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Abstract

Background: The quest for improved diagnosis and treatment in home health care models has led to the development of wearable
medical devices for remote vital signs monitoring. An accurate signal and a high diagnostic yield are critical for the
cost-effectiveness of wearable health care monitoring systems and their widespread application in resource-constrained
environments. Despite technological advances, the information acquired by these devices can be contaminated by motion artifacts
(MA) leading to misdiagnosis or repeated procedures with increases in associated costs. This makes it necessary to develop
methods to improve the quality of the signal acquired by these devices.

Objective: We aimed to present a novel method for electrocardiogram (ECG) signal denoising to reduce MA. We aimed to
analyze the method’s performance and to compare its performance to that of existing approaches.

Methods: We present the novel Redundant denoising Independent Component Analysis method for ECG signal denoising based
on the redundant and simultaneous acquisition of ECG signals and movement information, multichannel processing, and
performance assessment considering the information contained in the signal waveform. The method is based on data including
ECG signals from the patient’s chest and back, the acquisition of triaxial movement signals from inertial measurement units, a
reference signal synthesized from an autoregressive model, and the separation of interest and noise sources through multichannel
independent component analysis.

Results: The proposed method significantly reduced MA, showing better performance and introducing a smaller distortion in
the interest signal compared with other methods. Finally, the performance of the proposed method was compared to that of wavelet
shrinkage and wavelet independent component analysis through the assessment of signal-to-noise ratio, dynamic time warping,
and a proposed index based on the signal waveform evaluation with an ensemble average ECG.

Conclusions: Our novel ECG denoising method is a contribution to converting wearable devices into medical monitoring tools
that can be used to support the remote diagnosis and monitoring of cardiovascular diseases. A more accurate signal substantially
improves the diagnostic yield of wearable devices. A better yield improves the devices’ cost-effectiveness and contributes to their
widespread application.
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Introduction

Problem Statement
Digital health provides the opportunity to combat pandemics,
to deliver health care in remote regions, and to reduce the carbon
footprint of health care delivery. Telehealth and remote
monitoring, particularly in patients’ homes, has become an
important option due to problems associated with keeping
patients in hospitals and care centers for extended periods: the
increase in the probability of acquiring nosocomial infections
[1]; the deficiency in medical infrastructure to meet the demand
of patients [2]; the increase in therapeutic dependence by older
adult patients [3]; and the increase in hospitalization costs. These
issues have led to a search for alternatives in medical care such
as home health care.

This has led to an increase in the development of remote
monitoring technologies of patients’ vital signs to improve the
medical diagnosis [4,5]. Wearable devices for monitoring vital
signs have become a powerful tool to improve health services
and to implement home health care models [6,7]. These will
allow to acquire vital signs of patients in daily environments
while they carry out their activities in a normal way, allowing
to obtain complementary information to improve the medical
diagnosis, to constantly monitor the patient’s condition, and to
improve their treatments [7,8].

A major challenge for the diffusion of digital health technologies
lies in the signal quality of sensors for remote diagnosis and
monitoring of patients, including electrocardiogram (ECG)
signals of moving patients, which require the denoising of
motion artifacts (MA). ECG is an important diagnostic technique
for application in wearable devices, owing to the amount of
information contained in the acquired waveform, distributed in
different peaks and undulations called segments (P, Q, R, S, T,
and U). The P segment represents atrial depolarization, the QRS
complex represents ventricular depolarization and atrial
repolarization, the isoelectric ST segment is the time when both
ventricles are completely depolarized, the T segment represents
ventricular repolarization, and the U segment represents
papillary muscle repolarization [9,10]. Each segment is
characterized by its unique shape, amplitude, duration, and time
of occurrence, allowing to identify the way in which the
electrical impulse is conducted through the heart muscle [10].

State of the Art
Newer devices have been developed to identify cardiovascular
diseases in early stages (asymptomatic). Some of them are
external loop recorders, implantable loop recorders, and Zio
patches as well as wearable ECGs. Similar to traditional Holter,
they share a sensitivity to artifacts [11], which leads to repeated
ECG monitoring with cost increases in 11.1% of cases [9]. In
the case of wearable ECGs, the information provided by these
devices is not considered for clinical use owing to the
contamination by different noise sources such as power line
interference, baseline wander, and MA that have nonlinear,
nonstationary, and unpredictable character, as well as ECG
bandwidth overlaps [12-14]. In addition, the effects of daily life
movements on the signal are difficult to predict, which makes
the devices’ validation for medical use in home health care and

outdoor conditions even more difficult. This motivates the
development of techniques that allow the reduction of
interference in the ECG signal.

Previously, research has been conducted to develop techniques
that solve the problem of combined interference of MA, baseline
wander, and power line interference in ECG signals [15].
Performance assessments of denoising techniques such as
wavelet shrinkage (WS), empirical mode decomposition (EMD),
wavelet independent component analysis (WICA), and EMD
independent component analysis (ICA) have been performed.
These methods present problems, although some of these work
in the denoising of synthetic signals when working with signals
from patients in movement. One of them is that their signal
databases only consider a single source of information (ECG
signal) to perform signal denoising, which makes it difficult to
acquire the dynamics introduced by movement and significantly
affects the performance of artifact reduction methods. However,
it was found that depending on the segment of the ECG signal
to be preserved, it is possible to use a specific denoising
technique for that segment [16].

In recent years, significant advances in the development of
techniques for feature extraction from cardiovascular signals in
wearable monitoring have been made. The presence of MA has
been identified as a significant source of noise in signal
acquisition, masking information about the physiological process
and leading to misdiagnosis. The MA reduction problem is still
addressed in different ways as proposed by Yang and
Tavassolian [17], where it is possible to obtain cardiovascular
parameters from the seismocardiography signal analysis; they
used the ICA on the inertial signals acquired from inertial
measurement units (IMUs) and used the ECG and
photoplethysmography (PPG) signals as reference signals. An
and Stylios [18] evaluated conventional filtering methods using
finite impulse response, infinite impulse response, moving
average, moving median filters, and advanced decomposition
methods such as wavelet, EMD, and adaptive filters to compare
their performance. They found that all these methods have their
limitations, but the best method was considered to be the
adaptive filter. However, it depends on a good selection of the
reference signal and still introduces distortion to the signal
[18,19].

Other approaches use adaptive noise signal detection, EMD, or
wavelet decomposition of the signal of interest and dynamic
time warping (DTW) component selection to reduce baseline
wandering and high-frequency noise, and they achieved signal
improvements of up to 25% [11,20,21]. On the other hand, the
electrode configuration and its interaction with the skin had
been evaluated to determine the impedance variation and the
noise introduction in the signal acquisition [22-24]. Many
authors agree that the way to approach the problem is through
the use of signal decomposition methods such as wavelets,
EMD, and ICA, among others [25-27]. In addition, including
multiple sources of information such as pressure signals, PPG
and movement are essential to estimate the physiological
parameters of interest [28].
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Study Objectives
Although some of these methods use the acquisition of multiple
signals as other sources of information for the determination of
cardiovascular parameters, few of them are focused on
evaluating the recovery of the waveform of the ECG signal.
Similarly, dealing with the acquisition of multiple physical
magnitudes such as pressure or PPG through a single channel
does not allow confirmation of the correct denoising of the
signal of interest. The method proposed in this paper allows the
redundant and simultaneous acquisition of ECG signals and
movement signals to obtain more complete information of the
physiological process masked by the movement artifacts.

It has been observed that the correct location of the electrodes
on the volume conductor of the patient has a great influence on
the result of the ECG, to the point that a bad location of these
can lead to diagnostic mistakes [29,30]. However, it has been
identified that certain modifications in the signal acquisition
hardware, such as adding additional leads in the back and taking
information of the movement of the person, allow obtaining
additional information of the signal of interest [16,31]. In this
study, additional electrodes were added to the acquisition
hardware of the ECG signal in the chest and back of the
volunteers. This represents a novel method for the acquisition
of the signals in a redundant and simultaneous way to improve
the denoising, decreasing the distortion introduced in the MA
reduction process.

The distortion concept in the context of biomedical signal
processing refers to the change in the natural shape of the signal
due to external processes or disturbances, which include changes
in the amplitude, duration, or time of occurrence of the segments
that compose the signal and lead to loss of information. The
concept of redundant measurement refers to the acquisition of
information from the same interest source from ≥2 different
measurement points, with the purpose of preventing the loss of
information or increasing the sources of information of interest,
as is true in this study. Redundant measurements are performed
simultaneously to ensure that the information acquired from the
different measurement points is synchronized, which is defined
as multichannel synchrony.

Further improvement of noise and MA reduction is critical to
achieve an optimal diagnostic yield with wearable health care
monitoring systems. The diagnostic yield will be an important
determinant of the devices’ cost-effectiveness [32]. Only with
a reliable diagnosis of specific cardiac arrythmias such as atrial
fibrillation will the devices’cost-effectiveness allow widespread
application, even in resource-constrained environments [33].

Methods

Overview
This paper presents a novel method for the reduction of noise
and MA in ECG signals from walking individuals in ambulatory
vital signs monitoring applications. We have introduced a new
method called Redundant denoising Independent Component
Analysis (Rd-ICA). It is based on (1) redundant and
simultaneous measurement of ECG signals in the chest and
back; (2) acquisition of triaxial movement signals from IMUs;

(3) a reference signal synthesized from an autoregressive model,
which considers the features of a resting ECG signal obtained
through ensemble average (EA) ECG [9,16]; and (4) separation
of interest sources and noise sources through multichannel ICA.
After the separation of the signals, the identification of the ECG
signal is made through the comparison of the components with
the synthesized reference ECG signal.

The performance of this method is tested with a database
composed of data sets of movement signals and ECG signals
acquired in the chest and the back from healthy volunteers in
conditions of rest and movement. In addition, the performance
of the Rd-ICA method is compared with the performance
presented by state-of-the-art denoising methods such as the WS
method and the WICA method. The calculation of performance
indexes is performed with indexes such as the signal-to-noise
ratio (SNR), the DTW, and a proposed index defined as
weighted distortion assessment (WDA). It measures the
characteristics of the shape of wave found with the EA ECG
method.

This section shows the protocol for recording ECG signals,
presents some previous state-of-the-art methods for ECG signal
denoising, and finally shows the proposed Rd-ICA method. In
this work, the comparison of the methods’ performance was
also carried out. A new index based on the signal distortion
characterization through the EA ECG has been proposed.

Register Protocol
A database of ECG signals acquired from a population of 20
healthy volunteers aged, on average, 26.3 (SD 5.7) years with

an average BMI of 24.4 (SD 4.8) kg/m2 was registered. Database
registration was performed for bipolar leads DI, DII, and DIII
in the chest and the back and the triaxial movement signal of
the volunteer. The experiment was divided into 3 stages: (1)
rest before movement, (2) controlled movement in laboratory
conditions, and (3) rest after movement. Each volunteer was
asked in the first stage to remain at rest for 5 minutes, which
led to the acquisition of reference ECG and motion signals. In
the second stage, each volunteer was asked to perform a walk
at a normal travel speed of 4.2 (SD 0.8) km/h for 5 minutes,
which produces contamination that masks and distorts the ECG
signal significantly. In the third stage, each volunteer was asked
again to be at rest for 5 minutes. This protocol was performed
to obtain a database of ECG signals contaminated with MA
composed of redundant and simultaneous ECG signals acquired
in the chest and the back, also with the movement of the
volunteer registered through IMUs [24]. ECG signals were
acquired at a sampling frequency of 250 Hz and 24-bit resolution
[34]. Informed consent was obtained from all participants
involved in the study.

To acquire signals, a custom wearable device was used that
performs the acquisition of the signals of ECG; PPG; and
noninvasive blood pressure that is redundant, simultaneous, and
synchronized [31,35]. The ECG is acquired on the volunteer’s
chest and back, and an IMU is included on each ECG lead to
record the inertial activity and movement. It similarly occurs
for the PPG signal that is acquired both in the left wrist and the
right wrist and for the noninvasive blood pressure signal that is
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recorded in both arms through the oscillometric method [8].
The IMUs allow acquiring the inertial activity and movement
to analyze the nonlinear dynamics of artifact contamination on
the signal.

All the signals are recorded simultaneously and synchronized
in time to guarantee signal redundancy and the possibility of
applying the Rd-ICA method. For the ECG signal, Ag/AgCl
electrodes were used, which have proven to be the ones with
the least interference in recording of the signals due to their
correct coupling with the skin.

In clinical ECG, it is common to place the electrodes on the
arms such as the left and right wrists and the left foot under the
Einthoven triangle model. In long-term examinations such as
Holters, it is common to use the positioning of the electrodes
according to the Einthoven triangle under the Mason-Likar [36]

method in which the electrodes are located on the person’s chest.
This model is the most frequently used in ECG wearable
monitoring [36,37]. Signals were acquired through the
connection of an electrophysiological signal recording
equipment to acquire the biopotentials in the torso and back of
20 volunteers as previously validated [24,31]. A group of sensors
were placed in the location proposed by the Einthoven triangle
in the Mason-Likar [36] method in the chest. These locations
were interpolated on the back of the volunteer, considering
anthropometric locations [38]. In addition, the acquisition of
triaxial movement signals was performed through an IMU
located in the electrophysiological sensors. It should be noted
that the acquisition of electrophysiological signals in the chest
and back was performed redundantly and simultaneously,
synchronized with the movement signals. Figure 1 shows the
distribution of electrodes in the chest and back of the volunteer.

Figure 1. Electrodes' distribution for the acquisition of electrocardiogram signals according to the Einthoven triangle in the Mason-Likar [38] method
over the chest and back of the volunteer. LA: left arm; LL: left leg; RA: right arm; RL: right leg.

Techniques to Reduce MA
The most frequently used techniques to reduce MA have
previously been described in detail, including WS, ICA, and
WICA [17].

Wavelet Shrinkage
The discrete wavelet transform (DWT) allows to represent a
signal as a set of waves through 2 types of functions called
mother wavelet and father wavelet, which contain high and low
frequency information [39-41]. DWT is a denoising method for
ECG signals in a process known as multiresolution analysis
[42], where the signal is decomposed in different levels through
Mallat tree decomposition and Daubechies 8 mother wavelet
selection [43-45]. Then, the thresholding method reduces the
noise components with the RiskShrink algorithm from the signal
before the reconstruction through inverse DWT is performed
[46,47]. In this study, the WS method was applied on each
acquired derivation in the chest of volunteers to perform the

denoising of ECG signals to compare the performance with the
proposed method [48].

Independent Component Analysis
Some measured signals can be considered a linear mixture of
information from independent sources, such as artifacts, noise,
and interest signals. It is possible to separate these sources with
the ICA method [49,50]. To apply the ICA, it is necessary to

have a set of observations x = (x1, x2,...xm)T taken from m
sensors. The observations are modeled as the linear combination

of a set of signals s = (s1, s2,...sn)
T, as is described by the mixing

model (equation 1) [49,51].

Where the mixing matrix A = (a1, a2,...an) that has a size of m
× n and ai are the vectors of the mixture.
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To apply the ICA, it is necessary to assume that the sources’
signals are independent; just one component has a Gaussian
distribution at most; and the number of sensors must be equal
to the number of independent sources (m = n) [51]. Through
the ICA method, the separation matrix w = (wij)(n x n) and the n

separate signals Y = (y1, y2,...yn)
T can be obtained (equation 2).

Y = Wx = WAs = Gs (2)

Some of the sources are noise sources and should not be
considered in the model to perform the denoising. Then, some
elements of the separation matrix W must be forced to 0 to
reduce the influence of the artifacts on the interest signal [51].

WICA Denoising
As previously described, some extensions of the ICA using
decomposition techniques such as DWT have been proposed
to denoise physiological signals [17]. The WICA performs the
DWT decomposition to obtain multichannel signals from a
single-channel signal before applying the ICA method [52].
The process is outlined in the form of an algorithm in Textbox
1.

In this study, the WICA method was applied to the ECG signals
acquired in the chest of the volunteers to evaluate its
performance. The selection of noise sources or artifacts is
performed conventionally through visual inspection as is
proposed by other studies, which is one of the main drawbacks
of this method [51,52].

Textbox 1. Wavelet independent component analysis (ICA) algorithm.

Algorithm

1. Select the mother wavelet and the order of the wavelet transform.

2. Apply the wavelet decomposition (discrete wavelet transform [DWT]) to generate the input matrix for the ICA algorithm.

3. Apply the ICA method to the set of wavelet components and derive the corresponding mixing (A) and demixing (W) matrices.

4. Select the sources of interest, force the others to 0, and multiply this selection with the mixing matrix (A) to back-reconstruct their appearance
in the set of wavelet components.

5. Apply the inverse DWT over the new set of wavelet components to back-reconstruct the enhanced signal.

EA Electrocardiogram
The EA ECG allows the characterization of the ECG signal
through the measurement of segments’ features that compose
the ECG signal (P, Q, R, S, T, and U). This method has been
used to evaluate the ECG signal distortion introduced by MA.
It allows to evaluate the performance of denoising methods
quantitatively considering the waveform of the signal. This is
done by finding the average pattern of a signal that has a
periodically repeated waveform, which is the case for the ECG
signal [16].

In the EA ECG computing process, it was necessary to select
a fiducial point on the standard waveform, which was the
reference in time to synchronize the signal waveforms. The R
peak was selected because it has the maximum amplitude in
waveform. On the other hand, the size in time or in samples
that have the standard waveform was determined to perform
the partition of the signal, the synchronization through the
fiducial points and the averaging of the signals. This time was

determined as the time elapsed between 2 consecutive R peaks
and corresponds with the heart rate.

In this study, the method was used first to perform the
characterization of the ECG signals acquired at rest as a
reference. In addition, the method was used to measure the
performance by state-of-the-art denoising methods and the
proposed Rd-ICA method. Furthermore, the features obtained
through the EA ECG were used to synthesize a reference signal
from an autoregressive model that considers these features and
the heart rate to present a synthetic ECG signal that resembles
its real counterpart [9].

Redundant Denoising ICA Method
The method proposed in this paper is based on the simultaneous
and redundant acquisition of the ECG signal, the movement of
the person, the separation of multichannel components, and the
selection of the improved signal through the comparison with
a modeled signal from previous information. The processing
scheme of the Rd-ICA method is presented in Figure 2.
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Figure 2. Block diagram representing the proposed Redundant denoising Independent Component Analysis method. The method considers the
simultaneous and redundant acquisition of the electrocardiogram (ECG) signal contaminated with motion artifacts (green), the signal characteristics
determination and the reconstruction of a reference ECG signal from a resting ECG signal of the same volunteer (blue), the components separation
(purple), and the selection of the improved ECG signal (watermelon). HR: heart rate; ICA: independent component analysis.

Acquisition of Redundant ECG and Motion Signals
The first step of the method consists in the acquisition of the
redundant and simultaneous ECG signals and the movement
signals of the person. The acquisition of the ECG signals in
leads DI, DII, and DIII was performed both in the chest and
back of the volunteers [24]. Redundancy of the signals is
achieved by acquiring the leads of the ECG signal in the chest
and back of the volunteer [53]. The acquisition in the chest and
back is carried out simultaneously so the leads DI, DII, and DIII
acquired in both areas are synchronized in time. The volunteers’
ECG segments acquired at rest were analyzed by a cardiologist
to validate that the volunteers did not present evident cardiac
pathology before analysis, confirming that the parameters of
the signal segments are within the normal range in physiological
terms.

Some of the ECG signals acquired from a healthy volunteer
used in this work are presented (Figure 3). Figure 3A and Figure
3B show the ECG signal acquired at rest in the chest and back
of the volunteer, respectively. Figure 3C and Figure 3D show
the ECG signal with MA acquired in the chest and back of the
volunteer, respectively, while the volunteer performed
movement. Each figure has a sample of 30 seconds and a detail

of 3 seconds to show the waveform. In addition, the
synchronization between the signals acquired in the volunteer’s
chest and back was presented, as there is no lag in the QRS
complexes of each pair of signals.

The electrode movement pattern was acquired by adding an
IMU on each electrode. That information was acquired
simultaneously with the ECG signals, thus increasing the amount
of information available for multichannel signal analysis. For
the ECG signals contaminated with MA, the time that elapses
between 2 consecutive R peaks was measured. This
measurement represents the heart rate of the ECG signal during
the movement. This feature of the signal was used to synthesize
the reference ECG signal.

To calculate the heart rate, it is necessary to measure the time
between 2 consecutive heartbeats. It is common to identify the
QRS complex and measure the time elapsed between 2 of them
consecutively. This method was used to calculate the heart rate,
both in the signals acquired at rest and while moving (equation
3).

Figure 3. Epochs of 30-second lead III electrocardiogram (ECG) acquired in the chest and back of healthy volunteers at rest and with motion artifacts.
The left panel in 4 axes shows 30-second epochs, while the right one shows a 3-second detail of the ECG signals. (A) Lead III from chest at rest, (B)
lead III from back at rest, (C) lead III from chest with movement, and (D) lead III from back with movement.
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Modeling the Reference ECG Signal
To perform the comparison and selection of the resulting
components after the multichannel analysis, a reference ECG
signal was modeled from an autoregressive model that considers
the features of the ECG signal segments such as amplitude,
duration, and time of appearance of each segment [9,54]. It
should be noted that the synthesized signal from an
autoregressive model is only used as a comparison reference to
determine which of the components obtained in the Rd-ICA
method contains the highest percentage of information on the
physiological signal of interest.

Synthesis of the reference ECG signal is based on the modeling
of a group of functions S0(t), which represent each of the
segments of the ECG signal as a modified waveform of the Sj(t),
which is obtained through Fourier models in the time interval
(0≤t≤T) [9]. This time interval corresponds to the time between
2 consecutive R peaks that the modeled signal must have and
is taken from the measured heart rate of the signal contaminated
with MA. The mathematical equation describes the construction
of each segment of the reference ECG signal (equation 4).

S0(t) = ajSj(djt + tj) + cj; aj>0,dj>0 (4)

Where aj, dj, tj, and cj are the coefficients of amplitude, duration,
time of appearance, and offset of the signal, respectively. If the
variation of the baseline is subtracted in the processing step, cj

can be omitted.

The autoregressive model requires the definition of the features
of each segment of the signal (P, Q, R, S, T, and U) and the
heart rate that the modeled signal will have. The features of
amplitude, duration, and time of appearance of each segment
were obtained from applying the EA ECG method to a signal
previously obtained during the volunteer’s rest [16]. The EA
ECG method allows to characterize the waveform of the ECG
signal acquired at rest and to extract the coefficients for the
synthesis of the reference ECG signal (equation 4). This later
has the waveform of the ECG signal at rest, which is free of
artifacts but includes the heart rate of the ECG contaminated
with MA.

Separation and Selection of Multichannel Sources
With the premise that the interest information of the ECG signal
comes from an independent source, which is the heart, and the
MA come from sources other than this; the redundant
measurement of the ECG signal was used to obtain information
from a single source in 2 different sensors. Each of these sensors
acquires information from artifacts from different sources. We
assumed that redundant signals will have a common component
that will be the ECG lead that is being measured in the chest
and back of the volunteer and will have independent components
from different sources of MA.

To identify the relative movement of the volume conductor, a
set of signals formed by the redundant evaluations of an ECG
derivation acquired in the volunteer’s chest and back is obtained
as well as the movement signals in 3 orthogonal axes obtained
with the IMU.

In this regard, the ICA method was used to perform an analysis
of the signal data set to identify common information between
the different sensed channels and to separate it from independent
sources, using the ICA model.

Once the independent components were obtained, the component
with more information about the ECG signal was determined.
For this, the reference ECG signal was used that was synthesized
from the features of the signal acquired at rest from the same
volunteer, the heart rate measurement from the ECG signal with
MA and the autoregressive model that considers the
characteristics and heart rate [9]. Figure 4 presents the
assessment and selection method of different components with
ECG information.

Each component resulting from the ICA method is compared
with the reference signal through the correlation method (Figure
4), which provides a quantitative measure of the similarity
between 2 signals. After that, the selection of the component
with the highest correlation with the reference ECG signal is
made. This component is processed in the final stage of filtering.

Figure 4. Selection method for the component that contains the greatest amount of information of the electrocardiogram signal source. CORR: correlation.

Final Stage of ECG Signal Filtering
Once the component with the most ECG information is obtained,
it is filtered and improved with the WS method. With this

method, noise filtering of components of the signal with high
and low frequency is performed to obtain an improved ECG
signal.
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Validation and Assessment of the Rd-ICA Method

Overview
To validate the Rd-ICA method, the performance presented by
it is evaluated and compared with that of other state-of-the-art
denoising methods such as the WS and WICA methods [16].

As presented earlier, the WS and WICA methods were applied
only to the leads acquired on the chest of the volunteers, as each
of these methods proposes, and the performance presented by
these methods was measured. On the other hand, the Rd-ICA
method was applied to the same set of signals but included the
redundant signals and motion signals as proposed. The
performance of this method was also measured.

The performance measurement presented by these methods was
performed through the calculation of indexes traditionally used
in signal processing. These indexes were the SNR, DTW,
cross-correlation, and the measurement of the difference
percentage of the signals’ features through the EA ECG method
with respect to an ECG signal acquired at rest from the same
volunteer. For this, an index that considers the distortion
introduced by the denoising methods when performing the signal
improvement was proposed. This index was called WDA.

Signal-to-Noise Ratio
The SNR was used to quantify the improvement of the enhanced
signal after the denoising methods were applied. The SNR
reflects the difference between input (reference signal) and
output (enhanced signal) of the specific denoising methods
(equations 5, 6, and 7) [55,56].

Where xc is the clean ECG signal, xn denotes the noisy ECG,
and xd represents the denoised ECG.

Dynamic Time Warping
The DTW method allows to calculate the minimum Euclidean
distance between each sample of the signal to be compared Sj(t)
and each point of the reference signal S0(t) [57,58]. The method
uses 2 matrices of identical size to perform the calculation.
Matrix S1m×n contains m copies of the reference signal S0(t)1×n

in the rows, and matrix S2m×n contains n copies of the signal to
compare Sj(t)m×1 in the columns [17]. The distance matrix Dm×n

is calculated using the single dimension Euclidean distance as
shown in equation 8.

Where 1 ≤ x ≤ m and 1 ≤ y ≤ n. Starting in position (1,1) of D,
a cost matrix C is created to store the accumulated distance of
the previous column and row, which are calculated with equation
9.

The path of minimum distance is found from cost matrix C,
starting at the position (m,n) of the matrix and moving toward
the adjacent position of lowest cost until reaching the beginning.
These positions are saved and will then be identified in matrices
S1 and S2 to create the minimum difference aligned signals S1w

and S2w, respectively. In this process, it is possible that some
samples of the matrix S1 or S2 are repeated to conform to the
vectors S1w and S2w, which is an index of the difference between
both signals and the distortion of the evaluated signal. Through
this method, the distance between the standard waveform of the
modeled reference ECG signal at rest and the enhanced ECG
signal is determined.

Cross-Correlation
Cross-correlation is a measure of similarity between 2 signals.
This is measured from the displacement and the superposition
of one signal on the other to determine the level of similarity
between both. This is known as sliding dot product and is
defined in equation 10.

In this work, cross-correlation was used as an index to determine
the performance of the denoising methods. Similarity between
the reference ECG signal and the enhanced ECG signal was
evaluated through the cross-correlation index.

Weighted Distortion Assessment
For the calculation of the WDA index, the percentage similarity
vector of the features (△EA) and (△W) and the vector of
weighted weights for the features are defined. These 2 vectors
are defined by equations 11 and 12.

△EA = [aP, dP, tP-R, aR, dR, tR-T, aT, dT] (11)

△W = [wP1, wP2, wP3, wR1, wR2, wR3, wT1, wT2] (12)

aP, dP, tP-R, aR, dR, tR-T, aT, dT corresponds to the similarity
percentages of each feature obtained from the EA ECG. These
are calculated using equation 13 [16]. wP1, wP2, wP3, wR1, wR2,
wR3, wT1, wT2 correspond to the weights to define the relevance
that each feature will have on the calculation of the WDA index.
The WDA index is described in equation 14.

Similarity = (100% − %difference) / 100 (13)

The coefficients’ values of the weight vector (△W) must be
chosen between 0 and 1. These represent the percentage of
relevance given to the preservation of a certain feature in the
WDA performance index assessment. In this study, 4 different
cases were evaluated: (1) all features have equal weight, so all
the coefficients in the vector (△W) will be equal to 1; (2) the
amplitude of the P wave will be more relevant in the analysis,
thus wP1=0.9 and the other coefficients will have a weight of
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0.5; (3) the amplitude of the QRS complex will be more relevant,
wR1=0.9, and the other coefficients will have a weight of 0.5;
and (4) the amplitude of the T wave will be more relevant,
wT1=0.9, and the other coefficients will have a weight of 0.5.
A high value of the WDA index indicates that the denoising
was performed satisfactorily and the distortion introduced by
the denoising methods was low, also indicating a better
conservation of the features of the ECG signal.

Ethics Approval
The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Human Studies
Institutional Ethics Committee of Universidad de Antioquia
(protocol code 16-59-711 of May 19, 2016). Informed consent
was obtained from all participants involved in the study.

Results

This section shows the results of the Rd-ICA method application
for the reduction of MA in ECG signals and the assessment and
comparison of the Rd-ICA method performance with the WS

and WICA methods applied on ECG signals acquired from
healthy volunteers in rest and movement. The performance
evaluation of the Rd-ICA method was conducted through the
measurement of indexes such as SNR, DTW, and the WDA
index proposed in this paper based on the measurement of
features from the EA ECG.

EA ECG of the ECG Signal at Rest and Movement
The EA ECG method was applied to ECG signals of volunteers
acquired in resting conditions (Figures 3A and 3B) and to ECG
signals acquired with MA (Figures 3C and 3D).

Figure 5A and Figure 5B show the EA ECG of the signals
acquired in resting conditions in the chest and back of a
volunteer, respectively. The solid line represents the average
signal and the dashed lines represent the SD signals. Figures
5C and 5D present the acquired signals in movement conditions;
in the same way it presents the average signal by means of the
continuous line and the SDs by means of the dashed lines. The
dispersion of the different waves that compose the EA is
observed during the movement.

Figure 5. Ensemble average (EA) electrocardiogram (ECG) for ECG signals acquired at rest and movement, on the chest and back of the volunteer.
The continuous centerline represents the EA ECG of the signal while the dashed lines represent the SD of the EA ECG. (A) Lead III from chest at rest,
(B) lead III from back at rest, (C) lead III from chest with movement, and (D) lead III from back with movement. HR: heart rate; P: P segment; Q: Q
segment; QRS: QRS complex; ST: ST interval; T: T segment.

Application of Denoising Methods
Some state-of-the-art denoising methods were applied to ECG
signals contaminated with MA. These signals were selected
only from the chest of the volunteers while they performed

movement. The methods applied were the WS and WICA
method.

The Rd-ICA method was applied to the redundant and
simultaneous ECG signals contaminated with MA and acquired
in the volunteer’s chest and back. The comparison was made
with a reference ECG signal synthesized from an autoregressive
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model. The result of applying denoising methods on the ECG
signal of a volunteer is presented (Figure 6). In addition, the
EA ECG of the denoising result of the ECG signal through the
WS, WICA, and Rd-ICA methods is shown (Figure 7).

A graphic comparison between the results of the denoising
presented by each of the evaluated methods is presented (Figure
6). In addition, the result of applying the EA ECG over the
improved signals with each of the methods, including average
and SD signals is presented (Figure 7).

Figure 6. Epochs of 30-second lead III electrocardiogram (ECG) signal contaminated with motion artifacts (MA) after denoising and enhancement.
The left panel in 4 axes shows 30-second epochs, while the right one shows a 4-second detail of the ECG signals. (A) ECG lead III with MA, (B) ECG
lead III with WS denoising, (C) ECG lead III with WICA denoising, and (D) ECG lead III with Rd-ICA denoising. Rd-ICA: Redundant denoising
Independent Component Analysis; WICA: wavelet independent component analysis; WS: wavelet shrinkage.

Figure 7. Ensemble average (EA) electrocardiogram (ECG) for enhanced ECG signals through the wavelet shrinkage (WS), wavelet independent
component analysis (WICA) and Redundant denoising Independent Component Analysis (Rd-ICA) methods. The continuous centerline represents the
EA ECG of the signal while the dashed lines represent the SD. (A) ECG lead III with WS denoising, (B) ECG lead III with WICA denoising, and (C)
ECG lead III with Rd-ICA denoising. HR: heart rate; P: P segment; Q: Q segment; QRS: QRS complex; ST: ST interval; T: T segment.

Validation and Assessment of the Rd-ICA Method

SNR Results
To determine the performance of the denoising methods, the
improvement SNR (SNRimp) was evaluated on the enhanced
ECG signals (Figure 6). The SNRimp was calculated using
equation 7 as the difference between the SNRin measured on
the ECG signal contaminated with MA before enhancement

and the SNRout measured on the enhanced ECG signal through
each method. The SNRin obtained for the signal contaminated
with MA was −4.64 (SD 0.43). A SNRout of −3.94 (SD 0.35)
for WS, −3.22 (SD 0.34) for WICA, and −1.07 (SD 0.15) for
Rd-ICA was obtained. The above represents a SNRimp of 0.70
(SD 0.37) for WS, 1.42 (SD 0.31) for WICA, and 3.58 (SD
0.36) for the Rd-ICA method. A larger SNRimp was observed
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in the Rd-ICA method, followed by the WICA method and
finally by the WS method.

DTW Results
Through the DTW method, it was possible to identify the
distance percentage between a waveform of a reference signal
with the waveform of a signal under evaluation. This percentage
was calculated from the DTW method [57]. The lower the
percentage, the greater the similarity between the evaluated
signal and the reference signal.

The DTW showed 42.62% (SD 8.64%) of difference between
MA contaminated signal and the reference signal. Distance
percentages of 41.32% (SD 8.01%) for WS, 44.23% (SD
16.31%) for WICA, and 19.72% (SD 6.25%) for Rd-ICA were
obtained. A smaller percentage of distance was obtained in the
result of the Rd-ICA method. For the WICA and WS methods,
an increase in the distance percentage was observed with respect
to the signal contaminated with MA, which suggests a distortion
increase.

Cross-Correlation
Cross-correlation provides information about the similarity
between 2 signals. In this case, the similarity between the
reference ECG signals obtained from the model and the
enhanced ECG signals was evaluated. For ECG signal
contaminated with MA it was obtained a cross-correlation of
6.08 (SD 1.48). Cross-correlation of 5.74 (SD 0.67) for WS,
5.84 (SD 1.31) for WICA, and 8.66 (SD 0.39) for Rd-ICA were
obtained.

WDA and Difference Percentage
From the EA ECG, the features of the resting ECG signals,
ECG signals contaminated with MA, and the enhanced ECG
signals were measured. The difference percentage of the features
between the contaminated and enhanced ECG signals relative
to the signal acquired at rest was measured [16]. Table 1 shows
the difference percentage for each ECG signal feature through
the EA ECG method. The average and SD values are presented.

The WDA index assessment was performed for 4 different cases:

1. All features with equal relevance level

.
2. G r e a t e r  r e l e v a n c e  o f  t h e  P  w a v e

.
3. Greater relevance of the QRS complex

.
4. G r e a t e r  r e l e v a n c e  o f  t h e  T  w a v e

.

Table 2 shows the result of the distortion analysis through the
WDA index for signals contaminated with MA and enhanced
through denoising methods.

Previous results show the method that presents the best
performance in denoising and that preserves the signal waveform
features with less distortion is the Rd-ICA method. This supports
the results obtained from the other indexes evaluated.

Table 1. Difference percentage between the features of enhanced electrocardiogram signals and electrocardiogram signals acquired at rest.

Rd-ICAb, mean (SD)WICAa, mean (SD)Wavelet, mean (SD)Movement, mean (SD)Difference

27.46 (7.37) c42.03 (36.77)59.91 (25.06)52.56 (23.20)Amplitude P

14.59 (7.58)30.19 (9.49)14.83 (6.78)25.86 (19.79)Duration P

13.87 (8.37)20.56 (11.50)26.99 (16.26)30.63 (10.62)Time P-QRS

3.24 (2.00)9.76 (8.61)4.38 (1.85)18.62 (4.87)Amplitude QRS

4.89 (2.58)9.62 (9.33)6.37 (5.04)11.29 (7.88)Duration QRS

20.10 (7.91)33.70 (15.90)31.05 (14.68)40.58 (20.12)Time QRS-T

18.63 (5.53)53.36 (35.22)52.24 (43.02)47.01 (19.61)Amplitude T

11.54 (5.32)10.73 (7.80)12.06 (8.07)27.03 (9.86)Duration T

13.04 (5.83)26.24 (16.83)25.88 (15.09)31.70 (14.49)Average

aWICA: wavelet independent component analysis.
bRd-ICA: Redundant denoising Independent Component Analysis.
cItalicized values indicate the best performance in the dynamic time warping assessment.
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Table 2. Evaluation of the weighted distortion assessment (WDA) index from the enhanced electrocardiogram signals for 4 different cases of specific
feature relevance.

Rd-ICAbWICAaWaveletMovementWDA

2.35 c2.092.101.93Case 1

2.181.911.851.74Case 2

2.262.022.051.87Case 3

2.161.871.881.76Case 4

aWICA: wavelet independent component analysis.
bRd-ICA: Redundant denoising Independent Component Analysis.
cItalicized values indicate the best performance in the dynamic time warping assessment.

Discussion

Principal Findings
This paper presents a novel method for MA reduction in ECG
signals through the acquisition of redundant and simultaneous
signals, acquisition of the person’s movement, modeling of the
reference signal from prior knowledge of the ECG signals at
rest, and processing of this set of signals through multichannel
processing techniques. This method was called Rd-ICA. This
was applied to a data set composed of ECG signals acquired
from healthy volunteers at rest and in movement conditions.

The performance of the proposed Rd-ICA method was compared
with state-of-the-art methods for MA reduction such as WS and
WICA. To compare the performance of the different methods,
each was applied to the data set, and the performance was
evaluated from the measurement of indexes such as SNR, DTW,
cross-correlation, and the proposed WDA that consider the
morphological features of the signal [16].

The use of a single denoising method does not guarantee the
reduction of noise in all features. Sometimes it is necessary to
use specific denoising methods to improve the signal and
maintain some feature with fidelity. Despite this, the Rd-ICA
method presents a good alternative for the reduction of MA in
contaminated ECG signals, as shown by the results obtained in
this paper.

Comparison With Prior Works
The ECG signals acquired redundantly in the chest and back of
the volunteers showed similar information from the same source;
this information belongs to the ECG signal that is of interest in
this study [59]. In addition, it contains information from other
sources among which are MA, which are measured as
information from independent sources. This allowed the
separation of the signal of interest and the signal of artifacts
through the proposed multichannel signal processing technique.

Most of the methods reported are based on the separation by
components, the extraction of the noise components and their
elimination, then the reconstruction of the signal of interest.
The works at the frontier of knowledge make use of methods
such as EMD, wavelet, and adaptive filters with some
modifications and improvements, and these are the ones that
have presented the best performance, but according to those
reports, they also introduce a large amount of distortion in the
signal of interest.

The method proposed in this paper is advantageous and novel
from the point of view that it acquires the signal redundantly,
thus providing a way to validate the processing applied to the
signal of interest. Other finding was that both components of
the ECG signal acquired on chest and back were significantly
similar, while the artifacts contamination showed differences
between the 2 signals acquired on the chest and back of
volunteers [24]. In addition, the motion component helps to
determine the dynamics of the signal, evaluate the nonlinearity
of contamination by artifacts and perform a better estimation
of the components of interest through the proposed Rd-ICA
method.

Application Spectrum
This technique presents its application with wearable vital signs
monitoring devices, which have their main field of application
in outpatient vital signs monitoring. This technique requires a
modification in the signal acquisition hardware as it requires
redundant and simultaneous ECG signal acquisition from the
chest and back of patients. In addition, it requires the
measurement of movement through IMUs. These modifications
are possible to implement in wearable devices [31]; therefore,
the technical feasibility can be affirmed for implementation in
outpatient monitoring.

The proposed technique has important potential in the processing
of physiological signals from different sources with the use of
redundant acquisition of the interest signals. It shows its
application in the identification of signals from cardiac
arrhythmias in conjunction with the EA ECG method and the
proposed WDA index. Some of the ECG monitoring devices
that potentially may include this technique to reduce artifacts
and to improve their diagnostic potential are external loop
recorders, implantable loop recorders, traditional Holter, and
wearable ECGs. This kind of improvement will reduce the
associated costs with repeated tests.

The method proposed in this paper presents a considerable
advance in the reduction of MA in ECG signals as the results
showed an improvement in the denoised signal. Its advantage
is not only in the evaluation of signal indexes such as SNR but
also in the preservation of the signal waveform, low distortion
introduction, and the potential use in medical diagnosis. It was
observed that the Rd-ICA method presents a significant
improvement in the conservation of the characteristics of the
signal compared with the WS and WICA when it was evaluated
using the EA ECG method.
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In the same way, the possibility to have the redundant ECG
signal and the motion signals from the inertial sensors provides
the proposed method with the capability to separate the
component of interest from the components of artifacts. At the
same time, it allows the method to determine these components
autonomously by comparing this signal with a reference signal
built from an autoregressive model that considers the
cardiovascular characteristics of the volunteer. This allows the
proposed method to be implemented in wearable monitoring
systems and in autonomous monitoring systems.

Future Work
On the other hand, there is evidence of the need to carry out
more extensive research to evaluate the reliability and clinical
validity of this method in patients with relevant diseases.
Although this method presents the possibility to differentiate
events coming only from the cardiovascular system and separate
them from external events such as the volunteer’s movement.
This is due to the possibility of obtaining the ECG signals
redundantly and simultaneously. In addition, the need to add
new sensors for the redundant measurement of the signals and
the obtaining of the movement signal through IMUs implies
significant modifications in the hardware of the existing
monitoring systems. Despite this, the possibility of making these
modifications is evident and opens the possibility to generate
new designs, enabling the growth of the market for wearable
medical devices.

Currently, the research and development of biosensors have a
great boom thanks to the advantages they show, such as easy
application and portability. Their easy implementation in

wearable devices for the continuous measurement of different
vital sign signals or physiological variables in everyday
environments makes these devices a great option in vital signs
monitoring [60]. Despite its great applicability, the information
acquired by these biosensors is distorted by different sources
of noise and artifacts, such as MA. The method proposed in this
work is not limited to the denoising of the ECG signal, but it
can be used for other physiological signals that can be
redundantly acquired and are susceptible to be affected by MA.
Some of these sensors are PPG biosensors, enzymatic biosensors
for glucose measurement, intraocular pressure, and hydration
percentage [60,61].

Conclusions
The technique’s ability to improve the quality of the signal is
critical for diagnosing specific cardiac arrhythmias in real-world
use. The diagnostic yield has been shown to be a major
determinant in a technique’s economic assessment; for example,
in diagnosis after palpitations [62] or syncopes [63,64], in
screening of athletes [65,66], or in identifying asymptomatic
atrial fibrillation [33,67]. To explore these applications, the
acquisition of a database that considers more extreme
movements and patients with common cardiac pathologies is
required, which will provide information about the effect of
artifact promotion techniques in the correct identification of
arrhythmias or the malfunction of heart. Such a database would
allow future work on the proposed method and a benchmark
with existing methods to evaluate their performance in MA
reduction as well as its benefits in the identification of
waveforms modified by specific cardiac arrhythmias.
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ICA: independent component analysis
IMU: inertial measurement unit
MA: motion artifacts
PPG: photoplethysmography
Rd-ICA: Redundant denoising Independent Component Analysis
SNR: signal-to-noise ratio
WDA: weighted distortion assessment
WICA: wavelet independent component analysis
WS: wavelet shrinkage
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