paper described the rapid development, implementation,
and expansion of the TeleCOVID-MG system, as well as the
results of our usability and satisfaction assessment with health
care professionals. The system made it possible to answer
queries about COVID-19 and provide remote care to thousands
of patients, showing the critical role of telemedicine in
expanding emergency services capacity during a pandemic. The
dynamic nature of the current pandemic required regular updates

in the system and frequent monitoring of the implemented
actions. The experience reported here is expected to inform
telemedicine strategies to be implemented in a postpandemic
scenario, not only to deal with eventual new pandemics but also,
and most importantly, explore the affordances of telemedicine
to enhance public policies aimed at promoting health care
prevention, treatment, and education. Furthermore, our
experience illustrates the local and cultural challenges and
specificities that need to be dealt with in the development of
such systems, which indicate that even if there were
“off-the-shelf” solutions available, they might not be able to
address local community needs.
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Abstract

Background: A primary goal of precision medicine is to identify patient subgroups and infer their underlying disease processes
with the aim of designing targeted interventions. Although several studies have identified patient subgroups, there is a considerable
gap between the identification of patient subgroups and their modeling and interpretation for clinical applications.

Objective: This study aimed to develop and evaluate a novel analytical framework for modeling and interpreting patient
subgroups (MIPS) using a 3-step modeling approach: visual analytical modeling to automatically identify patient subgroups and
their co-occurring comorbidities and determine their statistical significance and clinical interpretability; classification modeling
to classify patients into subgroups and measure its accuracy; and prediction modeling to predict a patient’s risk of an adverse
outcome and compare its accuracy with and without patient subgroup information.

Methods: The MIPS framework was developed using bipartite networks to identify patient subgroups based on frequently
co-occurring high-risk comorbidities, multinomial logistic regression to classify patients into subgroups, and hierarchical logistic
regression to predict the risk of an adverse outcome using subgroup membership compared with standard logistic regression
without subgroup membership. The MIPS framework was evaluated for 3 hospital readmission conditions: chronic obstructive
pulmonary disease (COPD), congestive heart failure (CHF), and total hip arthroplasty/total knee arthroplasty (THA/TKA) (COPD:
n=29,016; CHF: n=51,550; THA/TKA: n=16,498). For each condition, we extracted cases defined as patients readmitted within
30 days of hospital discharge. Controls were defined as patients not readmitted within 90 days of discharge, matched by age, sex,
race, and Medicaid eligibility.

Results: In each condition, the visual analytical model identified patient subgroups that were statistically significant (Q=0.17,
0.17, 0.31; P<.001, <.001, <.05), significantly replicated (Rand Index=0.92, 0.94, 0.89; P<.001, <.001, <.01), and clinically
meaningful to clinicians. In each condition, the classification model had high accuracy in classifying patients into subgroups
(mean accuracy=99.6%, 99.34%, 99.86%). In 2 conditions (COPD and THA/TKA), the hierarchical prediction model had a small
but statistically significant improvement in discriminating between readmitted and not readmitted patients as measured by net
reclassification improvement (0.059, 0.11) but not as measured by the C-statistic or integrated discrimination improvement.

Conclusions: Although the visual analytical models identified statistically and clinically significant patient subgroups, the
results pinpoint the need to analyze subgroups at different levels of granularity for improving the interpretability of intra- and
intercluster associations. The high accuracy of the classification models reflects the strong separation of patient subgroups, despite
the size and density of the data sets. Finally, the small improvement in predictive accuracy suggests that comorbidities alone were
not strong predictors of hospital readmission, and the need for more sophisticated subgroup modeling methods. Such advances
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could improve the interpretability and predictive accuracy of patient subgroup models for reducing the risk of hospital readmission,
and beyond.

(JMIR Med Inform 2022;10(12):e37239)   doi:10.2196/37239

KEYWORDS

visual analytics; Bipartite Network analysis; hospital readmission; precision medicine; modeling; Medicare

Introduction

Overview
A wide range of studies [1-9] on topics ranging from molecular
to environmental determinants of health have shown that most
humans tend to share a subset of characteristics (eg,
comorbidities, symptoms, or genetic variants), forming distinct
patient subgroups. A primary goal of precision medicine is to
identify such patient subgroups, and to infer their underlying
disease processes to design interventions targeted at those
processes [2,10]. For example, recent studies on complex
diseases such as breast cancer [3,4], asthma [5-7], and
COVID-19 [11] have revealed patient subgroups, each with
different underlying mechanisms precipitating the disease and
therefore each requiring different interventions.

However, there is a considerable gap between the identification
of patient subgroups and their modeling and interpretation for
clinical applications. To bridge this gap, we developed and
evaluated a novel analytical framework called modeling and
interpreting patient subgroups (MIPS) using a 3-step modeling
approach: (1) identification of patient subgroups, their frequently
co-occurring characteristics, and their risk of adverse outcomes;
(2) classification of a new patient into one or more subgroups;
and (3) prediction of an adverse outcome for a new patient
informed by subgroup membership. We evaluated MIPS on 3
data sets related to hospital readmission, which helped pinpoint
the strengths and limitations of MIPS. Furthermore, the results
provided implications for improving the interpretability of
patient subgroups in large and dense data sets, and for the design
of clinical decision support systems to prevent adverse outcomes
such as hospital readmissions.

Identification of Patient Subgroups
Patients have been divided into subgroups using (1)
investigator-selected variables such as race for developing
hierarchical regression models [12] or assigning patients to
different arms of a clinical trial, (2) existing classification
systems such as the Medicare Severity-Diagnosis Related Group
[13] to assign patients to a disease category for purposes of
billing, and (3) computational methods such as classification
[14-16] and clustering [5,17] to discover patient subgroups from
data (also referred to as subtypes or phenotypes depending on
the condition and variables analyzed).

Several studies have used a wide range of computational
methods to identify patient subgroups, each with critical
trade-offs. Some studies have used combinatorial approaches
[18] (identifying all pairs, all triples, etc), which although
intuitive, can lead to a combinatorial explosion (eg, enumerating
combinations of the 31 Elixhauser comorbidities would lead to

231 or 2147483648 combinations), with most combinations that
do not incorporate the full range of symptoms (eg, the most
frequent pair of symptoms ignores which other symptoms exist
in the profile of patients with that pair). Other studies have used
unipartite clustering methods [16,17] (clustering patients or
comorbidities but not both together), such as k-means and
hierarchical clustering. Furthermore, dimensionality-reduction
methods such as principal component analysis used with
unipartite clustering methods have been used to identify clusters
of frequently co-occurring comorbidities [18-24]. However,
such methods have well-known limitations, including the
requirement of inputting user-selected parameters (eg, similarity
measures and the number of expected clusters) and the lack of
a quantitative measure to describe the quality of the clustering
(critical for measuring the statistical significance of the
clustering). Furthermore, because these methods are unipartite,
there is no agreed-upon method for identifying the patient
subgroup defined by a cluster of variables, and vice versa.

More recently, bipartite network analysis [25] has been used to
address these limitations by automatically identifying biclusters,
consisting of patients and characteristics simultaneously. This
method takes as input any data set, such as patients and their
comorbidities, and outputs a quantitative and visual description
of biclusters (containing both patient subgroups and their
frequently co-occurring comorbidities). The quantitative output
generates the number, size, and statistical significance of the
biclusters [26-28], and the visual output displays the quantitative
information of the biclusters through a network visualization
[29-31]. Bipartite network analysis therefore enables (1) the
automatic identification of biclusters and their significance and
(2) the visualization of the biclusters critical for their clinical
interpretability. Furthermore, the attributes of patients in a
subgroup can be used to measure the subgroup risk for an
adverse outcome, develop classification models for classifying
a new patient into one or more of the subgroups, and develop
prediction models that use subgroup membership for measuring
the risk of an adverse outcome for the classified patient.

However, although several studies [11,28,32-38] have
demonstrated the usefulness of bipartite networks for the
identification and clinical interpretation of patient subgroups,
there has been no systematic attempt to integrate them with
classification and prediction modeling, which is a critical step
toward their clinical application. Therefore, we leveraged the
advantages of a bipartite network to develop the MIPS
framework with the goal of bridging the gap between the
identification of patient subgroups, and their modeling and
interpretation for future clinical applications.

JMIR Med Inform 2022 | vol. 10 | iss. 12 |e37239 | p.106https://medinform.jmir.org/2022/12/e37239
(page number not for citation purposes)

Bhavnani et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/37239
http://www.w3.org/Style/XSL
http://www.renderx.com/


The Need for Modeling and Interpreting Patient
Subgroups in Hospital Readmission
An estimated 1 in 5 elderly patients (more than 2.3 million
Americans) is readmitted to a hospital within 30 days of
discharge [39]. Although many readmissions are unavoidable,
an estimated 75% of readmissions are unplanned and mostly
preventable [40], imposing a significant burden in terms of
mortality, morbidity, and resource consumption. Across all
conditions, unplanned readmissions in the United States cost
approximately US $17 billion [40], making them an ineffective
use of costly resources. Consequently, hospital readmission is
closely scrutinized as a marker for poor quality of care by
organizations such as the Centers for Medicare & Medicaid
Services (CMS) [41].

To address this epidemic of hospital readmission, CMS
sponsored the development of models to predict the
patient-specific risk of readmission in specific index conditions
such as chronic obstructive pulmonary disease (COPD) [42],
congestive heart failure (CHF) [43], and total hip
arthroplasty/total knee arthroplasty (THA/TKA) [44]. As
numerous studies have shown that almost two-thirds of older
adults have 2 or more comorbid conditions with a heightened
risk of adverse health outcomes [18], the independent variables
in the CMS models included prior comorbidities (as recorded
in Medicare claims data) and demographics (age, sex, and race).
However, although prior studies have shown the existence of
subgroups among patients with hospital readmission [28], none
of the CMS models have incorporated patient subgroups. The

identification and inclusion of patient subgroups could improve
the accuracy of predicting hospital readmission for a patient, in
addition to enabling the design of interventions targeted at each
patient subgroup to reduce the risk of readmission. Therefore,
we used the MIPS framework to model and interpret patient
subgroups in hospital readmission and tested its generality across
the 3 index conditions. Furthermore, to enable a head-to-head
comparison with existing CMS predictive models, we used the
same independent variables as were used in those models, in
addition to patient subgroup membership when developing our
prediction models.

Methods

Overview
Figure 1 provides a conceptual description of the data inputs
and outputs from the 3-step modeling in MIPS. The visual
analytical model identifies patient subgroups and visualizes
them through a network. The classification model determines
the subgroup membership for cases and controls. These
subgroup memberships are then used to measure the risk for
readmission within each subgroup based on the proportion of
cases and juxtaposed with the respective subgroup visualization
to enable clinicians to interpret the readmitted patient subgroups.
Finally, the prediction model uses the subgroup membership
assignment of cases and controls to determine the readmission
risk of a patient. Multimedia Appendix 1 [16,23,25-31,45,46]
provides a summary of the inputs, methods, and outputs for
each model.

Figure 1. Inputs and outputs for the 3-step modeling in MIPS consisting of the visual analytical model, classification model, and prediction model.
MIPS: Modeling and Interpreting Patient Subgroups.
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Data Description

Study Population
We analyzed patients hospitalized for COPD, CHF, or
THA/TKA. We selected these 3 index conditions because (1)
hospitalizations for each of these conditions are highly prevalent
in older adults [39], (2) hospitals report very high variations in
their readmission rates [39], and (3) there exist well-tested
readmission prediction models for each of these conditions that
do not consider patient subgroups [42-44,47,48].

Data for these 3 index conditions were extracted from the
Medicare insurance claims data set. In 2019, Medicare provided
health insurance to approximately 64.4 million Americans, of
whom 55.5 million were older Americans (≥65 years) [49].
Furthermore, 94% of noninstitutionalized older Americans were
covered by Medicare [50], with eligible claims received from
6204 medical institutions across the United States, and is
therefore one of the few data sets that is highly representative
of older Americans and their care.

For each index condition, we used the same inclusion and
exclusion criteria that were used to develop the CMS models
but with the most recent years (2013-2014) provided by
Medicare when we started the project. We extracted all patients
who were admitted to an acute care hospital between July 2013
and August 2014 with a principal diagnosis of the index
condition, were aged ≥66 years, and were enrolled in both
Medicare parts A and B fee-for-service plans 6 months before
admission. Furthermore, we excluded patients who were
transferred from other facilities, died during hospitalization, or
transferred to another acute care hospital. Similar to the CMS
models, we selected the first admission for patients with multiple
admissions during the study period, and we did not use data
from Medicare Part D (related to prescription medications).

Multimedia Appendix 2 [40,44] describes (1) the International
Classification of Diseases, Ninth Version, codes for each of the
3 index conditions selected for analysis and (2) the inclusion
and exclusion criteria used to extract cases and controls for
COPD, CHF, and THA/TKA; the respective numbers of patients
extracted at each step; and how we addressed the small incidence
of missing data. Each modeling method used relevant subsets
of these data, as described in the Analytical and Evaluation
Approach section.

Variables
The independent variables consisted of comorbidities and patient
demographics (age, sex, and race). Comorbidities common in
older adults were derived from 3 established comorbidity
indices: Charlson Comorbidity Index [51], Elixhauser
Comorbidity Index [52], and the Center for Medicare and
Medicare Services Condition Categories used in the CMS
readmission models [53] (the variables in the CMS models
varied across the index conditions). As these indices had
overlapping comorbidities, we derived a union of them, which
was verified by the clinician stakeholders. They recommended
that we also include the following additional variables, as they
were pertinent to each index condition: COPD (history of sleep
apnea and mechanical ventilation), CHF (history of coronary
artery bypass graft surgery), and THA/TKA (congenital

deformity of the hip joint and posttraumatic osteoarthritis). For
each patient in our cohort, we extracted these comorbidities and
variables from the physicians, outpatient, and inpatient Medicare
claims data in the 6 months before (to guard against miscoding)
and on the day of the index admission. The dependent variable
(outcome) was whether a patient with an index admission
(COPD, CHF, or THA/TKA) had an unplanned readmission to
an acute care hospital within 30 days of discharge as was
recorded in the Medicare Provider Analysis and Review file
(inpatient claims) in the Medicare database.

Analytical and Evaluation Approach

Visual Analytical Modeling
The goal of visual analytical modeling was to identify and
interpret biclusters of readmitted patients (cases), consisting of
patient subgroups and their most frequently co-occurring
comorbidities. The data used to build the visual analytical model
in each index condition consisted of randomly dividing 100%
of the cases into training (50%) and replication (50%) data sets
(we use the term replication to avoid confusion with the term
validation typically used in classification and prediction
models). For feature selection, we extracted an equal number
of 1:1 matched controls based on age, sex, race, and ethnicity,
and Medicaid eligibility [45]. These data were analyzed for each
index condition using the following steps (Multimedia Appendix
1 provides additional details for each step):

1. Model training: to train the visual analytical model, we
used feature selection to identify the set of comorbidities
that were univariably significant in both the training and
replication data sets and used bicluster modularity
maximization [26,27] to identify the number, members,
and significance of biclusters in the training data set.

2. Model replication: to test the replicability of the biclusters,
we repeated the bicluster analysis on the replication data
set and used the Rand Index (RI) [46] to measure the degree
and significance of similarity in comorbidity co-occurrence
between the 2 data sets.

3. Model interpretation: to enable clinical interpretation of
the patient subgroups, we used the Fruchterman-Reingold
[29] and ExplodeLayout [30,31] algorithms to visualize the
network. Furthermore, based on a request from our clinician
stakeholder team, for each bicluster, we ranked and
displayed the comorbidity labels with their univariable odds
ratios (ORs) for readmission (obtained from the feature
selection mentioned earlier) and juxtaposed the readmission
risk of the bicluster (obtained from the classification step
discussed in the next section) onto the network visualization.
Clinician stakeholders were asked to use the visualization
to interpret patient subgroups, their mechanisms, and
potential interventions to reduce the risk of readmission.

Classification Modeling
The goal of classification modeling was to classify all cases and
controls from the entire Medicare data set into the biclusters
identified from the visual analytical model. The resulting
bicluster membership for all cases and controls was designed
to (1) develop the predictive modeling described in the next
section and (2) measure the risk of each subgroup to enable
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clinical interpretation of the patient subgroups. The training
data set in each condition consisted of a random sample of 75%
cases with their subgroup membership (output of the visual
analytical modeling) and an internal validation data set
consisting of randomly selected 25% of the cases (with subgroup
membership used to validate the model). These data were used
to develop and use classification models for each index condition
using the following steps (Multimedia Appendix 1 provides
additional details for each step):

1. Model training: to train the classifier, we used multinomial
logistic regression [16] with independent variables
consisting of comorbidities (identified through feature
selection). The accuracy of the trained model was measured
by calculating the percentage of times the model correctly
classified the cases into subgroups using the highest
predicted probability across the subgroups.

2. Model internal validation: to internally validate the
classifier, we randomly split these data into training (75%)
and testing (25%) data sets 1000 times. For each iteration,
we trained a model using the training data set and measured
its accuracy using the testing data set. This was done by
predicting subgroup membership using the highest predicted
probability among all the subgroups. The overall predicted
accuracy was estimated by calculating the mean accuracy
across the 1000 models.

3. Model application: to generate data for the visual analytical
and prediction models, the classifier was used to classify
100% of cases and controls from our entire Medicare data
set (July 2013-August 2014). The resulting classified data
were used to measure the risk of each subgroup (juxtaposed
onto the network visualization to enable clinical
interpretation) and to conduct the following prediction
modeling.

Prediction Modeling
The goal of prediction modeling was to predict the risk of
readmission for a patient, taking into consideration subgroup
membership. The data used to build the prediction models
consisted 100% of cases and 100% of controls, with subgroup
membership generated from the classification modeling. These
data were randomly spilt into training (75%) and internal
validation (25%) data sets. These data were used to train,
internally validate, and compare the prediction models in each
index condition using the following steps (Multimedia Appendix
1 provides additional details for each step):

1. Model training: to train the prediction model, we used
binary logistic regression for developing a Standard Model
(without subgroup membership, similar to the CMS models)
and a Hierarchical Model (with subgroup membership).
The independent variables for both models consisted of
comorbidities (identified through feature selection) and
demographics, and the outcome was 30-day unplanned
readmission (yes vs no).

2. Model internal validation: to internally validate the models,
we used the internal validation data set to measure
discrimination (C-statistic) and calibration
(calibration-in-the-large and calibration slope).

3. Model comparisons: to compare the accuracy of the
Standard and Hierarchical Models, we used the chi-squared
test to compare their C-statistics. Furthermore, to examine
how the Standard Model was applied to each subgroup, we
measured the C-statistics of the Standard Model applied to
each subgroup separately. Finally, because both these
models used comorbidities selected through feature
selection, they differed from the set of comorbidities used
in the published CMS models. Therefore, to perform a
head-to-head comparison with the published CMS models
(COPD [42], CHF [43], and THA/TKA [44]), we developed
a logistic regression model using the independent variables
from the published CMS model (CMS Standard Model)
and compared it to the same model, but which also included
subgroup membership (CMS Hierarchical Model). Similar
to these comparisons, we used the chi-squared test to
compare the C-statistics of the CMS standard and the CMS
Hierarchical Models and additionally measured the
differences between the models using net reclassification
improvement (NRI) and integrated discrimination
improvement (IDI).

Ethics Approval
Medicare data were analyzed using a CMS data-use agreement
(CMS DUA RSCH-2017-51404) and approved by the University
of Texas Medical Branch Institutional Review Board (16-0361).

Results

Data
Table 1 summarizes the number of cases and controls used to
develop the 3 models for each condition.
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Table 1. Training and replication/validation data sets used to develop the three models in each of the 3 index conditions.

TotalReplication/validationTrainingModel

Visual analyticala (cases/controls)

29,016/29,01614,508/14,50814,508/14,508Chronic obstructive pulmonary disease (COPD)

51,550/51,55025,775/25,77525,775/25,775Congestive heart failure (CHF)

16,498/16,9488249/82498249/8249Total hip arthroplasty/total knee arthroplasty (THA/TKA)

Classification (cases)

14,457361510,842COPD

25,672641819,254CHF

701017535257THA/TKA

Prediction (cases/controls)

29,026/157,0157334/39,17621,692/117,839COPD

51,573/244,18812,845/61,09538,728/183,093CHF

16,520/340,25241,44/85,04912,376/255,203THA/TKA

aThe visual analytical models used 1:1 matched controls for the feature selection, and used only cases for the bipartite networks to analyze heterogeneity
in readmission. The numbers shown for the visual analytical models are before removing patients with no comorbidities. The resulting cases-only data
sets were used for the classification modelling as shown.

Visual Analytical Modeling

Overview
Visual analytical modeling of readmitted patients in all 3 index
conditions produced statistically and clinically significant patient
subgroups and their most frequently co-occurring comorbidities,
which were significantly replicated. We report the results for
each index condition.

COPD Visual Analytical Model
The inclusion and exclusion selection criteria (Multimedia
Appendix 2) resulted in a training data set (n=14,508 matched
case-control pairs, of which 51 patient pairs had no dropped
comorbidities) and a replication data set (n=14,508 matched
case-control pairs, of which 51 patient pairs had no dropped
comorbidities), matched by age, sex, race, and Medicaid
eligibility (a proxy for economic status). The feature selection
method (Multimedia Appendix 3) used 45 unique comorbidities
identified from a union of the 3 comorbidity indices, plus 2
condition-specific comorbidities. Of these, 3 were removed
because of <1% prevalence. Of the remaining comorbidities,
30 survived significance and replication testing using Bonferroni
correction. The visual analytical model used these surviving
comorbidities (d=30), and readmitted patients with COPD with
at least one of these comorbidities (n=14,457).

As shown in Figure 2, bipartite network analysis identified 4
biclusters, each representing a subgroup of readmitted patients
with COPD and their most frequently co-occurring
comorbidities. Biclustering had significant modularity (Q=0.17;
z=7.3; P<.001) and significant replication (RI=0.92; z=11.62;
P<.001) of comorbidity co-occurrence. Furthermore, as
requested by the clinician stakeholders, we juxtaposed a ranked
list of comorbidities based on their ORs for readmission in each
bicluster, in addition to the risk for each patient subgroup.

The pulmonologist inspected the visualization and noted that
the readmission risk of the patient subgroups had a wide range
(12.7%-19.6%) with clinical (face) validity. Furthermore, the
co-occurrence of comorbidities in each patient subgroup was
clinically meaningful with interpretations for each subgroup.
Subgroup-1 had a low disease burden, with uncomplicated
hypertension leading to the lowest risk (12.7%). This subgroup
represented patients with early organ dysfunction and would
benefit from using checklists such as regular monitoring of
blood pressure in predischarge protocols to reduce the risk of
readmission. Subgroup-3 had mainly psychosocial
comorbidities, which could lead to aspiration precipitating
pneumonia, leading to an increased risk for readmission (15.9%).
This subgroup would benefit from early consultation with
specialists (eg, psychiatrists, therapists, neurologists, and
geriatricians) who have expertise in psychosocial comorbidities,
with a focus on the early identification of aspiration risks and
precautions. Subgroup-2 had diabetes with complications, renal
failure, and heart failure and therefore had higher disease burden,
leading to an increased risk of readmission (17.8%) compared
with Subgroup-1. This subgroup had metabolic abnormalities
with greater end-organ dysfunction and would therefore benefit
from case management by advanced practice providers (eg,
nurse practitioners) with rigorous adherence to established
guidelines to reduce the risk of readmission. Subgroup-4 had
diseases with end-organ damage, including gastrointestinal
disorders, and therefore had the highest disease burden and risk
for readmission (19.6%). This subgroup would also benefit from
case management with rigorous adherence to established
guidelines to reduce the risk of readmission. Furthermore, as
patients in this subgroup typically experience complications
that could impair their ability to make medical decisions, they
should be provided with early consultation with a palliative care
team to ensure that care interventions align with patients’
preferences and values.
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Figure 2. The chronic obstructive pulmonary disease (COPD) visual analytical model showing 4 biclusters consisting of patient subgroups and their
most frequently co-occurring comorbidities (whose labels are ranked by their univariable odds ratios, shown within parentheses) and their risk of
readmission (shown in blue text). GI: Gastrointestinal disorders; HD: Heart disease; MV: History of mechanical ventilation.

CHF Visual Analytical Model
The inclusion and exclusion selection criteria (Multimedia
Appendix 2) resulted in a training data set (n=25,775 matched
case-control pairs, of which 103 patient pairs with no dropped
comorbidities) and a replication data set (n=25,775 matched
case-control pairs, of which 104 patient pairs with no dropped
comorbidities), matched by age, sex, race, and Medicaid
eligibility (a proxy for economic status). The feature selection
method (Multimedia Appendix 3) used 42 unique comorbidities
identified from a union of the 3 comorbidity indices plus 1
condition-specific comorbidity. Of these, 1 comorbidity was
removed because of <1% prevalence. Of those remaining, 37
survived the significance and replication testing with the
Bonferroni correction. The visual analytical model (Figure 3)
used these surviving comorbidities (d=37) and cases consisting
of readmitted patients with CHF, with at least one of those
comorbidities (n=25,672). As shown in Figure 3, the bipartite
network analysis of the CHF cases identified 4 biclusters, each
representing a subgroup of readmitted patients with CHF and
their most frequently co-occurring comorbidities. The analysis
revealed that the biclustering had significant modularity

(Q=0.17; z=8.69; P<.001) and significant replication (RI=0.94;
z=17.66; P<.001) of comorbidity co-occurrence. Furthermore,
as requested by the clinicians, we juxtaposed a ranked list of
comorbidities based on their ORs for readmission in each
bicluster, in addition to the risk for each of the patient subgroups.

The geriatrician inspected the visualization and noted that the
readmission risk of the patient subgroups, ranging from 15.1%
to 19.9%, was wide, with clinical (face) validity. Furthermore,
the co-occurrence of comorbidities in each patient subgroup
was clinically significant. Subgroup-1 had chronic but stable
conditions and therefore had the lowest risk for readmission
(15.1%). Subgroup-3 had mainly psychosocial comorbidities
but was not as clinically unstable or fragile compared with
Subgroup-2 and Subgroup-4, and therefore had medium risk
(16.6%). Subgroup-2 had severe chronic conditions, making
them clinically fragile (with potential benefits from early
palliative and hospice care referrals), and were therefore at high
risk for readmission if nonpalliative approaches were used
(19.9%). Subgroup-4 had severe acute conditions that were also
clinically unstable, associated with substantial disability and
care debility and therefore at high risk for readmission and
recurrent intensive care unit use (19.9%).
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Figure 3. The congestive heart failure (CHF) visual analytical model showing 4 biclusters consisting of patient subgroups and their most frequently
co-occurring comorbidities (whose labels are ranked by their univariable odds ratios, shown within parentheses) and their risk of readmission (shown
in blue text). CABG: History of coronary artery bypass graft surgery; COPD: Chronic obstructive pulmonary disease; GI: Gastrointestinal disorders;
HD: Heart disease.

THA/TKA Visual Analytical Model
The inclusion and exclusion selection criteria (Multimedia
Appendix 2) resulted in a training data set (n=8249 matched
case-control pairs, of which 1239 patient pairs had no dropped
comorbidities) and a replication data set (n=8249 matched
case-control pairs, of which 1264 patient pairs had no dropped
comorbidities), matched by age, sex, race, and Medicaid
eligibility (a proxy for economic status). Feature selection
(Multimedia Appendix 3) used 39 unique comorbidities
identified from the 3 comorbidity indices plus 2
condition-specific comorbidities. Of these, 11 comorbidities
were excluded because of <1% prevalence. Of the remaining,
11 comorbidities survived significance and replication testing
with the Bonferroni correction. The visual analytical model
(Figure 4) used these surviving comorbidities (d=11) and cases
consisting of readmitted patients with at least one of those
comorbidities (n=7010).

As shown in Figure 4, the bipartite network analysis of
THA/TKA cases identified 7 biclusters, each representing a
subgroup of readmitted patients with THA/TKA and their most
frequently co-occurring comorbidities. The analysis revealed
that biclustering had significant modularity (Q=0.31; z=2.52,
P=.01), and significant replication (RI=0.89; z=3.15; P=.002)
of comorbidity co-occurrence. Furthermore, as requested by the
clinician stakeholders, we juxtaposed a ranked list of

comorbidities based on their ORs for readmission in each
bicluster, in addition to the risk for each patient subgroup.

The geriatrician inspected the network and noted that patients
with total knee arthroplasty, in general, were healthier than
patients with total hip arthroplasty. Therefore, the network was
difficult to interpret when the 2 index conditions were merged
together. Although our analysis was constrained because we
used the conditions defined by CMS, these results nonetheless
suggest that the interpretations did not suffer from a
confirmation bias (manufactured interpretations to fit the
results). However, he noted that the range of readmission risk
had clinical (face) validity. Furthermore, Subgroup-2,
Subgroup-4, and Subgroup-5 had more severe comorbidities
related to the lung, heart, and kidney and therefore had a higher
risk for readmission compared with Subgroup-1, Subgroup-6,
and Subgroup-7, which had less severe comorbidities and
therefore had a lower risk for readmission. In addition,
Subgroup-2, Subgroup-5, Subgroup-6, and Subgroup-7 would
benefit from chronic care case management from advanced
practice providers (eg, nurse practitioners). Finally, Subgroup-2
and Subgroup-5 would benefit from using well-established
guidelines for CHF and COPD, Subgroup-7 would benefit from
mental health care and management of psychosocial
comorbidities, and Subgroup-6 would benefit from care for
obesity and metabolic disease management.
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Figure 4. The total hip arthroplasty/total knee arthroplasty (THA/TKA) visual analytical model showing 4 biclusters consisting of patient subgroups
and their most frequently co-occurring comorbidities (whose labels are ranked by their univariable odds ratios, shown within parentheses) and their risk
for readmission (shown in blue text). CHF: Congestive heart failure; COPD: Chronic obstructive pulmonary disease; OB: Obesity.

Classification Modeling

Overview
The classification model used multinomial logistic regression
for each index condition (Multimedia Appendix 4 for the model
coefficients) to predict the membership of patients using
subgroups (identified from the aforementioned visual analytical

models). The results revealed that in each index condition, the
classification model had high accuracy in classifying all the
cases in the full data set (training data set used in the visual
analytical modeling). Similarly, the internal validation results
using a 75%:25% split of this data set also had a high
classification accuracy (Table 2 with classification accuracy
divided into quantiles). We report the results for each index
condition.

Table 2. Internal validation results showing the percentage of chronic obstructive pulmonary disease (COPD) congestive heart failure (CHF), and total
hip arthroplasty/total knee arthroplasty (THA/TKA) patients correctly-assigned to a subgroup by the classification models in each condition.

Summary, mean (SD; range)QuantilesModels

Q 0.975Q 0.75Q 0.50Q 0.25Q 0.025

COPD

100 (0.02; 99.7-100)100.00100.00100.00100.0099.90Training (n=10842)

99.6 (0.15; 99.1-100)99.8099.6099.6099.4099.30Testing (n=3615)

CHF

99.57 (0.11; 99-99.9)99.8099.6099.6099.5099.40Training (n=19254)

99.34 (0.15; 98.7-99.7)99.6099.4099.3099.3099.00Testing (n=6418)

THA/TKA

100 (0; 100-100)100.00100.00100.00100.00100.00Training (n=5257)

99.86 (0.09; 99.4-100)100.0099.9099.9099.8099.70Testing (n=1753)

COPD Classification Model
The model correctly predicted subgroup membership for 99.9%
(14,443/14,457) of the cases in the full data set. Furthermore,
as shown in Table 2, the internal validation results revealed that
the percentage of COPD cases correctly assigned to a subgroup
in the testing data set ranged from 99.1% to 100%, with a
median (Q.50 as shown in Table 2) of 99.6%, and with 95%
being in the range of 99.3% to 99.8%.

CHF Classification Model
The model correctly predicted the subgroup membership for
99.2% (25,476/25,672) of the cases in the full data set.
Furthermore, as shown in Table 2, the internal validation results
revealed that the percentage of CHF cases correctly assigned
to a subgroup in the testing data set ranged from 98.7% to
99.7%, with a median (Q.50) of 99.3%, and with 95% being in
the range between 99% to 99.6%.
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THA/TKA Classification Model
The model correctly predicted subgroup membership in 100%
(7010/7010) of the cases in the full data set. Furthermore, as
shown in Table 2, the internal validation results revealed that
the percentage of CHF cases correctly assigned to a subgroup
in the testing data set ranged from 99.4% to 100%, with a
median (Q.50) of 99.9%, and with 95% being in the range of
99.7% to 100%.

Application of the Classification Model to Generate
Information for Other Models
The classification model was used to classify 100% of cases
and 100% of controls for use in the prediction model (described
in the next section). Furthermore, the proportion of cases and
controls classified into each subgroup was used to calculate the
risk of readmission for the respective subgroup (Multimedia
Appendix 3). As this subgroup risk information was requested
by the clinicians to improve the interpretability of the visual
analytical model, the risk was juxtaposed next to the respective
subgroups in the bipartite network visualizations (see blue text
in Figures 2-4).

Prediction Modeling

Overview
For each of the 3 index conditions, we developed 2 binary
logistic regression models to predict readmission, with

comorbidities in addition to sex, age, and race: (1) Standard
Model representing all patients without subgroup membership,
similar to the CMS models and (2) Hierarchical Model with an
additional variable that adjusted for subgroup membership.

COPD Prediction Model
The inclusion and exclusion criteria (Multimedia Appendix 2)
resulted in a cohort of 186,041 patients (29,026 cases and
157,015 controls). As shown in Figure 5A, the Standard Model
had a C-statistic of 0.624 (95% CI 0.617-0.631) which was not
significantly (P=.86) different from the Hierarchical Model that
had a C-statistic of 0.625 (95% CI 0.618-0.632). The calibration
plots revealed that both models had a slope close to 1 and an
intercept close to 0 (Multimedia Appendix 5 [42-44]).

As shown in Figure 5B, the Standard Model was used to
measure the predictive accuracy of patients in each subgroup.
The results showed that Subgroup-1 had a lower C-statistic than
Subgroup-3 and Subgroup-4. Although the C-statistics in Figures
5A and Figures 5B cannot be compared as they are based on
models developed from different populations, these results
reveal that the current CMS readmission model for CHF might
be underperforming for a COPD patient subgroup, pinpointing
which one might benefit from a Subgroup-Specific Model.

Figure 5. Predictive accuracy of the Standard Model compared with the Hierarchical Model in chronic obstructive pulmonary disease (COPD), as
measured by the C-statistic. The C-statistic for the Centers for Medicare & Medicaid Services Standard Model is shown as a dotted line. (B) Predictive
accuracy of the Standard Model when applied separately to patients classified to each subgroup. Subgroup-1 has lower accuracy than Subgroup-3 and
Subgroup-4. (C-statistics in A and B cannot be compared, as they are based on models from different populations).

CHF Prediction Model
The inclusion and exclusion criteria (Multimedia Appendix 2)
resulted in a cohort of 295,761 patients (51,573 cases and
244,188 controls). As shown in Figure 6A, the Standard Model
had a C-statistic of 0.600 (95% CI 0.595-0.605), which was not
significantly different (P=.29) from the Hierarchical Model,
which also had a C-statistic of 0.600 (95% CI 0.595-0.606).
The calibration plots revealed that all the models had a slope
close to 1 and an intercept close to 0 (Multimedia Appendix 5).

As shown in Figure 6B, the Standard Model was used to
measure the predictive accuracy of patients in each subgroup.
The results showed that Subgroup-1 had a lower C-statistic than
Subgroup-4. Although the C-statistics in Figures 6A and 6B
cannot be compared as they are based on models developed
from different populations, these results reveal that the current
CMS readmission model for CHF might be underperforming
for a CHF patient subgroup, pinpointing which one might benefit
from a Subgroup-Specific model.
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Figure 6. (A) Predictive accuracy of the Standard Model compared with the Hierarchical Model in congestive heart failure (CHF) as measured by the
C-statistic. The C-statistic for the Centers for Medicare & Medicaid Services Standard Model is shown as a dotted line. (B) Predictive accuracy of the
Standard Model when applied separately to patients classified to each subgroup. Subgroup-1 has lower accuracy than Subgroup-3 and Subgroup-4.
(C-statistics in A and B cannot be compared, as they are based on models from different populations).

THA/TKA Prediction Model
The inclusion and exclusion criteria (Multimedia Appendix 2)
resulted in a cohort of 356,772 patients (16,520 cases and
340,252 controls). As shown in Figure 7A, the Standard Model
had a C-statistic of 0.638 (95% CI 0.629-0.646), which was not
significantly different (P=.69) from the Hierarchical Model,
which had a C-statistic of 0.638 (95% CI 0.629-0.647). The
calibration plots (Multimedia Appendix 5) revealed that both
the models had a slope close to 1 and an intercept close to 0
(Multimedia Appendix 5).

As shown in Figure 7B, the Standard Model was used to
measure the predictive accuracy of patients in each subgroup.
The results showed that Subgroup-1 had a lower C-statistic than
Subgroup-4. Again, although the C-statistics in Figures 7A and
7B cannot be compared as they are based on models developed
from different populations, similar to the results in COPD, these
results reveal that the current CMS readmission model for
THA/TKA might be underperforming for 4 patient subgroups,
pinpointing which ones might benefit from a Subgroup-Specific
Model.

Figure 7. (A) Predictive accuracy of the Standard Model compared with the Hierarchical Model in total hip arthroplasty/total knee arthroplasty
(THA/TKA) as measured by the C-statistic. The C-statistic for the Centers for Medicare & Medicaid Services Standard Model is shown as a dotted
line. (B) Predictive accuracy of the Standard Model when applied separately to patients classified to each subgroup. Subgroup-1 has lower accuracy
than Subgroup-7. (C-statistics in A and B cannot be compared, as they are based on models developed from different populations).

CMS Standard Model Versus CMS Hierarchical Model
Unlike the CMS published models, the models we developed
used only the comorbidities that survived the feature selection.
Therefore, to perform a head-to-head comparison with the
published CMS models, we also developed a CMS Standard
Model (using the same variables from the published CMS
model) and compared it to the corresponding CMS Hierarchical
Model (with an additional variable for subgroup membership)
in each condition. Similar to the models in Figures 5-7, there
were no significant differences in the C-statistics between the
2 modeling approaches in any condition (Multimedia Appendix
5). However, as shown in Table 3, the CMS Hierarchical Model
for COPD had significantly higher NRI but not significantly
higher IDI than the CMS Standard Model, whereas the CMS
Hierarchical Model for CHF had a significantly lower NRI and

IDI than the CMS Standard Model, and the CMS Hierarchical
Model for THA/TKA had a significantly higher NRI but not
significantly higher IDI than the CMS Standard Model.
Furthermore, similar to the results presented in 6B, 7B, and 8B,
when the CMS Standard Model was used to predict readmission
separately in subgroups within each index condition, it identified
subgroups that underperformed, pinpointing which ones might
benefit from a Subgroup-Specific Model (Multimedia Appendix
5). In summary, the comparisons between the CMS Standard
Models and the respective CMS Hierarchical Models showed
that in the 2 conditions (COPD and THA/TKA), there was a
small but statistically significant improvement in discriminating
between the readmitted and not readmitted patients as measured
by NRI, but not as measured by the C-statistic or IDI, and that
a subgroup in each index condition might be underperforming
when using the CMS Standard Model.
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Table 3. Comparison of the Centers for Medicare & Medicaid Services (CMS) Standard Model with the CMS Hierarchical Model across the three
index conditions based on net reclassification improvement (NRI) and integrated discrimination improvement (IDI).

IDINRIModel

P valuez valueIDI (95% CI)P valuez valueContinuous (95% CI)P valuez valueCategorical (95% CI)

.51−0.650.0002 (−0.0004 to
0.0008)

<.001−4.680.059 (0.034 to 0.083)<.001−4.100.023 (0.012 to 0.034)COPDa

<.0013.92−0.0006 (−0.0009 to
−0.0003)

<.0013.92−0.038 (−0.057 to
−0.019)

.0013.27−0.010 (−0.016 to
−0.004)

CHFb

<.0015.88−0.003 (−0.004 to
−0.002)

<.001−7.010.111 (0.080 to 0.142)<.001−4.310.022 (0.012 to 0.032)THA/TKAc

aCOPD: chronic obstructive pulmonary disease.
bCHF: congestive heart failure.
cTHA/TKA: total hip arthroplasty/total knee arthroplasty.

Discussion

Overview
Our overall approach of using the MIPS framework to identify
patient subgroups through visual analytics, and using those
subgroups to build classification and prediction models revealed
strengths and limitations for each modeling approach and for
our data source. This examination provided insights for
developing future clinical decision support systems and a
methodological framework for improving the clinical
interpretability of subgroup modeling results.

Strengths and Limitations of Modeling Methods and
Data Source

Visual Analytical Modeling
The results revealed three strengths of the visual analytical
modeling: (1) the use of bipartite networks to simultaneously
model patients and comorbidities enabled the automatic
identification of patient-comorbidity biclusters and the integrated
analysis of co-occurrence and risk; (2) the use of a bipartite
modularity maximization algorithm to identify the biclusters
enabled the measurement of the strength of the biclustering,
critical for gauging its significance; and (3) the use of a graph
representation enabled the results to be visualized through a
network. Furthermore, the clinician stakeholders’ request to
juxtapose the risk of each subgroup with their visualizations
appeared to be driven by the need to reduce working memory
loads (from having to remember that information when its spread
over different outputs), which could have enhanced their ability
to match bicluster patterns with chunks (previously learned
patterns of information) stored in long-term memory. The
resulting visualizations enabled them to recognize subtypes
based on co-occurring comorbidities in each subgroup, reason
about the processes that precipitate readmission based on the
risk of each subtype relative to the other subtypes, and propose
interventions that were targeted to those subtypes and their risks.
Finally, the fact that the geriatrician could not fully interpret
the THA/TKA network because it combined 2 fairly different
conditions suggests that the clinical interpretations were not the
result of a confirmation bias (interpretations leaning toward
fitting the results).

However, the results also revealed two limitations: (1) although
modularity is estimated using a closed-form equation (formula),
no closed-form equation exists to estimate modularity variance,
which is necessary to measure its significance. To estimate
modularity variance, we used a permutation test by generating
1000 random permutations of the data and then compared the
modularity generated from the real data, to the mean modularity
generated from the permuted data. Given the size of our data
sets (ranging from 7000 to 25,000 patients), this computationally
expensive test took approximately 7 days to complete, despite
the use of a dedicated server with multiple cores, and (2)
although bicluster modularity was successful in identifying
significant and meaningful patient-comorbidity biclusters, the
visualizations themselves were extremely dense and therefore
potentially concealed patterns within and between the subgroups.
Future research should explore defining a closed-form equation
to estimate modularity variance, with the goal of accelerating
the estimation of modularity significance, and more powerful
analytical and visualization methods to reveal intra- and
intercluster associations in large and dense networks.

Classification Modeling
The results revealed two strengths of the classification modeling:
(1) the use of a simple multinomial classifier was adequate to
predict with high accuracy the subgroup to which a patient
belonged; (2) because the model produced membership
probabilities for each patient for each subgroup, the model
captured the dense intercluster edges observed in the network
visualization; and (3) the coefficients of the trained classifier
could be inspected by an analyst, making it more transparent
(relative to most deep learning classifiers that tend to be black
boxes).

However, because we dichotomized the classification
probabilities into a single subgroup membership, our approach
did not fully leverage membership probabilities for modeling
and visual interpretation. For example, some patients have high
classification probabilities (representing strong membership)
for a single subgroup (as shown by patients in the outer
periphery of the biclusters with edges only within their
bicluster), whereas others have equal probabilities for all
subgroups (as shown in the inner periphery of the biclusters
with edges going to multiple clusters). Future research should
explore incorporating the probability of subgroup membership
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into the design of Hierarchical Models for improving predictive
accuracy, and visualization methods for helping clinicians
interpret patients with different profiles of membership strength,
with the goal of designing patient-specific interventions.

Predictive Modeling
The results revealed two strengths of the predictive modeling:
(1) the use of the Standard Model to measure predictive accuracy
across the subgroups helped to pinpoint which subgroups tended
to have lower predictive accuracy than the rest and therefore
which of them could benefit from a more complex but accurate
Subgroup-Specific Model and (2) despite the use of a simple
Hierarchical Model with a dichotomized membership label for
each patient, the predictive CMS models detected significant
differences in the prediction accuracy as measured by NRI in
2 of the conditions, when compared with the CMS Standard
Models. However, the results also revealed that the differences
in predictive accuracy as measured by the C-statistic and NRI
were small, suggesting that comorbidities alone were potentially
insufficient for accurately predicting readmission. Future
research should explore the use of electronic health records and
multiple subgroup-specific models targeted to each subgroup
(enabling each model to have different slopes and intercepts)
to potentially improve the predictive accuracy of the prediction
models.

Data Source
The Medicare claims data had four key strengths: (1) the scale
of the data sets that enabled subgroup identification with
sufficient statistical power; (2) spread of the data collected from
across the United States, which enabled generalizability of the
results; (3) data about older adults, which enabled examination
of subgroups in an underrepresented segment of the US
population; and (4) data used by CMS to build predictive
readmission models, which enabled a head-to-head comparison
with the Hierarchical Modeling approach.

However, these data had two critical limitations: (1) as we
compared our models with the CMS models, we had to use the
same definition for controls (90 days with no readmission) that
had been used, which introduced a selection bias that
exaggerated the separation between cases and controls.
Similarly, by excluding patients who died, this exclusion
criterion potentially biased the results toward healthier patients
and (2) administrative data have known limitations, such as the
lack of comorbidity severity and test results, which could
strongly impact the accuracy of predictive models. Future
research should consider the use of national-level electronic
health record data, such as those assembled by the National
COVID Cohort Collaborative [54] and the TriNetX [55]
initiatives, which could overcome these limitations by providing
laboratory values and comorbidity severity but could also
introduce new as yet unknown limitations.

Implications for Clinical Decision Support That
Leverage Patient Subgroups
Although the focus of this project was to develop and evaluate
the MIPS framework, its application to 3 index conditions,
coupled with extensive discussions with clinicians, led to
insights for designing a future clinical decision support system.

Such a system could integrate the outputs from all 3 models in
MIPS. As we have shown, the visual analytical model
automatically identified and visualized the patient subgroups,
which enabled the clinicians to comprehend the co-occurrence
and risk information in the visualization, reason about the
processes that lead to readmission in each subgroup, and design
targeted interventions. The classification model leveraged the
observation that many patients have comorbidities in other
biclusters (shown by a large number of edges between biclusters)
and accordingly generated a membership probability (MP) of
a patient belonging to each bicluster, from which the highest
was chosen for bicluster membership. Finally, the predictive
model calculated the risk of readmission for a patient by using
the most accurate model designed for the bicluster to which the
patient belonged.

The outputs from these models could be integrated into a clinical
decision support system to provide recommendations for a
specific patient using the following algorithm: (1) use the
classifier to generate the MP of a new patient belonging to each
subgroup; (2) use the predictive model to calculate the risk (R)
of that patient in each subgroup; (3) generate an importance
score (IS) for each subgroup, such as by calculating a
membership-weighted risk [MP x R]; (4) rank the subgroups
and their respective interventions using IS; and (5) use the
ranking to display in descending order, the subgroup
comorbidity profiles along with their respective potential
mechanisms, recommended treatments, and the respective IS.
Such model-based information, displayed through a user-friendly
interface, could enable a clinician to rapidly scan the ranked list
to (1) determine why a specific patient profile fits into one or
more subgroups, (2) review the potential mechanisms and
interventions ranked by their importance, and (3) use the
combined information to design a treatment that is customized
for the real-world context of the patient. Consequently, such a
clinical decision-support system could not only provide a
quantitative ranking of membership to different subgroups and
the IS for the associated interventions, but also enable the
clinician to understand the rationale underlying those
recommendations, making the system interpretable and
explainable. Our current work explores a framework called
Model-based Subtype and Treatment Recommendations
(MASTR) for developing such clinical decision-support systems,
and evaluating them to determine their clinical efficacy in
comparison to standard-of-care.

Implications for Analytical Granularity to Enhance
the Interpretability of Patient Subgroups
Although the visual analytical model enabled clinicians to
interpret the patient subgroups, they were unable to interpret
the associations within and between the subgroups because of
the large number of nodes in each bicluster and the dense edges
between them. Several network filtering methods [56,57] have
been developed to thin out such dense networks such as by
dropping or bundling nodes and edges based on user-defined
criteria, to improve visual interpretation. However, such filtering
could bias the results or modify the clusters resulting from
reduced data.
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An alternate approach that preserves the full data set leverages
the notion of analytic granularity, in which the data are
progressively analyzed at different levels. For example, we have
analyzed patients with COVID-19 [11] at the cohort, subgroup,
and patient levels, and we are currently using the same approach
to examine symptom co-occurrence and risk at each level in
patients with Long COVID. Our preliminary results suggest
that analyzing data at different levels of granularity enables
clinicians to progressively interpret patterns, such as within and
between subgroups, in addition to guiding the systematic
development of new algorithms. For example, at the subgroup
level, we have designed an algorithm that identifies which
patient subgroups have a significantly higher probability of
having characteristics that are clustered in another subgroup,
providing critical information to clinicians about how to design
interventions for such overlapping subgroups. Furthermore, at
the patient level, we have identified patients that are very
dissimilar to their subgroups based on their pattern of
characteristics inside and outside their subgroup. Such dissimilar
patients could be flagged to examine whether they need
individualized interventions compared with those recommended
for the rest of their subgroups. Such analytical granularity could
therefore inform the design of interventions by clinicians in
addition to the design of decision support systems that provide
targeted and interpretable recommendations to physicians, who
can then customize them to fit the real-world context of a
patient.

Implications of the MIPS Framework for Precision
Medicine
Although we have demonstrated the application of the MIPS
framework across multiple readmission conditions, its
architecture has 3 properties that should enable its
generalizability across other medical conditions. First, as shown
in Figure 1, the framework is modular with explicit inputs and
outputs, enabling the use of other methods in each of the 3
modeling steps. For example, the framework can use other
biclustering (eg, nonnegative matrix factorization) [58],
classification (eg, deep learning) [59], and prediction methods
(eg, subgroup-specific modeling) [16]. Second, the framework
is extensible, enabling elaboration of the methods at each
modeling step to improve the analysis and interpretation of
subgroups. For example, as discussed earlier, analytical
granularity at the cohort, subgroup, and patient levels could
improve the interpretability of subgroups in large and dense
data sets. Third, the framework is integrative as it systematically
combines the strengths of machine learning and statistical and
precision medicine approaches. For example, visual analytical
modeling leverages search algorithms to discover co-occurrence
in large data sets, classification and prediction modeling
leverages probability theory to measure the risk of co-occurrence
patterns, and clinicians leverage medical knowledge and human
cognition to interpret patterns of co-occurrence and risk for
designing precision medicine interventions. Therefore, the
integration of these different models with a focus on their
clinical interpretation operationalizes team-centered informatics
[60] designed to facilitate data scientists, biostatisticians, and
clinicians in multidisciplinary translational teams [61] to work
more effectively across disciplinary boundaries with the goal

of designing precision medicine interventions. Our current
research tests the generality of the MIPS framework in other
conditions, such as in Long COVID and poststroke depression,
with the goal of designing and evaluating precision medicine
interventions targeted to patient subgroups.

Conclusions
Although several studies have identified patient subgroups in
different health conditions, there is a considerable gap between
the identification of subgroups and their modeling and
interpretation for clinical applications. Here, we developed
MIPS, a novel analytical framework to bridge this gap, using a
3-step modeling approach. A visual analytical method
automatically identified statistically significant and replicated
patient subgroups and their frequently co-occurring
comorbidities, which were clinically significant. Next, a
multinomial logistic regression classifier was highly accurate
in correctly classifying patients into subgroups identified by the
visual analytical model. Finally, despite using a simple
hierarchical logistic regression model to incorporate subgroup
information, the predictive models showed a statistically
significant improvement in discriminating between readmitted
and not readmitted patients in 2 of the 3 readmission conditions,
and additional analysis pinpointed for which patient subgroups
the current CMS model might be underperforming. Furthermore,
the integration of the 3 models helped to (1) elucidate the data
input and output dependencies among the models, enabling
clinicians to interpret the patient subgroups, reason about
mechanisms precipitating hospital readmission, and design
targeted interventions and (2) provide a generalizable framework
for the development of future clinical decision support systems
that integrate outputs from each of the 3 modeling approaches.

However, the evaluation of MIPS across the 3 readmission index
conditions also helped to identify the limitations of each
modeling method, and of the data. The visual analytical model
was too dense to enable clinicians to interpret the associations
within and between subgroups, and the absence of a closed-form
equation to measure modularity variance required a
computationally expensive process to measure the significance
of the biclustering. Furthermore, the small improvement in
predictive accuracy suggested that comorbidities alone were
insufficient for accurately predicting hospital readmission.

By leveraging the modular and extensible nature of the MIPS
framework, future research should address these limitations by
developing more powerful algorithms that analyze subgroups
at different levels of granularity to improve the interpretability
of intra- and intercluster associations and the evaluation of
subgroup-specific models to predict outcomes. Furthermore,
data from electronic health records made available through
national-level data initiatives, such as National COVID Cohort
Collaborative and TriNetX, now provide access to critical
variables, including laboratory results and comorbidity severity,
which should lead to higher accuracy in predicting adverse
outcomes. Finally, extensive discussions with clinicians have
confirmed the need for decision support systems that integrate
outputs from the 3 models to provide for a specific patient,
predicted subgroup memberships, and ranked interventions,
along with associated subgroup profiles and mechanisms. Such
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interpretable and explainable systems could enable clinicians
to use patient subgroup information for informing the design
of precision medicine interventions, with the goal of reducing

adverse outcomes such as unplanned hospital readmissions and
beyond.
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Abstract

Background: Data analysis is used to identify signals suggestive of variation in treatment choice or clinical outcome. Analyses
to date have generally focused on a hypothesis-driven approach.

Objective: This study aimed to develop a hypothesis-free approach to identify unusual prescribing behavior in primary care
data. We aimed to apply this methodology to a national data set in a cross-sectional study to identify chemicals with significant
variation in use across Clinical Commissioning Groups (CCGs) for further clinical review, thereby demonstrating proof of concept
for prioritization approaches.

Methods: Here we report a new data-driven approach to identify unusual prescribing behaviour in primary care data. This
approach first applies a set of filtering steps to identify chemicals with prescribing rate distributions likely to contain outliers,
then applies two ranking approaches to identify the most extreme outliers amongst those candidates. This methodology has been
applied to three months of national prescribing data (June-August 2017).

Results: Our methodology provides rankings for all chemicals by administrative region. We provide illustrative results for 2
antipsychotic drugs of particular clinical interest: promazine hydrochloride and pericyazine, which rank highly by outlier metrics.
Specifically, our method identifies that, while promazine hydrochloride and pericyazine are barely used by most clinicians (with
national prescribing rates of 11.1 and 6.2 per 1000 antipsychotic prescriptions, respectively), they make up a substantial proportion
of antipsychotic prescribing in 2 small geographic regions in England during the study period (with maximum regional prescribing
rates of 298.7 and 241.1 per 1000 antipsychotic prescriptions, respectively).

Conclusions: Our hypothesis-free approach is able to identify candidates for audit and review in clinical practice. To illustrate
this, we provide 2 examples of 2 very unusual antipsychotics used disproportionately in 2 small geographic areas of England.

(JMIR Med Inform 2022;10(12):e41200)   doi:10.2196/41200
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Introduction

Since 2011, the National Health Service (NHS) in England has
openly shared detailed monthly general practice prescribing
data to the level of individual doses, chemicals, and brands,
aggregated at the individual general practice level. These data
have supported original research on a broad range of topics as
well as supporting systematic audit and review programs to
realize improvements in primary care prescribing [1].

Our group produces OpenPrescribing.net [2], a free and widely
used tool where anyone can explore the prescriptions dispensed
at any practice in England and monitor prescribing patterns
down to the level of individual brands, formulations, and doses.
OpenPrescribing offers data-driven feedback to assist regional-
and practice-level medicines optimization teams and identifies
areas for review of which they may not otherwise have been
aware. For example, we identify whether each NHS organization
is an outlier on more than 80 predefined measures covering a
range of prescribing safety, cost-effectiveness, and efficacy
issues. Unique savings opportunities for each practice by making
comparisons between brands or generics and formulations are
also calculated [3], and there is evidence that these savings are
realized [4].

Typically, data science for service audit and quality
improvement is hypothesis driven: identifying a targeted
behavior and using data to measure the achievement of that goal
[5,6]. Given the vast scale of openly available NHS prescribing
data (more than 2 billion rows of data covering 8000
organizations during the past decade) and the vast range of
clinical behaviors and potential signals for variation in care that
may lie within this data set, we set out to develop new
hypothesis-free data science techniques to identify new
opportunities for service improvement driven by variation in
care.

Our overall analytic aim was to prototype and describe methods
to identify previously unknown signals of clinical interest in
prescribing data (existing methodology to identify outliers often
focuses on financial aspects of prescribing [7-9] or is focused
on a specific clinical question [10,11]). We ran a series of
internal workshops to develop a short list of data science
methods that might be used to identify prescribing behaviors
that are unusually distributed across NHS organizations or
regions. Here, we briefly report the successful deployment of
one such method (ranking chemicals by kurtosis and a ratio
between intercentile differences across all chemical-class pairs)
and demonstrate how this identified high prescribing of unusual
antipsychotics in 2 small regions of England.

Methods

Study Design and Data Sources
We conducted a cross-sectional study using open NHS
prescribing data on all dispensed products prescribed by general
practices in England, June-August 2017, extracted from the
OpenPrescribing database. A relatively short 3-month window
was chosen, owing to the fact that this work represents a proof
of concept. The data set includes, for each practice, product and

month of prescribing, the number of items prescribed (equivalent
to the number of prescription forms on which each product
appeared), and the total quantity (eg, tablets and mL). Practices
were grouped by their parent Clinical Commissioning Group
(CCG), an NHS administrative region. In England,
approximately 7000 NHS general practices were arranged into
207 CCGs in 2017.

Data Processing
All chemicals prescribed in England were assigned to a “class”
of chemicals, using their British National Formulary (BNF)
legacy code to identify the chemical’s relevant BNF
subparagraph. We limited our search to chemicals in chapters
1-15 of the BNF (1511 prescribed chemicals) to exclude chapters
not following a chemical/subparagraph structure, which largely
cover nonmedicinal products such as dressings. For each
chemical-class pair, the number of items (similar to a
prescription in prescribing data) that were prescribed for each
chemical was expressed as a proportion of the total items
prescribed of all chemicals in its class. These chemical-class
proportion values were calculated for each CCG. To avoid
including rarely prescribed classes of chemicals that would
generate spurious findings, we excluded 116 chemicals with
the lowest total items prescribed (specifically, the lowest two
centiles) and 4 chemicals that were used by less than 50 CCGs.
In total, then, 1395 chemicals were subject to analysis.

Ranking Chemical-Class Pairs by Outlier Metrics
We first sought to focus our analysis on those chemicals with
the distribution characteristics indicative of (1) reasonable
variability and (2) positive outliers among CCGs (ie, outliers
with higher prescribing rates rather than outliers at lower
prescribing rates): chemical-class pairs were filtered where
range>10% and skew>0. This identified 412 candidate chemicals
of interest. To further refine this group of chemicals, we retained
only those candidates for which (1) the median proportion was
<0.1, that is, those prescribed at a very low rate, or not at all,
by most CCGs and (2) the number of prescriptions nationally
was not small (at least 1000 prescriptions), so as to limit the
impact of random fluctuations in small numbers of prescriptions.
These further filtering steps reduced our candidate list to 204
chemicals.

We then implemented 2 alternative ranking approaches to
identify outliers among our candidate chemicals. The first was
kurtosis, which can be described as a numerical measure of the
extent to which the tails of a given distribution are heavier or
lighter than a normal distribution; overall, data sets with high
kurtosis will tend to have more extreme outliers than data sets
with low kurtosis. Kurtosis is a good method for detecting an
unknown number of outliers in a data set [12,13]. We calculated
the kurtosis for each candidate chemical-class pair across all
CCGs and ranked the chemicals by this kurtosis value (highest
to lowest). We then generated an alternative ranking of
chemicals using a ratio calculated as the intercentile range of
the chemical-class proportion between the 95th and 97th centiles
(the top prescribing CCGs) to the intercentile range between
50th and 95th centiles (those CCGs prescribing at more
moderate rates); this ratio will hereafter be referred to as the
“high:mid centile ratio”.
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Both approaches sort all chemicals into an order where, for the
most highly ranked chemicals, there are very substantial
differences between CCGs in the extent to which that chemical
is used in the context of all prescribing of all chemicals in its
class. This ranking was used to prioritize the chemical-class
pairs for manual evaluation by clinical staff (BMK, RC, OM,
and BG) for signals of clinical interest.

Visualizing Prescribing Rates Using Choropleth Maps
For selected chemical-class pairs of clinical interest, we
generated a choropleth map using OpenPrescribing.net to
visualize the geographical distribution of prescribing of each
chemical as a proportion of its class. Data management was
performed using Python and Google BigQuery, with the analysis
carried out using Python (authors HJC and LEMH). Data and
charts, as well as all code for data management and analysis are
openly available for inspection and reuse on GitHub [14].

Ethical Considerations
This study uses exclusively open publicly available data;
therefore, no ethical approval was required.

Results

A total of 204 chemicals were found to have prescribing rate
distributions indicative of positive outliers among administrative

regions in the NHS in England. Figure 1 summarizes the
high:mid centile ratio and kurtosis value for these chemicals.
The top 5 ranked chemicals by either outlier measurement are
highlighted.

Clinical review of these results identified 2 chemical substances
to illustrate the methodology: promazine hydrochloride
(high:mid centile ratio: 1.804, kurtosis: 43.61) and pericyazine
(high:mid centile ratio: 0.880, kurtosis: 49.60). These 2
antipsychotic drugs are the top 2 ranking chemicals by high:mid
centile ratio and also rank in the top 10 (ninth and seventh,
respectively) by kurtosis.

Exploring these chemicals in more detail, pericyazine is shown
to be prescribed at a much higher rate in the East of England
(Table 1), with 13,119 in 277,470 (4.7%) antipsychotic
prescriptions being for pericyazine, compared to 15,344 in
2,489,069 (0.6%) nationally. OpenPrescribing choropleth maps
demonstrate that this high level of prescribing was concentrated
particularly in Norwich and the Norfolk area more widely
(Figure 2A; Multimedia Appendix 1). Promazine hydrochloride
is shown to be prescribed at higher levels in the North West of
England (Table 1), accounting for 20,060 in 412,624 (4.9%)
antipsychotic prescriptions compared to 27,724 in 2,489,069
(1.1%) nationally. Again, these outlier prescribing behaviors
were concentrated in specific CCGs: Bolton and the wider
Greater Manchester area (Figure 2B; Multimedia Appendix 2).

Figure 1. Prioritizing 204 candidate chemicals using ranking by 2 outlier metrics. The top 5 chemicals by either the high:med centile ratio or kurtosis
are highlighted in orange; all other chemicals are shown in gray. Each metric is summarized as a histogram of chemical counts along the corresponding
axis. Pericyazine and promazine hydrochloride (our chemicals of interest) are highlighted in bold.
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Table 1. National and regional prescribing counts and rates (per 1000) of pericyazine (N=15,344) and promazine hydrochloride (N=27,724) in all
regions in England (June-August 2017). Prescribing rates for both chemicals are expressed per 1000 antipsychotic prescriptions (N=2,489,069).

Promazine hydrochloridePericyazineAntipsychotics, nRegion

Per 1000Prescribed, nPer 1000Prescribed, n

5.810880.8155188,593East Midlands

1.438147.313,119277,470East of England

1.83341.0192189,490Kent, Surrey, and Sussex

0.81220.684151,108North Central and East London

3.86200.696162,212North East

48.620,0600.8315412,624North West

1.11000.1589,949North West London

1.01270.8103124,296South London

0.61311.5306209,838South West

2.21630.11075,489Thames Valley

2.32760.9104121,442Wessex

16.039512.3580246,907West Midlands

1.53711.1275239,651Yorkshire and the Humber

11.127,7246.215,3442,489,069All

Figure 2. Total number of prescriptions for (A) pericyazine (B) promazine hydrochloride per 1000 antipsychotic prescriptions for all CCGs in England
in June-August 2017. The colour scale in each plot indicates the number of prescriptions per 1000 antipsychotic prescriptions in the corresponding
geographic region.
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Discussion

Summary
Using a hypothesis-free approach, we have applied data science
techniques to a national data set to identify outliers. Following
subsequent clinical review, 2 unusual antipsychotic medications,
in very limited use nationally, that are very commonly
prescribed in 2 small geographic regions of England were
identified. Specifically, pericyazine makes up only 0.6% (15,344
of 2,489,069) of all antipsychotic prescriptions nationally, but
in Norwich it represents 24.1% (5197 of 21,553) of all
antipsychotic prescriptions; promazine hydrochloride makes
up 1.1% (27,724 of 2,489,069) of all antipsychotic prescriptions
nationally; however, in Bolton, it represents 29.9% (5549 of
18,577) of all antipsychotic prescriptions.

Strengths and Weaknesses
This study is a proof of concept with a pragmatic and
exploratory approach to the methodology and is still under
iterative development with regard to optimizing metrics and
parameters. As such, we recognize that there are limitations in
the metrics that we have used to rank the chemical-class pairs
as described here. For example, it is possible that the rankings
being generated could be misleading where a small number of
CCGs are under prescribers for particular chemicals, thereby
inflating the outlier status of the same chemical in other areas.
Furthermore, the effect of variability where the number of
prescriptions is small is not yet known, although we do seek to
mitigate against this by removing chemicals that are prescribed
at particularly low volumes. However, we do not present this
work as a stand-alone method for outlier detection; rather, we
present it as an approach to prioritize and focus on manual
clinical audit and review.

Our study does cover a reasonably short period of time
(June-August 2017), again owing to it being a proof of concept.
However, the OpenPrescribing data set used does include all
prescribing in all typical practices in England, thereby
minimizing the potential for obtaining a biased sample.
Furthermore, the chemicals identified using our approach do
represent legitimate targets for further investigation;
unfortunately, our reporting of this work and subsequent
investigations into the reasons for these prescribing outliers
were disrupted by the COVID-19 pandemic.

Findings in Context
Pericyazine has been used infrequently for schizophrenia and
for short-term adjunctive management of severe anxiety,
psychomotor agitation, and violent or dangerously impulsive
behavior [15]. There is no mention of pericyazine in any
guideline on the National Institute for Health and Care
Excellence (NICE) website, the main source of clinical
guidelines in England. A 2014 Cochrane review on pericyazine
identified only 5 studies suitable for inclusion, could not
determine the effect of pericyazine in schizophrenia given the
low quality of evidence, and found a higher incidence of side
effects compared to atypical antipsychotics [16]. A PubMed
search identified only 73 publications that contain the word
“pericyazine” [17] in any way since 1965 compared with over

22,000 results for haloperidol and 11,000 for risperidone.
Promazine hydrochloride is licensed in psychomotor agitation
and agitation or restlessness in the older adults [18]. It is not
mentioned in any NICE guideline and appears in only 1355
PubMed records [19] (peaking in 1964). We are aware of no
prior work using data science techniques hypothesis-free to
systematically identify outliers for any given treatment choice
or clinical outcome in the manner outlined here.

Policy Implications and Interpretation
We report only the fact of a substantial deviation from national
prescribing norms in these 2 small regions and make no direct
comment on the appropriateness of using these medications in
any single patient or in general. It was outside the scope of this
work to engage in a detailed qualitative or other study to
understand the reasons for the high usage of these 2 unusual
antipsychotics in these 2 regions; however, we note that
promazine hydrochloride and pericyazine have previously
appeared in treatment formularies for Greater Manchester and
Norfolk, respectively. In addition, it is noted that antipsychotic
medication is typically initiated in secondary care, with
prescribing taken over in general practice.

The Department of Health and Social Care recently consulted
on an ambitious plan to harness data to improve health delivery
and outcomes [20]. The use of data to identify variation in
clinical activity and outcomes is long established [21,22], and
recent flagship projects in the NHS such as RightCare and
Getting it Right First Time are focused on identifying and
addressing variation in care. However, these approaches
typically rely on a traditional approach, whereby desirable
clinical activities or outcomes are prospectively defined by
clinicians or commissioners, and adherence is then measured
by analysing relevant data. It is highly unlikely that these
conventional methods would ever have identified the unusual
prescribing behaviors reported in this paper. Similarly, it is
likely that there are many further clinically interesting signals
that could be identified by taking a variety of data-driven
approaches to detecting unusual clinical activity or outcomes
across the full universe of NHS data.

In our experience of running OpenPrescribing.net, the key
barrier to better use of data for service improvement is an
unhelpful cultural and practical divide between purely academic
work on health data, and practical use of data in service
analytics. This is exemplified by, in general, the use of different
teams, different funding mechanisms, different institutions, and
different data infrastructures. As the methods, data, and
overarching objectives of both domains overlap substantially,
we hope that funders and commissioners can help to bring these
strands of work together.

Future Research
These findings will contribute to a wider program of work,
which aims to develop a range of interactive tools on
OpenPrescribing.net to present candidate signals of interest for
substantial divergence from national prescribing norms at the
level of individual practices, CCGs, and other key NHS
organizational groupings such as primary care networks and
integrated care systems. For this web-based service, we expect
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to present a wide variety of signals at scale, without further
context on evidence or guidelines, as a trigger for positive local
discussion and further exploration by clinical or commissioning
teams, and inviting feedback on whether they found the signals
to be helpful in identifying any previously unrecognized
opportunities to change local prescribing practices or
understanding the reasons for any divergences.

Conclusions
We describe a hypothesis-free approach to identify candidates
for audit and review in clinical practice, with examples
highlighted of 2 very unusual antipsychotics used
disproportionately in 2 small geographic areas of England.
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Abstract

Background: Big data useful for epidemiological research can be obtained by integrating data corresponding to individuals
between databases managed by different institutions. Privacy information must be protected while performing efficient, high-level
data matching.

Objective: Privacy-preserving distributed data integration (PDDI) enables data matching between multiple databases without
moving privacy information; however, its actual implementation requires matching security, accuracy, and performance. Moreover,
identifying the optimal data item in the absence of a unique matching key is necessary. We aimed to conduct a basic matching
experiment using a model to assess the accuracy of cancer screening.

Methods: To experiment with actual data, we created a data set mimicking the cancer screening and registration data in Japan
and conducted a matching experiment using a PDDI system between geographically distant institutions. Errors similar to those
found empirically in data sets recorded in Japanese were artificially introduced into the data set. The matching-key error rate of
the data common to both data sets was set sufficiently higher than expected in the actual database: 85.0% and 59.0% for the data
simulating colorectal and breast cancers, respectively. Various combinations of name, gender, date of birth, and address were
used for the matching key. To evaluate the matching accuracy, the matching sensitivity and specificity were calculated based on
the number of cancer-screening data points, and the effect of matching accuracy on the sensitivity and specificity of cancer
screening was estimated based on the obtained values. To evaluate the performance, we measured central processing unit use,
memory use, and network traffic.

Results: For combinations with a specificity ≥99% and high sensitivity, the date of birth and first name were used in the data
simulating colorectal cancer, and the matching sensitivity and specificity were 55.00% and 99.85%, respectively. In the data
simulating breast cancer, the date of birth and family name were used, and the matching sensitivity and specificity were 88.71%
and 99.98%, respectively. Assuming the sensitivity and specificity of cancer screening at 90%, the apparent values decreased to
74.90% and 89.93%, respectively. A trial calculation was performed using a combination with the same data set and 100%
specificity. When the matching sensitivity was 82.26%, the apparent screening sensitivity was maintained at 90%, and the screening
specificity decreased to 89.89%. For 214 data points, the execution time was 82 minutes and 26 seconds without parallelization
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and 11 minutes and 38 seconds with parallelization; 19.33% of the calculation time was for the data-holding institutions. Memory
use was 3.4 GB for the PDDI server and 2.7 GB for the data-holding institutions.

Conclusions: We demonstrated the rudimentary feasibility of introducing a PDDI system for cancer-screening accuracy
assessment. We plan to conduct matching experiments based on actual data and compare them with the existing methods.

(JMIR Med Inform 2022;10(12):e38922)   doi:10.2196/38922

KEYWORDS

data linkage; data security; secure data integration; privacy-preserving linkage; secure matching privacy-preserving linkage;
private set intersection; PSI; privacy-preserving distributed data integration; PDDI; big data; medical informatics; cancer prevention;
cancer epidemiology; epidemiological survey

Introduction

Distributed Data Integration in Epidemiological
Studies
With advances in information technology and enhanced
data-collection systems, health databases are becoming
increasingly abundant. Similar to other countries, the
government and academic societies in Japan collect and manage
a disease database. In addition, there are patient-based disease
databases and population-based cohort study databases that are
collected and managed mainly by research institutes [1-5].
Integrating health information held in these independent
databases benefits epidemiological studies and public health
practices; for example, it is possible to determine important
correlations and causal relationships, such as between the onset
of disease and the health status of an individual, which cannot
be determined using a single database. Therefore, it is important
to link databases managed by different institutions [6-8].

There are challenges associated with linking independent
databases. The first is the guarantee of information privacy,
including the handling of personally identifiable information.
Concerns and considerations regarding privacy and data security
are paramount; policies and regulations on the collection, use,
and movement of personally identifiable information are
becoming more stringent [9]. Therefore, in data linkage,
sufficient measures to prevent the leakage of personal
information are required, which have led to an increase in
attendant costs, including labor. The second challenge is the
construction of an efficient data linkage system. In countries
where a unique identification key, such as the national
identification number, is given to each individual and multiple
medical or welfare-related data systems are linked, more
efficient matching is possible compared with countries where
such unique identifiers are not provided to every citizen. Nordic
countries are representative of those using such unique
identifiers. However, owing to privacy concerns, many issues
need to be resolved before linking the databases; therefore, only
a few countries have introduced such identifiers so far [10,11].
In countries where the unique identification key system has not
been put into practical use, it is even more difficult to build a
system that meets information privacy requirements and linkage
efficiency. Consequently, it has been impossible to link
databases managed by different institutions at a practical level
in Japan.

Secure Data Integration
To safely and effectively collate the data held by each institution
in a decentralized state and use them, it is desirable to exchange
only necessary information as much as possible without leaking
personal information to the outside. However, without a unique
identification key, it is common to use personal information,
such as name and date of birth, as the key to perform matching
[9,12]. The methods that are widely practiced today include one
in which a data provider or user performs a matching operation
or the method in which a data set containing personal
information is passed to a third party (data depository) to
perform the matching. Both methods require the movement of
personal information that serves as the key to carry out the
match. Although some studies [13,14] related to the linkage
between 2 databases have been conducted, they are still
vulnerable in terms of security and privacy. In fact, in a report
by Kho et al [13], a hash value of names was used to match
names so that a dictionary attack can determine which hospital
a patient is in. A dictionary attack is a method in which the hash
values of a precreated patient list are matched with the hash
values stored in a system database. As the hash values of a
limited range of data, such as patient lists, are vulnerable to a
dictionary attack, the use of simple hash tables should be
avoided. Furthermore, the proposal by Kho et al assumes that
the database is owned by a single institution. In a report by
Godlove et al [14], the system and other details were not
described; therefore, the method of matching is a black box.

Therefore, strict countermeasures against information leakage
and the costs involved are obstacles to conducting large-scale
epidemiological studies. There are technical efforts to more
securely approach a solution to this issue. Under the private set
intersection protocol, which has been attracting attention in
recent years, data other than those commonly included in data
sets, distributed and managed by multiple data-holding
institutions, are kept secret from other institutions; hence, only
commonly included data are accessible [15-18]. The technology
discussed in a previous report [18], which is an extension of
private set intersection, focuses on the fact that a data set of
medical-related information is generally composed of multiple
attributes. After specifying an attribute as the matching key, the
data associated with the same key attribute commonly included
in each institution are integrated. It is called privacy-preserving
distributed data integration (PDDI) because it integrates
distributed data while ensuring privacy. Notably, unlike the
proposal by Kho et al [13], PDDI does not simply match in the
hash values of matching keys; therefore, information on whether
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a given patient is included in an institution is not available, and
unlike Godlove et al [14], the specification is not a black box
but is obvious. Studies on the application of newly developed
PDDI systems to medical data are ongoing [19]. The PDDI
system is expected to enable the secure integration of health
information held in databases managed by different institutions
and to enable epidemiological studies to be conducted with high
security.

Challenges in Implementing the Technology
PDDI is an established technology, but several additional steps
must be taken before its implementation. The most important
aspect is to show that the system can maintain sufficient
matching accuracy and performance for operational purposes
while keeping personal information secure, even when using
actual data. The matching keys that are commonly used when
a national identification number or similar identifier is not
available, such as name and date of birth, include various errors,
such as typing errors, at the time of input and orthographic
variants owing to differences in the input format. Especially,
in Japan, the lack of a standardized identification format also
contributes to this effect. Therefore, the identification of
identical persons tends to be associated with a certain rate of
failure, lowering the matching accuracy [20]. Low matching
accuracy affects outcome detection and narrows the research
design and research themes to which the system can be applied.
Matching accuracy is determined by the quantity and nature of
such errors and the matching method [21,22]. The errors that
can be found in data types used as matching keys are also
affected by the language and characters used in the description.
The optimal method for addressing these errors must be
considered separately for different countries, regions, and
databases. Various strategies have been developed to increase
the reliability of matching. These include prior data cleaning,
standardizing formats, combining personal information that
serves as matching keys, and taking various measures such as
probabilistic approaches [9,12,23,24]. However, it is unclear,
especially in Japan, which data items can be used as matching
keys to maximize the matching accuracy where a unique
matching key cannot be used. The other aspect is the system
performance. PDDI systems do not consolidate the data of each
institution to 1 depository institution. The information held by
each institution is encrypted within that institution, and the data
are collected and distributed. However, the specifications of
computer terminals of data-holding institutions and users vary
considerably. Therefore, it is necessary to evaluate the
performance of a linkage system for its stable use in a
general-purpose environment.

The purpose of this project was to demonstrate that the security
of personal information can be maintained in matching using
actual data and that it is operationally accurate and performs

significantly well for PDDI implementation and to identify
which data items can be effective matching keys to perform
data matching with high accuracy in situations where there is
no unique matching key. However, because the use of personal
information as a matching key is strictly controlled in Japan, a
preliminary experiment was required using dummy data to
experiment using actual data. In this study, we evaluated the
protection of personal information, matching accuracy in
cancer-screening accuracy assessment assuming a large-scale
epidemiological study using artificially created data that simulate
cancer screening and cancer registration data. If feasibility is
confirmed in this study, we plan to carry out a verification study
using actual data. The results of these studies are expected to
be applied to large-scale population-based genomic cohort
studies and large-scale studies using patient databases, thus
contributing to further activation and development of
database-based epidemiological research.

Methods

PDDI System

Overview
The features of PDDI used in this study are presented in our
previous study [19], in which it is shown that PDDI consists of
a secure computation server, data-holding institutions, and client.
In PDDI systems, when there are multiple attributes per data
sample, the database is divided into 3 types: key information,
analysis target data, and others. The data to be analyzed, which
are linked to the key commonly included in the database of each
institution, are concealed and integrated. The key information
and data to be analyzed may match. Important characteristics
of PDDI systems are as follows:

1. No institution that uses the system, including those that
own databases and those that receive data, can obtain any
information other than the key information that is commonly
shared between databases. Unlike the query-based method,
the fact that 1 institution holds some information about the
individual is not divulged to any other institution.

2. Key information used to match the data will not be divulged
to any institution, including the PDDI secure computation
server. In this paper, the PDDI secure computation server
is denoted as PDDI server.

3. The processing time of each institution does not depend on
the number of institutions involved in the system. There is
no limit to the data available to each institution through the
system.

4. No third-party institution collects or aggregates data to carry
out matching.

We have described the PDDI algorithm in subsequent sections.
Figure 1 shows the entire algorithmic process.
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Figure 1. Schematic of the privacy-preserving distributed data integration (PDDI) system algorithm. Steps 1 to 4 represent each step of the merging
process using the PDDI system described in the main text. The data held by each institution are encrypted and matched by the PDDI server using the
data as the matching key. The analysis target data, which are related to the matching key without distinction between institutions, are decrypted only
when they are provided to the client, and the matching-key information is never provided to the client.

Step 1: Irreversible Compression and Encryption
Each institution compresses the key used for collating the data
set with a hash function, converts it into unique and irreversible
information, and sends the data encrypted by homomorphic and
probabilistic encryption to the PDDI server.

Step 2: Creation of Matching Keys
The PDDI server calculates the sum of the encrypted data
obtained from each institution (called an encrypted matching
key) and sends these to each institution. Note that the PDDI
server does not have the decryption key; therefore, it cannot
decrypt the encrypted matching key.

Step 3: Analysis of Target Data for Set Intersection
Computation
Each institution decrypts the received encrypted matching key
and obtains the matching key used for extracting the key that
is commonly included in all institutions. Next, the analysis target
data related to the commonly included key are encrypted and
sent to the PDDI server.

Step 4: Integration of Encrypted Analysis Target Data
The server integrates the encrypted analysis target data sent
from each institution and sends it to the client; the matching-key
information is not sent to the client. In this study, 1 data-holding
institution evaluates whether the matching was performed
correctly; therefore, the data-holding institution acts as a client.

These matching keys are transformed into Bloom filters and
then encrypted in each institution. The encryption is

probabilistic, and thus, the same plaintext is encrypted into
different values. Furthermore, it cannot be decrypted without
the collaboration of all institutions. Then, they are sent to the
PDDI server. Note that the encryption of the compressed
matching key is probabilistic, which implies that the ciphertexts
of the compressed matching keys are not equal even if the
compressed matching keys are equal. Therefore, by using the
ciphertext, anyone cannot guess whether a patient with the
matching key is included in the institute, unlike the proposal
by Kho et al [13]. For the same reason, the PDDI server neither
reveals any information of the matching key in each institution
nor guesses whether a patient with the matching key is included
in the institute. This is a completely different privacy policy
from that proposed by Kho et al [13].

The PDDI implementation environment, environment
construction, and usability are described in Multimedia
Appendix 1. The basic part of this system (code, encryption,
and others) is currently being prepared for publication.

Experiment Model: Accuracy Assessment of Cancer
Screening

Overview
In this study, we adopted accuracy assessment of cancer
screening as a model for the matching experiment. Cancer
screening is a general term for cancer-screening programs for
the general population, which are conducted to reduce the
mortality rate owing to early detection of cancer (secondary
prevention). It is implemented around the world, centered on
programs that have been scientifically recognized to reduce
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mortality, such as breast, cervical, and colorectal cancers
[25-27]. The examinee is evaluated for the risk of having cancer
based on the test results of each program. Patients who are
determined to be at high risk, that is, those who are highly
suspected of having cancer, are encouraged to visit a medical
institution. Assessing the accuracy of cancer risk detection and
controlling the quality of screening, so that the number of
overlooked cancers and useless tests is kept to a minimum,
constitute the major roles of cancer-screening accuracy control.
Data on whether a patient who was judged to be at high risk in
a program had cancer within a certain period (often 1-2 years)
are required to assess the accuracy of cancer screening.

The biggest challenge in assessing cancer-screening accuracy
is the collection and matching of distributed data. In many cases,
cancer incidence, which represents the outcome of screening,
needs to be obtained by matching with another source
independent of the cancer-screening database; for example, a
cancer registration database. In Japan, cancer-screening data
are managed in a distributed state by the municipalities that are
the implementing bodies. Moreover, cancer registration data
are managed in a distributed manner by prefectures. Therefore,
to collect and collate these data on a large-scale national or
regional basis is difficult. The data size to be handled are large,
and when there are many target municipalities, a lot of
cumbersome procedures, which are not always standardized by
the municipalities, are required to obtain the data. The greater
the number of municipalities involved, the greater the movement
of privacy information and the higher the risk of leakage.
Therefore, in Japan, such studies are only conducted

sporadically, using limited data from a small number of
municipalities [28,29].

This system is characterized by no restrictions on the number
of participating institutions or the amount of data held by the
institutions and is considered an effective means for solving
this problem. This system makes it easy to match the risk
assessment information of distributed cancer screening with the
cancer incidence information of cancer registration, which is
expected to enable large-scale cancer-screening accuracy
assessment, which has not yet been possible. Therefore, we
surmised that applying a PDDI system for the assessment of
cancer-screening accuracy is possible and devised an
experimental plan using this model.

In cancer-screening accuracy assessment, indicators such as
sensitivity, specificity, and positive predictive value are mainly
used. If cancer screening indicates that there is a strong suspicion
of having cancer (high risk), it is considered positive. In Japan,
it is recommended to visit a medical institution, so this result
is often called a “requiring detailed examination.” The other
judgments are negative. Whether the patient has cancer is
evaluated by comparing cancer incidence information in cancer
registration data for 1 to 2 years from the date of consultation
with the screening result. In other words, if the cancer screen
is positive (there is a strong suspicion that the patient has cancer)
and the cancer is subsequently diagnosed, the sensitivity,
specificity, and positive predictive value in the context of
assessment of the accuracy of cancer screening are defined as
Textbox 1.

Textbox 1. Definition of items related to the accuracy of cancer screening

• Screening sensitivity=Proportion of patients with cancer who screen positive

• Screening specificity=Proportion of patients without cancer who screen negative

• Positive predictive value for screening=Proportion of cases giving positive screen results who are already patients

The accuracy of cancer screening is indicated by adding
“screening” to distinguish it from the accuracy of matching,
which will be described in the “study design” section.

Background of Practical Data-Matching Failures
In countries that do not have a national identification number,
such as Japan, data are generally collated using personal
information. In such an environment, the accuracy of matching
is reduced owing to various errors that may appear in the data
points used as matching keys. The sources of errors when using
matching keys are careless mistakes, orthographic variance
owing to changes in culture and institutions, and differences in
notation. The matching-key information may also change:
change of address because of moving and renaming because of
marriage. The prevalence of errors varies depending on the
format adopted by the data holder and ability of the input person.
They are also heavily influenced by the language in which the
data are written. Japanese is the de facto official language in
Japan, where we live, and it is adopted as the default language
in most systems and services in Japan. Many errors in Japanese
registry data are due to language-specific problems. Details of

the errors originating from Japanese language features are
described in Multimedia Appendix 2.

Study Design
As mentioned in the Introduction section, the purpose of this
project is to demonstrate the safety, accuracy, and performance
of data matching using the PDDI system and to identify effective
data items as matching keys. This study is the first step of the
project. We used the PDDI system to perform a data set
matching experiment between simulated cancer-screening and
cancer registration data sets, in which the PDDI system was
tasked with matching data belonging to the same individuals
between the sets. Feasibility was evaluated based on data
security, matching accuracy (sensitivity and specificity), and
system performance.

In this experiment, we performed matching under multiple
conditions using personal information, such as first and last
names, phonetic spelling, date of birth, and address, and
evaluated how much matching accuracy could be obtained by
combining matching keys. Various matching algorithms were
devised to prevent a decrease in sensitivity while maintaining
specificity [9,12,23]. However, the purpose of this study was
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to evaluate the PDDI system, not the novel matching method,
to improve the matching accuracy; therefore, these advanced
matching algorithms were not considered. Methods for more
accurate and practical matching will be considered in the next
steps of this project. Instead, we estimated how much the
matching accuracy would affect the estimation of
cancer-screening accuracy. The feasibility of applying the model
in this study was evaluated.

Unlike conventional systems that use a simple hash function to
compress privacy information or that require a single server to
collect and process all data, our system uses the latest security
techniques. For example, all data through the network are
encrypted, and decryption cannot be performed by a single
institution but only by the cooperation of all distributed
institutions, without centralizing the data. Therefore, it is
important to verify that it can be implemented on a
general-purpose computer rather than on a special server. We
evaluated the performance of the system, the total data
processing time, memory use, and network traffic required by
PDDI. The PDDI server was introduced to reduce the processing
time and amount of communication between data-holding
institutions. In practice, the data processing time of data-holding
institutions and the total data processing time required to collect
the information contained in common is of critical importance.

Setting of the Matching Experiment
Four data sets were created to simulate cancer-screening and
cancer registration data for 2 types of cancers: colorectal and
breast cancers. First, using the web-based test-data generation
service that is open to the public in Japan, we created pseudodata
that included name, gender, date of birth, and address to serve
as matching-key information [30-32]. This service automatically
creates personal information, such as name, date of birth,
address, and telephone number, from random combinations,
which is common in Japan. By selecting the required
information items and the desired amount of generated data,
the user can obtain data that simulate nonexistent personal
information. To account for the possibility that data generated
by any particular service may contain certain tendencies or
biases, we generated one-third of all the data points from each

of the 3 separate services. Next, from the created pseudodata,
60 cases of colorectal cancer and 62 cases of breast cancer were
selected as common data that can be matched. These were
commonly included in both cancer-screening and cancer
registration data sets. To make the simulated data resemble the
actual data, we consulted the staff who had abundant experience
in registry management and a physician who is an expert in
epidemiological research, and the data were modified to include
errors and orthographic variants that are often empirically
recognized. Experience shows that the number of errors in the
data set is expected to be <10%. Previous studies have reported
that the number of errors and omissions in the data available
for matching keys in disease registries and medical and
administrative databases is approximately 15% or less [33-35].
However, the actual prevalence of errors is unknown, as changes
in culture and society are expected to affect their occurrence
rates. Therefore, to create data that would be more difficult to
match, the data were rewritten to increase the number of errors
to the extent that a data point would have errors in multiple
items. Errors were made more prevalent in the colorectal cancer
data set than in the breast cancer data set such that the colorectal
cancer data set would be more difficult to match than the breast
cancer data set. Subsequently, the remaining pseudodata were
added, and finally, a pseudo–data set of 2000 colorectal cancer
screenings, 17,866 colorectal cancers, 1048 breast cancer
screenings, and 29,949 breast cancers was created. Pseudodata
items other than matching keys included serial numbers and
pseudoidentification numbers for each database in all data sets.
The following pseudodata were randomly added to the colorectal
cancer-screening data set: test date, test results, and risk
assessment of fecal occult blood test, which is commonly used
in Japan. The diagnosis name; International Classification of
Diseases, Tenth Revision code; and date of diagnosis were
added to the cancer registration data set. Pseudodata items other
than these matching keys were only decorative and did not affect
the matching experiment. Table 1 lists the errors and
orthographic variants added to the data set. The examples of
errors specific to Japanese in the data sets used in the
experiments in this study are shown in Figure S1 in Multimedia
Appendix 2.
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Table 1. Errors and orthographic variants included in the data set.

Number of data points, n (%)Class, error type, and matching key

Breast cancer (n=62)Colorectal cancer (n=60)

Data entry errors

Typing errors

1 (2)3 (5)Name

0 (0)15 (25)Birth date

2 (3)6 (10)Address

0 (0)5 (8)Sex

Kanji conversion errors

6 (10)5 (8)Name

0 (0)2 (3)Address

Misreading

8 (13)10 (17)Name

Missing letters

1 (2)2 (3)Name

Omission

0 (0)4 (7)Address

1 (2)10 (17)Name

Orthographic variants

Variant kanji

4 (6)7 (12)Name

Format

15 (24)5 (8)Address

Data change

Name change

1 (2)2 (3)Name

Alias

0 (0)2 (3)Name

Moving

8 (13)2 (3)Address

14 (23)25 (42)Unmatched on multiple keys

36 (59)51 (85)Total

In the experiment, 6 pieces of information—family name (kanji
or kana), first name (kanji or kana), date of birth, and
gender—were used. In this experiment, matching was performed
by combining ≥2 images. In the case of colorectal cancer, 57
combinations were possible: 6C2 + 6C3 + 6C4 + 6C5 + 6C6. For
breast cancer, outside of a small number of exceptional cases,
all screening targets were females, and thus, only 26
combinations were possible: 5C2 + 5C3 + 5C4 + 5C5.

In the PDDI protocol, a data array called a Bloom filter is
encrypted element by element. More than 90% of the total
execution time is spent on this encryption process. The
encryption of an element of the data array is independent of that
of other elements, and parallelization is easy. The

multiprocessing module in Python Standard Library (version
3.9; Python Software Foundation) was used for this
parallelization. The PC environment used in the experiment
was as follows: central processing unit (CPU), Intel (R) Xeon
(R) CPU E5-2690 v4@2.60GHz (28 cores), memory 48 GB.
The programs of all the institutions were executed on 1 PC.

Evaluation
Items related to matching accuracy are referred to below with
“matching” to distinguish them from the accuracy of cancer
screening. To calculate the matching accuracy, the
pseudo–cancer screening data were used as a reference point,
and when the data matched the specified matching-key
conditions in the pseudocancer registration data, the match was
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considered positive. The case in which no matching data were
present was defined as negative. This matching experiment was
conducted between data sets in which the same persons were
simulated in both data sets in advance. Therefore, the trueness
and falseness of matching were determined as follows: cases in
which the matching result correctly matched data belonging to
the same person were considered true and those in which the
matching result did not correctly match data belonging to the
same person were considered false. In other words, a false
positive means that data originally registered under separate
individuals were erroneously matched, and a false negative
means that data that should have been matched (because they
belong to the same person) were not matched. In an environment
in which matching keys that uniquely identify an individual are
completely error-free, matching is perfectly accurate. In this
experiment, as an evaluation of matching accuracy, the
correspondence between positive and negative matches and
their trueness or falseness was cross-tabulated to calculate the
matching sensitivity and matching specificity. On the basis of
this, a combination of matching keys with high matching
sensitivity and matching specificity, that is, good matching
accuracy, was extracted.

For the estimation of the effect of matching accuracy on the
assessment of cancer-screening accuracy, we referred to past
studies and assumed 2 scenarios: one in which the true accuracy
of cancer screening involved a sensitivity of 90% and a
specificity of 90% and the other with a sensitivity of 60% and
a specificity of 90% [36-38]. Errors between true and estimated
values were calculated to assess screening sensitivity, screening
specificity, and screening positive predictive value. For matching
accuracy, simulations were carried out in the following manner:
values were changed in a stepwise manner in scenarios in which
the matching sensitivity was 100%, the matching specificity
was 100%, and each parameter was equivalent to the
corresponding value observed in the matching experiment. The
estimation assumed a group that underwent cancer screening
in a certain year. The prevalence of new cancer incidence was
set at 775.7 of 100,000 person-years based on the average
prevalence in Japan. The data size did not affect the estimation,
but at the time of calculation, it was set to 1000 people according
to the parameters of this experiment.

In the performance evaluation experiment, we attempted to
simulate a scenario in which the system is used by the
institutions that are geographically distant from one another.

Therefore, we used 6 computers installed at Osaka University
and Yamaguchi University (4 of which simulated data-holding
institutions). In the experiment, we measured CPU use, memory

use, and network traffic for 3 data sizes: 210, 212, and 214. We
also implemented multiprocess parallelization and measured
its speedup ratio.

Ethics Approval
This study was approved by the institutional review board of
the Kanagawa Cancer Center (2021 epidemiology-135).

Results

Data Protection
In our experiments, 2 distributed institutes independently held
cancer screening and cancer registration data, in which each
data set included the terms of birth date, first name, family name,
and sex. These terms were used for matching keys. In our
system, in addition to the use of probabilistic encryption, all
matching keys and information through a network outside the
institute are encrypted, and no server deals with raw data were
stored in different distributed institutes. In other words, no
institute has a decryption key and reveals all information. This
implies that our system does not move any privacy information
from any institute and thus avoids privacy risk.

Matching Accuracy
The results of matching using PDDI are shown in subsequent
sections. From the preliminary experiments, when only 1
matching key is used, the number of false positives for matching
increases and the specificity decreases significantly (Table S2
in Multimedia Appendix 3). Figure 2 shows the results of false
positives and false negatives in which pseudodata of colorectal
cancer and breast cancer were matched using various
combinations of information. In the case of colorectal cancer
data, the minimum number of false negatives for matching was
27 and the minimum number of false positives for matching
was 0. It is desirable that the common data for all 60 items be
output. However, up to 33 (60 – 27) cases are output correctly.
For breast cancer data, the minimum number of false negatives
for matching was 7, and the minimum number of false positives
for matching was 0. Similarly, it is desirable that 62 common
data items are output but a maximum of 55 (62 – 7) cases were
output correctly.
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Figure 2. Number of false positives and false negatives. The points are placed according to the number of false positives and false negatives by the
setting of each experiment conducted. Part A shows the result of data simulating colorectal cancer and Part B shows the result of data simulating breast
cancer.

Table 2 presents an excerpt of the matching results. Only
combinations with a specificity of ≥99% are shown. In this
pseudo–data set, it can be inferred that the combination of
matching keys, including the date of birth, is particularly
effective. In the colorectal cancer pseudodata, the combination
with a specificity of ≥99%, the highest matching sensitivity was
the one that used the date of birth and first name (kana) as keys;
the matching sensitivity was 55.00%, and the matching

specificity was 99.85%. For breast cancer pseudodata, the
highest matching sensitivity was obtained when the date of birth
and family name (kana or kanji) were used as keys: the matching
sensitivity was 88.71%, and the matching specificity was
99.80%. In combination with 100% matching specificity, the
matching sensitivity was 48.33% for the data simulating
colorectal cancer and 82.26% for the data simulating breast
cancer.

Table 2. Matching result between cancer-screening and cancer-registration data (excerpt).

Specificity (%)Sensitivity (%)False negative, nFalse positive, nClassa and matching key

Colorectal cancer

99.8555.00273Birth date, first name (kana)

10048.33310Birth date, first name (kana), family name
(kana)

99.9053.33282Birth date, sex, first name (kana)

99.9551.67291Birth date, sex, family name (kana)

Breast cancer

99.8088.7172Birth date, family name (kana)

99.8088.7172Birth date, family name (kanji)

99.9085.4891Birth date, first name (kanji)

10082.26110Birth date, first name (kana), family name
(kanji)

aResults of the matching experiment between cancer-screening and cancer registration data for each matching key used. Cases in which all key data
shown in the matching-key column successfully corresponded were considered positive matches.

Table 3 shows the effect of matching accuracy on the estimation
of sensitivity and specificity of cancer screening based on the
model used in this experiment, an assessment of the accuracy
of cancer screening. The matching sensitivities were
approximately 85%, 50%, and 90%, and the matching
specificities were 99.9%, 99.8%, and 99.99%. Assuming that
the original values of both screening sensitivity and specificity
are both 90% if the matching specificity is set to 100% and the
matching sensitivity values are reduced to 90%, 85%, and 50%,
the apparent screening specificity values become 89.94%

(−0.06%), 89.91% (−0.10%), and 89.69% (−0.34%),
respectively. Thus, as the matching sensitivity decreases, the
screening specificity is underestimated. If the matching
specificity decreases, the screening sensitivity is underestimated.
On the basis of the experimental results of the data set simulating
breast cancer, when calculated with a matching sensitivity of
88.71% and matching specificity of 99.80%, the apparent value
of the screening sensitivity was 72.09% (−19.9%) and that of
the screening specificity was 89.93% (−0.08%), and the rate of
change in the apparent value of the screening sensitivity was
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large. However, when using the results of another combination
and calculating with a matching sensitivity of 82.26% and
matching specificity of 100%, the apparent value of screening
sensitivity is 90% (no decrease), and the apparent value of
screening specificity is 89.89% (−0.12%). In other words, when
the matching specificity is sufficiently large, even if the
matching sensitivity is a little low, the change from the original
value for both screening sensitivity and screening specificity
remains small. As shown in Table 3, this tendency was

maintained, even in the estimation assuming the original
screening sensitivity of 60%. In addition, regarding the positive
predictive value of screening, a decrease in matching sensitivity
makes the positive predictive value of screening appear smaller
than the original value, and a decrease in matching specificity
makes the positive predictive value of screening appear larger
than the original value. The effect of matching specificity is
also greater for the positive predictive value of screening.

Table 3. Estimation of the impact of matching accuracy on the screening accuracya.

Positive predictive value (%)Screening specificity (%)Screening sensitivity (%)Assumption of matching accuracy (%)

EstimateTrueEstimateTrueEstimateTrueSpecificitySensitivity

5.926.689.9490NAb9010090

5.596.689.9190NA9010085

3.296.689.6990NA9010050

6.586.6NA9088.999099.99100

6.676.6NA9080.939099.90100

6.766.6NA9073.709099.80100

6.026.689.899090.009099.8088.71

5.416.689.939072.099010082.26

4.034.589.9690NA6010090

3.814.589.9490NA6010085

2.244.589.8190NA6010050

4.494.5NA9059.376099.99100

4.584.5NA9054.336099.90100

4.674.5NA9049.816099.80100

4.174.589.969048.816099.8088.71

3.184.589.689060.006010082.26

aThe table shows the impact of matching accuracy on cancer-screening accuracy estimates when the true sensitivity of cancer screening is set at 90%
and 60%, and the true specificity is set at 90%. The cancer incidence rate is approximately 775.7 person per year, which is the national average in Japan.
bNA: not affected. “NA” represents that no change occurred between the true and estimated values. The italicized values show the estimates obtained
using the experimental data.

In principle, when the matching sensitivity is 100%, even if the
matching specificity is reduced, both true-negative and
false-positive cancer screenings are misidentified as having
cancer at the same rate. Therefore, the specificity of cancer
screening does not change. Similarly, when the matching
specificity is 100%, even if the matching sensitivity decreases,
both true-positive and false-negative cancer screening will be
misidentified as “no cancer” at the same rate. Therefore, the
sensitivity of cancer screening does not change. Therefore, these

values are not shown and are depicted as not affected, except
when the matching sensitivity and matching specificity obtained
from the matching experiment are used.

Performance
The results of the performance evaluation experiment are in
subsequent sections. The specifications of the computer used
in the experiment are listed in Table S1 in Multimedia Appendix
1. Figure 3 shows the relationship between the amount of data
and execution time.
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Figure 3. Execution time. The graph shows the relationship between the amount of data and the execution time. The solid line shows the execution
time without parallelization, and the dashed line shows the execution time with parallelization.

As shown in Figure 3, the amount of data and the execution

time are almost proportional. Furthermore, with 214 (16,384)
data points, the nonparallelized execution time was 82 minutes
and 26 seconds, whereas with parallelization, the execution time
was 11 minutes 38 seconds; hence, a 7.1-fold speedup was
observed with parallelization. Figure 4 shows the changes in

CPU use of the PDDI server and data-holding institutions when

the process is executed on 214 data points without parallelization.
As can be observed in this graph, 80.67% of the execution time
is processed by the PDDI server, and the calculation time of the
data-holding institutions is only 19.33%.

Figure 4. Changes in central processing unit (CPU) usage. The graphs show the changes in CPU usage of the privacy-preserving distributed data
integration (PDDI) server and the data-holding institutions when the process is executed on 214 datapoints without parallelization. Part A represents
the results of the PDDI server, and part B represents the results of the data-holding institution.

Figure 5 shows the relationship between the amount of data and
memory use of the PDDI server and data-holding institutions.
Memory use increases linearly with the amount of data.

However, even during parallelization for 214 data, which uses

a large amount of memory, the PDDI server required no more
than 3.4 GB of memory, and the data-holding institutions
required no more than 2.7 GB of memory.
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Figure 5. Memory usage. The graphs show the relationship between the amount of data and the memory usage of the privacy-preserving distributed
data integration (PDDI) server and the data-holding institutions. Part A represents the results of the PDDI server, and part B represents the results of
the data-holding institution.

Discussion

Evaluation of Matching Experiment
In this study, we conducted a matching experiment using the
accuracy assessment of cancer screening as a model by matching
the cancer-screening and cancer registration data.

In the experiment, any matching information is transformed
into Bloom filters, encrypted within each institution, and then
sent to the PDDI server. Probabilistic encryption was used in
this study. This implies that the same matching key is
compressed and randomly encrypted to different ciphertext, for
example, each birth date of patients A and B in cancer
registration data set is 19970911, but that compressed and
randomly encrypted are not equal to each other. Unlike simple
matching using a hash value [13], our scheme is secure against
dictionary attacks because the same value is encrypted into
different values owing to the probabilistic encryption.

The matching keys used for multiple combinations, which were
particularly excellent with few false positives and false
negatives, were all registered in most databases in Japan. It is
highly likely that these keys can be applied to existing databases.
The matching sensitivity remained in the 50% range for
simulated colorectal cancer data containing 85% matching-key
errors, but in the case of simulated breast cancer data, which
contained 59% matching-key errors, the matching sensitivity
value was approximately 85%. This experiment was conducted
in a manner that intentionally created a data set that was difficult
to match owing to a high prevalence of errors and a large amount
of data containing errors in multiple matching keys. The errors
contained in the 2 data sets differ as shown in Table 1, and these
results cannot be simply compared, but, in general, the fewer
the number of errors in the matching keys, the better the
matching accuracy. Although cultural backgrounds and times
vary, previous studies have shown that the number of errors
and omissions in disease registries, medical, and government

databases is <15% for matching-key data such as name, zip
code, and date of birth [33-35]. On the basis of the opinions of
staff with abundant experience in registry management, we
predicted that up to approximately 10% of the actual data used
for cancer-screening accuracy assessment in Japan includes an
error in the matching key. In principle, the false-negative rate
cannot be greater than the percentage of data with errors
contained in the data set; therefore, it is estimated that a
matching sensitivity of ≥90% can be obtained in verification
experiments using actual data. The error distributions of the 2
data sets in this experiment were the same, and the prevalence
was set at 10%. In the colorectal cancer data, the matching
sensitivity was 94.70% when the date of birth and first name
(kana) were used as the matching key. In breast cancer data, the
matching sensitivity was 98.09% when the date of birth and
family name (kana or kanji) were used as the matching key.
Regarding the specificity of matching, the combination of keys
shown in Table 2 maintained a high specificity of ≥99% in this
estimation.

In practical use, the influence on the outcome and evaluation
index to be obtained by performing matching is more important
than the numerical value of the matching accuracy. As shown
in Table 3, when assessing test accuracy for infrequent events,
such as cancer, changes in matching specificity values have a
significant effect on the apparent value of test accuracy. In our
model, a slight decrease in matching sensitivity had a relatively
small effect on screening sensitivity and screening specificity.
In other words, it is highly important to keep the matching
specificity as high as possible to prevent underestimation of the
screening sensitivity and screening specificity. The estimation
shows that a combination of matching keys with 100% matching
specificity has a small effect on the sensitivity and specificity
of cancer screening, even if the matching sensitivity is low.
Assuming that the original screening sensitivity and screening
specificity are 90%, even when the matching specificity is not
100% if the matching specificity is ≥99.97%, the screening
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sensitivity maintains within 5% even if the matching sensitivity
is 85%. Therefore, when considering the accurate calculation
of sensitivity estimates for cancer screening, it is desirable to
select a matching-key or matching algorithm that can improve
matching sensitivity as much as possible without reducing
matching specificity. Matching specificity has a greater effect
than matching sensitivity on the positive predictive value of
screening. However, it is more susceptible to matching
sensitivity than screening sensitivity or screening specificity.
Therefore, when focusing on the positive predictive value of
screening as the index, it is necessary to select the matching
key in consideration to not only the matching specificity but
also the decrease in matching sensitivity.

Matching specificity in this experiment is defined as the value
obtained by dividing the number of people who are determined
not to have cancer as a result of matching by the number of
people who do not have cancer among the data included in the
cancer-screening data set. Therefore, the specificity of the match
is affected by the ratio of the data size of the cancer registration
data set to the cancer-screening data set and the percentage of
true patients with cancer included in the cancer-screening data
set. The cancer-screening and cancer registration data sets used
in this experiment were approximately 1000 to 2000 and
approximately 17,000 to 30,000, respectively. In Japan, where
the cancer-screening rate is low, this is roughly equivalent to
the number of cancer screenings in small municipalities and the
number of cancers in large prefectures; cancer-screening data
are managed for each municipality that is the implementing
body, and cancer registration data are managed by each
prefecture. Epidemiological studies may have to deal with even
larger cancer-screening data. In this case, the difference in data
size from the cancer registration data set is smaller than that in
this experiment. Therefore, matching specificity is expected to
be higher. As the errors of the data set in this experiment do not
necessarily reflect the actual prevalence, the sensitivity and
specificity in this experiment are just reference values. Even
so, it is expected that the PDDI system can be used for the
assessment of cancer-screening accuracy using matching with
cancer registration data by appropriately adjusting the matching
conditions.

Performance evaluation experiments verified that the execution
time of the PDDI system was almost proportional to the amount
of data, and the execution time in parallel execution was 43
seconds per 1000 data samples. With the pseudodatabase used,
the execution was completed in approximately 21 minutes,
which is sufficient performance for epidemiological studies.
The effect of the performance of the computer installed in the
data-holding organization on the execution time is relatively
small, approximately 20% of the total, and the memory use is
<1 GB. Therefore, it was proven that the processing speed was
acceptable even with the performance of a normal laptop PC.
The maximum network traffic of the PDDI system in this
experiment was 858 Mbps. Even so, the execution time
consumed by communication is small, and if the communication
speed of the data-holding organization is ≥10 Mbps, we do not
believe that there will be any problems using this system.

Challenges for Next Experiments Using Practical Data
On the basis of this study, we plan to conduct a verification
experiment using actual cancer-screening and cancer registration
data. In this experiment, the number of errors in the actual data
were unknown. Therefore, the experiment was conducted using
a data set with a large number of errors. In the next matching
experiment using actual data, we plan to determine the degree
of matching accuracy that can be obtained in comparison to a
method that partly uses matching based on human judgment.
On the basis of this, it is possible to realistically estimate the
extent to which matching can cause errors in examination
accuracy. Therefore, it is possible to perform higher quality
evaluations for practical use. Regarding performance evaluation,
as shown in the results of this experiment, the calculation time
and memory consumption of the terminal depend on the amount
of data. The main purpose of this experiment was to evaluate
the feasibility, and the data set used was with a smaller number
of items than those contained in the actual data. Therefore, in
the next stage, we will confirm the performance using data on
the scale of municipalities and prefectures that may actually be
used. On the basis of these results, it is necessary to perform a
trial calculation to determine the size of the data set that can be
matched.

Implementation for Practical Epidemiological Studies
Through this experiment and estimation, we demonstrated that
the use of matching using the PDDI system for cancer-screening
accuracy assessment deserves consideration. This system is
expected to be applied to other types of epidemiological research
because it assists in data matching between databases managed
by different institutions. We considered the applicability based
on matching sensitivity and specificity using cohort studies and
case-control studies, which are typical epidemiological studies,
as examples.

Assuming that a cohort study examining the association between
a factor and cancer incidence will determine the risk ratio of
cancer incidence with people who have the factor compared
with those who do not have, each person’s data in the cohort
are matched with cancer registration data to record cancer
incidence. The estimation of this setting is presented in Table
S3 in Multimedia Appendix 4. The risk ratio does not change
from the true value only by the decrease in matching sensitivity.
If the matching specificity is reduced, the risk ratio is
underestimated. However, it can be seen from the estimation
that the decrease in the risk ratio is approximately 10% in the
matching sensitivity and matching specificity equivalent to this
matching experiment, even when the prevalence of the factor
is 75%. Next, let us assume a case-control study using a data
set that links the factors to be examined with data on the
presence or absence of a disease by matching. Table S4 in
Multimedia Appendix 4 shows a common disease with a high
prevalence, here a trial calculation for diabetes, and Table S5
in Multimedia Appendix 4 shows a trial calculation for
ulcerative colitis as an example of a disease with a low
prevalence. Poor matching accuracy causes systematic errors
in factor exposure in populations and control populations, which
tends to underestimate odds ratio estimates. Occasionally, this
has a greater effect on the odds ratios in diseases with low
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prevalence. Therefore, when assuming the use of the PDDI
system in cohort and case-control studies, care must be taken
in selecting the target disease and underestimating the odds
ratio. However, if appropriate calculations are made, it appears
that a large variety of applications can be fully examined.

The advantage of the PDDI system is that it can provide data
to users in an already-matched state, even among ≥3 databases.
Currently, in research that integrates data managed by different
institutions without a unique identification key, a step-by-step
process is necessary, such as collecting data from all target
institutions and then performing a match or narrowing down
the target audience and repeating the match. However, in the
PDDI system, although the data are distributed and stored in
different institutions, it is possible to retrieve matched data that
meet these conditions. As in other methods [39], it does not
assume prior linkage. Therefore, the PDDI system is particularly
useful when data obtained from the databases of ≥3 institutions
are combined and analyzed. Owing to this characteristic, this
system enables the safe and efficient integration of data even
in an environment such as Japan, that is, an environment where
cancer-screening data are distributed and stored in many
municipalities and, therefore, requires multiple movements of
private information.

Limitations
This study has several limitations. This study was conducted
as a preliminary step in the experiments using real-life data.
The data set used in this experiment is a pseudo–data set created
using software that is open to the public and does not reflect
the amount or ratio of errors mixed in the actual data, nor does
it cover all types of errors contained in real-world data. As the
types and number of errors contained in actual data depend on
the input style of each database and the ability of the input

person, subsequent verification experiments using actual data
are required. In this study, we dealt only with matching under
the condition that all the selected matching keys matched and
did not use complicated algorithms for partial matches. We did
not examine the extent to which the matching sensitivity and
matching specificity shown in this study can be improved by
further improvements in matching methods. The experiment
used a local database in Japan as the environment, and we noted
that the error format is also influenced by language, culture,
and institution. Therefore, it is unlikely that this result can be
applied directly to other countries and regions.

Conclusions
As a first step toward implementing PDDI in epidemiological
studies, we evaluated its feasibility in a model of
cancer-screening accuracy assessment in terms of safety,
matching accuracy, and performance through a matching
experiment using dummy data. This system makes it possible
to collate only the information related to the shared data without
disclosing the data distributed and managed by multiple
institutions and without using a third party. In the matching
experiment and the estimation of the effect on the
cancer-screening accuracy index using the matching sensitivity
and matching specificity obtained by the experiment, it was
shown that screening sensitivity and screening specificity can
be assessed with minimal errors by keeping the matching
specificity high. Because of its characteristics, this system
reduces the labor and costs required for personal information
management and collation work for both researchers and data
providers in many epidemiological studies and is expected to
further improve the efficiency and speed of research activities.
In future, we will carry out further verification for practical use
by using existing data and comparing it with existing methods.
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Abstract

Background: Artificial intelligence (AI) technologies, such as machine learning and natural language processing, have the
potential to provide new insights into complex health data. Although powerful, these algorithms rarely move from experimental
studies to direct clinical care implementation.

Objective: We aimed to describe the key components for successful development and integration of two AI technology–based
research pipelines for clinical practice.

Methods: We summarized the approach, results, and key learnings from the implementation of the following two systems
implemented at a large, tertiary care children’s hospital: (1) epilepsy surgical candidate identification (or epilepsy ID) in an
ambulatory neurology clinic; and (2) an automated clinical trial eligibility screener (ACTES) for the real-time identification of
patients for research studies in a pediatric emergency department.

Results: The epilepsy ID system performed as well as board-certified neurologists in identifying surgical candidates (with a
sensitivity of 71% and positive predictive value of 77%). The ACTES system decreased coordinator screening time by 12.9%.
The success of each project was largely dependent upon the collaboration between machine learning experts, research and
operational information technology professionals, longitudinal support from clinical providers, and institutional leadership.

Conclusions: These projects showcase novel interactions between machine learning recommendations and providers during
clinical care. Our deployment provides seamless, real-time integration of AI technology to provide decision support and improve
patient care.

(JMIR Med Inform 2022;10(12):e37833)   doi:10.2196/37833

KEYWORDS

electronic health record; natural language processing; epilepsy; clinical decision support; machine learning; emergency medicine;
artificial intelligence

Introduction

With the rampant growth in health data, artificial intelligence
(AI) technologies, such as machine learning and natural
language processing (NLP), provide a powerful means to extract

meaningful associations from big data sets [1]. Applications of
machine learning are far-reaching and have included patient
identification, computer vision, speech recognition, web
searches, and phenotype discovery [2-9].
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The electronic health record (EHR) captures data relating to
clinical encounters, but as much as 30%-50% of these data are
available only in free text [10]. As such, one particularly
valuable means to understand health care data involves NLP.
NLP is a technique of incorporating free-text analysis and
statistical methods into computerized algorithms to derive
linguistic features (eg, physicians’ diagnosis) from human
language input [11]. Clinical care and research can benefit from
using this unstructured text information [12,13]. NLP has been
used for surveillance, adverse event detection [14-18],
medication identification [19], and extraction of data from
radiology reports [20-22]. NLP has also successfully been
applied to evaluate clinical notes and provide recommendations
as part of clinical decision support (CDS) tools [23].

These CDS tools can change user behavior; however, to ensure
successful implementation, user involvement in CDS design is
critical [24-30]. CDS tools using AI and NLP technologies
remain less implementable directly into real-time clinical care
with long-term success [31-34]. The reason integration of these
AI pipelines within a clinical health system is challenging is
that it requires coordination with the following: (1) key
stakeholders and expected end users of the CDS tools; (2)
biomedical informatics professionals who design the AI; (3)
research information technology (IT) professionals who design
the CDS tools with stakeholders in mind; and (4) operational
IT professionals who are responsible for maintenance, uptime,
and EHR integration [35].

In this work, we report the main modifications implemented to
improve the development and real-time integration of two AI
technology–based pipelines using NLP in a tertiary pediatric
health care institution. These modifications contributed to the
successful deployment and ongoing utilization of these pipelines.

Methods

Objective
The objective of our case studies was to create functional AI
technology–based CDS tools effective in research settings and
integrate them into clinical workflow without sacrificing care
quality, speed of clinical care delivery, and labor requirement.

Setting and Participants
Cincinnati Children’s Hospital Medical Center is a large tertiary
care center with more than 1.2 million patient encounters

annually. It has a large epilepsy clinic (over 6,400 patients and
12,000 epilepsy visits per year) and a high volume of epilepsy
surgery cases (50 per year). The division of pediatric emergency
medicine oversees 5 urgent cares and 2 emergency departments
(EDs) with an annual census of 170,000 visits. The ED employs
8 full-time clinical research coordinators (CRCs) who enroll
patients in research studies during clinical visits.

Case 1: Automated Epilepsy Interventions

Background
The first case study aimed to facilitate early surgical intervention
in patients with intractable epilepsy, as it has been shown to
improve cognitive outcomes, mental health, and quality of life
[36], as well as increase quality-adjusted life years [37] in a
relatively safe procedure for the patient [38]. National guidelines
state that patients who continue to have debilitating seizures
after 2 or more adequate trials of antiepileptic medications
should be considered for a presurgical evaluation referral [39].
From the time of first seizure, on average, patients receive
surgery after having epilepsy for 7 years in pediatrics and 20
years in adults [40,41]. Only 0.5%-1.5% of patients received
surgery within 2 years of fulfilling clinical criteria for surgical
candidacy [42]. Indeed, improving the use of surgery has proven
to be difficult [42] because this highly specialized but critical
clinical knowledge is not ubiquitously available in clinical care.

Approach
A corpus of notes from patients with a diagnosis of epilepsy
who were seizure free or had a history of resective epilepsy
surgery was used to devise NLP features. The NLP generated
surgical candidacy scores for each patient, with higher scores
indicating a higher likelihood of surgical candidacy and lower
scores indicating a higher likelihood of seizure freedom. Next,
naïve Bayes, support vector machine, and random forest models
were developed using retrospective data as described in previous
work [43]. Figure 1 describes the system pipeline from input
data to the output recommendation.

To ensure the recommendations from the NLP system would
be accepted into practice, we validated the algorithm’s
classifications by comparing them head-to-head against manual
labels from epileptologists [2]. Prior to implementation into
clinical care, we prospectively evaluated the system for 1 year
to test the accuracy in a clinical setting [44].
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Figure 1. Epilepsy surgical pipeline architecture. From left to right: a series of Oracle PL/SQL queries extract epilepsy patient data and export them
in CSV format to bare meta installation servers. The data are divided into the following 3 groups: patients with surgery, seizure-free patients, and patients
with unknown outcome. The feature extraction module (ie, ‘training features’) analyzes the free-text notes and exports machine-readable feature vectors
in SVM light format. Surgery and seizure-free patient features are sent to the classifier training module to train the support vector machine model.
Unknown patient features are fed into the final trained classifier, which outputs a surgery candidacy score for each patient. All patients with unknown
outcome and their scores are then loaded into the Epilepsy Surgery Software (ESS) database. The highest scoring patients are sent to an Epic web service
that generates the in-basket message alerts. All patients and their notes can be viewed and searched in the ESS web application. This entire process is
run on a weekly basis, to continually incorporate new electronic health record data into the algorithm training.

Case 2: Automated Clinical Trial Eligibility Screener
(ACTES)

Background
The second case study aimed to identify participants who may
meet eligibility criteria for clinical trial recruitment in the ED.
In current practice, CRCs and physicians at the site of the
hospitals do trial eligibility screening manually [45]. For patients
presenting during clinical visits, screening would ideally take
place early enough in the visit such that eligible candidates
could be approached for enrollment without prolonging their
length of stay. However, given the large volume of data
documented in EHRs, it is labor-intensive for the staff to screen
relevant information, particularly within the time frame of a
single visit. As such, automatically screening and identifying
eligible patients for a trial based on EHR information promises
great benefits for clinical research.

Approach
To facilitate participant identification, we developed a machine
learning NLP-based system—ACTES [23,46]—which analyzed
structured data and unstructured narrative notes automatically
to determine patients’ suitability for clinical trial enrollment.
For development, we evaluated historical trial-patient enrollment
decisions in a pediatric ED and extracted EHR data including
clinical notes that were commonly reviewed by CRCs. We then
customized the machine learning and NLP algorithms based on
the trial-patient data. The ACTES was integrated into the
institutional workflow to support real-time patient screening in

our recent work [44]; details of system development have been
previously reported [46].

Implementation Strategy
We hypothesized that successful implementation of the AI
solutions relied on 5 key steps, as follows:

1. Integration of industry standard software pertinent to the
implementation site. Specifically, the systems needed to be
adapted to use industry standard software libraries.

2. Automation of the process to access the EHR data. The
systems need to be linked to the EHR to extract the input
data without manual intervention.

3. Encouragement of user feedback to inform the final design
of the AI solution.

4. Integration of the AI solutions into typical clinical
workflow.

5. Performance evaluations and regular maintenance to
continue to evaluate the utility of the AI solution.

After building the AI technology, we implemented the AI
solutions using these 5 strategies to facilitate successful
deployment of the tools.

Results

After creation and validation of the algorithms in a research
setting, we implemented these 2 AI solutions as NLP pipelines.
Both pipelines follow a step-by-step process that extracts data
from the EHR, processes it, and provides a recommendation in
the form of automated alerts that could be sent from the research
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systems to the EHR (Epic Systems) in real time. To do this, the
research systems had to be modified to integrate into clinical
workflow, as described in this section.

Industry Standard Software
After reviewing over 20 different libraries for managing NLP
pipelines, it was decided that the Java NLP library LingPipe
[47] would be used for feature extraction and preprocessing,
and the LIBSVM Python implementation from scikit-learn [48]
would be used for the classifier [49]. The NLP component in
ACTES was built upon the clinical Text Analysis and
Knowledge Extraction System [50], and the machine learning
component was coded in Java (Oracle Corporation).

Automation of EHR Data Access
For the epilepsy intervention AI, Oracle PL/SQL queries from
the EHR relational database were used to extract patient data.
For ACTES, RESTful and SOAP web services were developed
to extract EHR data, such as demographics, medication orders,
and clinical notes in real time, which were stored in an Oracle
SQL database. An interactive web-based dashboard was
developed to visualize the recommendations and receive
feedback from CRCs.

User Feedback Informed the Final Design
AI solutions were designed and integrated with feedback from
end users. The epilepsy and ACTES corpora were created by
manual annotation of patient notes by providers. Throughout
the algorithm design and implementation process, providers
were included in the build and ultimate integration. First, the
biomedical informatics team shadowed providers for workflow
observation. Second, the biomedical informatics team attended
clinical meetings that included faculty, staff, and clinical
research coordinators for a minimum of 10 hours to get feedback
and ensure the design was appropriate. Third, mock-up designs
were shared at a minimum of 3 meetings to discuss the process
of using and interacting with the AI solution in the form of a
CDS tool. In cases where the CDS tool could provide an alert,
the providers were consulted on their preferred alert method
(eg, email or text message alerts). In both AI technologies, the
providers were able to directly interact with the machine learning
recommendations as follows:

• For epilepsy surgical intervention, these results are
displayed in clinical care to suggest surgical consults, and
the subsequent actions resulting from the recommendations
are fed back into the application to improve performance.

• For ACTES, the clinical research coordinators’ entry of
eligibility is used to help train and improve the classifier.
Additionally, ACTES was assessed and improved for
usability and satisfaction by providers and was found to be
easy to use and learn.

Integration Into Clinical Workflow
Both AI technologies were integrated into clinical workflow to
support clinical practice. For patients with intractable epilepsy
and an upcoming visit, surgical eligibility is evaluated in
advance. For patients who are classified as potential surgical
candidates, EHR in-basket messages are sent to the provider
they are scheduled to see via web services.

We integrated the ACTES into the CRCs’ workflow to support
real-time patient screening [51]. The system ran continuously
on a secured, The Health Insurance Portability and
Accountability Act (HIPAA)–compliant server to extract
structured and unstructured EHR data for current ED patients.
For each clinical trial, the ranked list of patients recommended
by the system, along with their demographics and clinical
information, were displayed on the dashboard available to the
CRCs. The information was refreshed at 10-minute increments
to accommodate real-time updates. Given the recommended
patients as potential participants for a clinical trial, the CRCs
performed additional EHR screening to confirm the candidates’
eligibility. When an eligible candidate was identified, the CRCs
approached him or her for enrollment as per standard clinical
workflow.

Performance Evaluation
The epilepsy AI technology went live on April 12, 2016, as part
of the EHR release cycle and runs weekly. On Sundays, the
system trains on notes from patients who have been seizure free
for 1 year or previously underwent resective epilepsy surgery.
This trained classifier evaluates all other ‘unknown’ patients
with epilepsy who have had at least one seizure within the last
year but have not had a presurgical evaluation. Thus, the tables
of training and test patients are updated weekly. The system
performs as well as board-certified neurologists in identifying
surgical candidates (with a sensitivity of 71% and positive
predictive value of 77%) and improves with additional training,
identifying surgical candidates faster than neurologists [2]. As
part of the ongoing algorithmic development, the number of
patients with a history of surgery included in the training set
increased from 102 patients on April 10, 2016, to 195 patients
on October 6, 2019.

The ACTES patient identification system went live on October
1, 2017. ACTES was prospectively evaluated using a
time-and-motion study, quantitative assessments of enrollment,
and postevaluation usability surveys collected from the CRCs
[52]. During the time-and-motion study, an observer monitored
the activities a CRC was engaged in at 30-second increments
for 2 hours. The time spent per activity was compared to that
prior to the use of ACTES. This study was repeated monthly
for 4 months, and it was distributed among CRCs and shifts.
After the implementation of ACTES, the CRCs spent 12.9%
(P<.001) less time on electronic screening [52]. The quantitative
assessments of enrollment evaluated the number of patients
screened, the number of patients approached, and the number
of patients enrolled. The use of ACTES significantly improved
the number of screened patients for the majority of trials and
improved the number of approached patients and enrolled
patients, with statistical significance in 2 of 7 trials [52]. Finally,
results from the System Usability Survey and additional
open-ended questions were analyzed on a monthly basis to
improve ACTES [52].

Maintenance
The epilepsy system was operational more than 90% of the time
through the first 150 weeks. Throughout this time, issues were
addressed by the biomedical informatics research and production
IT staff. There were 10 changes made to the NLP system and
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6 errors executing the pipeline of scripts. Issues extracting
patient notes from the EHR were the largest reason for delays
in running the NLP system, which occurred 12 out of 150 (8%)
weeks.

Miscellaneous adjustments were made to the ACTES tool during
the pilot phase (2017-2018) to accommodate CRC needs.
ACTES was also updated 3 times because of significant updates
on the institutional EHR system and its web services for
real-time data extraction. Updates on the institutional EHR
system and the research IT environment caused multiple system
breakdowns during the evaluation period that interrupted less
than 2 out of 52 (4%) weeks of operation.

Discussion

Principal Results
This work highlighted the major modifications for the
integration and deployment of CDS tools from the research
setting to clinical practice. We successfully added AI-based
technology to the following 2 distinct clinical workflows at our
institution: an automated epilepsy surgical intervention tool and
an automated clinical trial eligibility screener (ACTES) system.
Throughout the process, we determined that successful
integration of these tools into clinical care requires adaptation
to industry standards, automation of data access, logical
integration into clinical workflow, and continual user feedback.

This work has several important strengths. We implemented
novel, automated machine learning tools to provide decision
support in a tangible fashion at our institution. These tools were
well received and streamlined clinical care in the identification
of qualified patients for surgery or clinical trials. Our experience
with the deployment of these tools agreed with the suggestions
made by Kawamoto et al [53] for successful implementation of
CDS tools. Our CDS tools were implemented in real time to
provide support at a natural point in the clinical workflow, so
as not to disrupt or extend the timeline of care. As with their
findings, our CDS tools use automatically available EHR data,
where possible, to ensure clinical scalability and effective
usability. In our case, we added an extra layer of testing whereby
we implemented our CDS tools in a localized clinical setting
in parallel to clinical care to test accuracy prior to full
deployment, which allowed for continued fine-tuning of the
CDS tool before it became part of clinical workflow.

Evaluation of Bias
We evaluated both tools for potential bias to ensure that the
CDS recommendations were not influenced by racial disparities.
The AI technology behind epilepsy surgical candidacy
recommendation was evaluated for bias in terms of patient
demographics, socioeconomic characteristics, and language
[54]. Patient race, gender, and primary language did not bias
the AI’s surgical candidacy scores (P>.35 for all).

Considerations and Limitations
Several concerns should be considered in the implementation
of a research tool into real-time clinical settings. As with most
record keeping systems, the EHR systems require regular
upgrades and bug fixes. This necessitates ongoing IT support
to keep the pipeline operational. EHR algorithm extractions and
pipeline characteristics should be placed into the EHR upgrade
queue to ensure their evaluation with each upgrade cycle. To
account for this, resources for both operational and research IT
should be set aside to ensure a consistent system when integrated
with clinical practice.

The successful deployment and continued use of these systems
also required close collaboration with the stakeholders embedded
in the respective clinical system. This collaboration was crucial
in allowing seamless integration of the research output into
daily clinical practice. Without input from the effective end
users, it would be difficult to fully understand the current
process, needs, as well as limitations related to workflow and
data to allow for optimization of the prediction.

Conclusions
The formulation, development, and real-time implementation
of two AI solutions in a clinical setting required the development
of a CDS tool and pipeline using public, industry-standard
programs and existing EHR web interfaces prior to integration.
In our work, we found that a CDS tool’s success was largely
dependent upon the collaboration between machine learning
experts, research collaborators, and operational IT professionals.
Furthermore, longitudinal support from clinical providers and
institutional leadership is necessary for continued maintenance
of the deployed CDS tool with careful consideration for its
long-term use.
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Abstract

Background: Delirium is an acute neurocognitive disorder that affects up to half of older hospitalized medical patients and can
lead to dementia, longer hospital stays, increased health costs, and death. Although delirium can be prevented and treated, it is
difficult to identify and predict.

Objective: This study aimed to improve machine learning models that retrospectively identify the presence of delirium during
hospital stays (eg, to measure the effectiveness of delirium prevention interventions) by using the natural language processing
(NLP) technique of sentiment analysis (in this case a feature that identifies sentiment toward, or away from, a delirium diagnosis).

Methods: Using data from the General Medicine Inpatient Initiative, a Canadian hospital data and analytics network, a detailed
manual review of medical records was conducted from nearly 4000 admissions at 6 Toronto area hospitals. Furthermore, 25.74%
(994/3862) of the eligible hospital admissions were labeled as having delirium. Using the data set collected from this study, we
developed machine learning models with, and without, the benefit of NLP methods applied to diagnostic imaging reports, and
we asked the question “can NLP improve machine learning identification of delirium?”

Results: Among the eligible 3862 hospital admissions, 994 (25.74%) admissions were labeled as having delirium. Identification
and calibration of the models were satisfactory. The accuracy and area under the receiver operating characteristic curve of the
main model with NLP in the independent testing data set were 0.807 and 0.930, respectively. The accuracy and area under the
receiver operating characteristic curve of the main model without NLP in the independent testing data set were 0.811 and 0.869,
respectively. Model performance was also found to be stable over the 5-year period used in the experiment, with identification
for a likely future holdout test set being no worse than identification for retrospective holdout test sets.

Conclusions: Our machine learning model that included NLP (ie, sentiment analysis in medical image description text mining)
produced valid identification of delirium with the sentiment analysis, providing significant additional benefit over the model
without NLP.

(JMIR Med Inform 2022;10(12):e38161)   doi:10.2196/38161
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Introduction

Background
Delirium is described as “acute brain failure” and is considered
both a “medical emergency” and “quiet epidemic” [1,2]. It is
the most common neuropsychiatric condition among medically
ill and hospitalized patients [3]. It is also recognized as a quality
of care indicator in Canada, the United States, the United
Kingdom, and Australia [4-8]. Symptoms of delirium can be
severe and distressing for both patients and caregivers [9,10]
and result from a complex interaction between predisposing
and precipitating factors [9]. Affecting up to 50% of older
hospital patients, those with delirium are more than twice as
likely to die in the hospital or require nursing home placement
[11-14]. The long-term effects of delirium are serious, as it is
associated with worsening cognitive impairment and incident
dementia [14-17]. Patients with delirium have longer
hospitalizations, increased readmission rates, and more than
double the health care costs. The study by Leslie et al [18]
indicated that 1-year health costs associated with delirium
ranged from US $16,303 to US $64,421 per patient. More recent
estimates suggest that it accounts for US $183 billion dollars
of annual health care expenditures in the United States [18,19].
Up to 40% of cases are preventable and many of the remaining
cases of delirium could be better managed with implementation
of standardized multicomponent programs [19,20]. These
programs result in up to US $3800 in savings per patient in
hospital costs and >US $16,000 in savings per person-year in
the year following an episode of delirium [19,20]. However, in
routine clinical care, there is a significant practice gap, and most
hospitals have not consistently implemented best practices
[19-21].

A key barrier in using delirium as a quality indicator is the lack
of a reliable and scalable method for early identification of
delirium cases. Clinicians are not good at recognizing delirium
using clinical gestalt, with corresponding recognition rates
ranging between 16% and 35% [22]. The Confusion Assessment
Method (CAM) [23] is one of the number of screening tools for
delirium, but it takes time and training to use; as a result, tools
such as CAM are used relatively infrequently. For instance,
Hogan et al [23] found that only 28% of emergency departments
with a geriatric focus used delirium screening tools.

As delirium is difficult to recognize in situ, there has been
interest in recognizing delirium after it has occurred, either
through administrative chart review (ie, looking for evidentiary
factors such as the use of antipsychotic drugs) or through
retrospective identification. Ideally, identification of delirium
would be prospective, proving a method to identify those at the
highest risk of developing delirium to target delirium
identification interventions for these individuals. However,
retrospective identification of delirium can also be useful in
determining delirium rates, which can serve as quality indicators
and measures of effectiveness for interventions aimed at quality
improvement.

Numerous models for predicting delirium have been developed
based on known predisposing and precipitating risk factors [18].
However, current models have limitations [24]. First, they rely

on variables not routinely collected as part of clinical care such
as preexisting cognitive impairment and functional status,
making them difficult to scale [25]. For example, the United
Kingdom’s National Institute for Clinical Excellence delirium
risk identification model requires information on cognitive
impairment and sensory impairment to be available in the
electronic record [26-28]. Second, a systematic review of
delirium identification models highlighted their inadequate
identification and numerous methodological concerns regarding
how the models were validated such as their accuracy and
inadequate predictive ability. The review concluded that model
performance was likely exaggerated [26]. Third, prior risk
identification models for delirium have tended to use a limited
set of machine learning methods [7,29-33] and have tended to
neglect text data [34].

With the growing availability of electronic clinical data
repositories such as the one used in this study, methods such as
data mining and machine learning can supplement or replace
conventional statistical models [27,32,34-38]. Natural language
processing (NLP) methods for medical text mining are required
to extract valuable medical information and derive calculable
variables for identification models [39]. NLP has proven to be
highly effective in extracting the information from medical text
into a computationally useful form that can support clinical
decision-making [40-47].

Sentiment analysis analyzes the text for the sentiment of the
writer (eg, positive vs negative, or in our case delirium vs
non–delirium-related text) using machine learning and NLP
[46-48]. We adapted sentiment analysis to predict sentiment
concerning delirium status. Thus, positive (with delirium) and
negative (without delirium) status was a new (binary) sentiment
feature in the subsequent analysis. Using this delirium-based
text sentiment analysis, we created a text-derived feature that
estimated the delirium status for each admission.

Objective
The overall research goal of our project was to retrospectively
identify delirium cases during hospitalization using all data
available from admission to discharge to estimate delirium rates
and thereby quantify the effect of quality improvement
interventions related to delirium. In this study, we focus on the
methodological goal of demonstrating the value of incorporating
NLP methods in the retrospective identification of delirium.

Methods

Data Source

Overview
The General Medicine Inpatient Initiative (GEMINI) is a
multi-institutional research collaboration in Ontario, Canada.
GEMINI has developed infrastructure and methods to collect
and standardize electronic clinical data from hospitals. The data
for this study were obtained from 6 hospitals (St Michael’s
Hospital, Toronto General Hospital, Toronto Western Hospital,
Trillium Credit Valley Hospital, Trillium Mississauga Hospital,
and Sunnybrook Hospital). GEMINI is emerging as a rich
resource for clinical research and quality measurement [4,49-52].

JMIR Med Inform 2022 | vol. 10 | iss. 12 |e38161 | p.161https://medinform.jmir.org/2022/12/e38161
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


A rigorous internal validation process demonstrated 98% to
100% accuracy across key data types [50].

In GEMINI, administrative health data are linked to clinical
data extracted from hospital information systems at the
individual patient level (Table 1).

Table 1. Data contained in the General Medicine Inpatient Initiative project.

MicrobiologyClinical docu-
mentation

PharmacyImagingLaboratoryPhysician and roomPatient detailsData type

Selected
variables

••••••• OrganismPhysician
orders

Medica-
tion

Radiologist
reports of di-
agnostic and
interventional
imaging

Biochem-
istry

Physician de-
tails

Demographics
• •Comorbidities Antimicro-

bial suscepti-
bility

•••• Vital signsDoseHematol-
ogy

Transfer details• Diagnoses
• Route• Procedures

• Transfu-
sion

• Collection
details

• Costs

Administrative Data
Patient-level characteristics were collected from hospitals as
reported to the Canadian Institute for Health Information
Discharge Abstract Database and the National Ambulatory Care
Reporting System. Diagnostic data and interventions were coded
using the enhanced Canadian International Statistical
Classification of Diseases and Related Health Problems and the
Canadian Classification of Health Interventions.

Clinical Data
Data from the electronic information systems in GEMINI
include laboratory test results (biochemistry, hematology, and
microbiology), blood transfusions, in-hospital medications, vital
signs, imaging reports, and room transfers. The quality of the
key elements of these data was ensured through statistical quality
control processes and direct data validation [53]. GEMINI data
extraction methods allow access to a wealth of data ideal for
text processing methods, including radiologist reports of
diagnostic imaging.

The delirium cases in the research reported here were identified
through manual medical record review by trained medical
professionals using a validated method [54]. This method relies
primarily on the identification of delirium or its numerous
synonyms (eg, confusion) through a detailed review of
physicians, nurses, and interprofessional documentation. The
method has good sensitivity (74%) and specificity (83%)
compared with clinical assessment and is considered a suitable
gold standard for the identification of delirium for research and
quality improvement [54].

We used 11 data files from a GEMINI data set that contained
3862 hospital admissions manually labeled according to delirium
status. The data files include clinical and administrative data,
as described in Table 1. However, labeling delirium is highly
labor intensive, with trained reviewers answering the following
question as part of the process: “Is there any evidence from the
chart of acute confusional state (e.g., delirium, mental status
change, inattention, disorientation, hallucinations, agitation,
inappropriate behavior, etc.)? Review the entire medical record,
including progress notes, nursing notes, consult notes, etc.”
Thus, although chart review labels can be used to train more
efficient machine learning methods, they are too expensive to
use in label all older patients in terms of whether they
experienced delirium during their hospital stay.

In our study, we used the chart review method [51] to label a
subset of cases in our data set with respect to delirium. Interrater
reliability was assessed by having 5% of the charts blindly
reviewed by a second abstractor, achieving 90% interrater
reliability. This resulted in the 3862 hospital admissions used
in the analyses reported in this paper. The data files include
clinical and administrative data, as described in Table 1.

Ethics Approval
The research ethics board (REB) at the Toronto Academic
Health Science Network approved the GEMINI study (REB
reference number 15-087). The extension of the REB approval
was issued by the Unity Health Toronto REB (reference number
15-087). A separate REB approval was obtained for Trillium
Health Partners.

This paper is also part of the GEMINI substudy, named “Using
artificial intelligence to identify and predict delirium among
hospitalized medical patients,” which was approved by the
University of Toronto REB (approved as reference number
38377).

Data Preprocessing
The data tables contained in GEMINI were merged into a single
table worksheet suitable for conducting machine learning.
Before that, merger relevant variables were selected from the
data tables, as described in the following subsections.

Laboratory Tests
A total of 45 medical tests were included in this data file, for
example, blood urea nitrogen, mean cell volume, and high
sensitivity troponin. Note that in each admission, not all 45
medical tests were performed, although some tests were
performed several times in the same patient. In the original
laboratory tests data file, each instance of a medical test
corresponded to a separate record. We converted the laboratory
tests table to one with a single row per admission, where each
column represented a different test. As patients typically
received a small subset of the available tests, there were many
empty cells (ie, sparsity), and some cells had to represent
multiple instances of the same test. To address the problem of
sparse variables, we converted them to 1 or 0 flag variables (1
for test performed and 0 for test not performed). For frequently
performed tests, we recorded the minimum, maximum, median,
and frequency of the test results for each admission. If a test
was administered at least five times in >50% of the admissions,
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we calculated the SD of the test results across each admission
as an additional summary measure.

Patient Diagnosis
We first mapped the International Classification of Diseases,
Tenth Revision (ICD-10) to the Clinical Classification Software
(CCS) discharge diagnosis codes in a process that we previously
described [4,49,50,55]. We use all available ICD-10 codes,
including those assigned retrospectively, and this should not be
considered data leakage but rather leveraging all available data
to serve the use. The physician team identified 240 unique CCS
codes potentially relevant to delirium. We then created flag
variables (Boolean) for these 240 unique CCS codes that
indicated whether the admission involved each of the diagnoses.
Note that we did not create flag variables for ICD-10 codes
because this would have dramatically increased the number of
features in the analysis.

Clinical Interventions
This set of features covered a range of clinical interventions
including surgical and endoscopic procedures as coded by the
Canadian Classification of Health Interventions. Two variables
were used to record the number of interventions for each
admission. The first derived variable was the number of
interventions performed per admission (including repetitions
of the same intervention). The second derived variable counted
the number of unique interventions per admission. No other
information regarding interventions was used in the data file.

Room Transfers
We calculated the number of room transfers for each admission,
which was the only variable used from this data table.

Clinical Risk Scores
We used the following clinical scores, which are markers of
illness severity and patient risk of adverse outcomes: Charlson
Comorbidity Index [56], Laboratory-Based Acute Physiology
Score [57], and Kidney Disease: Improving Global Outcomes
Acute Kidney Injury stages [58].

Emergency Department Triage Score
We applied one-hot encoding on the feature representing the
patient’s illness severity at the time of emergency department
triage with a 5-point scale, as measured by the Canadian Triage
and Acuity Scale [59].

Administrative Admission and Discharge Data
We applied one-hot encoding on the feature representing the
type of medical services that the patient was admitted to and
discharged from as per the hospital admission, discharge, and
transfer system. We also calculated hospital length of stay and
derived a feature to indicate where the patient was discharged
to.

Medications
This file had 1 row per admission and was used as is.

Special Care Unit
Only 320 admissions had special care unit information, so we
created a flag variable with binary coding to indicate whether

patients were cared for in a special care unit at any point during
the admission.

Blood Transfusion
This medical data table contained only 429 admissions that
included blood transfusion information; therefore, we created
1 column with binary coding to represent its presence or
absence.

NLP on Radiologist Reports of Diagnostic Imaging
The medical imaging data table contained the text description
of magnetic resonance images and computed tomography scans,
which were filtered to include only brain or head imaging.
Similar to the laboratory tests data file, there was 1 row per
imaging test; therefore, there could be multiple rows per
admission. If there were multiple tests per admission, we first
concatenated the text descriptions across the tests and then used
text mining on this file by cleaning, tokenizing, and vectorizing.

The data set used for machine learning represented data
integrated from multiple sources, for example, laboratory results,
medications, radiologist reports, and administrative data. We
adapted sentiment analysis to predict sentiment concerning
delirium status. Thus positive (with delirium) and negative
(without delirium) status was a binary sentiment that then
formed a new feature in the subsequent analysis. Using this
delirium-based text sentiment analysis, we created a text-derived
feature that estimated the delirium status for each admission.

Preliminary text analysis was carried out before the sentiment
analysis. Text cleaning included uppercase transformation, stop
words removal, punctuation removal, intraword splitting,
tokenization, and lemmatization and was performed using the
nltk [39] and sklearn [60] packages. Next, term
frequency–inverse document frequency, word count
representation, and n-gram methods were applied for text
vectorization.

A total of 8 baseline machine learning classification models
were then trained to perform sentiment analysis, that is, logistic
regression, Naive Bayes, support vector machine (SVM),
decision tree, random forest, gradient boosting, XGboost, and
multilayer perceptron. Hyperparameter tuning was applied using
RandomSearchCV (ie, a randomized search on hyperparameters
optimized by cross-validated search over parameter settings)
[60].

Gradient boosting was selected as the final sentiment analysis
method because its F1-score was the highest among the 8
classifiers. The final model was a stochastic gradient boosting
(with a 0.8 subsample) that used 200 estimators, with Friedman
mean square error as the criterion and a maximum depth of 3.
We then created a feature with the predicted binary sentiment
from the description of the medical images in the text using the
selected gradient boosting model.

We integrated this new feature with 10 laboratory tests and
electronic health record data to create a complete data file for
training and testing machine learning identification models.
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Model Construction and Training
A total of 12 supervised classification algorithms with the task
of predicting delirium status were implemented. The 12 machine
learning algorithms covering most types of machine learning
models were as follows:

• Ensemble machine learning models: gradient boosting
classifier, AdaBoost classifier, random forest, and voting
classifier soft

• Nonparametric machine learning models: K-nearest
neighbor and decision tree

• Linear parametric machine learning models: logistic
regression, linear SVM, and linear discriminant analysis

• Nonlinear parametric machine learning models: quadratic
discriminant analysis, neural network: multilayer perceptron
classifier in deep learning

• Bayesian-based machine learning models: Gaussian Naive
Bayes.

For the modeling, we split our integrated complete data into 2
parts, a training set and a testing set. As shown in Figure 1, the
data extended over a 5-year period, from April 1, 2010, to March
31, 2015. We divided this period into ten 6-month segments.
We treated the first 9 segments, that is, April 1, 2010, to
September 30, 2014, as the training set. The last 6-month period,
that is, October 1, 2014, to March 1, 2015, was used as holdout
data (ie, testing set) to estimate the likely future performance
of the model that was forward in time relative to the data used
in building the model. This allowed us to assess whether there
was any nonstationarity in the data, which would affect our
ability to predict delirium in the future based on models
developed on currently available data as transferability to future
data.

Figure 1. Data splits for models training and testing on a rolling basis. TS: time segment.

In the training set, we used 5-fold cross-validation to tune the
model parameters for each of the 12 machine learning
algorithms. We then used the tuned parameters from the 5-fold
cross-validation to identify delirium status of each admission
in the testing or holdout set.

Results

Overview
We tested the model performance on the holdout testing set and
calculated 6 evaluation metrics to find the best model, that is,
accuracy, precision, recall or sensitivity, F1-score, specificity,
and area under the receiver operating characteristic curve
(ROC-AUC).

Accuracy answers the question of how many admissions did
we correctly label out of all the admissions.

Precision answers the question of how many of those who we
predicted as having delirium actually had delirium.

Sensitivity represents the proportion of people with delirium
who were correctly labeled as having delirium.

F1-score is a weighted average of the precision or recall, where
the F1-score reaches its best value at 1 and worst score at 0.

Specificity answers the question of how many negative instances
(ie, people with no delirium) were correctly predicted.

The ROC curve was plotted using the true-positive rate against
the false-positive rate at various threshold settings. The
calculated ROC-AUC indicated the probability that our binary
classifier ranked a randomly chosen positive instance higher
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than a randomly chosen negative one (assuming “positive” ranks
higher than “negative”).

The 12 machine learning algorithms, along with hyperparameter
tuning and cross-validation, were implemented in the Python
package Scikit-learn [60]. Hyperparameter tuning was conducted
using the RandomizedSearchCV and GridSearchCV functions.
Cross-validation was used via the cross_val_score,
cross_validate, and cross_val_predict functions.

The gradient boosting classifier was trained using the
GradientBoostingClassifier function. The AdaBoost classifier
used the AdaBoostClassifier function. The neural network
classifier was implemented using the MLPClassifier function.
The decision tree classifier was implemented using the
DecisionTreeClassifier function. K-nearest neighbor
classification was trained using the KNeighborsClassifier
function. The logistic regression classifier used the
LogisticRegression function. The random forest classifier was
implemented using the RandomForest classifier function. The
SVM method used the svm function. The Gaussian Naive Bayes
method implemented the GaussianNB function. The linear
discriminant analysis classifier was trained using the
LinearDiscriminantAnalysis function. The quadratic
discriminant analysis classifier used the

QuadraticDiscriminantAnalysis function. The voting classifiers
with soft settings were implemented using the Voting Classifier
function.

Experimental Results
We trained these models using hyperparameter tuning and 5-fold
cross-validation on the first 9 time segments. We present the
results from the 3 best-performing models in Table 2, and the
results from the other 9 models are presented in Multimedia
Appendix 1. In both tables, we report the average performance
over 5 folds for the data from the first 9 time segments.

We then tested our delirium identification (sentimental or +NLP)
model, which incorporated NLP in the training process. We
compared the results of the +NLP model with the results
obtained for the unsentimental (–NLP) delirium identification
model that was trained, without NLP, on the last 6-month data
in the GEMINI data set. The performance of the 3
best-performing models in predicting delirium labels in the last
6 months of the data is shown in Table 3. A similar presentation
of the results is shown for the other 9 models in Multimedia
Appendix 2. It should be noted that we used well-tuned
parameters from the best-performing models of the training data
on the testing data.

Table 2. Comparison of models in the 3 best-performing algorithms: average training results using 5-fold cross-validation on training set (April 1,
2010, to September 30, 2014).

Random forestAdaBoost classifierGradient boosting classifierModels

Accuracy

0.8260.8660.868 bDelirium (+NLPa)

0.7680.7950.797Delirium (–NLP)

Precision

0.8330.7940.78Delirium (+NLP)

0.80.750.747Delirium (–NLP)

Recall

0.3980.6490.678Delirium (+NLP)

0.1410.3290.341Delirium (–NLP)

Specificity

0.9750.9420.935Delirium (+NLP)

0.9880.9580.957Delirium (–NLP)

ROC-AUCc

0.8970.8950.91Delirium (+NLP)

0.830.8340.83Delirium (–NLP)

F1-score

0.5290.7120.722Delirium (+NLP)

0.2390.4520.463Delirium (–NLP)

aNLP: natural language processing.
bHighest performance values are italicized.
cROC-AUC: area under the receiver operating characteristic curve.
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Table 3. Comparison of 3 types of models in the 3 best-performing algorithms: model performance on holdout set 10 (October 1, 2014, to March 31,
2015).

Random forestAdaBoost classifierGradient boosting classifierModels

Accuracy

0.8350.8350.853 bDelirium (+NLPa)

0.7760.8110.807Delirium (–NLP)

Precision

0.8660.7250.742Delirium (+NLP)

0.8060.7470.74Delirium (–NLP)

Recall

0.4360.5940.669Delirium (+NLP)

0.1880.4210.406Delirium (–NLP)

Specificity

0.9760.920.918Delirium (+NLP)

0.9840.9490.949Delirium (–NLP)

ROC-AUCc

0.930.9170.922Delirium (+NLP)

0.8690.8490.848Delirium (–NLP)

F1-score

0.580.6530.704Delirium (+NLP)

0.3050.5380.524Delirium (–NLP)

aNLP: natural language processing.
bHighest performance values are italicized.
cROC-AUC: area under the receiver operating characteristic curve.

In the training set, our proposed delirium (+NLP) models
performed the best in terms of accuracy, precision, recall or
sensitivity, rate, ROC-AUC, and F1-score, whereas delirium
(–NLP) models generated the best specificity. In the testing set,
the performances in both delirium (+NLP) and delirium (–NLP)
models continued the same trend.

Note that F1-score is the balance of sensitivity and precision,
and ROC-AUC is generated by sensitivity and specificity so
that our delirium (+NLP) models performed the best in terms
of balancing sensitivity, precision, and specificity. In acute
diseases such as delirium, sensitivity is particularly important
because the cost of failed identification of a disease (a miss) is
higher than the cost of a false alarm. Thus, the present results
indicate that the sentimental (vs unsentimental) delirium
identification model should be more useful in clinical practice.

We also tested the +NLP and –NLP models across time, moving
the holdout set across each of the 9 time segments one at a time,
before using the most recent time segment as the holdout set.
Thus, each of the time segments was used as the testing set,
whereas the other 9 time segments were treated as the training
set on a rolling basis, as shown in Figure 1. The corresponding
data distribution of training and independent holdout or testing
data are presented in Table 4. Tables 5 and 6 present the data

distribution of patient characteristics of the cohort across the
data splits.

Figure 2 shows the identification results for the best-performing
machine learning algorithm, that is, the gradient boosting across
the 10 time segments. The 8 panels in the figure represent the
8 evaluation metrics used.

Note that the 2 different lines shown in each of the 8 panels
within Figure 2 represent the results on the corresponding
evaluation metrics for the 2 different types of models (ie,
Delirium [+NLP] and Delirium [–NLP]). The 10 data points in
each line show how the performance varied as the timing of the
holdout time segment varied. Overall, the identification
performance of the sentimental (+NLP) model was better than
that of the unsentimental (–NLP) model. In addition, the
performance of the sentimental (+NLP) model tended to be
more stable across the different time segments than the other
schemes. It can also be seen that precision, recall, and F1-score
tended to be less stable over time than the other 3 measures,
even though these performance measures remained relatively
stable for the delirium (+NLP) model.

Figure 3 presents the calibration of the gradient boosting model
that was found to provide the best overall performance.
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Table 4. Data distribution of training and holdout sets for each time segment (TS). Note that positive admissions indicate that the patients were diagnosed
with delirium upon their admissions, whereas negative admissions were not.

Holdout setTraining setDifferent TS as holdout set on
a rolling basis

Number of posi-
tive admissions

Number of nega-
tive admissions

Number of admis-
sions

Number of posi-
tive admissions

Number of nega-
tive admissions

Number of admis-
sions

8823332190626353541TS1

9024133190426273531TS2

8128736891325813494TS3

10227237489225963488TS4

8824833690626203526TS5

10028338389425853479TS6

10830841688625603446TS7

9828838689625803476TS8

10633243888825363424TS9

13337650986124923353TS10
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Table 5. Data information in patient characteristics for age and gender of the cohort across in 10 time segments (TSs) in both training and testing data
sets. Three adult age groups are defined: young adults aged 18-44 years, middle-aged adults aged 45-64 years, and older adults aged ≥65 years.

AgeGenderTS

TestingTrainingTestingTraining

Older
adults, n
(%)

Middle-
aged
adults, n
(%)

Young
adults, n
(%)

Older
adults, n
(%)

Middle-
aged
adults, n
(%)

Young
adults, n
(%)

Female, n
(%)

Male, n
(%)

Female, n
(%)

Male, n
(%)

204 (63.5)81 (25.2)36 (11.2)2267
(64.02)

844 (23.84)430 (12.14)159 (49.5)162
(50.5)

1788
(50.49)

1753
(49.51)

TS1 (training:
n=3541; test-
ing: n=321)

206 (62.2)80 (24.2)45 (13.6)2265
(64.15)

845 (23.93)421 (11.92)152 (45.9)179
(54.1)

1795
(50.84)

1736
(49.16)

TS2 (training:
n=3531; test-
ing: n=331)

239 (64.9)80 (21.7)49 (13.3)2232
(63.88)

845 (24.18)417 (11.93)199 (54.1)169
(45.9)

1748
(50.03)

1746
(49.97)

TS3 (training:
n=3494; test-
ing: n=368)

252 (67.4)71 (18.9)51 (13.6)2219
(63.62)

854 (24.48)415 (11.9)196 (52.4)178
(47.6)

1751 (50.2)1737 (49.8)TS4 (training:
n=3488; test-
ing: n=374)

206 (61.3)87 (25.9)43 (12.8)2265
(64.24)

838 (23.77)423 (12)169 (50.3)167
(49.7)

1778
(50.43)

1748
(49.57)

TS5 (training:
n=3526; test-
ing: n=336)

241 (62.9)93 (24.3)49 (12.8)2230 (64.1)832 (23.91)417 (11.99)196 (51.2)187
(48.8)

1751
(50.33)

1728
(49.67)

TS6 (training:
n=3479; test-
ing: n=383)

273 (65.6)92 (22.1)51 (12.3)2198
(63.78)

833 (24.17)415 (12.04)201 (48.3)215
(51.7)

1746
(50.67)

1700
(49.33)

TS7 (training:
n=3446; test-
ing: n=416)

244 (63.21)99 (25.65)43 (11.14)2227
(64.07)

826 (23.76)423 (12.17)195 (50.5)191
(49.5)

1752 (50.4)1724 (49.6)TS8 (training:
n=3476; test-
ing: n=386)

273 (62.33)108 (24.66)57 (13.01)2198
(64.19)

817 (23.86)409 (11.95)225 (51.34)213
(48.6)

1722
(50.29)

1702
(49.71)

TS9 (training:
n=3424; test-
ing: n=428)

333 (65.42)134 (26.33)42 (8.25)2138
(63.76)

791 (23.59)424 (12.65)255 (50.1)254
(49.9)

1692
(50.46)

1661
(49.54)

TS10 (train-
ing: n=3353;
testing:
n=509)
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Table 6. Data information in patient characteristics for special care unit (SCU) of the cohort across the data splits.

TestingTrainingTSa

Not in SCU file, n (%)In SCU file, n (%)Not in SCU file, n (%)In SCU file, n (%)

294 (91.6)27 (8.4)3250 (91.78)291 (8.22)TS1 (training: n=3541; testing: n=321)

305 (92.1)26 (7.8)3239 (91.73)292 (8.27)TS2 (training: n=3531; testing: n=331)

339 (92.1)29 (7.9)3205 (91.73)289 (8.27)TS3 (training: n=3494; testing: n=368)

341 (91.2)33 (8.8)3203 (91.83)285 (8.17)TS4 (training: n=3488; testing: n=374)

308 (91.7)28 (8.3)3236 (91.78)290 (8.22)TS5 (training: n=3526; testing: n=336)

347 (90.6)36 (9.4)3197 (91.89)282 (8.11)TS6 (training: n=3479; testing: n=383)

384 (92.3)32 (7.7)3160 (91.7)286 (8.3)TS7 (training: n=3446; testing: n=416)

350 (90.7)36 (9.3)3194 (91.89)282 (8.11)TS8 (training: n=3476; testing: n=386)

402 (91.8)36 (8.2)3142 (91.76)282 (8.24)TS9 (training: n=3424; testing: n=428)

474 (93.1)35 (6.9)3070 (91.56)283 (8.44)TS10 (training: n=3353; testing: n=509)

aTS: time segment.

Figure 2. The performances of 2 schemes changing over the 10 time segments (TSs) are shown using the gradient boosting classifier, where TS1 to
TS10 are as follows: April 1, 2010, to September 30, 2010; October 1, 2010, to March 31, 2011; April 1, 2011, to September 30, 2011; October 1, 2011,
to March 31, 2012; April 1, 2012, to September 30, 2012; October 31, 2012, to March 31, 2013; April 1, 2013, to September 30, 2013; October 1, 2013,
to March 31, 2014; April 1, 2014, to September 30, 2014; and October 1, 2014, to March 31, 2015. NLP: natural language processing; ROC-AUC: area
under the receiver operating characteristic curve.
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Figure 3. The calibration plot of the gradient boosting classifier.

As with the results for the last 6-month time segment, the
delirium (+NLP) model also performed best using data from
each of the earlier 9 time segments as the holdout set. The
delirium (+NLP) model outperformed the delirium (–NLP)
model in terms of accuracy, precision, recall or sensitivity, miss
rate, ROC-AUC, and F1-score.

Discussion

Principal Findings
Overall, machine learning models incorporating NLP either
outperformed or were competitive with models that did not
incorporate NLP for predicting the presence of delirium.
Performance of the delirium (+NLP) model was relatively
weaker on the specificity metric, but that metric was highly
variable across the different holdout sets suggesting that it is a
less reliable measure of performance in this application. As

shown in the recall measure, the delirium (+NLP) model was
better at detecting true positives, that is, identifying delirium
for the admissions or patients who had ground truth delirium
labels. The delirium (+NLP) model also performed best out of
the 4 schemes in terms of having consistently high performance
in terms of sensitivity, F1-score (balancing sensitivity and
precision), and ROC-AUC.

Prior risk identification models for delirium have tended to use
a limited set of machine learning methods [7,29-33] and have
tended to neglect text data [34]. In addition, most machine
learning identification models to identify delirium only evaluate
via simple partition of data (randomly partitioned 80%/20% for
training and validating the classification model, respectively)
or cross-validation [30,32,33]. In contrast, we used independent
holdout or testing data (cross-validation in training data and
totally separate testing data over time segments on the rolling
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basis, as shown in Figure 1), providing more rigorous testing
of the identification model.

Previous research has found that routine clinical screening,
using tools such as CAM, underreports up to 75% of delirium
cases compared with clinical assessments for research [61-64].
Although we were not able to directly compare our model’s
performance with CAM results on the same patients, it is well
documented in the literature that routine clinical use of CAM
is unreliable for research or quality measurement, reinforcing
the need for a model such as the one we developed in this study.
Notably, the Montreal Cognitive Assessment is primarily used
for the assessment of stable cognitive impairment and not for
delirium.

The delirium (+NLP) model provided the best balance between
recognizing cases of delirium, where they existed, and not
mislabeling nondelirium cases as delirium. The baseline delirium
scheme performed better when detecting true negatives. This
is likely because our GEMINI data set was unbalanced, with
75% of admissions being nondelirium; thus, a poorly tuned
model can achieve better accuracy by being biased toward
predicting nondelirium.

One way of dealing with the trade-off between precision and
recall is to use the F1-score, which is the harmonic mean
(average) of the precision and sensitivity or recall scores. With
this more balanced measure, our proposed delirium (+NLP)
model outperformed the one without NLP across all time
segments.

Our delirium (+NLP) method integrated an NLP derived feature
into multisource medical data to improve the performance and
usefulness of models. This approach can also be extended to
other medical identification contexts.

This approach has several important applications, including for
quality measurement and quality improvement, for statistical
risk adjustment in research projects, and for large-scale
observational research in retrospective cohorts. There is
currently no scalable solution to retrospectively identify the
occurrence of delirium in hospital, and CAM is underutilized,
perhaps because of the lack of trained clinical resources. We
agree that prospective predictions of delirium would be clinically
useful, and research on that topic is underway. However,
retrospective prediction is also important for quality
management purposes and for evaluating the effectiveness of
interventions for preventing delirium. Typically, CAM is poorly
implemented and used infrequently [23].

One major reason why delirium is underidentified in routine
data sources is because it is often inconsistently documented,
with the use of various synonyms (eg, confusion and altered

level of consciousness). The only validated, high-quality method
for retrospectively identifying delirium is the Chart-based
Delirium Identification Instrument review method that we used
as the gold standard labeling method for training our machine
learning models. This method is time intensive and requires up
to 1 hour per hospital chart. Thus, it cannot be easily applied to
large data sets. Therefore, developing models that can use
routinely collected clinical and administrative health care data
represents a major contribution to the literature, as they can
enable both research and quality applications that rely on
retrospective identification of delirium cases.

It would be desirable to build models that could predict delirium
risk at the time of hospitalization or in real time during the
course of hospital admission. One impediment to developing
these models is having sufficiently large data sets on which to
train them. Our models, which seek to accurately classify
hospitalizations with or without delirium retrospectively could
then be used to label (using model predictions) large data sets,
which could then be used to generate quality estimates and
provide a basis for further model prediction.

Conclusions
Delirium is a highly prevalent, preventable, and treatable
neurocognitive disorder, which is associated with very poor
outcomes when untreated. It is characterized by an acute onset
of fluctuating mental status, psychomotor disturbance, and
hallucinations, and it is difficult to spot because the symptoms
can often be attributed to other causes. Better delirium prediction
will create an opportunity for higher quality care through
automated identification of delirium or of delirium risk. In the
research reported in this paper, we have shown that
incorporation of the NLP approach can significantly improve
identification compared with the standard machine learning
methods without NLP. We also showed that varying the holdout
period over time can estimate the temporal stability of model
identification. Another useful feature of this type of stationarity
analysis is that it can be used to identify unreliable evaluative
criteria that exhibit nonstationarity and to identify models that
are nonstationary with respect to their effectiveness over time.
In this study, we found that precision was an unreliable criterion,
with wide fluctuations over different periods.

The results of this study demonstrate the value of NLP in the
identification of an important health care outcome, and we
recommend that future research should focus on (1) applying
NLP on medical notes to extract more valuable information and
(2) augmenting the delirium (+NLP) model by adding
explanations so that the resulting models are more consumable
and more easily integrated into clinical workflow.
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