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Abstract

Background: In most cases, the abstracts of articles in the medical domain are publicly available. Although these are accessible
by everyone, they are hard to comprehend for a wider audience due to the complex medical vocabulary. Thus, simplifying these
complex abstracts is essential to make medical research accessible to the general public.

Objective: This study aims to develop a deep learning–based text simplification (TS) approach that converts complex medical
text into a simpler version while maintaining the quality of the generated text.

Methods: A TS approach using reinforcement learning and transformer–based language models was developed. Relevance
reward, Flesch-Kincaid reward, and lexical simplicity reward were optimized to help simplify jargon-dense complex medical
paragraphs to their simpler versions while retaining the quality of the text. The model was trained using 3568 complex-simple
medical paragraphs and evaluated on 480 paragraphs via the help of automated metrics and human annotation.

Results: The proposed method outperformed previous baselines on Flesch-Kincaid scores (11.84) and achieved comparable
performance with other baselines when measured using ROUGE-1 (0.39), ROUGE-2 (0.11), and SARI scores (0.40). Manual
evaluation showed that percentage agreement between human annotators was more than 70% when factors such as fluency,
coherence, and adequacy were considered.

Conclusions: A unique medical TS approach is successfully developed that leverages reinforcement learning and accurately
simplifies complex medical paragraphs, thereby increasing their readability. The proposed TS approach can be applied to
automatically generate simplified text for complex medical text data, which would enhance the accessibility of biomedical research
to a wider audience.

(JMIR Med Inform 2022;10(11):e38095) doi: 10.2196/38095
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Introduction

Background
Research from the field of biomedicine contains essential
information about new clinical trials on topics related to new
drugs and treatments for a variety of diseases. Although this

information is publicly available, it often has complex medical
terminology, making it difficult for the general public to
understand. One way to address this problem is by converting
the complex medical text into a simpler language that can be
understood by a wider audience. Although manual text
simplification (TS) is one way to address the problem, it cannot
be scaled to the rapidly expanding body of biomedical literature.
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Therefore, there is a need for the development of natural
language processing approaches that can automatically perform
TS.

Related Studies

TS Approaches
Initial research in the field of TS focused on lexical
simplification (LS) [1,2]. An LS system typically involves
replacing complex words with their simpler alternatives using
lexical databases, such as the Paraphrase Database [3],
WordNet [4], or using language models, such as bidirectional
encoder representations from transformers (BERT) [5]. Recent
research defines TS as a sequence-to-sequence (seq2seq) task
and has approached it by leveraging model architectures from
other seq2seq tasks such as machine translation and text
summarization [6-8]. Nisioi et al [9] proposed a neural seq2seq
model, which used long short-term memories (LSTMs) for
automatic TS. It was trained on simple-complex sentence pairs
and showed through human evaluations that the TS
system–generated outputs ultimately preserved meaning and
were grammatically correct [9]. Afzal et al [10] incorporated
LSTMs to create a quality-aware text summarization system
for medical data. Zhang and Lapata [11] developed an
LSTM-based neural encoder-decoder TS model and trained it
using reinforcement learning (RL) to directly optimize SARI
[12] scores along with a few other rewards. SARI is a widely
used metric for automatic evaluation of TS.

With the recent progress in natural language processing research,
LSTM-based models were outperformed by transformer
[13]-based language models [13-16]. Transformers follow an
encoder-decoder structure with both the encoder and decoder
made up of L identical layers. Each layer consists of 2 sublayers,
one being a feed-forward layer and the other a multihead
attention layer. Transformer-based language models, such as
BART [14], generative pretraining transformer (GPT) [15], and
text-to-text-transfer-transformer [16], have achieved strong
performance on natural language generation tasks such as text
summarization and machine translation.

Building on the success of transformer-based language models,
recently Martin et al [17] introduced multilingual unsupervised
sentence simplification (MUSS) [17], a BART [14]-based
language model, which achieved state-of-the-art performance
on TS benchmarks by training on paraphrases mined from
CCNet [18] corpus. Zhao et al [19] proposed a semisupervised
approach that incorporated the back-translation architecture
along with denoising autoencoders for the purpose of automatic
TS. Unsupervised TS is also an active area of research but has

been primarily limited to LS. However, in a recent study, Surya
et al [20] proposed an unsupervised approach to perform TS at
both the lexical and syntactic levels. In general, research in the
field of TS has been focused mostly on sentence-level
simplification. However, Sun et al [21] proposed a
document-level data set (D-wikipedia) and baseline models to
perform document-level simplification. Similarly, Devaraj et
al [8] proposed a BART [14]-based model that was trained using
unlikelihood loss for the purpose of paragraph-level medical
TS. Although their training regime penalizes the terms
considered “jargon” and increases the readability, the generated
text has lower quality and diversity [8]. Thus, the lack of
document- or paragraph-level simplification makes this an
important work in the advancement of the field.

TS Data Sets
The majority of TS research uses data extracted from Wikipedia
and news articles [11,22,23]. These data sets are paired
sentence-level data sets (ie, for each complex sentence, there is
a corresponding simple sentence). TS systems have heavily
relied on sentence-level data sets, extracted from regular and
simple English Wikipedia, such as WikiLarge [11], because
they are publicly available. It was later shown by Xu [24] that
there are issues with data quality for the data sets extracted from
Wikipedia. They proposed the Newsela corpus, which was
created by educators who rewrote news articles for different
school-grade levels. Automatic sentence alignment methods
[25] were used on the Newsela corpus to create a sentence-level
TS data set. Despite the advancements in research on
sentence-level simplification, there is a need for TS systems
that can simplify text at a paragraph level.

Recent work has focused on the construction of document-level
simplification data sets [17,21,26]. Sun et al [21] constructed a
document-level data set, called D-Wikipedia, by aligning the
English Wikipedia and Simple English Wikipedia spanning
143,546 article pairs. Although there are many data sets
available for sentence-level TS, data sets for domain-specific
paragraph-level TS are lacking. In the field of medical TS, Van
den Bercken et al [27] constructed a sentence-level
simplification data set using sentence alignment methods.
Recently, Devaraj et al [8] proposed the first paragraph-level
medical simplification data set, containing 4459 simple-complex
pairs of text, and this is the data set used for the analysis and
baseline training in this study. A snippet of a complex paragraph
and its simplified version from the data set proposed by Devaraj
et al [8] is shown in Figure 1. The data set is open sourced and
publicly available [28].
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Figure 1. Complex medical paragraph and the corresponding simple medical paragraph from the dataset.

TS Evaluation
The evaluation of TS usually falls into 2 categories: automatic
evaluations and manual (ie, human) evaluations. Because of the
subjective nature of TS, it has been suggested that the best
approach is to perform manual evaluations, based on criteria
such as fluency, meaning preservation, and simplicity [20].
Automatic evaluation metrics most commonly used include
readability indices such as Flesch-Kincaid Reading Ease [29],
Flesch-Kincaid Grade Level (FKGL) [29], Automated
Readability Index (ARI), Coleman-Liau index, and metrics for
natural language generation tasks such as SARI [12] and BLEU
[30].

Readability indices are used to assign a grade level to text
signifying its simplicity. All the readability indices are calculated
using some combination of word weighting, syllable, letter, or
word counts, and are shown to measure some level of simplicity.
Automatic evaluation metrics, such as BLEU [30] and SARI
[12], are widely used in TS research, with SARI [12] having
specifically been developed for TS tasks. SARI is computed by
comparing the generated simplifications with both the source
and target references. It computes an average of F1-score for 3
n-gram overlap operations: additions, keeps, and deletions. Both
BLEU [30] and SARI [12] are n-gram–based metrics, which
may fail to capture the semantics of the generated text.

Objective
The aim of this study is to develop an automatic TS approach
that is capable of simplifying medical text data at a paragraph
level, with the goal of providing greater accessibility of
biomedical research. This paper uses RL-based training to
directly optimize 2 properties of simplified text: relevance and
simplicity. Relevance is defined as simplified text that retains
salient and semantic information from the original article.
Simplicity is defined as simplified text that is easy to understand
and lexically simple. These 2 properties are optimized using
TS-specific rewards, resulting in a system that outperforms
previous baselines on Flesch-Kincaid scores. Extensive human
evaluations are conducted with the help of domain experts to
judge the quality of the generated text.

The remainder of the paper is organized as follows: The
“Methods” section provides details on the data set, the training
procedure, and the proposed model, and describes how
automatic and human evaluations were conducted to analyze
the outputs generated by the proposed model (TESLEA). The
“Results” section provides a brief description of the baseline
models and the results obtained by conducting automatic and
manual evaluation of the generated text. Finally under the
“Discussion” section, we highlight the limitations, future work,
and draw conclusions.
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Methods

Model Objective
Given a complex medical paragraph, the goal of this work is to
generate a simplified paragraph that is concise and captures the
salient information expressed in the complex text. To accomplish
this, an RL-based simplification model is proposed, which
optimizes multiple rewards during training, and is tuned using
a paragraph-level medical TS data set.

Data Set
The Cochrane Database of Scientific Reviews is a health care
database with information on a wide range of clinical topics.
Each review includes a plain language summary (PLS) written
by the authors who follow guidelines to structure the summaries.
PLSs are supposed to be clear, understandable, and accessible,
especially for a general audience not familiar with the field of
medicine. PLSs are highly heterogeneous in nature, and are not
paired (ie, for every complex sentence there may not be a
corresponding simpler version). However, Devaraj et al [8] used
the Cochrane Database of Scientific Reviews data to produce
a paired data set, which has 4459 pairs of complex-simple text,
with each text containing less than 1024 tokens so that it can
be fed into the BART [14] model for the purpose of TS. The
pioneering data set developed by Devaraj et al [8] is used in
this study for training the models and is publicly available [28].

TESLEA: TS Using RL

Model and Rewards
The TS solution proposed for the task of simplifying complex
medical text uses an RL-based simplification model, which
optimizes multiple rewards (relevance reward, Flesch-Kincaid
Grade rewards, and lexical simplicity rewards) to achieve a
more complete and concise simplification. The following
subsections introduce the computation of these rewards, along
with the training procedure.

Relevance Reward
Relevance reward measures how well the semantics of the target
text is captured in its simplified version. This is calculated by
computing the cosine similarity between the target text
embedding (ET) and the generated text embedding (EG).
BioSentVec [31], a text embedding model trained on medical
documents, is used to generate the text embeddings. The steps
to calculate the relevance score are depicted in Algorithm 1.

The RelevanceReward function takes 3 arguments as input,
namely, target text (T), generated text (G), and the embedding
model (M). The function ComputeEmbedding takes the input
text and embedding model (M) as input and generates the
relevant text embedding. Finally, cosine similarity between
generated text embedding (EG) and target text embedding (ET)
is calculated to get the reward (Algorithm 1, line 4).

Flesch-Kincaid Grade Reward
FKGL refers to the grade level that must be attained to
comprehend the presented information. A higher FKGL score
indicates that the text is more complex, and a lower score
indicates that the text is simpler. The FKGL for a text (S) is
calculated using equation 1 [29]:

FKGL(S) = 0.38 × (total words/total sentences) + 1.8
× (total syllables/total words) – (15.59) (1)

The FKGL reward (RFlesch) is designed to reduce the complexity
of generated text and is calculated as presented in Algorithm 2.

In Algorithm 2, the function FleschKincaidReward takes 2
arguments as inputs, namely, generated text (G) and target text
(T). The FKGLScore function calculates the FKGL for the given
text. Once the FKGL for T and G is calculated, the
Flesch-Kincaid reward (RFlesch) is calculated as the relative
difference between r(T) and r(G) (Algorithm 2, line 4), where
r(T) and r(G) denote the FKGL of the target and generated text.

Lexical Simplicity Reward
Lexical simplicity is used to measure whether the words in the
generated text (G) are simpler than the words in the source text
(S). Laban et al [26] proposed a lexical simplicity reward that
uses the correlation between word difficulty and word frequency
[32]. As word frequency follows zipf law, Laban et al [26] used
it to design the reward function, which involves calculating zipf
frequency of newly inserted words, that is, Z(G – S), and deleted
words, that is, Z(S – G). The lexical simplicity reward is defined
in the same way as proposed by Laban et al [26] and is described
in Algorithm 3. The analysis of the data set proposed by Devaraj
et al [8] revealed that 87% of simple and complex pairs have a
value of ΔZ(S, G) ≈ 0.4, where ΔZ(S, G) = Z(G – S) – Z(S – G)
is the difference between the zipf frequency of inserted words
and deleted words, with the value of lexical reward (Rlexical)
scaled between 0 and 1.

In Algorithm 3, LexicalSimplicityReward requires the source
text (S) and the generated text (G) as the inputs. Functions
ZIPFInserted [25] and ZIPFDeleted [25] calculate the zipf
frequency of newly inserted words and the deleted words.
Finally, the lexical reward (Rlexical) is calculated and normalized,
as described in line 5.
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Training Procedure and Baseline Model

Pretrained BART
The baseline language model used in this study for performing
simplification was BART [14], which is a transformer based
encoder-decoder model that was pretrained using a denoising
objective function. The decoder part of the model is
autoregressive in nature, making it more suitable for
sentence-generation tasks. Furthermore, the BART model
achieves strong performance on natural language generation
tasks such as summarization, which was demonstrated on XSum
[33] and CNN/Daily Mail [34] data sets. In this case, a version
of BART fine-tuned on XSUM [33] data set is being used.

Language Model Fine-tuning
Transformer-based language models are pretrained on a large
corpus of text and later fine-tuned on a downstream task by
minimizing the maximum likelihood loss (Lml) function [3].
Consider a paired data set C, where each instance consists of a
source sentence containing n tokens x = {x1,…,xn} and target
sequence containing m tokens y = {y1,…,yn}, then the Lml
function is given in equation 2 with the computation described
in Algorithm 4.

where θ represents the model parameters and y<t denotes
preceding tokens before the position t [35].

However, the results obtained by minimizing Lml are not always
optimal. There are 2 main reasons for the degradation of results.

The first is called “exposure bias” [36], which occurs when the
model expects gold-standard data at each step of training, but
does not receive appropriate supervision during testing, resulting
in an accumulation of errors during prediction. The second is
called “representation collapse” [37], which is a degradation of
the pretrained language model representations during
fine-tuning. Ranzato et al [36] avoided the problem of exposure
bias by directly optimizing the specific discrete metric instead
of minimizing the Lml with the help of an RL-based algorithm
called REINFORCE [38]. A variant of REINFORCE [38] called
Self-Critical Sequence Training [39] was used in this study to
directly optimize certain rewards specifically designed for TS;
more information on this is provided in the following subsection.

Self-critical Sequence Training
TS can be formulated as an RL problem, where the “agent”
(language model) interacts with the environment to take “action”
(next word prediction) based on a learned “policy” (pθ) defined
by model parameters θwhile observing some rewards (R). In
this work, BART [14] was used as the language model, and the
REINFORCE [38] algorithm was used to learn an optimal policy
that maximizes rewards. Specifically, REINFORCE was used
with a baseline to stabilize the training procedure using an
objective function (Lpg) with a baseline reward b (equation 3):

where pθ(yi
s|...) denotes the probability of the ith word

conditioned on a previously generated sampled sequence by the

model; r(ys) denotes the reward computed for a sentence
generated using sampling; denotes the source sentence, and n
is the length of the generated sentence. Rewards are computed
as a weighted sum of the relevance reward (Rcosine), RFlesch, and
lexical simplicity reward (Rlexical; Figure 2) and are given by:

where α, β, and d are the weights associated with the rewards,
respectively.

To approximate the baseline reward, Self-Critical Sequence
Training [39] was used. The baseline was calculated by
computing reward values for a sentence that has been generated
using greedy decoding r(y*) by the current model and its
computation is described in Algorithm 5. The loss function is
defined in equation 5:

where y* denotes the sentence generated using greedy decoding.
More details on greedy decoding are described in Multimedia
Appendix 1 (see also [8,14,17,25,26,39-42]).

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e38095 | p. 5https://medinform.jmir.org/2022/11/e38095
(page number not for citation purposes)

Phatak et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Compute Rewards function calculates a weighted sum of three rewards: Fkgl Reward, Lexical Simplicity Reward, Relevance Reward.

Intuitively, by minimizing the loss described in equation 5, the

likelihood of choosing the samples sequence (ys) is promoted

if the reward obtained for sampled sequence, r(ys), is greater
than the reward obtained for the baseline rewards, that is, the
samples that return higher reward than r(y*). The samples that
obtain a lower reward are subsequently suppressed. The model
is trained using a combination of Lml and policy gradient loss
similar to [43]. The overall loss is given as follows:

L = γLpg + (1 – γ)Lml (6)

where γ is a scaling factor that can be tuned.

Summary of the Training Process
Overall, the training procedure follows a 2-step approach. As
the pretrained BART [14] was not trained on the medical
domain–related text, it was first fine-tuned on the
document-level paired data set [8] by minimizing the Lml
(maximum likelihood estimation [MLE]; equation 2). In the

second part, the fine-tuned BART model was trained further
using RL. The RL procedure of TESLEA involves 2 steps: (1)
the RL step and (2) the MLE optimization step, which are both
shown in Figure 3 and further described in Algorithm 6. The
given simple-complex text pairs are converted to tokens as
required by the BART model. In the MLE step, these tokens
are used to compute logits from the model, and then finally
MLE loss is computed. In the RL step, the model generates
simplified text using 2 decoding strategies: (1) greedy decoding
and (2) multinomial sampling. Rewards are computed as
weighted sums (Figure 3) for sentences generated using both
the decoding strategies. These rewards are then used to calculate
the loss for the RL step. Finally, a weighted sum of losses is
computed that is used to estimate the gradients and update model
parameters. All the hyperparameter settings used are included
in Multimedia Appendix 2 (see also [8,12,29,33,34,44-47]).
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Figure 3. Reinforcement learning–based training procedure for TESLEA. MLE: maximum likelihood estimation; RL: reinforcement learning.

Automatic Metrics
Two readability indices were used to perform automatic
evaluations of the generated text, namely, FKGL and Automatic
Readability Indices (ARIs). The SARI score is a standard metric
for TS. The F-1 versions of ROUGE-1 and ROUGE-2 [44]
scores were also reported. Readers can find more details about
these metrics in Multimedia Appendix 2. To measure the quality
of the generated text, the criteria proposed by Yuan et al [45]
were used, which are mentioned in the “Automatic Evaluation
Metrics” section in Multimedia Appendix 2. The criteria
proposed by Yuan et al [45] can be automatically computed
using a language model–based metric called “BARTScore.”
Further details on how to use BARTScore to measure the quality
of the generated text are also mentioned in Multimedia Appendix
2.

Human Evaluations
In this study, 3-domain experts judge the quality of the generated
text based on the factors mentioned in the previous section. The
evaluators rate the text on a Likert scale from 1 to 5. First,
simplified test data were generated using TESLEA, and then
51 generated paragraphs were randomly selected, creating 3
subsets containing 17 paragraphs each. Every evaluator was
presented with 2 subsets, that is, a total of 34 complex-simple
TESLEA-generated paragraphs. The evaluations were conducted
via Google Forms, and the human annotators were asked to
measure the quality of simplification for informativeness
(INFO), fluency (FLU), coherence (COH), factuality (FAC),
and adequacy (ADE) (Figure 4). All the data collected were
stored in CSV files for statistical analysis.
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Figure 4. A sample question seen by the human annotator.

Results

Overview
This section consists of 3 subsections, namely, (1) Baseline
Models, (2) Automatic Evaluations, and (3) Human Evaluations.
The first section highlights the baseline models used for
comparison and analysis. The second section discusses the
results obtained by performing automatic evaluations of the

model. The third and final section discusses the results obtained
from human assessments and analyzes the relationship between
human annotations and automatic metrics.

Baseline Models
TESLEA is compared with other strong baseline models and
their details are discussed below:

• BART-Fine-tuned: BART-Fine-tuned is a BART-large
model fine-tuned using an Lml on the data set proposed by
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Devaraj et al [8]. Studies have shown that large pretrained
models often perform competitively when fine-tuned for
downstream tasks, thus making this a strong competitor.

• BART-UL: Devaraj et al [8] also proposed BART-UL for
paragraph-level medical TS. It is the first model to perform
paragraph-level medical TS and has achieved strong results
on automated metrics. BART-UL was trained using an
unlikelihood objective function that penalizes the model
for generating technical words (ie, complex words). Further
details on the training procedure of BART-UL are described
in Multimedia Appendix 1.

• MUSS: MUSS [17] is a BART-based language model that
was trained by mining paraphrases from the CCNet corpus
[18]. MUSS was trained on a data set consisting of 1 million
paraphrases, helping it achieve a strong SARI score.
Although MUSS is trained on a sentence-level data set, it
still serves as a strong baseline for comparison. Further
details on the training procedure for MUSS are discussed
in Multimedia Appendix 1
.

• Keep it Simple (KIS): Laban et al [26] proposed an
unsupervised approach for paragraph-level TS. KIS is
trained using RL and uses the GPT-2 model as a backbone.
KIS has shown strong performance on SARI scores beating
many supervised and unsupervised TS approaches.

Additional details on the training procedure for KIS are
described in Multimedia Appendix 1.

• PEGASUS models: PEGASUS is a transformer-based
encoder-decoder model that has achieved state-of-the-art
results on many text-summarization data sets. It was
specifically designed for the task of text summarization. In
our analysis, we used 2 variants of PEGASUS models,
namely, (1) PEGASUS-large, the large variant of Pegasus
model, and (2) PEGASUS-pubmed-large, the large variant
of the PEGASUS model that was pretrained on a PubMed
data set. Both the PEGASUS models were fine-tuned using
Lml on the data set proposed by Devaraj et al [8]. For more
information regarding the PEGASUS model, the readers
are suggested to refer to [46].

The models described above are the only ones available for
medical TS as of June 2022.

Results of Automatic Metrics
The metrics used for automatic evaluation are FKGL, ARI,
ROUGE-1, ROUGE-2, SARI, and BARTScore. The mean
readability indices scores (ie, FKGL and ARI) obtained by
various models are reported in Table 1. ROUGE-1, ROUGE-2,
and SARI scores are reported in Table 2 and BARTScore is
reported in Table 3.

Table 1. Flesch-Kincaid Grade Level and Automatic Readability Index for the generated text.a

Automatic Readability IndexFlesch-Kincaid Grade LevelText

Baseline

15.5814.42Technical abstracts

15.0813.11Gold-standard references

Model generated

15.3213.45BART-Fine-tuned

13.73b11.97BART-UL

13.8211.84bTESLEA

17.2914.29MUSSc

17.0514.15Keep it Simple

17.5514.53PEGASUS-large

19.816.35PEGASUS-pubmed-large

aTESLEA significantly reduces FKGL and ARI scores when compared with plain language summaries.
bBest score.
cMUSS: multilingual unsupervised sentence simplification.
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Table 2. ROUGE-1, ROUGE-2, and SARI scores for the generated text.a

SARIROUGE-2ROUGE-1Model

0.390.110.40BART-Fine-tuned

0.40b0.140.38BART-UL

0.40b0.110.39TESLEA

0.340.030.23MUSSc

0.320.030.23Keep it Simple

0.40b0.18b0.44bPEGASUS-large

0.40b0.160.42PEGASUS-pubmed-large

aTESLEA achieves similar performance to other models. Higher scores of ROUGE-1, ROUGE-2, and SARI are desirable.
bBest performance.
cMUSS: multilingual unsupervised sentence simplification.

Table 3. Faithfulness Score and F-score for the generated text by the models.a

F-scoreFaithfulness ScoreModels

0.0780.137BART-Fine-tuned

0.0610.242BART-UL

0.097b0.366bTESLEA

0.0290.031MUSSc

0.0280.030Keep it Simple

0.0730.197PEGASUS-large

0.0630.29PEGASUS-pubmed-large

aHigher scores of Faithfulness and F-score are desirable.
bHighest score.
cMUSS: multilingual unsupervised sentence simplification.

Readability Indices, ROUGE, and SARI Scores
The readability indices scores reported in Table 1 suggest that
the FKGL scores obtained by TESLEA are better (ie, a lower
score) when compared with the FKGL scores obtained by
comparing technical abstracts (ie, complex medical paragraphs
available in the data set) with the gold-standard references (ie,
simple medical paragraphs corresponding to the complex
medical paragraphs). Moreover, TESLEA achieves the lowest
FKGL score (11.84) when compared with baseline models,
indicating significant improvement in the TS. The results suggest
that (1) BART-based transformer models are capable of
performing simplification at the paragraph level such that the
outputs are at a reduced reading level (FKGL) when compared
with technical abstracts, gold-standard references, and baseline
models. (2) The proposed method to optimize TS-specific
rewards allows the generation of text with greater readability
than even the gold-standard references, as indicated by the
FKGL scores in Table 1. The reduction in FKGL scores can be
explained by the fact that FKGL was a part of a reward (RFlesch)
that was directly being optimized.

In addition, we report the SARI [12] and ROUGE scores [44]
as shown in Table 2. SARI is a standard automatic metric used

in sentence-level TS tasks. The ROUGE score is another
standard metric in text summarization tasks. The results show
that TESLEA matches the performance of baseline models on
both ROUGE and SARI scores. Although there are no clear
patterns when ROUGE and SARI scores are considered, there
are differences in the quality of text generated by these models
and these are explained in the “Text Quality Measure”
subsection.

Text Quality Measure
There has been significant progress in designing automatic
metrics that are able to capture linguistic quality of the text
generated by language models. One such metric that is able to
measure the quality of generated text is BARTScore [45].
BARTScore has shown strong correlation with human
assessments on various tasks ranging from machine translation
to text summarization. BARTScore has 4 different metrics (ie,
Faithfulness Score, Precision, Recall, F-score), which can be
used to measure different qualities of generated text. Further
details on how to use BARTScore are mentioned in Multimedia
Appendix 2.

According to the analysis conducted by Yuan et al [45],
Faithfulness Score measures 3 aspects of generated text via
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COH, FLU, and FAC. The F-score measures 2 aspects of
generated text (INFO and ADE). In our analysis, we use these
2 variants of BARTScore to measure COH, FLU, FAC, INFO,
and ADE. TESLEA achieves the highest values (Table 3) of
Faithfulness Score (0.366) and F-score (0.097), indicating that
the rewards designed for the purpose of TS not only help the
model in generating simplified text but also on some level
preserve the quality of generated text. The F-scores of all the
models are relatively poor (ie, scores closer to 1 are desirable).
One of the reasons for low F-scores could be the introduction
of misinformation or hallucinations in the generated text, a
common problem for language models, which could be
addressed by adapting training strategies that focus on INFO
via the help of rewards or objective functions.

For qualitative analysis we randomly selected 50 sentences from
the test data and calculated the average number of tokens based
on BART model vocabulary. For the readability measure, we
calculated the FKGL scores of these generated texts and noted
any textual inconsistencies such as misinformation. The analysis
revealed that the text generated by most models was significantly
smaller than the gold-standard references (Table 4).
Furthermore, TESLEA- and BART-UL–generated texts were
significantly shorter compared with other baseline models and
TESLEA had the lowest FKGL score among all the models as
depicted in Table 4.

From a qualitative point of view, the sentences generated by
most baseline models involve significant duplication of text
from the original complex medical paragraph. The outputs

generated by the KIS model were incomplete and appear “noisy”
in nature. One of the reasons for the noise generation could be
because of unstable training due to lack of a huge corpus of
domain-specific data. BART-UL–generated paragraphs are
simplified as indicated by the FKGL and ARI scores, but they
are extractive in nature (ie, the model learns to select simplified
sentences from the original medical paragraph and combines
them to form a simplification). PEGASUS-pubmed-
large–generated paragraphs are also extractive in nature and
similar to BART-UL–generated paragraphs, but it was observed
that they were grammatically inconsistent. In contrast to baseline
models, the text generated by TESLEA was concise,
semantically relevant, and simple, without involving any medical
domain–related complex vocabulary. Figure 5 shows an example
of text generated by all the models, with blue text indicating
the copied text.

In addition to the duplicated text, the models also induced
misinformation in the generated text. The most common form
of induced misinformation observed was “The evidence is
current up to [date],” as shown in Figure 6. This text error
occurred due to the structure of the data (ie, PLS contains
statements related to this research, but these statements were
not in the original text; thus, the model attempted to add these
statements to the generated text although it is not factually
correct). Thus considerable attention should be paid to including
FAC measures in the training regime of these models. For a
more complete assessment of the quality of simplification,
human evaluation was conducted using domain experts for the
text generated by TESLEA.

Table 4. Average number of tokens and average Flesch-Kincaid Grade Level scores for selected samples.

Flesch-Kincaid Grade LevelNumber of tokensModel

14.37498.11Technical abstracts

12.77269.74Gold-standard references

12.34131.37TESLEA

12.66145.08BART-UL

13.78187.59Keep it Simple

13.86193.07Multilingual unsupervised sentence simplification

13.93272.04PEGASUS-large

15.09150.00PEGASUS-pubmed-large
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Figure 5. Comparison of Text Generated by all the models. The highlighted blue text indicates copying. CI: Confidence Interval; FEV: Force Expiratory
Volume; N: Population size; PEV: Peak Expiratory Flow; RR: Respiratory Rate.

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e38095 | p. 12https://medinform.jmir.org/2022/11/e38095
(page number not for citation purposes)

Phatak et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Example of misinformation found in Generated text. CIDSL: Cornelia de Lange syndrome; IVIg: Intravenous immune globulin; MS: Multiple
Sclerosis; PE: plasma exchange.

Human Evaluations
For this research, 3 domain experts assessed the quality of
generated text, based on factors of INFO, FLU, COH, FAC,
and ADE, as proposed by Yuan et al [45], which are discussed
in Multimedia Appendix 2. To measure interrater reliability,
the percentage agreement between the annotators is calculated,
and the results are shown in Table 5. The average percentage
agreement for the factors of FLU, COH, FAC, and ADE is the
highest, indicating that annotators agree among their evaluations.

The average Likert score for each factor is also reported by each
rater (Table 6). From the data mentioned in Table 6, the raters

think that the COH and FLU have the highest quality, with the
ADE, FAC, and INFO also rated reasonably high.

To further assess whether results obtained by automated metrics
truly signify an improvement in the quality of generated text
by TESLEA, the Spearman rank correlation coefficient was
calculated between human ratings and the automatic metrics
for all 51 generated paragraphs (text), with the results shown
in Table 7. The BARTScore has the highest correlation with
human ratings for FLU, FAC, COH, and ADE compared with
other metrics. A few text samples along with their human
annotations and automated metric scores are shown in
Multimedia Appendix 3 and Figure 7.

Table 5. Average percentage interrater agreement.

Adequacy, %Coherence, %Factuality, %Fluency, %Informativeness, %Interrater agreement

82.3570.5982.3582.3582.35A1a and A2b

70.5970.5970.5958.8270.59A1 and A3c

64.7174.5174.5170.5952.94A3 and A2

72.5574.5174.5170.5968.63Average (% agreement)

aA1: annotator 1.
bA2: annotator 2.
cA3: annotator 3.

Table 6. Average Likert score by each rater for informativeness, fluency, factuality, coherence, and adequacy.

AdequacyCoherenceFactualityFluencyInformativenessRater

3.763.973.914.123.82A1

3.684.823.594.973.50A2

3.853.943.853.944.06A3

3.764.243.784.343.79Average Likert score

Table 7. Spearman rank correlation coefficient between automatic metrics and human ratings for the text generated by TESLEA.

AdequacyCoherenceFactualityFluencyInformativenessMetric

0.06–0.05–0.01–0.040.18aROUGE-1

0.05–0.04–0.05–0.010.08ROUGE-2

0.01–0.01–0.13–0.660.09SARI

0.07a0.22a0.38a0.32a0.08BARTScore

aBest result.
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Figure 7. Samples of Complex, Simple (Gold) and generated medical paragraphs along with automated metrics and Human annotations.

Discussion

Principal Findings
The most up-to-date research about biomedicine is often
inaccessible to the general public due to the domain-specific
medical terminology. A way to address this problem is by
creating a system that converts complex medical information
into a simpler form, thus making it accessible to everyone. In

this study, a TS approach was developed that can automatically
simplify complex medical paragraphs while maintaining the
quality of the generated text. The proposed approach trains the
transformer-based BART model to optimize rewards specific
for TS, resulting in increased simplicity. The BART model is
trained using the proposed RL method to optimize certain
rewards that help generate simpler text while maintaining the
quality of generated text. As a result, the trained model generates
simplified text that reduces the complexity of the original text
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by 2-grade points, when measured using the FKGL [29]. From
the results obtained, it can be concluded that TESLEA is
effective in generating simpler text compared with technical
abstracts, the gold-standard references (ie, simple medical
paragraphs corresponding to complex medical paragraphs), and
the baseline models. Although previous work [8] developed
baseline models for this task, to the best of our knowledge, this
is the first time RL is being applied to the field of medical TS.
Moreover, previous studies failed to analyze the quality of the
generated text, which this study measures via the factors of
FLU, FAC, COH, ADE, and INFO. Manual evaluations of
TESLEA-generated text were conducted with the help of domain
experts using the aforesaid factors and further research was
conducted to analyze which automatic metrics agree with
manual annotations using the Spearman rank correlation
coefficient. The analysis revealed that BARTScore [45] best
correlates with the human annotations when evaluated for a text
generated by TESLEA, indicating that TESLEA learns to
generate semantically relevant and fluent text, which conveys
the essential information mentioned in the complex medical
paragraph. These results suggest that (1) TESLEA can perform
TS of medical paragraphs such that outputs are simple and
maintain the quality, (2) the rewards optimized by TESLEA
help the model capture syntactic and semantic information,
increasing the FLU and COH of outputs, as witnessed when the
outputs are evaluated by BARTScore and human annotators.

Limitations and Future Work
Although this research is a significant contribution to the
literature on medical TS, the proposed approach does have a

few limitations, addressing which can result in even better
outputs. TESLEA can generate simpler versions of the text, but
in some instances, it induces misinformation, resulting in
reduced FAC and INFO of the generated text. Therefore, there
is a need to design rewards that consider the FAC and INFO of
the generated text. We also plan to conduct extensive human
evaluations on a large scale for the text generated by various
models (eg, KIS, BART-UL) using domain experts (ie,
physicians and medical students).

Transformer-based language models are sensitive to the
pretraining regime, so a possible next step is to pretrain a
language model on domain-specific raw data sets such as
PubMed [40], which will help develop domain-specific
vocabulary for the model. Including these strategies may help
in increasing the simplicity of the generated text.

Conclusion
The interest in and need for TS in the medical domain are of
growing interest as the quantity of data is continuously
increasing. Automated systems, such as the one proposed in
this paper, can dramatically increase accessibility to information
for the general public. This work not only provides a technical
solution for automated TS, but also lays out and addresses the
challenges of evaluating the outputs of such systems, which can
be highly subjective. It is the authors’ sincere hope that this
work allows other researchers to build on and improve the
quality of similar effort.
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RL: reinforcement learning
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