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Abstract

Background: Clinical prediction models suffer from performance drift as the patient population shifts over time. There is a
great need for model updating approaches or modeling frameworks that can effectively use the old and new data.

Objective: Based on the paradigm of transfer learning, we aimed to develop a novel modeling framework that transfers old
knowledge to the new environment for prediction tasks, and contributes to performance drift correction.

Methods: The proposed predictive modeling framework maintains a logistic regression–based stacking ensemble of 2 gradient
boosting machine (GBM) models representing old and new knowledge learned from old and new data, respectively (referred to
as transfer learning gradient boosting machine [TransferGBM]). The ensemble learning procedure can dynamically balance the
old and new knowledge. Using 2010-2017 electronic health record data on a retrospective cohort of 141,696 patients, we validated
TransferGBM for hospital-acquired acute kidney injury prediction.

Results: The baseline models (ie, transported models) that were trained on 2010 and 2011 data showed significant performance
drift in the temporal validation with 2012-2017 data. Refitting these models using updated samples resulted in performance gains
in nearly all cases. The proposed TransferGBM model succeeded in achieving uniformly better performance than the refitted
models.

Conclusions: Under the scenario of population shift, incorporating new knowledge while preserving old knowledge is essential
for maintaining stable performance. Transfer learning combined with stacking ensemble learning can help achieve a balance of
old and new knowledge in a flexible and adaptive way, even in the case of insufficient new data.

(JMIR Med Inform 2022;10(11):e38053) doi: 10.2196/38053
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Introduction

Clinical risk prediction models can provide decision-making
support on therapeutic interventions and resource allocation,

and thus can improve patient outcomes and reduce medical
costs [1]. Along with the increasing availability and volume of
electronic health record (EHR) data, these models are evolving
from rule-based to data-driven probability-based tools, for
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example, machine learning–based patient outcome prediction
models [2]. One of the critical challenges is performance drift
over time, which results from either gradual or quick data shifts
in the patient population, such as changing patient outcome rate,
evolving clinical practices, and improving measurement
accuracy [3].

To correct temporal performance drift, a range of model
updating approaches are available, including recalibration,
model-specific adaptation (eg, reweighting the leaf nodes of
each tree in a random forest [RF] model and an incremental
learning method for a neural network model), model extension
(eg, incorporating new predictors), and full model refitting [1].
These updating approaches vary in analytical complexity, old
data and updated sample requirements, and computational
demands. Usually, full model refitting is not the leading choice,
especially in clinical use, owing to the risk of overfitting when
new (and often smaller) data are used alone, while old data are
completely discarded [1]. The essence of model updating is to
create models that are constantly updated and adapted to the
new incoming data, while balancing between both new and old
knowledge [4-7].

Acute kidney injury (AKI) is a potentially life-threatening
clinical syndrome, for which the only effective treatments are
supportive care and dialysis, and it affects 10%-15% of all
inpatients and more than 50% of critical care patients, and results
in high mortality [8,9]. For AKI prediction, Davis et al [2]
developed 7 common regression and machine learning models,
and found that discrimination performance declines were
statistically significant but small for all models. Since they
collected data solely from US Department of Veterans Affairs
hospitals, it is not a typical scenario of population drift. Using
data collected from Royal London Hospital, which hosts
Europe’s largest kidney treatment facility, Haines et al [10]
developed risk prediction models for AKI after trauma, with
the area under the receiver operating characteristic curve
(AUROC) declining from 0.77 (0.72-0.81) in the development
set (February 2012 to October 2014) to 0.70 (0.64-0.77) in the
validation set (November 2014 to May 2016), and significant
temporal performance drift.

In this study, we developed a clinical risk prediction model for
hospital-acquired AKI. The model has been named transfer
learning gradient boosting machine (TransferGBM), which is
based on a transfer learning paradigm and maintains a stacking
ensemble of 2 base gradient boosting machine (GBM) learners.
Transfer learning has been proven to be one of the most effective
ways to deal with data scarcity (eg, in the scenario where new
data are not sufficient or available at a low cost) and data
distribution discrepancies in many areas [11-17]. Transfer
learning aims to selectively reuse data or knowledge from the
source domain to assist the modeling process on the target
domain, and it can be used to tackle the performance drift
problem by regarding the old data as the source domain and the
new data as the target domain. Since existing transfer learning

approaches focus on optimizing performance only in the target
domain, we still need a well-designed mechanism to incorporate
and balance the old and new knowledge learned from the source
and target domains.

Methods

Definition of AKI
According to the Kidney Disease Improving Global Outcomes
(KDIGO) clinical practice guidelines for AKI, we adopted serum
creatinine (SCr)-based criteria to stage the severity of AKI [18].
We did not use urine output to define AKI because it is less
likely to be accurate outside the critical care environment
[19,20]. Mild AKI (“AKI stage 1”) is defined as an increase in
SCr of 1.5 to 1.9 times the baseline value within 7 days or an
increase in SCr to 0.3 mg/dL (26.5 μmol/L) or more within 48
hours. The baseline creatinine value is defined as the most recent
SCr if available; otherwise, it is the admission SCr. Moderate
AKI (“AKI stage 2”) is defined as an increase in SCr of 2.0 to
2.9 times the baseline value within 7 days. The most severe
AKI (“AKI stage 3”) is defined as an increase in SCr of 3.0 or
more times the baseline value within 7 days or an increase in
SCr to 4 mg/dL (353.5 μmol/L) after an acute increase of at
least 0.3 mg/dL within 48 h or initiation of renal replacement
therapy.

Study Cohort
The study constructed a retrospective cohort using deidentified
EHR data from 2010 to 2017 in the University of Kansas
Medical Center. The data have been used in a previous study
[20] including a total of 141,696 adult patients (121,537
non-AKI patients; 20,159 any AKI patients; 3150 AKI stage
≥2 patients; and 1491 AKI stage 3 patients). To reflect the
inpatient population shift, patients enrolled in different years
were regarded as distinct individuals (ie, we handled the data
at the patient-encounter level).

As shown in Table 1, the proportion of elderly patients (ie, age
≥65) generally increased every year, from 31.7% in 2010 to
36.5% in 2017. The proportion of patients between the ages of
46 and 55 years decreased every year, while the proportion of
patients in other age groups remained the same. The ratio of
male to female patients did not change much over time, and
was basically maintained at 1:1. The proportion of White
patients always ranked first, accounting for more than 70% of
the total number of samples in each year, while the proportion
of Native Hawaiians was the least (only 0.1%). Only the
proportion of patients from different ethnicities remained stable
over time, without obvious changes. The proportion of African
Americans was more in 2010 than in all other years, and the
proportion of White patients was slightly less in 2010 than in
all other years. In addition, the incidence of AKI (any AKI)
showed a clear downward trend, from 16.9% in 2010 to 12.8%
in 2017.
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Table 1. Demographic information.

YearFeature

2017
(N=18,002)

2016
(N=20,399)

2015
(N=20,094)

2014
(N=18,701)

2013
(N=17,450)

2012
(N=16,682)

2011
(N=15,422)

2010
(N=14,946)

Age group (years), n (%)

1001 (5.6)1086 (5.3)1082 (5.4)1077 (5.8)918 (5.3)923 (5.5)886 (5.7)869 (5.8)18-25

1664 (9.2)1823 (8.9)1814 (9.0)1717 (9.7)1567 (9.0)1468 (8.7)1275 (8.3)1290 (8.6)26-35

1919 (10.7)2196 (10.8)2136 (10.6)1819 (9.7)1861 (10.7)1696 (10.2)1727 (11.2)1640 (11.0)36-45

2762 (15.3)3259 (16.0)3482 (17.3)3150 (16.8)3133 (19.0)3203 (19.2)2998 (19.4)3025 (20.2)46-55

4088 (22.7)4840 (23.7)4897 (24.4)4558 (24.4)4161 (23.8)3951 (23.7)3659 (23.7)3383 (22.6)56-65

6568 (36.5)7195 (35.3)6683 (33.3)6380 (34.1)5810 (33.3)5441 (32.6)4877 (31.6)4739 (31.7)>65

Sex, n (%)

9045 (50.2)10,250
(50.2)

10,114
(50.3)

9307 (49.8)8640 (49.5)8432 (50.5)7635 (49.5)7547 (50.5)Male

8957 (49.8)10,149
(49.8)

9980 (49.7)9394 (50.2)8810 (50.5)8250 (49.5)7787 (50.5)7399 (49.5)Female

Race, n (%)

63 (0.3)80 (0.4)87 (0.4)68 (0.4)79 (0.5)46 (0.3)52 (0.3)53 (0.4)American Indian

149 (0.8)254 (1.2)184 (0.9)210 (1.1)167 (1.0)153 (0.9)128 (0.8)125 (0.8)Asian

2614 (14.5)2896 (14.2)2883 (14.3)2685 (14.4)2510 (13.4)2255 (13.5)2240 (14.5)2286 (15.3)African American

14 (0.1)18 (0.1)10 (0.1)15 (0.1)9 (0.1)9 (0.1)20 (0.1)11 (0.1)Native Hawaiian

13,689
(76.0)

15,522
(76.1)

15,378
(76.5)

14,322
(76.6)

13,331
(76.4)

12,691
(76.1)

11,485
(74.5)

10,915 (72.9)White

28 (0.2)41 (0.2)38 (0.2)53 (0.3)46 (0.3)51 (0.3)24 (0.2)22 (0.1)Multiple races

1445 (8.0)1588 (7.8)1514 (7.5)1348 (7.2)1308 (7.5)1477 (8.9)1473 (9.6)1534 (10.3)Others

Label, n (%)

15,705
(87.2)

17,660
(86.6)

17,435
(86.8)

16,165
(86.4)

15,124
(86.7)

14,097
(84.5)

12,937
(83.9)

12,414 (83.1)Non-AKIa

2297 (12.8)2739 (13.4)2659 (13.2)2536 (13.6)2326 (13.3)2585 (15.5)2485 (16.1)2532 (16.9)Any AKI

377 (2.1)444 (2.2)471 (2.3)419 (2.2)371 (2.1)359 (2.1)356 (2.3)353 (2.4)AKI stage ≥2

194 (1.1)219 (1.1)241 (1.2)187 (1.0)184 (1.1)171 (1.0)149 (1.0)146 (1.0)AKI stage 3

aAKI: acute kidney injury.

Data Preprocessing
For each patient, we collected all currently populated variables
in the PCORNet common data model (CDM) schema, including
demographic details (ie, age, gender, and race); structured
clinical variables, including comorbidities (International
Classification of Diseases-9 and International Classification of
Diseases-10 codes), procedures (International Classification of
Diseases and Current Procedural Terminology codes), laboratory
tests (Logical Observation Identifiers Names and Codes), and
medications (RxNorm and National Drug Code); and several
vital signs (eg, blood pressure, height, weight, and BMI) [21].
All variables are time stamped, and each sample in the data set
is represented by a series of clinical observation vectors
aggregated on a daily basis. Therefore, the feature set formed
by the data before or on day t can be used to predict AKI within
days [t, t+1] for 24-h prediction (or within days [t+1, t+2] for
48-h prediction).

We preprocessed the data set as follows. First, for numerical
features, such as laboratory measurement values and vital signs,
we systematically removed the extreme values exceeding 1%
and 99%. Second, we performed one-hot coding on categorical
variables, such as diagnosis and procedure, to convert them into
binary representations. Third, for medication codes, we
converted data to cumulative exposure days before the prediction
time rather than binary representations. Fourth, the most recent
measurement value was chosen when repeated records were
available within a certain time interval. Fifth, we used the
“sample-and-hold” method to retrieve earlier available
measurement values, when measurements were missing for a
certain time span. Sixth, we introduced additional features, such
as daily blood pressure trend or length of hospital stay, which
have been shown to be useful for predicting AKI [22]. Seventh,
we excluded all forms of SCr and blood urea nitrogen as they
have a high correlation with AKI diagnosis and are not suitable
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for continuous prediction. Finally, a total of 28,306 features
were obtained for model development.

We adopted the discrete-time survival framework [23] to
preprocess the time-stamped EHR data, as shown in Figure 1.
We divided the patient’s entire stay period into L nonoverlapping
daily windows (ie, L=Δt, 2Δt, ..., T), where T is the length of
hospital stay or a specific censor point. Based on expert
knowledge, we chose a censor point T=7, which represents 7
days since admission. The interval value Δt is the prediction
window selected according to clinical needs. For example, Δt=1
means 1-day (24-h) prediction and Δt=2 means 2-day (48-h)
prediction. We would use all available data up to time t-Δt to
predict AKI risk in time t. We treated the data corresponding

to the AKI-onset day as positive samples based on the criteria
of different prediction tasks, while the data after the first positive
sample day and between different AKI-stage days were
discarded since we could not judge the true AKI stages within
these periods because physicians might have intervened and the
patient’s condition might have improved. All remaining data
were regarded as negative samples. For patients who never
developed AKI during hospitalization, all available data within
7 days since admission were used to construct negative samples,
and other data after 7 days since admission were discarded for
the sake of alleviating data imbalance. Under the discrete-time
survival framework, we can train a model more in line with
real-world clinical practice, where the rolling prediction of AKI
risk for a patient on a daily basis is essential [24].

Figure 1. Data processing strategy based on the discrete-time survival framework. The red triangle represents the actual stage of acute kidney injury
(AKI). "Δt" indicates the prediction time in advance, “−“ indicates negative sample, “+” indicates positive sample, and “*” indicates excluded sample.

TransferGBM Modeling Framework
To correct temporal performance drift, we propose a transfer
learning–based modeling framework named TransferGBM, as
shown in Figure 2.
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Figure 2. Illustration of the TransferGBM modeling framework. AdaptedGBM: adapted gradient boosting machine; AKI: acute kidney injury;
RefittedGBM: refitted gradient boosting machine; SourceGBM: source gradient boosting machine; TransferGBM: transfer learning gradient boosting
machine.

From the perspective of the transfer learning paradigm, we
regard the old data as the source domain or source data, and the
new data as the target domain or target data. We designed
TransferGBM based on several fundamental ideas. First, the
base learner is GBM, which has been applied in a wide range
of clinical prediction modeling studies [25,26]. GBM has been
chosen because (1) it is robust to high-dimensional and
collinearity data, (2) it can automatically process missing values,
and (3) it embeds a unique feature selection scheme in the model
training process, making its output more interpretable [20,27].
Second, we treated the new and old data in different ways, with
2 independent GBM models representing the new and old
knowledge, respectively. Third, we transferred old knowledge
to the target domain while balancing new and old knowledge
in the prediction through an ensemble of the above 2 GBM
models. Fourth, we periodically updated the 2 GBM models
and their relative weights in the prediction function using target
data, in order to adapt to the changing data distribution.

The TransferGBM modeling framework included 5 steps. First,
we constructed the source model (ie, source gradient boosting

machine [SourceGBM]) using all source data, with a
cross-validation–based procedure searching the optimal feature
engineering scheme and hyperparameters of GBM (eg, depth
of trees, learning rate, minimal child weight, and early stopping).
Second, we applied the above optimal feature engineering
scheme to the target data and then adapted SourceGBM to the
processed target data using the built-in incremental learning
mechanism and obtained the adapted model (ie, adapted gradient
boosting machine [AdaptedGBM]). Third, we constructed the
target model (ie, refitted gradient boosting machine
[RefittedGBM]) using the original development set of the target
domain while reusing the optimal feature engineering scheme
and hyperparameters of GBM from SourceGBM. Fourth, we
constructed the predicted probability value matrix for stacking
ensemble learning [28], by combining the predicted probability
values of AdaptedGBM and RefittedGBM for each sample from
the target domain’s development set and the true label of the
sample into a vector, and pooling all vectors into a matrix H.
Fifth, we applied the stacking ensemble learning method with
the logistic regression (LR) learner to the matrix H to obtain
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the final prediction model, which integrated the old and new
knowledge from the AdaptedGBM and RefittedGBM models,
respectively.

From the viewpoint of the target domain, the modeling
procedure involved 3 distinct sets of features, including (1) the
common features that indicate the intersection of the source and
target domain features, (2) the unique features that indicate the
features belonging to the target domain but not the source
domain, and (3) the important features selected by the GBM
learner from the target data. When we adapted SourceGBM,

we used the common features extracted from the target data
combined with missing values of source domain–specific
features, so that we could transfer the old knowledge of
SourceGBM to the target domain. Considering the value of the
target domain–specific knowledge (ie, the new knowledge), we
allowed the GBM learner to select the most important features
from both the common and unique features of the target data,
so that we could obtain the new knowledge of the target domain
without constrains on the feature space. The pseudocode of the
TransferGBM modeling framework is shown in Figure 3.

Figure 3. Pseudocode of the TransferGBM modeling framework. AdaptedGBM: adapted gradient boosting machine; GBM: gradient boosting machine;
RefittedGBM: refitted gradient boosting machine; TransferGBM: transfer learning gradient boosting machine.

Experimental Design
We designed the following 3 prediction tasks: any AKI
prediction (ie, AKI stage ≥1), moderate-to-severe AKI prediction
(ie, AKI stage ≥2), and severe AKI prediction (AKI stage 3).
For any AKI prediction, the prediction window was set to 48

hours, while it was 24 hours for the other 2 tasks, according to
general clinical needs.

We pooled the 2010 and 2011 data, and used them as old data
(ie, a fixed source domain). The data from 2012 to 2017 were
used as new data independently, yielding 6 target domains. We
applied stratified random sampling to the source and target

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e38053 | p. 6https://medinform.jmir.org/2022/11/e38053
(page number not for citation purposes)

Zhang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


domain independently, with division into a development set
(80%) and a validation set (20%). We tuned the hyperparameters
of GBM, including depth of trees (2-10), learning rate (0.01-0.1),
minimal child weight (1-10), and number of trees determined
by early stopping, on the training set using 10-fold
cross-validation. We measured model performance in terms of
the AUROC [29], with a mean value from the 95% CI.

It should be noted that the performance of SourceGBM on the
target domain’s validation set indicated temporal validation and
the performance of RefittedGBM (trained using the target
domain’s development set) on the target domain’s validation
set indicated internal validation. To validate TransferGBM, we
first explored whether there was performance drift over time
and then whether TransferGBM could maintain performance.

Ethical Considerations
The study did not require approval from an institutional review
board because the data used met the de-identification criteria
specified in the Health Insurance Portability and Accountability

Act Privacy Rule [30]. The HERON Data Request Oversight
Committee approved the data request.

Results

Base Model Selection
We examined 5 common machine learning models based on
5-fold cross-validation on each year’s data for any AKI
prediction. These models included LR, decision tree (DT), RF,
K-nearest neighbor (KNN), and GBM. The model parameters
were customized as shown in Table 2, in addition to the default
parameters provided in the scikit-learn package [31]. The
AUROC performances of the 5 models’ internal validations in
different years are shown in Figure 4. The AUROCs of both
GBM and RF reached 0.7 or above, indicating that these models
had a certain predictive ability for AKI, while the performances
of the other 3 models (DT, LR, and KNN) were generally poor.
Given that GBM performed the best, we chose it as a base
learner in the subsequent experiments.

Table 2. Model parameter setting.

Parameter setting (except defaults)Model

Tune the hyperparameters (depth of trees: 2-10; learning rate: 0.01-0.1; minimal child weight: 1-10) within
the development set based on 10-fold cross-validation

Gradient boosting machine (XG-
Boost)

penalty=“L2;” max_iter=300; C=3.0Logistic regression

n_estimators=400; bootstrap=TrueRandom forest

n_neighbors=40K-nearest neighbor

criterion=“entropy”Decision tree

Figure 4. Internal validation of different machine learning models. AUROC: area under the receiver operating characteristic curve; DT: decision tree;
GBM: gradient boosting machine; KNN: K-nearest neighbor; LR: logistic regression; RF: random forest.

Performance Shift Over Time
Figure 5 depicts the AUROC gain (ie, ΔAUROC) between the
internal validation of RefittedGBM relative to the temporal
validation of SourceGBM across 3 prediction tasks. The
ΔAUROC shows a linear growth trend over time, implying that

the transported model (ie, direct transport of SourceGBM to the
target domain without any adaptation) was not the best choice
for new data due to the change in data distribution over time.
From another point of view, the performance gain was within
0.051, implying that the transported model still contained some
general knowledge that can be reused in the new data.
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Figure 5. Performance gain by refitting the model. AKI: acute kidney injury; AUROC: area under the receiver operating characteristic curve.

Performance Validation of TransferGBM
TransferGBM maintained a stacking ensemble of 2 GBM
models representing new and old knowledge learned from new
and old data, respectively, with the former trained using data
from 2010 and 2011, and the latter trained using the updated
data of each year from 2012 to 2017. Using the validation set
of the target domain from 2012 to 2017, we compared model
performance between TransferGBM, transported gradient
boosting machine (TransportedGBM, ie, direct transport of
SourceGBM to the target domain without any adaptation), and
RefittedGBM (ie, refitting SourceGBM using the target domain
data). To better simulate the process of EHR accumulation in
clinical applications, we further investigated different sizes of
the available training set (ie, updated data) ranging from 25%
to 100% of the target domain’s development set via stratified
random sampling without replacement. Multimedia Appendix
1 shows the performance in terms of AUROC (95% CI) of
TransportedGBM, RefittedGBM, and TransferGBM across
different target years and different training set sizes for 3
prediction tasks.

We assessed the impact of different sizes of available training
sets on model performance from the perspective of modeling
framework selection. Figure 6 illustrates the case of the target
year 2012 as an example. The performance of TransportedGBM
was better than that of RefittedGBM when the training set size
was small. As the amount of training data increased,
RefittedGBM gradually improved and finally outperformed
TransportedGBM. Overall, regardless of the size of the available
training set, the performance of TransferGBM was always better
than that of TransportedGBM and RefittedGBM.

Next, we investigated the joint impact of training set size and
data distribution shift on model performance regarding the
modeling framework selection, as shown in Figure 7.

For any AKI prediction, when the training set size was 25%,
TransportedGBM outperformed RefittedGBM in the first 3
years (from 2012 to 2014). However, in the subsequent 3 years
(from 2015 to 2017), the prediction of TransportedGBM rapidly

declined, and it underperformed RefittedGBM. During the whole
6 years, TransferGBM consistently outperformed
TransportedGBM and RefittedGBM, with the AUROC ranging
from 0.759 (95% CI 0.732-0.766) to 0.804 (95% CI
0.778-0.812), and an average AUROC gain of 0.03 compared
to RefittedGBM and 0.02 compared to TransportedGBM. When
the training set size was 100%, RefittedGBM significantly
outperformed TransportedGBM over all 6 years, but still
underperformed TransferGBM. The AUROC of TransferGBM
ranged from 0.783 (95% CI 0.757-0.792) to 0.828 (95% CI
0.802-0.834), with an average AUROC gain of 0.04 compared
to RefittedGBM and 0.02 compared to TransportedGBM.

For AKI stage ≥2 prediction, even though the training set size
was only 25%, RefittedGBM outperformed TransportedGBM
(except for target year 2012), and a larger training set was
associated with better prediction. This means that the data
distribution of the target domain was significantly different
from that of the source domain, and directly transporting an
external model into the target domain was not a wise choice.
Again, TransferGBM was the best model among the 3 models,
regardless of the training set size and target year. The AUROC
of TransferGBM ranged from 0.830 (95% CI 0.795-0.851) to
0.921 (95% CI 0.893-0.932) when the training set size was 25%,
and ranged from 0.866 (95% CI 0.835-0.877) to 0.946 (95% CI
0.920-0.959) when the training set size was 100%.

For AKI stage 3 prediction, when the training set size was 25%
or 50%, RefittedGBM significantly underperformed
TransportedGBM in the first 3 years (from 2012 to 2014), but
the prediction became close in the subsequent 3 years (from
2015 to 2017). When the training set size was 50% or 100%,
RefittedGBM and TransportedGBM performed very close to
each other. This result implies that direct transportation of an
external model was a good choice (ie, there is no need to refit
the model, especially when training data on the target domain
is not sufficient). TransferGBM was still the best model, and
the AUROC ranged from 0.920 (95% CI 0.890-0.936) to 0.948
(95% CI 0.921-0.962) when the training set size was 25%, and
ranged from 0.866 (95% CI 0.854-0.911) to 0.959 (95% CI
0.932-0.973) when the training set size was 100%.
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Figure 6. Impact of training set size on performance (target year 2012). AKI: acute kidney injury; AUROC: area under the receiver operating characteristic
curve; RefittedGBM: refitted gradient boosting machine; TransferGBM: transfer learning gradient boosting machine; TransportedGBM: transported
gradient boosting machine.

Figure 7. Joint impact of training set size and data distribution shift on performance. AKI: acute kidney injury; AUROC: area under the receiver
operating characteristic curve; RefittedGBM: refitted gradient boosting machine; TransferGBM: transfer learning gradient boosting machine;
TransportedGBM: transported gradient boosting machine.
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Discussion

Principal Findings
Experimental results showed that TransferGBM can consistently
outperform TransportedGBM and RefittedGBM, regardless of
the amount of available training data from the target domain.
We also confirmed that old data are important, and should not
be discarded, especially in the case of insufficient new data.
There exist differences between old and new knowledge, and
thus, there is a need to achieve balance.

With regard to the candidate base learners for the proposed
transfer learning–based modeling framework, we considered
several commonly used linear and nonlinear machine learning
algorithms, and among them, RF has good robustness to
overfitting and high-dimensional feature variables [32,33].
XGBoost can consider multiple potentially relevant predictors
simultaneously and can handle potentially nonlinear correlations
[34-36]. DT is a nonparametric learning algorithm with fast
computation and accuracy, can handle continuous and type
fields, and is very suitable for high-dimensional data [32]. LR
is a linear algorithm that is very suitable for sparse data sets,
and the model performance remains stable when only a few
variables in the model are valuable predictors. KNN is simple
to implement, does not require a data training process, and is
very suitable for high-dimensional data. According to the
experiment results, the XGBoost algorithm had superior
performance. The performance of RF was very close to that of
XGBoost, and both were tree-based ensemble approaches. DT
may ignore the correlation between variables and experience
some large noise, resulting in very poor model performance
[33]. The poor performance of LR might be due to the nonlinear
correlation between AKI risk factors. KNN may be affected by
a large amount of noise in the EHR data, resulting in very poor
performance.

The choice of TransportedGBM, RefittedGBM, or TransferGBM
depends on or is affected by the actual situation regarding data
distribution, modeling cost, available training data from the
target domain, etc. TransportedGBM is trained on source data
and then is directly applied to the target data without any
adaptation and additional cost, which is appropriate for clinical
scenarios where the distribution between the source and target
domains is very similar. When the distribution is not similar,
RefittedGBM would be a better choice than TransportedGBM,
and it only requires refitting of the model on the target data,
except for the requirement of sufficient training data from the
target domain. TransferGBM is no doubt a more complicated
solution, which needs to adapt an existing model, refit a new
model, and construct an ensemble of these 2 models. This makes
TransferGBM more suitable for clinical scenarios where the
distribution of the source domain is partially similar to that of
the target domain or where the degree of similarity changes
significantly.

With regard to the adaptiveness of TransferGBM, it is clear that
TransferGBM is a flexible and adaptive extension to the
combination of AdaptedGBM and RefittedGBM (AdaptedGBM
is obtained by updating TransportedGBM/SourceGBM to the
target domain). This also means that TransferGBM might

degrade to AdaptedGBM or RefittedGBM due to the stacking
ensemble learning mechanism under certain situations. Taking
some extreme cases as examples, when the target domain is
under the same distribution as the source domain, TransferGBM
would degrade to AdaptedGBM and even TransportedGBM
since there is little change after updating the model with new
data from the target domain. On the contrary, when the target
domain is under a distribution completely different from the
source domain, TransferGBM would degrade to RefittedGBM,
since in this case, AdaptedGBM would be almost useless, and
even negative and suppressed under the stacking ensemble
learning process. In most cases that TransferGBM is designed
for, that is, when the distributions of the source and target
domains are more or less similar but not completely different,
TransferGBM would adaptively achieve a balance between
AdaptedGBM and RefittedGBM.

Motivations
Conventionally, transfer learning is applied to the scenario of
data scarcity and distribution disparity, with the underlying idea
of selectively reusing data or knowledge from the source domain
to assist the modeling process on the target domain. As for the
scenario of temporal performance drift, we proposed to regard
the old data as the source domain and the new data as the target
domain, which might make transfer learning suitable, and we
attempted to confirm its effectiveness.

We believe that transfer learning can provide insights from
another perspective for correcting temporal performance drift,
compared to common approaches such as recalibration and
incremental training. For example, when the data distribution
significantly changes, transfer learning can immediately discard
the old knowledge/model and reselect a new suitable training
sample from the source domain to learn, while incremental
training suffers from slow progressive adaptation.

Since the primary objective of our study was not to build a
high-performance AKI prediction model under the common
modeling scenario, we divided the data into different years and
adopted a simple and clear modeling process without
comprehensive feature engineering, class balancing,
hyperparameter searching, etc.

Limitations
There are several limitations associated with our study. First,
we used retrospective data in model training and validations,
and had not validated our model externally. Thus, our results
do not indicate the performance in actual clinical practice.
Second, we have not adopted state-of-the-art transfer learning
algorithms, such as gapBoost, distant domain transfer learning,
selective learning algorithm, multilinear relationship networks,
and transitive transfer learning, that have been discussed in
systematic reviews [37,38]. These algorithms might yield better
prediction performance. Third, we have not compared our
method with other correction approaches for temporal
performance drift and detection mechanisms of temporal
performance drift, such as those proposed by Davis et al
[1,2,39]. Fourth, we have not considered prevalent time-series
models, such as recurrent neural networks and long short-term
memory [40,41], as well as adding historical aggregate feature
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representations (eg, average laboratory test results and vital
signs for the past 48 h) [42]. These methods may yield effects
equivalent to those of the transfer learning approach.

Conclusions
This study addressed the problem of performance drift in clinical
prediction models. We proposed a novel transfer learning–based

modeling framework and validated it using real EHR data from
the University of Kansas Medical Center for AKI prediction.
The proposed TransferGBM model overcomes the problems of
insufficient target data and drifting data distribution through
transferring old knowledge and integrating old and new
knowledge models. The results showed that TransferGBM is
superior to both transported and refitted models.
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