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Abstract

Background: The automatic coding of clinical text documents by using the International Classification of Diseases, 10th
Revision (ICD-10) can be performed for statistical analyses and reimbursements. With the development of natural language
processing models, new transformer architectures with attention mechanisms have outperformed previous models. Although
multicenter training may increase a model’s performance and external validity, the privacy of clinical documents should be
protected. We used federated learning to train a model with multicenter data, without sharing data per se.

Objective: This study aims to train a classification model via federated learning for ICD-10 multilabel classification.
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Methods: Text data from discharge notes in electronic medical records were collected from the following three medical centers:
Far Eastern Memorial Hospital, National Taiwan University Hospital, and Taipei Veterans General Hospital. After comparing
the performance of different variants of bidirectional encoder representations from transformers (BERT), PubMedBERT was
chosen for the word embeddings. With regard to preprocessing, the nonalphanumeric characters were retained because the model’s
performance decreased after the removal of these characters. To explain the outputs of our model, we added a label attention
mechanism to the model architecture. The model was trained with data from each of the three hospitals separately and via federated
learning. The models trained via federated learning and the models trained with local data were compared on a testing set that
was composed of data from the three hospitals. The micro F1 score was used to evaluate model performance across all 3 centers.

Results: The F1 scores of PubMedBERT, RoBERTa (Robustly Optimized BERT Pretraining Approach), ClinicalBERT, and
BioBERT (BERT for Biomedical Text Mining) were 0.735, 0.692, 0.711, and 0.721, respectively. The F1 score of the model that
retained nonalphanumeric characters was 0.8120, whereas the F1 score after removing these characters was 0.7875—a decrease
of 0.0245 (3.11%). The F1 scores on the testing set were 0.6142, 0.4472, 0.5353, and 0.2522 for the federated learning, Far Eastern
Memorial Hospital, National Taiwan University Hospital, and Taipei Veterans General Hospital models, respectively. The
explainable predictions were displayed with highlighted input words via the label attention architecture.

Conclusions: Federated learning was used to train the ICD-10 classification model on multicenter clinical text while protecting
data privacy. The model’s performance was better than that of models that were trained locally.

(JMIR Med Inform 2022;10(11):e41342) doi: 10.2196/41342
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Introduction

Background
The World Health Organization published a unified
classification system for diagnoses of diseases called the
International Classification of Diseases (ICD), and the ICD

10th Revision (ICD-10) is widely used [1]. Coders classify
diseases according to the rules of the ICD, and the resulting
ICD codes are used for surveys, statistics, and reimbursements.
The ICD-10 Clinical Modification (ICD-10-CM) is used for
coding medical diagnoses and includes approximately 69,000
codes [2,3]. ICD-10-CM codes contain 7 digits; the structure
is shown in Figure 1.

Figure 1. Structure of an International Classification of Diseases, 10th Revision, Clinical Modification code.

In hospitals, diagnoses for each patient are first written as text
descriptions in the electronic health record. A coder then reads
these records to classify diagnoses into ICD codes. Because
diagnoses are initially written as free text, the text's ambiguity
makes diagnoses difficult to code. Classifying each diagnosis
is very time-consuming. A discharge record may contain 1 to
20 codes. Per the estimation of a trial, coders spent 20 minutes
assigning codes to each patient on average [4]. An automatic
tool can be used to increase the efficiency of and reduce the
labor for ICD classification.

Related Work
Recently, deep learning and natural language processing (NLP)
models have been developed to turn plain text into vectors,
making it possible to automatically classify them. Shi et al [5]
proposed a hierarchical deep learning model with an attention

mechanism. Sammani et al [6] introduced a bidirectional gated
recurrent unit model to predict the first 3 or 4 digits of ICD
codes based on discharge letters. Wang et al [7] proposed a
convolutional neural network model with an attention
mechanism and gated residual network to classify Chinese
records into ICD codes. Makohon et al [8] showed that deep
learning with an attention mechanism effectively enhances
ICD-10 predictions. Previous studies also mentioned the
necessity of enormous data sets and how privacy-sensitive
clinical data limited the development of models for automatic
ICD-10 classification [6].

Federated learning has achieved impressive results in the
medical field, being used to train models on multicenter data
while keeping them private. Federated learning is widely used
in medical image and signal analyses, such as brain imaging
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analysis [9] and the classification of electroencephalography
signals [10]. In the clinical NLP field, Liu et al [11] proposed
a 2-stage federated method that involved using clinical notes
from different hospitals to extract phenotypes for medical tasks.

Previously, we applied a Word2Vec model with a bidirectional
gated recurrent unit to classify ICD-10-CM codes from
electronic medical records [12]. We analyzed the distribution
of ICD-10-CM codes and extracted features from discharge
notes. The model had an F1 score of 0.625 for ICD-10-CM code
classification. To improve the model’s performance, we
implemented bidirectional encoder representations from
transformers (BERT) and found an improved F1 score of 0.715
for ICD-10-CM code classification [4]. We also found that the
coding time decreased when coders used classification model
aids; the median F1 score significantly improved from 0.832 to
0.922 (P<.05) in a trial [4]. Furthermore, we constructed a
system to improve ease of use, comprising data processing,
feature extraction, model construction, model training, and a
web service interface [4]. Lastly, we included a rule-based
algorithm in the preprocessing process and improved the F1

score to 0.853 for ICD-10-CM classification [13].

Objective
This study aims to further improve the performance of the
ICD-10 classification model and enable the model’s use across
hospitals. In this study, we investigated the effect of federated
learning on the performance of a model that was trained on
medical text requiring ICD-10 classification.

Methods

Ethics Approval
The study protocol was approved by the institutional review
boards of Far Eastern Memorial Hospital (FEMH; approval

number: 109086-F), National Taiwan University Hospital
(NTUH; approval number: 201709015RINC), and Taipei
Veterans General Hospital (VGHTPE; approval number:
2022-11-005AC), and the study adhered to the tenets of the
Declaration of Helsinki. Informed consent was not applicable
due to the use of deidentified data.

Data Collection
Our data were acquired from electronic health records at FEMH
(data recorded between January 2018 and December 2020),
NTUH (data recorded between January 2016 and July 2018),
and VGHTPE (data recorded between January 2018 and
December 2020). The data contained the text of discharge notes
and ICD-10-CM codes. Coders in each hospital annotated the
ground truth ICD-10 codes.

Data Description
After duplicate records were removed, our data set contained
100,334, 239,592, and 283,535 discharge notes from FEMH,
NTUH, and VGHTPE, respectively. Each record contained
between 1 and 20 ICD-10-CM labels. The distribution of labels
for each chapter is shown in Figure 2. These chapters are
classified by the first three digits. Codes for chapters V01 to
Y98 are not used for insurance reimbursement; hence, they were
excluded from our data set. The minimum number of
ICD-10-CM labels was found for chapters U00 to U99, and the
maximum number was found for chapters J00 to J99. Counts
of ICD-10-CM labels from the three hospitals are shown in
Multimedia Appendix 1.

The text in the data set contained alphabetic characters,
punctuation, and a few Chinese characters. The punctuation
count and the top 10 Chinese characters are shown in
Multimedia Appendix 2. The most common punctuation mark
was the period (“.”), and the least common was the closing brace
(“}”).
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Figure 2. Counts of ICD-10-CM labels for 22 chapters from (A) Far Eastern Memorial Hospital, (B) National Taiwan University Hospital, and (C)
Taipei Veterans General Hospital. ICD-10-CM: International Classification of Diseases, 10th Revision, Clinical Modification.

Preprocessing
We first removed duplicate medical records from the data set.
We then transformed all full-width characters into half-width
characters and all alphabetic characters into lowercase letters.
Records shorter than 5 characters were removed, as these were
usually meaningless words, such as “nil” and “none.” We also
removed meaningless characters, such as newlines, carriage

returns, horizontal tabs, and formed characters (“\n,” “\r,” “\t,”
and “\f,” respectively). Finally, all text fields were concatenated.

To choose a better method for managing punctuation and
Chinese characters during the preprocessing stage, we
determined model performance by using FEMH data, given the
inclusion of these characters in the data. Each experiment used
2 versions of the data. In the first version, we retained these
specific characters, and in the second, we removed them.
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Experiment P investigated the effect of punctuation, experiment
C investigated the effect of Chinese characters, and experiment
PC investigated the effects of both punctuation and Chinese
characters. Another method of retaining Chinese character
information is using English translations of Chinese characters.
Therefore, we also compared the model’s performance when
Chinese characters were retained to its performance when
Google Translate was used to obtain English translations.

One-hot encoding was used for the labels. Of the 69,823
available ICD-10-CM codes, 17,745 appeared in our combined
data set, resulting in a one-hot encoding vector length of 17,745.
The final cohort comprised 100,334, 239,592, and 283,535
records from FEMH, NTUH, and VGHTPE, respectively; 20%
(FEMH: 20,067/100,334; NTUH: 47,918/239,592; VGHTPE:
56,707/283,535) of the records were randomly selected for the
testing set, and the remaining records were used as the training
set.

Classification Model
We compared the performance of different variants of BERT,
including PubMedBERT [14], RoBERTa (Robustly Optimized
BERT Pretraining Approach) [15], ClinicalBERT [16], and
BioBERT (BERT for Biomedical Text Mining) [17]. BioBERT
was pretrained with text from PubMed—the most popular
bibliographic database in the health and medical science fields.
ClinicalBERT was pretrained with the MIMIC-III (Medical
Information Mart for Intensive Care III) data set, and its
vocabulary was from English Wikipedia and the BookCorpus
data set. PubMedBERT is another variant of BERT that uses

training data from PubMed. The main difference between
PubMedBERT and BioBERT is their vocabularies. The
vocabulary of BioBERT was from English Wikipedia and the
BookCorpus data set—as was the vocabulary of
BERT—whereas that of PubMedBERT was from PubMed. This
difference in vocabularies affects the ability to recognize words
in clinical text. RoBERTa used the original BERT model, but
it also used a longer training time, a larger batch size, and more
training data. The training data were from the BookCorpus,
CC-News (CommonCrawl News), and OpenWebText data sets.
RoBERTa also applied dynamic masking, which meant that the
masked tokens would be changed multiple times instead of
being fixed in the original BERT. The vocabularies and corpora
of these BERT variants are summarized in Table 1.

For our comparison, the text was first fed into the BERT
tokenizer, which transformed strings into tokens. The number
of tokens was then truncated to 512 for every text datum that
met the input length limit of 512. A linear layer connected the
word embeddings produced from the models to the output layers
of the one-hot–encoded multilabels. The output size of the linear
layer was 17,745, which matched the one-hot encoding vector
size of the labels. Binary cross-entropy was used to calculate
the model loss. We trained our model for 100 epochs, with a
learning rate of 0.00005. These models were fine-tuned for our
ICD-10-CM multilabel classification task to compare their
performance. Figure 3 summarizes the model architecture and
preprocessing flowchart. The best-performing model and
preprocessing method were chosen for subsequent federated
learning.

Table 1. Summary of the vocabulary and corpus sources for the various bidirectional encoder representations from transformers (BERT) models.

Corpus sources (training data)Vocabulary sourcesModels

PubMedPubMedPubMedBERT

The BookCorpus, CC-News, and OpenWebText data setsThe BookCorpus, CC-Newsb, and OpenWebText data setsRoBERTaa

The MIMIC-IIIc data setEnglish Wikipedia and the BookCorpus data setClinicalBERT

PubMedEnglish Wikipedia and the BookCorpus data setBioBERTd

aRoBERTa: Robustly Optimized BERT Pretraining Approach.
bCC-News: CommonCrawl News.
cMIMIC-III: Medical Information Mart for Intensive Care III.
dBioBERT: BERT for Biomedical Text Mining.

Figure 3. Model architecture and processing flowchart. CLS: class token; ICD-10-CM: International Classification of Diseases, 10th Revision, Clinical
Modification.
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Federated Learning
With federated learning, a model can be trained without sharing
data [18]. Clients (ie, local machines) keep their training data
on the same model architecture while exchanging the weights
of model parameters. A server receives the weights from each
client and averages their weights. After updating the model, the
server sends new weights back to the clients. The clients can
then start a new training round. We updated the weights of our
model parameters with the FederatedAveraging algorithm [18]
and used Flower for federated learning [19].

Flower is an open-source federated learning framework for
researchers [19]. Flower has a server-client structure. The server
and clients need to be started individually, and a server needs
to be assigned to each client. They communicate via the
open-source Google Remote Procedure Call (gRPC; Google
LLC) [20]. With the gRPC, a client application can directly call
a method on a server application, and this can be done on
different machines. There is a registration center on the server
for managing communication with all clients. There are 3 main
modules in the server. The first—a connection management
module—maintains all current gRPC connections. On the server,
each gRPC corresponds to each client. When a gRPC is

established, the register function is triggered to store the clients’
information in an array. If a client initiates a disconnection or
the connection times out, the register function will be called to
clear the client. The second module—a bridge module—caches
the information, regardless of whether the gRPC information
from the clients or the server will be stored in the module.
However, since the buffer is shared in both directions, it is
necessary to use the state transition method to ensure that all of
the information in the buffer is the same. There are five
states—the close, waiting for client write, waiting for client
read, waiting for server write, and waiting for server read states.
The third module—a server handler—manages the traffic
between the server and the clients.

Clients were set in the three hospitals, where the model was
trained on local data. The weights from each client were
transferred to the server, where the weights were averaged, and
global models were made (Figure 4). We set 5 epochs for each
training round on clients and 20 rounds for the server
aggregation. Our study was conducted on 2 nodes. Each node
had a NVIDIA RTX 2080 Ti graphics processing unit (NVIDIA
Corporation) with 64 GB of RAM, and one node had 2 NVIDIA
TITAN RTX graphics processing units with 64 GB of RAM
(NVIDIA Corporation).

Figure 4. Federated learning architecture. FEMH: Far Eastern Memorial Hospital; NTUH: National Taiwan University Hospital; VGHTPE: Taipei
Veterans General Hospital.

Label Attention
To explain the outputs of our model, we added a label attention
architecture [21]. It calculated the attention based on the inner
products of word vectors and each label vector separately. Figure
5 shows how we added the label attention architecture to our
model. First, we fine-tuned the BERT model by using the
definitions of ICD-10-CM codes to generate the label vectors.
Second, we constructed a fully connected layer, of which the
weights were initialized with the label vectors. Third, the output
produced by BERT was passed through the hyperbolic tangent
function, thereby producing word vectors. We inputted the word

vectors (Ζ) into the fully connected layer and softmax layer.
The output ( ) of the softmax layer was the attention. Fourth,
we inputted the hyperbolic tangent function of word vectors
(H), which were multiplied by attention ( ), into another fully
connected layer and sigmoid layer. This was similar to our
original architecture. The output (y) could be subtracted from
the one-hot–encoded labels for the loss calculation. Finally,
attention was used to explain how the model predicted the labels.
Attention was given to the input text for corresponding
ICD-10-CM codes. The performance of the model after adding
the label attention architecture was compared to its performance
without this architecture.
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Figure 5. Our model architecture with label attention. BERT: bidirectional encoder representations from transformers.

Metrics
We used the micro F1 score to evaluate performance because
it is the harmonic mean of precision and recall and therefore
yields more balanced results than those yielded when using
precision or recall only. The micro F1 score was calculated as
follows:

where

and

TPsum indicates the sum of true positives, FPsum indicates the
sum of false positives, and FNsum indicates the sum of false
negatives.

Results

Comparing the Performance of Different BERT
Models
The F1 scores of PubMedBERT, RoBERTa, ClinicalBERT, and
BioBERT were 0.735, 0.692, 0.711, and 0.721, respectively.
The F1 score of PubMedBERT was the highest, and that of
RoBERTa was the lowest among all models (Table 2). Due to
these results, we used PubMedBERT in the subsequent
experiments.

Table 2. Performance of different bidirectional encoder representations from transformers (BERT) models.

RecallPrecisionF1 scoreModels

0.7150.7560.735PubMedBERT

0.6660.7190.692RoBERTaa

0.6890.7350.711ClinicalBERT

0.6910.7540.721BioBERTb

aRoBERTa: Robustly Optimized BERT Pretraining Approach.
bBioBERT: BERT for Biomedical Text Mining.

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e41342 | p. 7https://medinform.jmir.org/2022/11/e41342
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The Model’s Performance When Retaining or
Removing Punctuation or Chinese Characters
Table 3 shows the mean number of tokens for each data set
preprocessing case. The mean number of tokens when removing
punctuation and Chinese characters was 52.9. The mean number

of tokens when the characters were retained in experiment P
(punctuation), experiment C (Chinese characters), and
experiment PC (punctuation and Chinese characters) was 65.0,
53.1, and 65.1, respectively. Punctuation and Chinese characters
comprised 18.3% (1,301,988/7,096,460) and 0.1%
(7948/7,096,460) of the tokens in our data, respectively.

Table 3. Mean number of data tokens for retaining or removing punctuation or Chinese characters.

Mean number of tokensExperiment

52.9Removed punctuation and Chinese characters (baseline)

65.0Retained punctuation

53.1Retained Chinese characters

65.1Retained punctuation and Chinese characters

Table 4 shows the F1 scores for each data set preprocessing
case. The baseline performance of the model after removing
punctuation and Chinese characters was 0.7875. In experiment
P, the F1 score for retaining punctuation was 0.8049—an
increase of 0.0174 (2.21%). In experiment C, the F1 score for

retaining Chinese characters was 0.7984—an increase of 0.0109
(1.38%). In experiment PC, the F1 score for retaining
punctuation and Chinese characters was 0.8120—an increase
of 0.0245 (3.11%). In all experiments, retaining these characters
was better than removing them, with experiment PC showing
the largest improvement in performance.

Table 4. F1 scores for retaining or removing punctuation or Chinese characters.

Absolute increases (percentage)F1 scoreExperiment

N/Aa0.7875Removed punctuation and Chinese characters (baseline)

0.0174 (2.21%)0.8049Retained punctuation

0.0109 (1.38%)0.7984Retained Chinese characters

0.0245 (3.11%)0.8120Retained punctuation and Chinese characters

aN/A: not applicable.

The Model’s Performance Before and After
Translation
In the experiment where we translated Chinese into English,
the F1 score for retaining the Chinese characters was 0.7984,
and that for translating them into English was 0.7983.

Federated Learning
Table 5 shows the performance of the models that were trained
in the three hospitals. The models trained in FEMH, NTUH,
and VGHTPE had validation F1 scores of 0.7802, 0.7718, and
0.6151, respectively. The FEMH model had testing F1 scores
of 0.7412, 0.5116, and 0.1596 on the FEMH, NTUH, and
VGHTPE data sets, respectively. The NTUH model had testing

F1 scores of 0.5583, 0.7710, and 0.1592 on the FEMH, NTUH,
and VGHTPE data sets, respectively. The VGHTPE model had
testing F1 scores of 0.1081, 0.1058, and 0.5692 on the FEMH,
NTUH, and VGHTPE data sets, respectively. The weighted
average testing F1 scores were 0.4472, 0.5353, and 0.2522 for
the FEMH, NTUH, and VGHTPE models, respectively.

Table 6 shows the federated learning model’s performance in
the three hospitals. The federated learning model had validation
F1 scores of 0.7464, 0.6511, and 0.5979 on the FEMH, NTUH,
and VGHTPE data sets, respectively. The federated learning
model had testing F1 scores of 0.7103, 0.6135, and 0.5536 on
the FEMH, NTUH, and VGHTPE data sets, respectively. The
weighted average testing F1 score was 0.6142 for the federated
learning model.
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Table 5. Models that were trained in the three hospitals for International Classification of Diseases, 10th Revision classification.

Weighted average testing F1 scoresTesting F1 scoresValidation F1 scoreHospitals

0.44720.7802FEMHa • 0.7412 (FEMH)
• 0.5116 (NTUHb)
• 0.1596 (VGHTPEc)

0.53530.7718NTUH • 0.5583 (FEMH)
• 0.7710 (NTUH)
• 0.1592 (VGHTPE)

0.25220.6151VGHTPE • 0.1081 (FEMH)
• 0.1058 (NTUH)
• 0.5692 (VGHTPE)

aFEMH: Far Eastern Memorial Hospital.
bNTUH: National Taiwan University Hospital.
cVGHTPE: Taipei Veterans General Hospital.

Table 6. The federated learning model’s performance in the three hospitals.

Testing F1 scoreaValidation F1 scoreData

0.71030.7464FEMHb data

0.61350.6511NTUHc data

0.55360.5979VGHTPEd data

aThe weighted average testing F1 score was 0.6142.
bFEMH: Far Eastern Memorial Hospital.
cNTUH: National Taiwan University Hospital.
dVGHTPE: Taipei Veterans General Hospital.

Label Attention
The F1 scores of the model with and without the label attention
mechanism were 0.804 (precision=0.849; recall=0.763) and
0.813 (precision=0.852; recall=0.777), respectively.

Figure 6 shows a visualization of the attention for ICD-10-CM
codes and their related input text. The words were colored blue
based on the attention scores for different labels. The intensity
of the blue color represented the magnitude of the attention
score. We used ICD-10-CM codes E78.5 (“Hyperlipidemia,
unspecified”) and I25.10 (“Atherosclerotic heart disease of
native coronary artery without angina pectoris”) as examples.
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Figure 6. Attention for International Classification of Diseases, 10th Revision, Clinical Modification codes (A) E78.5 (“Hyperlipidemia, unspecified”)
and (B) I25.10 (“Atherosclerotic heart disease of native coronary artery without angina pectoris”). The intensity of the blue color represents the magnitude
of the attention score.

Discussion

Principal Findings
The federated learning model outperformed each local model
when tested on external data. The weighted average F1 scores
on the testing set were 0.6142, 0.4472, 0.5353, and 0.2522 for
the federated learning, FEMH, NTUH, and VGHTPE models,
respectively (Table 5 and Table 6). The model’s performance
decreased when tested on external data. Because different
doctors, coders, and diseases are found in different hospitals,
the style of clinical notes may be distinct across hospitals.
Overcoming such gaps among hospitals is challenging. Although
the performance of the federated learning model was inferior
to that of the models trained on local data when tested on local
data, its performance was higher than that of the models trained
on local data when tested on external data. Moreover, in the
VGHTPE data set, the label distribution was very different from
the label distributions in the other two hospitals’ data sets
(Figure 2). Therefore, the VGHTPE model only achieved F1

scores of 0.1058 and 0.1081 on the NTUH and FEMH testing
sets, respectively. The FEMH and NTUH models had F1 scores
of 0.1596 and 0.1592, respectively, on the VGHTPE testing set
(Table 5).

Federated learning improves model performance on external
data. Federated learning can be used to build an ICD coding
system for use across hospitals. However, the training time
required for federated learning is longer than the training time
required for local deep learning. Federated learning takes
approximately 1 week, and local training takes approximately
2 days. There are 2 reasons for this. First, the communication
between the server and the clients takes longer if the model is
large. The size of our model is approximately 859 MB. Second,
different clients may have different computing powers, and the

slower client becomes a bottleneck [22,23]. Other clients may
wait for the slower client until it completes its work.

The performance of PubMedBERT was better than that of
BioBERT, ClinicalBERT, and RoBERTa. Table 2 shows that
the vocabulary of BERT models is an important factor of model
performance. The vocabulary of PubMedBERT contains
predominantly medical terms, whereas the vocabularies of the
other three models contain common words. This difference
affects the ability to recognize words in clinical text. Most
published BERT models use a vocabulary of 30,522 WordPieces
[24]. However, these vocabulary data do not contain some words
from special fields. For example, the medical term “lymphoma”
is in the vocabulary of PubMedBERT but not in the vocabularies
of BioBERT, ClinicalBERT, and RoBERTa. The term
“lymphoma” can be transformed into the token “lymphoma”
by the PubMedBERT tokenizer, but the term would be split
into 3 tokens—“l”, “##ymph”, and “##oma”—by BioBERT,
ClinicalBERT, and RoBERTa.

In most scenarios, nonalphanumeric characters are removed
because they are considered useless to the models [25]. In
contrast to models with attention mechanisms, early NLP models
could not pay attention to punctuation. Additional characters
would make the models unable to focus well on keywords. The
removal of punctuation in English text and text in other
languages, such as Arabic, has been performed for NLP [26].
Ek et al [27] compared 2 data sets of daily conversation
text—one retained punctuation, and the other did not. Their
results showed better performance for the data set that retained
punctuation.

For experiments P, C, and PC, all models performed better when
additional characters were retained (Table 4). Experiment P
demonstrated that PubMedBERT could use embedded
punctuation. As punctuation marks are used to separate different
sentences, removing them connects all sentences and thus makes
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it harder for a model to understand the text content. The
improvement in our F1 score for retaining punctuation is similar
to the results of previous work by Ek et al [27]. Our results
demonstrate that retaining punctuation can improve the
performance of text classification models for text from the
clinical field. Experiment C demonstrated that PubMedBERT
could use embedded Chinese characters. Although
PubMedBERT was pretrained with mostly English text, its
vocabulary contains many Chinese characters. The tokens from
Chinese characters may contribute to the ICD-10 classification
task for clinical text because they provide information such as
place names, trauma mechanisms, and local customs. The results
of experiment PC indicate that the benefits of retaining
punctuation and retaining Chinese characters are additive. In
the translation experiment, the F1 scores did not considerably
differ. This result indicates that the model can extract
information from clinical text in either English or Chinese. The
use of the attention mechanisms of BERT increased our model’s
ability to pay attention to keywords. Punctuation and Chinese
characters contribute helpful information to these models.
Therefore, this preprocessing strategy—retaining more
meaningful tokens—provides more information for ICD-10
classification task models.

In our previous study, we introduced an attention mechanism
to visualize the attention given to the input text for ICD-10
definitions [4]. Through this approach, we trained a model to
predict ICD-10 codes and trained another model to extract
attention data. This approach might result in inconsistencies
between the predictions and attention. In this study, we
introduced the label attention architecture to visualize the
attention given to the input text for ICD-10 codes [21]. This
method better illustrated the attention given to the input words
that were used to predict ICD codes, as it is consistent with the
methods used by prediction models.

The F1 score of the model, after the label attention mechanism
was added, decreased by 0.009. Although the F1 score decreased,
we obtained explainable predictions. For ICD-10-CM codes
E78.5 (“Hyperlipidemia, unspecified”) and I25.10
(“Atherosclerotic heart disease of native coronary artery without
angina pectoris”), our model successfully paid great attention

to the related words “hyperlipidemia” and “coronary artery”
(Figure 6). Our visualization method (ie, highlighting input
words) allows users to understand how our model identified
ICD-10-CM codes from text.

Limitations
Our study has several limitations. First, our data were acquired
from 3 tertiary hospitals in Taiwan. The extrapolation of our
results to hospitals in other areas should be studied in the future.
Second, although our results suggest that model performance
is better when punctuation and Chinese characters are retained,
this effect may be restricted to specific note types. This finding
should be further examined in the context of classifying other
types of clinical text. Third, the translated text in our last
experiment may not be as accurate as translations by a native
speaker. However, it is difficult to manually translate large
amounts of data. As such, we could only automatically translate
the text by using Google Translate.

It should be noted that there is a primary and secondary
diagnosis code for each discharge note. Although choosing the
primary code makes reimbursements different, the model
proposed in this study did not identify primary codes. To make
our model capable of identifying a primary code, we proposed
a sequence-to-sequence model in our previous work [4]. It
transforms the original predicted labels that were concatenated
alphabetically, so that they are ordered by diagnosis code. This
structure can be added to the model proposed in this study.
Predictions based on primary and secondary diagnosis codes
can further improve the usability of this system.

Conclusions
Federated learning was used to train the ICD-10 classification
model on multicenter clinical text while protecting data privacy.
The model’s performance was better than that of models that
were trained locally. We showed the explainable predictions by
highlighting input words via a label attention architecture. We
also found that the PubMedBERT model can use the meanings
of punctuation and non-English characters. This finding
demonstrates that changing the preprocessing method for
ICD-10 multilabel classification can improve model
performance.
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