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Abstract

Background: The COVID-19 disease has multiple symptoms, with anosmia and ageusia being the most prevalent, varying
from 75% to 95% and from 50% to 80% of infected patients, respectively. An automatic assessment tool for these symptoms will
help monitor the disease in a fast and noninvasive manner.

Objective: We hypothesized that people with COVID-19 experiencing anosmia and ageusia had different voice features than
those without such symptoms. Our objective was to develop an artificial intelligence pipeline to identify and internally validate
a vocal biomarker of these symptoms for remotely monitoring them.

Methods: This study used population-based data. Participants were assessed daily through a web-based questionnaire and asked
to register 2 different types of voice recordings. They were adults (aged >18 years) who were confirmed by a polymerase chain
reaction test to be positive for COVID-19 in Luxembourg and met the inclusion criteria. Statistical methods such as recursive
feature elimination for dimensionality reduction, multiple statistical learning methods, and hypothesis tests were used throughout
this study. The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis)
Prediction Model Development checklist was used to structure the research.

Results: This study included 259 participants. Younger (aged <35 years) and female participants showed higher rates of ageusia
and anosmia. Participants were aged 41 (SD 13) years on average, and the data set was balanced for sex (female: 134/259, 51.7%;
male: 125/259, 48.3%). The analyzed symptom was present in 94 (36.3%) out of 259 participants and in 450 (27.5%) out of 1636
audio recordings. In all, 2 machine learning models were built, one for Android and one for iOS devices, and both had high
accuracy—88% for Android and 85% for iOS. The final biomarker was then calculated using these models and internally validated.

Conclusions: This study demonstrates that people with COVID-19 who have anosmia and ageusia have different voice features
from those without these symptoms. Upon further validation, these vocal biomarkers could be nested in digital devices to improve
symptom assessment in clinical practice and enhance the telemonitoring of COVID-19–related symptoms.

Trial Registration: Clinicaltrials.gov NCT04380987; https://clinicaltrials.gov/ct2/show/NCT04380987
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Introduction

In the context of the COVID-19 pandemic, declared by the
World Health Organization in early March 2020, the fast and
easy diagnosis of the disease has become an important concern.
Anosmia, an olfactory dysfunction that leads to a temporary or
permanent loss of olfaction, is present in 75% to 95% [1-3] of
infected patients, whereas ageusia, a gustatory dysfunction
resulting from the loss of functions of the tongue, is present in
50% to 80% [1,2,4,5] of infected people and can predict
infection [6], depending on the virus strain and population
characteristics. Proportionally, younger and female patients
showed higher rates of these symptoms—a proven correlation
due to differences in cytokine storms [5,7].

Monitoring these symptoms is highly needed and could be
facilitated with an easy-to-use digital health solution. In
individual who are infected but not tested, checking such
symptoms could also serve as a rapid screening solution and
suggest the realization of a test to limit the spread of the virus.
There are also many concerns about the so-called Long COVID,
where anosmia and ageusia are frequently reported [8]. A fast,
noninvasive symptom assessment tool would be useful to better
understand the whole spectrum of the disease and monitor Long
COVID's evolution over time. Furthermore, these symptoms
are associated with neurodegenerative diseases such as
Parkinson and Alzheimer diseases [9,10] and can lead to
multiple impacts, such as nutritional deficits [11].

The human voice is a rich medium that serves as a primary
source of communication between individuals. Furthermore,
talking is a uniquely human ability; it is one of the most natural
and energy-efficient ways of interacting with each other. Slight
alterations, for instance, due to a COVID-19–related symptom,
are made by changes either in respiration, phonation, or
articulation—the 3-stage process of voice production
[12]—which will result in variations of pitch, tone, fundamental
frequency, and many other aspects of our voice. Recent
developments in audio signal processing and artificial
intelligence methods have enabled a more refined and in-depth
voice features analysis that surpasses the human level of
perception and can solve complex problems in the health care
domain.

This study aimed to test the hypothesis that anosmia and ageusia
following a SARS-CoV-2 infection can result in modifications
in voice production that could help detect and monitor these
specific symptoms. To achieve our objective, we used data from
the prospective Predi-COVID cohort study, where both voice
and COVID-19–related symptoms were frequently recorded.
We analyzed voice signals, built panels of vocal biomarkers,
and internally validated them using the developed prediction
models.

Methods

Study Population
This study used data from the Predi-COVID cohort [13]—a
prospective, hybrid cohort started in May 2020 composed of
adult patients (aged >18 years) who were confirmed, by a
polymerase chain reaction test, to be positive for COVID-19 in
Luxemburg, both in and out of the hospital.

The first contact with potential participants was made via phone
by collaborators from the Health Inspection. Those who agreed
to take part were contacted by an experienced nurse or clinical
research associate from the Clinical and Epidemiological
Investigation Center, who explained the study and organized
visits at home or the hospital, and informed consent for
participation was obtained.

Through the first 14 days following inclusion, participants were
assessed daily through a web-based questionnaire. A subcohort
agreed to be digitally followed by a digital app that was
dedicated to voice recording in cohort studies. To guarantee a
minimum quality standard, participants were instructed to
register the audio in a calm place while keeping a specific
distance from the microphone. An audio example of what was
expected was also available.

Each day, 2 types of voice recordings were performed. In the
first recording, called Type 1 audio, participants had to read an
extract from the Declaration of Human Rights, Article 25,
paragraph 1 (Multimedia Appendix 1) in their preferred
language: French, German, English, or Portuguese; and in the
second recording, called Type 2 audio, they were asked to hold
the “[a]” vowel phonation without breathing as long as they
could. For this analysis, we considered only voice recordings
from the first 2 weeks after inclusion where the symptoms were
collected regularly. Since the study is in a real-life setting, the
number of vocal samples per participant may have differed.

Ethics Approval
The study was approved by the National Research Ethics
Committee of Luxembourg (study 202003/07) in April 2020
and is registered on ClinicalTrials.gov (NCT04380987).

Inclusion Criteria
All participants who had no missing data on sex, information
on the studied outcome, and both types of audio recordings on
the same day during the first 14 days of follow-up were included
in the model.

Anosmia and Ageusia
In this study, both anosmia and ageusia were the outcomes and
were united in a single variable based on the participant’s
perception. The specific question was the following: “Did you
notice a strong decrease or a loss of taste or smell?” The possible
answers were “yes” or “no.” Since the loss of smell can
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substantially affect taste functions [14], uniting the 2 symptoms
is expected to be a more realistic strategy because the outcome
is self-reported, and it would not be easy for the participant to
clearly distinguish between ageusia and anosmia.

Prediction Data
The prediction models were based on both Type 1 and Type 2
voice recordings to predict the outcome. To maximize the
information given to the model, both types were concatenated
and used as a single input to the learning model. The audio
format and recording settings varied depending on the operating
system of the smartphone used to record it: Android devices
were registered in 3gp format, whereas iOS devices were

registered in m4a format. These 2 formats were also analyzed
separately to create predictive models for each type of operating
system.

Voice Signal Treatment
The audios were preprocessed to remove poorly recorded or
corrupted files, and the remaining ones were then normalized
and cleaned for noise. Type 1 and Type 2 audios were both
sampled with an 8000 Hz sample rate, as different rates did not
significantly improve the model. Audios were then concatenated,
which resulted in a final sample from which the features were
extracted. The pipeline can be found in Figure 1.

Figure 1. Learning pipeline to the discovery of biomarkers. (A) Data collection from Predi-COVID and exclusion criteria. (B) Data treatment of audio
data and studied outcome. (C) Data analysis for both audio formats done in parallel.

OpenSMILE
The Munich Open-Source Media Interpretation by Large
Feature-Space Extraction (openSMILE) is a modular and
flexible research-only toolkit for extracting features for signal
processing and machine learning applications. It is widely used
in the speech recognition community, the area of affective
computing, and music information retrieval [15]. The package
provides many functionalities, such as windowing functions,
resampling, and fast Fourier transform. It can extract a wide
range of features including frame energy, Mel-frequency cepstral
coefficients, loudness, jitter, shimmer, and many others. The
specific openSMILE feature set is the same as that used in The

Interspeech 2016 Computational Paralinguistics Challenge [16],
originally chosen to assess sentiments through the voice. Within
it, there are 2 feature levels: functionals, which gather much
more detailed information and reach up to 6473 different
features; and low-level descriptors, measures that are closely
related to the signal and reach up to 66 features [17]. The latter
feature level is embedded in the functional features, and the full
set of feature categories is shown in Multimedia Appendix 2.

Recursive Feature Elimination
Recursive feature elimination (RFE) is a dimensionality
reduction method that recursively ranks features according to
a measure of importance defined by another classifier (linear
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regression and random forests, for example), and at each
iteration, the ones with the lowest rank are removed until the
desired number is reached [18]. The minimum number of
features was set to 10, a linear regression was used to define
the weights, and 25 features were removed at each iteration
(step=25). This process was performed using 10-fold
cross-validation.

Statistical Analysis Methods
Chi-square test and Student t test (2-tailed) were used in this
study. We applied standard machine learning algorithms that
work with structured data to analyze the extracted features.
Random forests [19], k-nearest neighbors (KNN) [20], and
support vector machines [21] were used to avoid biases from a
single predictor and test different approaches on the same data.

All hyperparameters were hyper tuned using grid search from
scikit-learn (version 0.22.2) [22], maximizing the weighted area
under the receiver operating characteristic curve (ROC AUC).
The data were divided into a 60%/20%/20% proportion for
training, validation, and testing, respectively. To evaluate its
sensibility, 10-fold cross-validation was first performed on the
training set to analyze the dispersion of the metrics, and then
the final model was built on the testing set.

The final model was chosen based on the following metrics:
precision, recall, F-measure, and accuracy. Given the nature of
the problem, we assumed that having false negatives was worse
than having false positives, since one can develop severe
symptoms and continue to spread the virus if misclassified, so
the recall for those positive to the studied outcome should be
maximized. The weighted ROC AUC was also taken into
account since it indicates the overall performance of the model
in terms of its accuracy at various diagnostic thresholds used
to discriminate between 2 classes [23].

To derive the vocal biomarker from the prediction model, we
used the final probability of being classified as having anosmia
or ageusia; its distribution was further evaluated in both groups.

Results

Descriptive Data
After excluding all data that did not meet the inclusion criteria,
we used descriptive statistics to characterize the study
participants. The final study population had a total of 259
participants, and age, sex, and BMI were associated with the
outcome (P<.001, P<.001, P<.001, respectively). Younger (aged
<35 years) and female participants showed higher rates of
ageusia and anosmia.

Participants were aged 41 (SD 13) years on average with a BMI
of 25.4 (SD 4.6)—the intersection between normal weight and
overweight [24]. Antibiotics intake, asthma, and smoking were
highly unbalanced clinical features (present in n=29, 11.2%;
n=10, 3.9%; and n=177, 68.3% of participants, respectively).
The data set was balanced for sex (female: n=134, 51.7%; male:
n=125, 48.3%), and the analyzed symptom was present in 94
(36.3%) out of 259 participants and in 450 (27.5%) out of 1636
of audio recordings. This result occurs due to a variation in the
number of recordings per participant, with each one having an
average of 6 audio recordings. Finally, Type 1 audio had an
average length of 28.5 s, whereas Type 2 audio had an average
length of 18.9 s.

As the audio format was linearly separable when analyzing the
outcome, shown in Figure 2, they were separated in the analysis.
When divided by audio format, no significant difference was
found between the 2 sets of participants. Clinical features and
audio data can be seen in Tables 1-2.

Figure 2. Sample plot with linear separation between 3gp and m4a audio formats. Principal component analysis was used on the extracted features,
and the first 2 dimensions were used to plot the samples.
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Table 1. Description of the participants, containing clinical data to characterize the general population of the study and the loss of smell and taste. All
categorical data are represented as the total number and its percentage.

P valueaAudio format, operating systemTotal (N=259)Description

3gp, Android (n=98)m4a, iOS (n=161)

.51Symptom, n (%)

60 (61.2)105 (65.2)165 (63.7)Normal taste and smell

38 (38.8)56 (34.8)94 (36.3)Loss of taste and smell

.14Sex, n (%)

45 (45.9)89 (55.3)134 (51.7)Female

53 (54.1)72 (44.7)125 (48.3)Male

.42Antibiotic, n (%)

89 (90.8)141 (87.6)230 (88.8)No

9 (9.2)20 (12.4)29 (11.2)Yes

.88Asthma, n (%)

94 (95.9)155 (96.3)249 (96.1)No

4 (4.1)6 (3.7)10 (3.9)Yes

.85Smoking, n (%)

65 (66.3)112 (69.6)177 (68.3)Yes

18 (18.4)26 (16.1)44 (17)Never

15 (15.3)23 (14.3)38 (14.7)Former smoker

.9340.7 (11.5)40.6 (13.4)40.6 (12.7)Age (years), mean (SD)

.8025.5 (4.1)25.4 (4.9)25.4 (4.6)BMI (kg/m²), mean (SD)

aAll P values were calculated through chi-square or Student t test between m4a and 3gp formats.

Table 2. Description of the audio samples, with their general information.

P valueaAudio format, operating systemTotal (N=1636)Description

3gp, Android (n=637)m4a, iOS (n=999)

.06Audio samples per symptom, n (%)

445 (69.9)741 (74.2)1186 (72.5)Normal taste and smell

192 (30.1)258 (25.8)450 (27.5)Loss of taste and smell

—b6.5 (4.6)6.2 (4.4)6.3 (4.5)Number of audio samples per participant, mean (SD)

—28.9 (4.2)28.3 (4.1)28.5 (4.1)Text reading duration (s), mean (SD)

—20 (7.1)18.2 (6.6)18.9 (6.8)Vowel phonation duration (s), mean (SD)

aAll P values were calculated through chi-square or Student t test between m4a and 3gp formats.
bNot available.

Feature Extraction
We extracted 6473 features from the concatenated audios.
Constant features throughout all the audios were removed from
the analysis (50 for Android and 49 for iOS). A RFE method
was used to find the best number of features (Multimedia
Appendix 3). For 3gp and m4a audios, we selected 3248 and
849 features, respectively.

After extraction, a density plot for the low-level descriptors was
made, as shown in Multimedia Appendices 4-5. It can be seen
that the distribution of the variables varies depending on the

outcome, which reinforces the hypothesis that there are vocal
changes related to COVID-19 infection.

Prediction Models’ Performances
The algorithms were first hyper tuned and then trained on all
the extracted features and the ones selected through RFECV.
All models used an 80%/20% stratified proportion for training
and testing, respectively, and 10-fold cross-validation was used
to assess its sensitivity. The numpy seed and the random state
of all processes were set to 42 to assure reproducibility, and the
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samples were weighted to correct the models for unbalanced
data.

Models trained on all features had an overall lower performance
than those trained with selected features, mainly due to the
removal of noise and correlated features (complementary
information). The final models for the 3 tested learning
algorithms are shown in Table 3. For both formats of audio, we
identified KNN as the best method—showing better
performances. The AUC was used to choose the best algorithm,
and in the end, 3gp had an AUC of 87%, whereas m4a had an
AUC of 80%. The specific hyperparameters for each algorithm
can be found in Multimedia Appendix 6.

The final models for classifying the loss of taste and smell were
KNN for both audio formats and presented a good weighted
precision (88% for Android and 85% for iOS), weighted recall
(88% for Android and 85% for iOS), and weighted AUC (87%
for Android and 80% for iOS). The main difference between

the 2 final models is on the recall for the symptomatic class,
which was to be maximized (82% for Android and 69% for
iOS).

The final vocal biomarker of loss of taste consisted of the
probability of being classified as having the symptoms,
calculated from the combination of all features selected for each
audio format. Its range is shown in Figure 3A, and there was a
significant difference between the distribution of probabilities
for both 3gp and m4a formats (P<.001 and P<.001 respectively),
which confirms that the model can statistically distinguish the
2 possible conditions, as the probability distribution differs
between outcomes.

Figure 3 also presents the confusion matrix for the best
classifiers, which shows that they are slightly better in correctly
classifying the absence of symptoms than its presence.
Additionally, the ROC AUC for each best model is plotted,
proving its good learning thresholds.

Table 3. Performance for the 3 different learning methods for each audio formata.

10-fold AUC (SD)Weighted AUCbAccuracyRecall 1Weighted recallWeighted precisionAudio format (number of selected
features), algorithm

3gp (n=3248)

0.89 (0.05)0.870.880.820.880.88KNNc

0.86 (0.03)0.640.770.330.770.77Random forest

0.87 (0.03)0.760.810.640.810.81SVMd

m4a (n=849)

0.89 (0.01)0.800.850.690.850.85KNN

0.76 (0.02)0.700.780.300.770.75Random Forest

0.90 (0.01)0.700.790.520.790.78SVM

aThe final model was selected using weighted AUC and is highlighted in italics. Cross-validation was used in the training set as a validation method,
and the final model on the testing set showed good adherence to it. The other differences in k-fold and weighted AUC are due to differences in the
testing and training set sizes.
bAUC: area under the curve.
cKNN: k-nearest neighbors.
dSVM: support vector machines.
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Figure 3. Final models for each audio format. (A) Biomarkers and P values from two-sided student's t-test for the presence of anosmia and ageusia
were calculated using the probability of classifying as positive. (B) Confusion matrix of the best model. (c) ROC AUC curve. Class 0 represents absence
of symptoms and Class 1 the presence of it. ROC AUC: area under the receiver operating characteristic curve.

Discussion

Principal Findings
In this study, we trained artificial intelligence–based algorithms
to predict the presence of ageusia and anosmia in patients with
COVID-19. In total, 2 predictive models were created based on
each smartphone operating system (iOS or Android). We derived
2 sets of vocal biomarkers from these predictive models that
should be used together as a single classifier. The biomarkers
were then calculated and, after an external validation, can be
used to accurately identify patients who present a loss of taste
and smell.

Biological Background
Voice is a proven source of medical information, can be easily
recorded on a large scale through smart devices [25], and can
be easily used to build personalized corpora [26]. Studies have
shown great results in the early diagnosis of neurological
disorders such as Parkinson disease [27,28], Alzheimer disease
[29], and mild cognitive impairment [30,31], since they directly
alter the voice, but also in nonneurological conditions such as
cardiometabolic [32] and pulmonary [33] diseases. It is
important to note that the analysis in this study is new since
examples in the literature only analyze short audios (shorter
than 5 s) and usually use coughs and other sources of sound
[34-36].

Anosmia and ageusia are common COVID-19 symptoms that
usually emerge after 5 days of infection [37]. The upper part of
the respiratory tract, mainly the olfactory epithelium, is rich in
ACE2 and TMPRSS2, 2 main SARS-CoV-2 receptors [38].
Olfactory sensory neurons, on the other hand, were not found
to express these receptors, which indicates that the disease itself
probably does not directly alter the mechanisms of smell and
taste. The infection of support cells, mainly sustentacular and
Bowman glands, of these regions and their subsequent
malfunction result in alterations in the environment, causing

local neuronal death and the final symptom of loss of taste and
smell [38,39].

Given that there is no neuronal causality between the loss of
taste and smell and voice production, the main pathway in the
voice likely involves mechanical influences of COVID-19
infection. The disease alters various systems, such as the
respiratory, cardiovascular, and gastrointestinal systems, that
if impaired, can directly impact voice characteristics. In mild
cases, general symptoms frequently associated with the loss of
taste and smell such as dry coughs, insufficient airflow, and
pulmonary status also directly affect the production of sounds,
resulting in variations that can be used to predict the loss of
taste and smell [12].

Strengths and Limitations
The main strengths of this study come from the fact that all
participants were confirmed to be positive for COVID-19 by a
polymerase chain reaction test. Besides, the majority of the
published studies relied on data from hospitalized patients.
Therefore, having a cohort of participants mostly at home brings
complementary information on the entire spectrum of the disease
severity of COVID-19 (from asymptomatic to severe cases).
The audio recording is based on a standardized text that has an
official translation in many languages, which ensures the high
reproducibility of the task in future studies in other countries.
The second audio type is a sustained vowel and is, therefore,
language-independent and allows analysis without risks of biases
due to different articulatory factors, speaking rates, stress,
intonations, or any other characteristics that may vary between
languages.

This study also has limitations. The recordings are performed
in a real-life, noncontrolled environment, which may increase
the variability in the quality of the voice recordings. However,
since the ultimate objective is to deploy a digital health solution,
we cannot rely on well-controlled audio recordings based on a
unique device to train the algorithms and should integrate from
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scratch the diversity of devices and audio recording
environments. This study integrates a mixture of different
languages in the cohort, but the developed vocal biomarkers
cannot be applied to other languages yet. Even though the text
is the same, different languages and accents might result in
different model performances. Additional external validation
studies in other populations that are not well represented in this
study (young people) are required at this stage.

In conclusion, we demonstrated that people with COVID-19
who had anosmia and ageusia had different voice features and
that it is feasible to accurately predict the presence or absence
of this frequent COVID-19 symptom with just a few seconds
of the individual’s voice. The derived vocal biomarker is
strongly associated with the presence of the symptom and could
soon be integrated into digital health solutions to help clinicians
enhance their consultations or in telemonitoring solutions for
remote monitoring. Further external validation studies in other
populations and languages are now required.
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