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Abstract

Background: In recent years, the progress and generalization surrounding portable ultrasonic probes has made ultrasound (US)
a useful tool for physicians when making a diagnosis. With the advent of machine learning and deep learning, the development
of a computer-aided diagnostic system for screening renal US abnormalities can assist general practitioners in the early detection
of pediatric kidney diseases.

Objective: In this paper, we sought to evaluate the diagnostic performance of deep learning techniques to classify kidney images
as normal and abnormal.

Methods: We chose 330 normal and 1269 abnormal pediatric renal US images for establishing a model for artificial intelligence.
The abnormal images involved stones, cysts, hyperechogenicity, space-occupying lesions, and hydronephrosis. We performed
preprocessing of the original images for subsequent deep learning. We redefined the final connecting layers for classification of
the extracted features as abnormal or normal from the ResNet-50 pretrained model. The performances of the model were tested
by a validation data set using area under the receiver operating characteristic curve, accuracy, specificity, and sensitivity.

Results: The deep learning model, 94 MB parameters in size, based on ResNet-50, was built for classifying normal and abnormal
images. The accuracy, (%)/area under curve, of the validated images of stone, cyst, hyperechogenicity, space-occupying lesions,
and hydronephrosis were 93.2/0.973, 91.6/0.940, 89.9/0.940, 91.3/0.934, and 94.1/0.996, respectively. The accuracy of normal
image classification in the validation data set was 90.1%. Overall accuracy of (%)/area under curve was 92.9/0.959..

Conclusions: We established a useful, computer-aided model for automatic classification of pediatric renal US images in terms
of normal and abnormal categories.

(JMIR Med Inform 2022;10(11):e40878) doi: 10.2196/40878
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Introduction

Renal abnormalities are important findings in pediatric medicine.
It is well accepted that “silent” renal abnormalities can be
effectively detected through ultrasound (US) screening, which
makes both early diagnoses and intervention possible [1,2]. US
is a safe, relatively cheap, and convenient medical modality.
Portable ultrasonic probes and internet connections have largely
developed in recent years, even extending the coverage of
pediatric renal US screening throughout the world. However,
current methods remain limited due to the lack of automated
processes that accurately classify diseased and normal kidneys
[3].

Common renal abnormalities identified in US images in a series
of more than 1 million school children included hydronephrosis
(39.6%), unilateral small kidney (19.8%), unilateral agenesis
(15.9%), cystic disease (13.9%), abnormal shapes—ectopic,
horseshoe, and duplication of kidney (8%)—as well as others,
that is, stones, tumors, and parenchymal diseases (1.5%) [1].

Thus far, publications regarding computer-aided US image
interpretation have been much fewer than those based on
computerized tomography or magnetic resonance imaging [4,5].
The use of US presents unique challenges, such as different
angles of image sampling, low image quality caused by noise
and artifacts, high dependence on an abundance of operators,
and high inter- and intra-observer variability across different
institutes and manufacturers’ US systems [6]. From the review
about medical US published in 2021 [7], there were only 3
studies involving deep learning for renal US image classification
[5,8,9].

This study was performed to select normal pediatric renal US
images, as well as different types of renal abnormalities
previously mentioned, for purposes of machine learning.
Through the pretreatment of original images, adequate grouping

of images, and deep neural network training, we hope that renal
images can be correctly classified as either normal or abnormal.
The aim of this study is to establish an artificial intelligence
(AI) model for screening renal abnormalities to enhance the
well-being of children even in areas where there is no pediatric
nephrologist.

Methods

Ethics Approval
This study was approved by the institutional review board of
Taichung Veterans General Hospital (No. CE20204A).

Materials
The images used were all created from the original images in
the pediatric US examination room at Taichung Veterans
General Hospital from January 2000 to December 2020. Here
were 4 different US machines manufactured by both Philips
and Acuson, which were used in this study. All images were
obtained by a US technician having more than 20 years of
experience, using a 4 MHz sector transducer. We chose only
images taken of a longitudinal view from the right and left
kidney.

We established 2 data sets. One data set was for training, and
the other was for validation. The images in these 2 data sets
were totally different.

Image Preprocessing and Data Cleaning
All images were detached from their original general data,
including name, date of birth, date of examination, and chart
number. The size of all the images was 600x480 pixels. We
processed the images using software to obtain adequate
illustrations for machine learning. As shown in Figure 1, after
preprocessing, the images contain a kidney, a square of liver
obtained from the examination simultaneously, and a gray scale
gradient seen in the left upper part of the image.

Figure 1. Preprocessing images for machine learning.

Image Grouping
Normal images were those having a normal size and shape, as
well as a clear renal cortex or medulla without hydronephrosis,
hyperechogenicity, cysts, stones, or any space-occupying lesion.
We prepared 330 images for this group. There were a total of
1269 abnormal renal images. The abnormalities included
hydronephrosis, hyperechogenicity, cysts, stones, and

space-occupying lesions. The number of images and
examinations are summarized in Table 1. The hyperechogenicity
of the renal US images included increased renal cortex
echogenicity as compared to the liver, a poor differentiation of
the renal cortex or medulla, and an inversed echogenicity of the
renal cortex or medulla. These findings were judged by 2
pediatric nephrologists.
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Table 1. Distribution of images and examinations in the training and testing augmented database.

Totals (cases/images)Testing (cases/images)Training (cases/images)Diagnosis

164/33032/66132/264Normal

Abnormal

183/42737/85146/342Stone

125/26825/53100/215Cyst

75/16515/3360/132Hyperechogenicity

134/22626/45108/181Space-occupying lesions

84/18316/3768/146Hydronephrosis

765/1599151/319614/1280Total

Machine Learning
We performed feature extraction with the pretrained model of
ResNet-50 [8-10] in PyTorch from the data set ImageNet [11].
We used the pretrained weight of ResNet, so there was no
backpropagation during feature extraction for training US
images. The input data used were renal US images of 800x600
pixels in size. We normalized the dimension to 224x224 pixels
prior to feeding the images into the network.

For the classification purpose, we redefined the final fully
connected layers, which output image classification as abnormal
or normal. After the training images went through Resnet50,
there were 2048 outputs. There were 4 components in the final

fully connected layer. The first was a linear layer with the 2048
feature extractions and 512 outputs. The second was rectified
linear unit, which was a piecewise linear function that only
outputted the positive result. Subsequently, we added the
dropout layer to prevent overfitting. The 4th component was
another linear layer, performing with 512 inputs and 2 outputs,
which stand for the 2 categories, that is, abnormal and normal
class with their probabilities.

We optimized the model with the Adam optimizer at a learning
rate of 0.01 [12]. There were a total of 30 epochs used for
convolutional neural network training. We created a 94 MB
size model to classify normal versus abnormal renal US images.
Figure 2 is a summary of our deep learning structure.

Figure 2. Brief summary of machine learning.
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Experimental Setup
We implemented the training-testing approach. The data set
was randomly divided into 1272/1599 (79.55%) images for
training and 327/1599 (20.45% )images for testing to establish
the model. We performed a 10-time randomization of the data
set to repeat the machine learning described in the previous
paragraph. For validation of the 94 MB model, there was another
validation data set with 327 pediatric renal US images, including
66 (20.2%) normal, 37 (11.3%) hydronephrosis, 53 (16.2%)
cyst, 95 (29.1%) stone, 53 (16.2%) hyperechogenicity, and 26
(7.9%) space-occupying US images. All these images were
totally different from the data set for establishing the model.

Evaluation of Performance
We evaluated the performance from a single image result. The
diagnostic performance was measured by accuracy, specificity,
sensitivity, positive predictive value, and negative predictive
value. To calculate the above metrics, we defined an abnormal
result as positive and a normal result as negative.

Results

After 30 epochs for these 1599 pediatric renal US images, we
obtained satisfactory results. The performance metrics in the
test part of the data set are shown in Table 2. The accuracy in
different abnormalities ranged from 95% to 100%.

Table 2. Evaluation metrics for screening different abnormalities from test renal ultrasound images in the data set.

NPVc (%)PPVb (%)AUC-ROCaSpecificity (%)Sensitivity (%)Accuracy (%)Diagnosis (number)

1001000.974100100100Stone

91.71000.94510088.595.2Cyst

97.11000.93810096.298.3Hyperechogenicity

97.11000.93510095.698.7Space-occupying lesions

1001000.998100100100Hydronephrosis

97.21000.96110096.3998.4Overall

aAUC-ROC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.

The accuracies of each abnormality ranged from 95.2% to 100%,
with an overall accuracy as 98.4%. The area under curves
(AUCs) were from 0.935 to 0.998. The AUC for overall
performance was 0.961. There was no difference between these
10 random tests (P>.05). We repeated the 10 experiments using
different randomizations involving 80%/20% training/test
images to check the consistency of the machine learning
performance. The accuracies ranged from 95.2% to 98.4%.
There was no difference between these 10 tests (P>.05). We
performed a 5-fold cross test, and the results are shown in Table
3.

We validated the 94 MB model through machine learning with
another 327 pediatric renal US images. The classifications
included 66 (20.2%) normal, 37 (11.3%) hydronephrosis, 53
(16.2%) cyst, 95 (29.1%) stone, 53 (16.2%) hyperechogenicity,
and 26 (7.9%) space-occupying US images. The performances
based on each single image are summarized in Table 4.
Accuracy in the different abnormalities ranged from 89.9% to
94.1%, with an average of 92.3%. AUC was from 0.934 to 0.996
(Figure 3). The overall performance in AUC was 0.959. The
macro F1 was 0.924.

Table 3. Results of the 5-fold cross test.

OverallTest 5Test 4Test 3Test 2Test 1

86.3287.987.987.987.980Normal accuracy (%)

91.60/0.92794.3/0.92789.4/0.92589.4/0.92392.9/0.89791.2/0.925Stone accuracy (%)/AUCa

85.3/0.90382.1/0.89190.6/0.89884.9/0.92790.6/0.89675.4/0.858Cyst accuracy (%)/AUC

84.2/0.85981.8/0.89181.8/0.86281.8/0.86281.8/0.85584.8/0.848hyperechogenicity accuracy (%)/AUC

86.8/0.89682.6/0.86383.0/0.87494.5/0.91784.9/0.88192.5/0.903Space-occupying lesion accuracy (%)/AUC

94/0.92891.4/0.87194.6/0.93289.2/0.94091.9/0.888100/0.965Hydronephrosis accuracy (%)/AUC

88.3/0.90087.7/0.90187.5/0.90287.8/0.92889/0.88787.8/0.903Overall accuracy (%)/AUC

aAUC: area under curve.
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Table 4. Evaluation metrics for screening different abnormalities from other renal ultrasound images for validation.

F1-scoreNPVc (%)PPVb (%)AUC-ROCaSpecificity (%)Sensitivity (%)Accuracy (%)US images, n (%)Diagnosis

N/AN/AN/AN/A90.9%N/AN/Ad66 (20.2)Normal

0.92792.393.20.973N/A94.793.293 (28.4)Stone

0.91893.891.60.940N/A92.591.653 (16.2)Cyst

0.89790.989.90.940N/A88.789.953 (16.2)Hyperechogenicity

0.92396.8191.30.934N/A92.391.326 (7.9)Space-occupying lesions

0.95710094.20.996N/A10094.137 (11.3)Hydronephrosis

0.924e77.9293.60.959N/A96.192.9328 (100)Overall

aAUC-ROC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dN/A: not applicable.
eMacro F1.

Figure 3. Area under the receiver operating characteristic curves of different image abnormalities and the overall performance. AUC: area under curve.

Discussion

The main finding of this study is a useful AI model for screening
abnormal pediatric renal US images. The average accuracy can
be 92.9%. The results can fulfill the main purpose of this
study—to develop a useful computer-aided diagnosis model for
screening various pediatric renal US abnormal patterns
automatically. In this study, the machine learning methods were
based upon convolutional neural network and fine-tuning, along
with our unique methods for image preprocessing, as well as
strategies for classification, which achieved a feasible model
for clinical purposes. We constructed the stable classifier that
combined both the transfer learning and training from scratch,
balancing the training of a medical data set taken from an
adequate sample size.

Clinical applications of AI in nephrology are versatile, but the
use of renal US in this field is still in its infancy [13,14]. The
reports derived from renal US images alone have been relatively
limited up until now, with the major reports involving acute

and chronic injuries [15-17]. Most renal image studies for AI
used magnetic resonance imaging, computerized tomography,
and patient histology for tumors, stones, nephropathy,
transplantation, and other conditions [18-21]. The key challenges
associated with deep learning involving US include reliability,
generalizability, and bias [22]. The basic studies for enhancing
AI performance in renal US have begun and remain undergoing
[23-25].

There have been 4 reports from studies involving clinical AI
applications in pediatric renal US abnormalities [3, 5,8,9]. Zheng
et al [3] found that the deep transfer learning method offers
satisfactory accuracy in identifying congenital anomalies in the
kidney and urinary tract, even when the data set is as small as
only having 50 children with congenital anomalies in the kidney
and urinary tract and 50 children as the control. Yin et al [5]
performed a similar study to detect posterior urethral valves.
Sudarharson et al [8] used 3 variant data sets for identifying
renal cysts, stones, and tumors, with an accuracy rate of 96.54%
in images of quality and 95.58% in images of noise. Smail et
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al [9] attempted to use AI for grading hydronephrosis involving
the 5-point scoring system from the Society of Fetal Urology
(SFU). The best recorded performance was a 78% accuracy rate
by dividing hydronephrosis into mild and severe. However, the
accuracy rate was only 51% when using the 5-point system. In
our study, we established a single 94 MB model to classify
normal versus abnormal pediatric renal US images. The items
seen in the abnormalities included renal cysts, stones, and
tumors, as reported by Sudarharson et al [8]. In addition, the
model was able to identify images of hydronephrosis and
hyperechogenicity. Comparing the results from the study
performed by Smail et al [9], our results showed a better
classification accuracy for hydronephrosis. The 37 validated
images were moderate or severe hydronephrosis, that is, the
SFU class II, III, and IV. Our model can achieve 100%
sensitivity, comparing the sensitivity of 46%-54%, as previously
reported [26].

In terms of SFU class I, our model had an accuracy of 71.7%
(119/166). Up until now, grading of hydronephrosis has been
an ongoing challenge [27]. Extremely early intervention for
treatment of mild hydronephrosis remains inadequate. If a child
with mild hydronephrosis is also experiencing other renal
abnormalities, such as stones, cysts, or hyperechogenicity, it is
highly possible our model would be capable of providing any
alarming information surrounding these conditions.

The unique pretreatment of images for machine learning
performed in this study was performed to provide a comparison
of liver echogenicity in the simultaneous study. This step is
necessary for identifying hyperechogenicity. Other
abnormalities, such as hydronephrosis, cysts, stones, and tumors,
showed no difference in classification, regardless of whether
we inputted the images with the addition of the square
containing liver echogenicity and the gray scale gradient in the
left part of the image shown in Figure 1. As demonstrated in
Table 4, the accuracy and sensitivity for hyperechogenicity
identification was lower than it was with other abnormalities.
Increased echogenicity is an important finding in evaluating

muscle, thyroid, vascular, and renal diseases [28]. The gray
scale US presents a general sensitivity rate of 62% to 77%, a
specificity of 58% to 73%, and a positive predictive value of
92% for detecting microscopically confirmed renal parenchymal
diseases. The above results reveal that the echogenicity change
was not sensitive enough for detecting renal disease.
Abnormalities in renal echogenicity include increased
echogenicity, poor differentiation of the cortex or medulla, and
inversed echogenicity of the renal cortex and medulla [29]. In
practice, it is quite often that we cannot obtain a square
containing homogenous liver echogenicity for purposes of
machine learning. When the classification is compared by a
pediatric nephrologist, the results are acceptable. It is also
difficult for the naked eye to discriminate between the
not-so-significant gray scale differences. Currently, the so called
“radiomics” information, which can aid US imaging in AI, is
emerging [30], with a more precise assessment of US pixels
possibly enhancing the utility of hyperechogenicity.

A limitation of this study is the single medical center image
source. More images from different hospitals, areas, ethnicities,
and US companies need to be used. We conducted a small-scale
external validation using US images from different companies,
including General Electric, Siemens, and Toshiba. After image
pretreatment, the results could be 100% sensitivity, 80%
specificity, and 90% accuracy. Another limitation is the
moderate image number of images contributing to the data set.
We did not divide images from right or left kidney for training,
though the results can be acceptable. We will further validate
our method based on larger data sets.

In conclusion, this study proposed the use of an automatic model
for purposes of screening various abnormalities in pediatric
renal US images. We will continue to enhance the model’s
performance as we conduct additional evaluation studies
surrounding its future clinical applications, including being an
auxiliary software for screening children’s renal abnormalities
in remote areas.
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