
JMIR Medical Informatics

Impact Factor (2021): 3.23
Volume 10 (2022), Issue 11    ISSN: 2291-9694    Editor in Chief:  Christian Lovis, MD, MPH, FACMI

Contents

Reviews

Visit Types in Primary Care With Telehealth Use During the COVID-19 Pandemic: Systematic Review
(e40469)
Kanesha Ward, Sanjyot Vagholkar, Fareeya Sakur, Neha Khatri, Annie Lau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Considering Clinician Competencies for the Implementation of Artificial Intelligence–Based Tools in Health
Care: Findings From a Scoping Review (e37478)
Kim Garvey, Kelly Thomas Craig, Regina Russell, Laurie Novak, Don Moore, Bonnie Miller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Viewpoint

Realizing the Potential of Computer-Assisted Surgery by Embedding Digital Twin Technology (e35138)
Jiaxin Qin, Jian Wu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Original Papers

Perspective Toward Machine Learning Implementation in Pediatric Medicine: Mixed Methods Study (e40039)
Natasha Alexander, Catherine Aftandilian, Lin Guo, Erin Plenert, Jose Posada, Jason Fries, Scott Fleming, Alistair Johnson, Nigam Shah, Lillian
Sung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

The Use of Electronic Health Record Metadata to Identify Nurse-Patient Assignments in the Intensive Care
Unit: Algorithm Development and Validation (e37923)
Kathryn Riman, Billie Davis, Jennifer Seaman, Jeremy Kahn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Automatic Estimation of the Most Likely Drug Combination in Electronic Health Records Using the Smooth
Algorithm: Development and Validation Study (e37976)
Dan Ouchi, Maria Giner-Soriano, Ainhoa Gómez-Lumbreras, Cristina Vedia Urgell, Ferran Torres, Rosa Morros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Linking Biomedical Data Warehouse Records With the National Mortality Database in France: Large-scale
Matching Algorithm (e36711)
Vianney Guardiolle, Adrien Bazoge, Emmanuel Morin, Béatrice Daille, Delphine Toublant, Guillaume Bouzillé, Youenn Merel, Morgane Pierre-Jean,
Alexandre Filiot, Marc Cuggia, Matthieu Wargny, Antoine Lamer, Pierre-Antoine Gourraud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Discovery and Analytical Validation of a Vocal Biomarker to Monitor Anosmia and Ageusia in Patients With
COVID-19: Cross-sectional Study (e35622)
Eduardo Higa, Abir Elbéji, Lu Zhang, Aurélie Fischer, Gloria Aguayo, Petr Nazarov, Guy Fagherazzi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

JMIR Medical Informatics 2022 | vol. 10 | iss. 11 | p.1

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Motion Artifact Reduction in Electrocardiogram Signals Through a Redundant Denoising Independent
Component Analysis Method for Wearable Health Care Monitoring Systems: Algorithm Development and
Validation (e40826)
Fabian Castaño Usuga, Christian Gissel, Alher Hernández. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

The Application of Graph Theoretical Analysis to Complex Networks in Medical Malpractice in China:
Qualitative Study (e35709)
Shengjie Dong, Chenshu Shi, Wu Zeng, Zhiying Jia, Minye Dong, Yuyin Xiao, Guohong Li. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Managing Critical Patient-Reported Outcome Measures in Oncology Settings: System Development and
Retrospective Study (e38483)
Olga Strachna, Onur Asan, Peter Stetson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Training a Deep Contextualized Language Model for International Classification of Diseases, 10th Revision
Classification via Federated Learning: Model Development and Validation Study (e41342)
Pei-Fu Chen, Tai-Liang He, Sheng-Che Lin, Yuan-Chia Chu, Chen-Tsung Kuo, Feipei Lai, Ssu-Ming Wang, Wan-Xuan Zhu, Kuan-Chih Chen,
Lu-Cheng Kuo, Fang-Ming Hung, Yu-Cheng Lin, I-Chang Tsai, Chi-Hao Chiu, Shu-Chih Chang, Chi-Yu Yang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Automatic Screening of Pediatric Renal Ultrasound Abnormalities: Deep Learning and Transfer Learning
Approach (e40878)
Ming-Chin Tsai, Henry Lu, Yueh-Chuan Chang, Yung-Chieh Huang, Lin-Shien Fu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

The Real-World Experiences of Persons With Multiple Sclerosis During the First COVID-19 Lockdown:
Application of Natural Language Processing (e37945)
Deborah Chiavi, Christina Haag, Andrew Chan, Christian Kamm, Chloé Sieber, Mina Staniki , Stephanie Rodgers, Caroline Pot, Jürg Kesselring,
Anke Salmen, Irene Rapold, Pasquale Calabrese, Zina-Mary Manjaly, Claudio Gobbi, Chiara Zecca, Sebastian Walther, Katharina Stegmayer,
Robert Hoepner, Milo Puhan, Viktor von Wyl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Shared Interoperable Clinical Decision Support Service for Drug-Allergy Interaction Checks: Implementation
Study (e40338)
Sungwon Jung, Sungchul Bae, Donghyeong Seong, Ock Oh, Yoomi Kim, Byoung-Kee Yi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Classifying Comments on Social Media Related to Living Kidney Donation: Machine Learning Training and
Validation Study (e37884)
Mohsen Asghari, Joshua Nielsen, Monica Gentili, Naoru Koizumi, Adel Elmaghraby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Developing an Automated Assessment of In-session Patient Activation for Psychological Therapy:
Codevelopment Approach (e38168)
Sam Malins, Grazziela Figueredo, Tahseen Jilani, Yunfei Long, Jacob Andrews, Mat Rawsthorne, Cosmin Manolescu, Jeremie Clos, Fred Higton,
David Waldram, Daniel Hunt, Elvira Perez Vallejos, Nima Moghaddam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A Transfer Learning Approach to Correct the Temporal Performance Drift of Clinical Prediction Models:
Retrospective Cohort Study (e38053)
Xiangzhou Zhang, Yunfei Xue, Xinyu Su, Shaoyong Chen, Kang Liu, Weiqi Chen, Mei Liu, Yong Hu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Medical Text Simplification Using Reinforcement Learning (TESLEA): Deep Learning–Based Text
Simplification Approach (e38095)
Atharva Phatak, David Savage, Robert Ohle, Jonathan Smith, Vijay Mago. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

JMIR Medical Informatics 2022 | vol. 10 | iss. 11 | p.2

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Corrigenda and Addenda

Correction: Web-Based Software Tools for Systematic Literature Review in Medicine: Systematic Search
and Feature Analysis (e43520)
Kathryn Cowie, Asad Rahmatullah, Nicole Hardy, Karl Holub, Kevin Kallmes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

JMIR Medical Informatics 2022 | vol. 10 | iss. 11 | p.3

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Review

Visit Types in Primary Care With Telehealth Use During the
COVID-19 Pandemic: Systematic Review

Kanesha Ward1, BClinSci, MRes; Sanjyot Vagholkar2, MBBS (Hons), MPH, PhD; Fareeya Sakur1, MPH; Neha

Nafees Khatri1, MBBS, MPH; Annie Y S Lau1, BE, PhD
1Centre for Health Informatics, Australian Institute for Health Innovation, Macquarie University, North Ryde, Australia
2Primary Care, Faculty of Medicine, Health & Human Sciences, Macquarie University, North Ryde, Australia

Corresponding Author:
Kanesha Ward, BClinSci, MRes
Centre for Health Informatics
Australian Institute for Health Innovation
Macquarie University
75 Talavera Rd, North Ryde NSW
North Ryde, 2113
Australia
Phone: 61 48355552
Email: kanesha_ward@iinet.net.au

Abstract

Background: Telehealth was rapidly incorporated into primary care during the COVID-19 pandemic. However, there is limited
evidence on which primary care visits used telehealth.

Objective: The objective of this study was to conduct a systematic review to assess what visit types in primary care with use
of telehealth during the COVID-19 pandemic were reported; for each visit type identified in primary care, under what circumstances
telehealth was suitable; and reported benefits and drawbacks of using telehealth in primary care during the COVID-19 pandemic.

Methods: This study was a systematic review using narrative synthesis. Studies were obtained from four databases (Ovid
[MEDLINE], CINAHL Complete, PDQ-Evidence, and ProQuest) and gray literature (NSW Health, Royal Australian College of
General Practitioners guidelines, and World Health Organization guidelines). In total, 3 independent reviewers screened studies
featuring telehealth use during the COVID-19 pandemic in primary care. Levels of evidence were assessed according to the
Grading of Recommendations Assessment, Development, and Evaluation. Critical appraisal was conducted using the Mixed
Methods Appraisal Tool. Benefits and drawbacks of telehealth were assessed according to the National Quality Forum Telehealth
Framework.

Results: A total of 19 studies, predominately cross-sectional surveys or interviews (13/19, 68%), were included. Seven primary
care visit types were identified: chronic condition management (17/19, 89%), existing patients (17/19, 89%), medication
management (17/19, 89%), new patients (16/19, 84%), mental health/behavioral management (15/19, 79%), post–test result
follow-up (14/19, 74%), and postdischarge follow-up (7/19, 37%). Benefits and drawbacks of telehealth were reported across all
visit types, with chronic condition management being one of the visits reporting the greatest use because of a pre-existing
patient-provider relationship, established diagnosis, and lack of complex physical examinations. Both patients and clinicians
reported benefits of telehealth, including improved convenience, focused discussions, and continuity of care despite social
distancing. Reported drawbacks included technical barriers, impersonal interactions, and semi-established reimbursement models.

Conclusions: Telehealth was used for different visit types during the COVID-19 pandemic in primary care, with most visits
for chronic condition management, existing patients, and medication management. Further research is required to validate our
findings and explore the long-term impact of hybrid models of care for different visit types in primary care.

Trial Registration: PROSPERO CRD42022312202; https://tinyurl.com/5n82znf4

(JMIR Med Inform 2022;10(11):e40469)   doi:10.2196/40469
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Introduction

Background
The COVID-19 pandemic has radically disrupted all aspects of
health care, notably the rapid adaption of telehealth within
routine care [1-3]. Telehealth, defined as telecommunications,
videoconferencing, or other digital modes, is used to remotely
deliver health-related services to patients [4,5]. Before the
COVID-19 pandemic, telehealth provided convenience,
specifically for patients living in rural or remote settings, but
was not routinely used in health care settings [5]. Telehealth
during the pandemic was used across many medical specialties
such as internal medicine, psychiatry, preventative medicine,
surgery, neurology, dermatology, pediatrics, and infectious
diseases [6].

In particular, some general practitioners (GPs) and patients
welcomed telehealth in primary care general practice settings
during the pandemic. A survey conducted by the Royal
Australian College of General Practitioners (RACGP) involving
>420 Australian GPs saw 1 in 5 respondents report 61% to 80%
of their patients requesting a telehealth consultation during the
COVID-19 pandemic [7]. Some patients and GPs have
advocated for the long-term use of telehealth beyond the
COVID-19 pandemic, for example, in the form of hybrid models
of care [1,7-9]. Several countries (eg, Australia, the United
States, and the United Kingdom) have introduced long-term
funding for telehealth in primary care because of the pandemic.

There is potential for telehealth in primary care in nonpandemic
settings [1]. However, the current model of telehealth may not
be fit to sustain the long-term delivery of primary care [2,10,11].
As the rapid adoption of telehealth and other forms of remote
care is witnessed, its limitations need to be examined [10]. Most
telehealth systems were rolled out rapidly without much research
into the risks (eg, lack of patient choice, missed diagnoses,
challenges to the patient-clinician relationship, and inequality
experienced by those affected by the digital divide) [1,10,12].
Identifying which in-person encounters are appropriate to be
supported by telehealth consultation is one of the critical
questions facing today’s health care delivery.

A cross-sectional study conducted by Donaghy et al [13]
explored the acceptability and suitability of telehealth for
specific encounters, where they reported telehealth as suitable
for a range of patient visit types and concerns such as
prescription refills, discussion-based activities, nonsensitive
test results, and patients with chronic conditions with established
diagnoses. A systematic review by Shah and Badawy [14]
evaluated the feasibility, accessibility, satisfaction, and treatment
outcomes related to telehealth services among pediatric
populations, with findings suggesting telehealth to be a suitable
alternative to in-person care. A previous systematic review by
Snoswell et al [15] aimed to synthesize literature on the clinical
effectiveness of telehealth for specific medical conditions from
2010 to 2019. However, to our knowledge, this is the first
systematic review to focus on what visit types in primary care
are suitable for telehealth based on studies where data were
collected during the COVID-19 pandemic.

Objectives
The objective of this study was to conduct a systematic review
to assess (1) what visit types in primary care with use of
telehealth during the COVID-19 pandemic were reported; (2)
for each visit type identified in primary care, under what
circumstances telehealth was suitable; and (3) reported benefits
and drawbacks of using telehealth in primary care during the
COVID-19 pandemic.

Methods

Information Sources
This review is PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses)-compliant. See
Multimedia Appendix 1 for the completed checklist of PRISMA
guidelines.

Our search included the following electronic databases: Ovid
(MEDLINE), CINAHL Complete, PDQ-Evidence, and
ProQuest. Gray literature sources included NSW Health
publications, RACGP guidelines, and World Health
Organization guidelines.

Search Strategy
A modified population, exposure, and outcome [16] strategy
was used, with population corresponding to primary care general
practice clinicians and patients; exposure as the exposure to
telehealth as a replacement of in-person consultation; and
outcomes as benefits and drawbacks of telehealth, which are
assessed according to the National Quality Forum (NQF)
Telehealth Framework [17], namely, access to care,
effectiveness, experience, and financial impact or cost. Clinical
outcomes outside the scope outlined per the NQF telehealth
measures were not analyzed in detail in this systematic review
because of the lack of available data. However, clinical
outcomes (eg, mental health status, shielding status, and number
of examinations) were also extracted in Multimedia Appendix
2 [1,9,18-34] if they were available.

Individualized search strategies were formulated for each
selected database with various Medical Subject Headings and
searchable terms combined with Boolean operators. The
complete search strategy is provided in Multimedia Appendix
3. An initial full search was conducted in March 2020. A final
full search was conducted in August 2022. Conducting 2
searches ensured that the most recent and relevant literature was
included in this systematic review analysis. Including both
searches also reflects the rapid rate at which research is being
conducted on telehealth services used in primary care settings
following the COVID-19 pandemic.

Eligibility Criteria
Eligibility criteria were developed to include studies (1)
published between December 2019 and August 2022 to
encompass the COVID-19 era, (2) that discussed GP-patient
consultations delivered within a telehealth format, (3) that
provided insight into the visit types in primary care where
telehealth was used, and (4) that included outcome measures
on patients’or clinicians’perceived suitability of or satisfaction
with the teleconsultation experience. Studies featuring multiple

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e40469 | p.5https://medinform.jmir.org/2022/11/e40469
(page number not for citation purposes)

Ward et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


health care settings may also be included based on the fact that
only data from primary care clinicians or patients were used for
this systematic review.

The exclusion criteria were (1) telehealth services that did not
reflect a consultation format (ie, did not involve bidirectional
communication between clinician and patient) within the
primary care general practice setting (specialist consultations
excluded), (2) studies where it was not explicit in what visit
type in primary care was telehealth being used, and (3) studies
not written in English. The complete eligibility criteria are
provided in Multimedia Appendix 4.

Article Selection Process
Initially, titles and abstracts of studies were retrieved using our
search strategy and uploaded to an EndNote (Clarivate
Analytics) library [35]. Duplicates were removed before
uploading to the Rayyan software (Rayyan Systems Inc) [36]
for titles and abstracts to be screened independently by three
reviewers (KW, FS, and NNK). The full texts of the selected
studies were assessed in greater detail by lead reviewer KW.

Disagreements in article screening decisions were resolved
through consensus.

Data Extraction and Management
Data from the included studies were extracted using an adapted
version of the Joanna Briggs Institute data abstraction form
(Multimedia Appendix 5) [37]. Publication details, study design,
participant demographics, primary care visit type, telehealth
intervention, and outcome measures were extracted from the
included studies. Benefits and drawbacks of telehealth were
extracted as outcome measures, presented according to the NQF
Telehealth Framework. The NQF Telehealth Framework
addresses the assessment of whether telehealth specifically can
be used to deliver quality care and related outcomes in
comparison with in-person consultations [16]. Definitions of
each outcome measure used in this framework—namely, access
to care, effectiveness, experience, and financial impact or
cost—are reported in Textbox 1 [17]. Only relevant statistics
or narrative excerpts were extracted. Effect measures were
quoted from individual studies with no further statistical
comparison.

Textbox 1. Outcome measures and their definitions according to the National Quality Forum Telehealth Framework.

Definitions of outcome measures

• Access to care: the ability to receive health services promptly and appropriately; consideration for accessibility to technology, living in rural and
urban communities, living in medically underserved areas, access to appropriate health specialists, and provider capacity to provide care

• Effectiveness: the systematic, clinical, operational, and technical success or barriers of telehealth; considerations of the overall system and care
coordination established, impact on health outcomes or quality, how clinically integrated telehealth is within the health center, and ability to
record and transmit necessary data

• Experience: the usability and effect of telehealth on patients and providers with consideration of the appropriateness of services, increase in
patients’ knowledge of care, patient compliance with care regimens, the difference in morbidity and mortality rates, patient safety,
patient-centeredness, efficiency, diagnostic accuracy, ability to obtain actionable information, comfort, and satisfaction

• Financial impact or cost: potential cost savings or losses to patients, families, or providers regarding costs to access care, travel expenses, added
value, and feasibility surrounding the technology involved

Critical Appraisal of the Included Studies
One reviewer (KW) led the critical appraisal. The Mixed
Methods Appraisal Tool was used to appraise study designs of
qualitative, quantitative, and mixed methods studies [38]. The
level of evidence was assessed according to the Grading of
Recommendations Assessment, Development, and
Evaluation (GRADE) [39]. Studies were not excluded based
on outcomes of the critical appraisal; however, it was used to

interpret findings. More details of the critical appraisal are
provided in Multimedia Appendix 6 [39,40].

Results

Screening Process
Figure 1 outlines the article screening process, where 19 studies
met the eligibility criteria and were included in a narrative
synthesis.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram breakdown.

Study Characteristics
Of the 19 included studies, 6 (32%) were conducted in the
United States; 4 (21%) were conducted in the United Kingdom;
7 (37%) were conducted in Europe (Norway, Germany, Sweden,
Netherlands, and Denmark); 3 (16%) were conducted in the
Middle East (Israel and Oman); and the remaining 8 (42%) were

conducted in Pakistan, Australia, and New Zealand (Multimedia
Appendix 2).

Telephone communication (17/19, 89%) was the most frequent
telehealth intervention in our included studies, followed by
video communication (15/19, 79%), SMS text messaging (6/19,
32%), and email messaging (6/19, 32%). Table 1 provides a
statistical breakdown of the types of telehealth interventions in
the included studies.
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Table 1. A statistical breakdown of the types of telehealth modes in the included studies (n=19).

Studies, n (%)Type of telehealth modea

17 (89)Telephone communication

15 (79)Video communication

6 (32)SMS text messaging

6 (32)Email messaging

aThe included studies can discuss more than one telehealth mode.

Visit Types in Primary Care With Telehealth Support
During the COVID-19 Pandemic That Were Reported
Visit types in primary care with telehealth support during the
COVID-19 pandemic that were reported are outlined in Textbox
2. Definitions of each visit type were informed by Medicare
item descriptions (Multimedia Appendix 7 [29,41-43]) after
extraction from the included studies.

Table 2 and Table 3 outline the reported benefits and drawbacks
of using telehealth during the COVID-19 pandemic for each
visit type in primary care. Seven visit types in primary care with
telehealth use during the COVID-19 pandemic were reported,
namely, chronic condition management (17/19, 89%), existing
patients (17/19, 89%), medication management (17/19, 89%),
new patients (16/19, 84%), mental health/behavioral
management (15/19, 79%), post–test result follow-up (14/19,
74%), and postdischarge follow-up (7/19, 37%).

Textbox 2. Visit types in primary care with telehealth support during the COVID-19 pandemic that were reported [41]. Visit types do not categorize
within age groups. Patient age is considered as a benefit or drawback finding for this review.

Visit types and description

• Chronic condition management: 6-month or other routine chronic condition reviews, diabetes checkups, asthma or chronic obstructive pulmonary
disease medication or management reviews, or chronic pain (ie, arthritis or musculoskeletal pain) discussions

• Mental health and behavioral management: anxiety, depression, behavioral treatment reviews, talking therapy, or mental health medication
reviews; specialist visits excluded from this review

• Medication management: acute concerns (ie, antibiotics), medication reviews, oral contraceptive prescriptions, or dermatology prescriptions

• Post–test result follow-up: follow-up after magnetic resonance imaging examinations, x-rays, blood tests, or laboratory testing with their general
practitioner (GP) to discuss given results

• Postdischarge follow-up: follow-up after a procedure or discharge from the hospital for patients with cancer after tumor removals, hospital
admission following acute severe adverse reaction, or after pregnancy delivery

• Existing patients (acute or existing concerns): standard consultations with an annual checkup session or acute concerns (ie, cold or flu symptoms
or dermatology concerns) with a patient the GP has a pre-existing patient-provider relationship; inclusive of patients with COVID-19 or shielding
patients

• New patients (acute or existing concerns): standard consultations such as one-off sessions (eg, vaccination) or acute concerns (ie, cold or flu
symptoms or dermatology concerns) with a patient with whom the GP has no pre-existing patient-provider relationship; inclusive of patients
with COVID-19 or shielding patients
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Table 2. Reported general practitioner-patient visit types with telehealth support during the COVID-19 pandemic (N=19).a

Benefit findings of telehealthStudies that reported the use of
telehealth

Visit type

Level 5Level 4Level 3Level
2

Level
1

Studies,
n (%)

N/AN/Ad13 (76)Chronic condi-
tion manage-
ment (n=17)

• RACGP
[28]

• Johnsen et al [1]• Murphy et
al [26]

• Johnsen et al [1]
• •De Guzman et al [9] De Guzman et al [9]

• MBS [29]•• Jetty et al [18]Jetty et al [18]
• Jabbarpour et al [20]• Jabbarpour et al [20]
• Gomez et al [22]• Van de Poll-Franse et al [21]
• Hasani et al [23]• Gomez et al [22]
• Schweiberger et al [27]• Hasani et al [23]
• Javanparast et al [31]• Imlach et al [24]
• Assing Hvidt et al [32]• Gabrielsson-Jarhult et al [25]
• Due et al [33]• Murphy et al [26]

• Schweiberger et al [27]
• RACGPb [28]
• MBSc [29]
• Mozes et al [30]
• Javanparast et al [31]
• Assing Hvidt et al [32]
• Due et al [33]

N/AN/A11 (65)Medication
management

• RACGP
[28]

• Johnsen et al [1]• Gabriels-
son-Jarhult

• Johnsen et al [1]
• De Guzman et al [9] • De Guzman et al [9]

(nonchronic et al [25] • MBS [29]• Jetty et al [18]• Jetty et al [18]
condition;
n=17)

•• Gomez et al [22]Jabbarpour et al [20]
• •Van de Poll-Franse et al [21] Hasani et al [23]

• MBS [29]• Gomez et al [22]
• Mozes et al [30]• Hasani et al [23]
• Due et al [33]• Imlach et al [24]

• Gabrielsson-Jarhult et al [25]
• Murphy et al [26]
• Schweiberger et al [27]
• RACGP [28]
• MBS [29]
• Mozes et al [30]
• Javanparast et al [31]
• Assing Hvidt et al [32]
• Due et al [33]

—eN/AN/A11 (65)Existing pa-
tients (acute or

••• Johnsen et al [1]Imlach et al
[24]

Johnsen et al [1]
• De Guzman et al [9] • De Guzman et al [9]

existing con-
cern; n=17)

• Murphy et
al [26]

• •Jetty et al [18] Grossman et al [19]
• •Grossman et al [19] Hasani et al [23]

• Mozes et al
[30]

• •Jabbarpour et al [20] Schweiberger et al [27]
• Van de Poll-Franse et al [21] • RACGP [28]
• Gomez et al [22] • MBS [29]
• Hasani et al [23] • Assing Hvidt et al [32]
• Imlach et al [24]
• Murphy et al [26]
• Schweiberger et al [27]
• RACGP [28]
• MBS [29]
• Mozes et al [30]
• Javanparast et al [31]
• Assing Hvidt et al [32]
• Manski-Nankervis et al [34]
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Benefit findings of telehealthStudies that reported the use of
telehealth

Visit type

Level 5Level 4Level 3Level
2

Level
1

Studies,
n (%)

• MBS [29]• Johnsen et al [1]
• Hasani et al [23]
• Schweiberger et al [27]
• Assing Hvidt et al [32]
• Due et al [33]

• Gabriels-
son-Jarhult
et al [25]

N/AN/A7 (44)• Johnsen et al [1]
• De Guzman et al [9]
• Jetty et al [18]
• Grossman et al [19]
• Jabbarpour et al [20]
• Van de Poll-Franse et al [21]
• Gomez et al [22]
• Hasani et al [23]
• Imlach et al [24]
• Gabrielsson-Jarhult et al [25]
• Schweiberger et al [27]
• RACGP [28]
• MBS [29]
• Assing Hvidt et al [32]
• Due et al [33]
• Manski-Nankervis et al [34]

New patients
(acute or exist-
ing concern;
n=16)

• RACGP
[28]

• MBS [29]

• Johnsen et al [1]
• De Guzman et al [9]
• Jabbarpour et al [20]
• Hasani et al [23]
• Schweiberger et al [27]
• Assing Hvidt et al [32]
• Due et al [33]

• Imlach et al
[24]

• Murphy et
al [26]

N/AN/A11 (73)• Johnsen et al [1]
• De Guzman et al [9]
• Jetty et al [18]
• Jabbarpour et al [20]
• Gomez et al [22]
• Hasani et al [23]
• Imlach et al [24]
• Murphy et al [26]
• Schweiberger et al [27]
• RACGP [28]
• MBS [29]
• Javanparast et al [31]
• Assing Hvidt et al [32]
• Due et al [33]
• Manski-Nankervis et al [34]

Mental health
and behavioral
management
(n=15)

—• Johnsen et al [9]
• Gomez et al [22]
• Hasani et al [23]
• Assing Hvidt et al [32]
• Due et al [33]

—N/AN/A5 (36)• Johnsen et al [1]
• De Guzman et al [9]
• Jetty et al [18]
• Jabbarpour et al [20]
• Van de Poll-Franse et al [21]
• Gomez et al [22]
• Hasani et al [23]
• Imlach et al [24]
• Murphy et al [26]
• Schweiberger et al [27]
• RACGP [28]
• MBS [29]
• Assing Hvidt et al [32]
• Due et al [33]

Post–test result
follow-up
(n=14)

• RACGP
[28]

• MBS [29]

• Hasani et al [23]• Murphy et
al [26]

N/AN/A5 (71)• Johnsen et al [1]
• Jetty et al [18]
• Hasani et al [23]
• Imlach et al [24]
• Murphy et al [26]
• Mozes et al [30]
• Javanparast et al [31]

Postdischarge
follow-up (n=7)

aDefinitions of the different visit types are informed by the Department of Health Medicare Benefits Scheme item definitions [41] (Multimedia Appendix
7). Levels of evidence were derived from the Grading of Recommendations Assessment, Development, and Evaluation scoring [39]. Level 1 is systematic
reviews, level 2 is randomized controlled trials, level 3 is nonrandomized experimental studies or comparative (observational) studies, level 4 is case
series (cohort studies), and level 5 is opinion pieces or clinical guidelines. Each article can report more than one visit type supported with telehealth
during the COVID-19 pandemic.
bRACGP: Royal Australian College of General Practitioners.
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cMBS: Medicare Benefits Schedule.
dN/A: not applicable.
eNo data available for the category specified.
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Table 3. Reported general practitioner-patient visit types with drawback findings of telehealth during the COVID-19 pandemic (N=19).a

Drawback findings of telehealthStudies that reported the use of
telehealth

Visit type

Level 5Level 4Level 3Level
2

Level
1

Studies,
n (%)

—eN/AN/Ad6 (35)Chronic condi-
tion manage-
ment (n=17)

••• Johnsen et al [1]Gabrielsson-
Jarhult et al
[25]

Johnsen et al [1]
• •De Guzman et al [9] De Guzman et al [9]

•• Van de Poll-Franse
et al [21]

Jetty et al [18]
• Mozes et al

[30]
• Jabbarpour et al [20]

• Due et al [33]• Van de Poll-Franse et al [21]
• Gomez et al [22]
• Hasani et al [23]
• Imlach et al [24]
• Gabrielsson-Jarhult et al [25]
• Murphy et al [26]
• Schweiberger et al [27]
• RACGPb [28]
• MBSc [29]
• Mozes et al [30]
• Javanparast et al [31]
• Assing Hvidt et al [32]
• Due et al [33]

—N/AN/A3 (18)Medication
management

••• Johnsen et al [1]Imlach et al
[24]

Johnsen et al [1]
• De Guzman et al [9]

(nonchronic • Mozes et al
[30]

• Jetty et al [18]
condition;
n=17)

• Jabbarpour et al [20]
• Van de Poll-Franse et al [21]
• Gomez et al [22]
• Hasani et al [23]
• Imlach et al [24]
• Gabrielsson-Jarhult et al [25]
• Murphy et al [26]
• Schweiberger et al [27]
• RACGP [28]
• MBS [29]
• Mozes et al [30]
• Javanparast et al [31]
• Assing Hvidt et al [32]
• Due et al [33]

——N/AN/A1 (6)Existing pa-
tients (acute or

•• De Guzman et al [9]Johnsen et al [1]
• De Guzman et al [9]

existing con-
cern; n=17)

• Jetty et al [18]
• Grossman et al [19]
• Jabbarpour et al [20]
• Van de Poll-Franse et al [21]
• Gomez et al [22]
• Hasani et al [23]
• Imlach et al [24]
• Murphy et al [26]
• Schweiberger et al [27]
• RACGP [28]
• MBS [29]
• Mozes et al [30]
• Javanparast et al [31]
• Assing Hvidt et al [32]
• Manski-Nankervis et al [34]
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Drawback findings of telehealthStudies that reported the use of
telehealth

Visit type

Level 5Level 4Level 3Level
2

Level
1

Studies,
n (%)

• RACGP
[28]

• MBS [29]

• Johnsen et al [1]
• De Guzman et al [9]
• Gomez et al [22]
• Hasani et al [23]
• Gabrielsson-Jarhult

et al [25]
• Assing Hvidt et al

[32]
• Due et al [33]

—N/AN/A9 (56)• Johnsen et al [1]
• De Guzman et al [9]
• Jetty et al [18]
• Grossman et al [19]
• Jabbarpour et al [20]
• Van de Poll-Franse et al [21]
• Gomez et al [22]
• Hasani et al [23]
• Imlach et al [24]
• Gabrielsson-Jarhult et al [25]
• Schweiberger et al [27]
• RACGP [28]
• MBS [29]
• Assing Hvidt et al [32]
• Due et al [33]
• Manski-Nankervis et al [34]

New patients
(acute or exist-
ing concern;
n=16)

—• De Guzman et al [9]
• Due et al [33]
• Manski-Nankervis

et al [34]

—N/AN/A3 (20)• Johnsen et al [1]
• De Guzman et al [9]
• Jetty et al [18]
• Jabbarpour et al [20]
• Gomez et al [22]
• Hasani et al [23]
• Imlach et al [24]
• Murphy et al [26]
• Schweiberger et al [27]
• RACGP [28]
• MBS [29]
• Javanparast et al [31]
• Assing Hvidt et al [32]
• Due et al [33]
• Manski-Nankervis et al [34]

Mental health
and behavioral
management
(n=15)

—• Jetty et al [18]
• Hasani et al [23]
• Due et al [33]

—N/AN/A3 (21)• Johnsen et al [1]
• De Guzman et al [9]
• Jetty et al [18]
• Jabbarpour et al [20]
• Van de Poll-Franse et al [21]
• Gomez et al [22]
• Hasani et al [23]
• Imlach et al [24]
• Murphy et al [26]
• Schweiberger et al [27]
• RACGP [28]
• MBS [29]
• Assing Hvidt et al [32]
• Due et al [33]

Post–test result
follow-up
(n=14)

—• Johnsen et al [1]
• Jetty et al [18]
• Hasani et al [23]

—N/AN/A3 (43)• Johnsen et al [1]
• Jetty et al [18]
• Hasani et al [23]
• Imlach et al [24]
• Murphy et al [26]
• Mozes et al [30]
• Javanparast et al [31]

Postdischarge
follow-up (n=7)

aDefinitions of the different visit types are informed by the Department of Health Medicare Benefits Scheme item definitions [41] (Multimedia Appendix
7). Levels of evidence were derived from the Grading of Recommendations Assessment, Development, and Evaluation scoring [39]. Level 1 is systematic
reviews, level 2 is randomized controlled trials, level 3 is nonrandomized experimental studies or comparative (observational) studies, level 4 is case
series (cohort studies), and level 5 is opinion pieces or clinical guidelines. Each article can report more than one visit type supported with telehealth
during the COVID-19 pandemic.
bRACGP: Royal Australian College of General Practitioners.
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cMBS: Medicare Benefits Schedule.
dN/A: not applicable.
eNo data available for the category specified.

The benefits and drawbacks of using telehealth during the
COVID-19 pandemic in primary care were reported across all
visit types. Visit types with >60% of studies reporting benefits
included chronic condition management, mental
health/behavioral management, medication management, and
existing patients, whereas the visit types with 40% of studies
reporting drawbacks of telehealth included new patients and
postdischarge follow-up.

Diverse study designs according to GRADE were reported in
the included studies, with most (13/19, 68%) corresponding to
level-4 evidence (cohort studies, interviews, and surveys),
followed by level 3 (nonrandomized experimental studies or
comparative or observational studies; 4/19, 21%) and level 5
(opinion pieces or clinical guidelines; 2/19, 11%). No
randomized controlled trials (level-2 evidence) or systematic

reviews (level-1 evidence) were found to have met the eligibility
criteria to be included in this systematic review.

Suitability of Using Telehealth Support for Each Visit
Type During the COVID-19 Pandemic

Overview
For each visit type in primary care during the COVID-19
pandemic where telehealth support was reported, benefits and
drawbacks are outlined in this section. Table 4 provides a
summary of the circumstances when telehealth was reported as
suitable and not suitable per patient visit types during the
COVID-19 pandemic. For more details on supporting evidence,
please refer to Multimedia Appendix 8 [1,9,20-26,28-34,
39,40,44-48].
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Table 4. Circumstances when telehealth was reported as suitable and not suitable per patient visit types during the COVID-19 pandemic.

Circumstances when telehealth was NOT suitableCircumstances when telehealth was suitableVisit type and subcategory

Condition- or concern-based

Chronic condition man-
agement

•• Chronic conditions when there were complex issues
requiring close monitoring or longer consultations
(eg, complex comorbidities, cancer, complex social
issues, low hearing and vision, and cognitive impair-
ment) [1,9,25,30]

Pre-existing patient-provider relationship [1,23,27]
• Established diagnosis [18]
• Lack of complex physical examinations [20]

Medication (nonchronic
condition) management

•• When physical examinations were necessary (eg,
prescribing antibiotics) [1,24,31]

Prescription refills of existing medications [1,9,22,32]
• Simple, straightforward health concerns (eg, oral

contraceptives) [1,22] • Prescription of new medications [1,24]
• Predominately discussion-based activities [1,22]

Mental health and behav-
ioral management

•• When cultural, language, or confidentiality concerns
affected patients’ability to communicate or disclose
[20,26]

Patients with mild mental health issues (ie, not at risk
to themselves or others or without high cognitive im-
pairments) [20]

•• Patients with unstable mental health concerns (eg,
suicidal ideation) [1]

Patients who did not prefer a physical presence [9,20]

• Predominately discussion-based and counseling activ-
ities [1,9,20,23,33] • When physical examinations were necessary for

screening tests or psychotherapy delivery [1]

Post–test result follow-up •• When discussing sensitive test results (eg, positive
cancer diagnosis) [33]

Predominately discussion tasks rather than physical
examinations [22,23,26]

•• When explaining complex medical jargon used in
test results [33]

When patients preferred to view test results via video
compared with in person [26]

• Nonsensitive test results [9]

Postdischarge follow-up •• When complex physical examinations were needed
[18,23]

When patients lived far away or had difficulty arrang-
ing a same-day visit or frequent follow-ups [23,26]

•• When multiple care team members (eg, nurses) were
needed to address physical aspects of care (eg,
wound care) [23]

Patients with pre-existing patient-provider relation-
ships at the postoperative clinic [1]

Patient characteristics–based

Existing patients (acute
or existing concern)

•• New diagnoses even with pre-existing patient-
provider relationships [9]

Pre-existing patient-provider relationship [1,23,24,27]
• Established understanding of patients’ history

[1,23,24,27] • Severe concern that required more physical exami-
nations (eg, chest pain or stomach pain) [30]• Pre-established rapport [1,23,24,27]

• Issues primarily reliant on assessing visual symptoms
(eg, dermatological concerns) [32]

New patients (acute or
existing concern)

•• New diagnoses with no pre-existing patient-provider
relationship or lack of knowledge of patient history
[1,22]

New patients when the consultation focused on pre-
existing diagnosed concerns [1,23,25,27]

• Simple acute concerns (eg, dermatological concerns)
that could be assessed using photos or video without
complex physical examinations [1,23,25,27]

• New patients with difficult or complex symptoms
that relied on self-reported information or self-exam-
inations [1,22]

• When patients were not forthcoming (eg, shyness
or language or cultural barriers) [1,22]

• Technical issues affecting building rapport [33]

Chronic Condition Management
Chronic condition management visits in primary care were
reported as being one of the visit types with the greatest number
of studies reporting the use of telehealth during the COVID-19
pandemic (17/19, 89%). Of these 17 studies, 13 (76%) reported
benefits and 6 (35%) reported drawbacks.

In the included studies, chronic condition management visits
were often reported as suitable for telehealth because of a
pre-existing patient-provider relationship, established diagnosis,

and lack of complex physical examinations. Routine visits for
chronic conditions (eg, diabetes checkups) could be facilitated
using telehealth, as these tasks often relied on discussions (eg,
diet and medication) [9,23,33]. Some of the examinations could
be completed by patients at home under clinician guidance,
such as foot examinations or weight measurements
[1,18,20,22,27]. Patients could show their list of medications
at home by reading the labels [22], and they could be educated
on ways to use and administer medications at home (eg, asthma
inhalers) and assisting with potential safety hazards or home
support systems (eg, pets) [23]. Self-management education
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could also be enhanced if patients could share with their GPs
during telehealth their home setting and at-home tools (eg,
at-home blood pressure cuffs, glucose monitors, and heart rate
monitors) [22].

A drawback of telehealth for chronic condition management in
the included studies was when close monitoring (eg, complex
comorbidities or cancer diagnoses) [30] or complex physical
examinations (eg, pediatric examinations or smear examinations)
were required [33]. Some patients reported being hesitant to
use telehealth because of their unfamiliarity with the technology
[21]. However, most patients with chronic conditions expressed
high satisfaction and willingness to engage with telehealth again
[31]. Patients with chronic conditions particularly favored the
remote nature of telehealth as they were often at a higher risk
of adverse symptoms if infected with COVID-19 when attending
in-person clinics [21,23,28,29].

Existing Patients
Existing patient consultations were reported as being one of the
visit types with the greatest number of studies reporting the use
of telehealth during the COVID-19 pandemic (17/19, 89% of
the included studies). Of these 17 studies, 11 (65%) reported
benefits and 1 (6%) reported drawbacks.

In the included studies, telehealth was reported as suitable for
visits with a pre-existing patient-provider relationship as
clinicians understood the patients’ history and had a
pre-established rapport [1,23,24,27,32]. Issues primarily reliant
on assessing visual symptoms, such as dermatological concerns,
could be shared with clinicians via photos or video [32]. In some
cases, clinicians reported higher efficiency using telehealth.
They could reduce the downtime involved in transiting between
different patients during in-person encounters and see more
patients via telehealth [9].

In the included studies, existing patients reported satisfaction
with telehealth, especially for straightforward matters (eg,
medication refill) and patients at high risk of COVID-19
[24,26,30]. However, a drawback of telehealth was when new
diagnoses were involved, even among people with pre-existing
patient-provider relationships, because of the poor ability to
conduct physical examinations [9].

Medication Management
Medication management consultations were reported as being
one of the visit types with the greatest number of studies
reporting the use of telehealth during the COVID-19 pandemic
(17/19, 89% of eligible studies). Of these 17 studies, 11 (65%)
reported benefits and 3 (18%) reported drawbacks.

In the included studies, telehealth was reported as making
medication reconciliations easier, improving patients’adherence
to their medications [1,9,22,32]. Telehealth was reported as
supporting prescription refills for patients familiar with the
medication’s side effects and risks and for straightforward health
concerns such as oral contraceptives [9,31,32]. Patients reported
being satisfied with their telehealth experience related to
medications [1,18,25]. For example, patients could share their
medications at home via video and image sharing with their
clinicians. Furthermore, clinicians expressed greater relief when

not being pressured to prescribe addictive drugs to at-risk
patients during telehealth [22].

Drawbacks reported in the studies included concerns when
physical examinations were necessary (eg, checking for
infections when prescribing antibiotics) and prescription of new
medications [1,24,30]. Poorer communication in patient
education of medications was also observed in some telehealth
consultations, potentially affecting patients’ understanding of
their medications [1,24].

New Patients
New patient consultations with the use of telehealth during the
COVID-19 pandemic were reported in 84% (16/19) of eligible
studies. Of these 16 studies, 7 (44%) reported benefits and 9
(56%) reported drawbacks.

In the included studies, telehealth was reported as only suitable
for new patients when the consultation focused on pre-existing
diagnosed concerns, acute concerns (eg, dermatological
concerns) that could be assessed via visual cues (such as via
photo or video sharing), or when there was no need for physical
examinations [1,23,25,27]. It is important to note that new
patients are not always supported by health care reimbursement
(eg, Medicare for Australian patients) outside certain criteria
(ie, positive COVID-19 status, close contact, hot spot area, and
emergency consultation), which affects the number of studies
included for this visit type.

However, telehealth was reported as not suitable for new
diagnoses when there was no pre-existing patient-provider
relationship, lack of knowledge of patient history, or no
pre-established patient rapport [1,22]. Telehealth for new
patients would be particularly difficult when complex symptoms
are involved or when patients are not forthcoming with their
concerns (eg, feeling shy or experiencing language or cultural
barriers). Managing new patients over telehealth would rely on
trusting patients’ self-reported symptoms and patient-directed
examination, which can become complicated when there is an
absence of pre-existing knowledge of the patient [32]. In
addition, technical problems within telehealth consultations can
make building rapport with new patients even harder [33].

Mental Health and Behavioral Management
Mental health and behavioral management consultations with
the use of telehealth during the COVID-19 pandemic were
reported in 79% (15/19) of the included studies. Of these 15
studies, 11 (73%) reported benefits and 3 (20%) reported
drawbacks.

In the included studies, telehealth was reported as only suitable
for mental health and behavioral management when the
consultation predominately focused on discussion and
counseling activities [1,20,23,33]. Telehealth was suitable for
patients with mild mental health issues (ie, patients not at risk
to themselves or others), those without high cognitive
impairments, and those who did not prefer a physical presence
in consultations [20]. Studies involving patients with more
complex mental health concerns referred to specialists (ie,
psychiatrists) and participants in specialist mental health
telehealth programs were excluded from this review. Patients
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with mental health concerns reported the benefits of reduced
wait times when using telehealth during the COVID-19
pandemic, resulting in fewer barriers to accessing mental health
care support [26,27]. Patients also reported being satisfied with
their telehealth experience for mental health issues during the
COVID-19 pandemic, particularly because of consultations
being completed in a discreet manner (ie, the privacy of their
own home) [1,9,24].

Drawbacks reported in the studies included patients’ hesitancy
to disclose over telehealth because of the stigma around mental
health concerns, cultural or language barriers, and confidentiality
around disclosing sensitive matters where there was a lack of
privacy at home [20,26]. It was challenging to conduct telehealth
consultations with patients with unstable mental health concerns
(eg, suicidal ideation) [1] or concerns requiring lengthier
consultations [9]. There were mixed views about the need for
physical examinations for screening tests [31].

Post–Test Result Follow-up
Post–test result follow-up consultations with the use of telehealth
during the COVID-19 pandemic were reported in 74% (14/19)
of the included studies. Of these 14 studies, 5 (36%) reported
benefits and 3 (21%) reported drawbacks.

In the included studies, post–test result follow-up was often
suitable for telehealth as the primary activity involved
discussions of test results rather than conducting physical
examinations [22,23,26,32,33]. For patients and clinicians,
practices used procedures to ensure confidentiality via telehealth
when receiving (and discussing) test results [23]. For example,
some practices used confirmation ID numbers or asked patients
to confirm their date of birth before revealing sensitive medical
information because of the absence of in-person confirmation
[23]. In some cases, telehealth also improved the ability to share
test results with patients compared with in-person consultations
(eg, screen sharing of test results with patients over video
consultation) rather than the patient attempting to reach over to
read the test result on the GP’s computer screen during in-person
encounters [26].

A drawback of telehealth reported for this visit type was the
poorer communication patterns observed when explaining to
patients complex medical jargon used in test results. This is
possibly related to the impersonal nature of telehealth, the
inability to use visual aids, the lack of a physical presence, or
other elements required to explain test results remotely [33].
Other clinic staff may communicate test results if results are
satisfactory or do not require additional follow-up, resulting in
minimal benefit and drawback findings reported for this visit
type. Unsatisfactory results may lead to GP-patient

consultations, possibly resulting in more drawbacks reported
for this visit type.

Postdischarge Follow-up
Postdischarge follow-up consultations with the use of telehealth
during the COVID-19 pandemic were reported in 37% (7/19)
of the included studies. Of these 7 studies, 5 (71%) reported
benefits and 3 (43%) reported drawbacks.

In the included studies, telehealth was reported as suitable for
postdischarge follow-up visits when patients lived far away or
had difficulty arranging same-day or frequent follow-up visits
(eg, antenatal visits) [23,26]. Patients with pre-existing
patient-provider relationships linked to the same postoperative
clinic also reported satisfaction [1].

However, there was the drawback of it being harder to
coordinate care [1]. This visit type often involved multiple care
team members and complex physical examinations by various
clinic members (eg, nurses and practitioners to address wound
care) [18,23]. It was also challenging to share documentation
from multiple team members [23].

Benefits and Drawbacks of Using Telehealth in
Primary Care During the COVID-19 Pandemic
This section outlines the benefits and drawbacks of using
telehealth in primary care during the COVID-19 pandemic from
patient and clinician perspectives reported according to the NQF
Telehealth Framework. For more details on supporting evidence,
please refer to Multimedia Appendix 9 [1,9,19,21-34].

Access to Care
The NQF outcome measure “Access to care” (ie, the ability to
receive health services promptly and appropriately) was reported
in 84% (16/19) of the included studies. A summary of benefits
and drawbacks of telehealth per this outcome factor is provided
in Table 5.

Both patients and clinicians reported the benefits of using
telehealth to maintain timely and frequent contact, shortening
wait times in between visits and having a satisfactory experience
[1,22,25,26,30,32]. Patients particularly enjoyed the additional
benefits of reduced travel time [32,33], the convenience of being
at home [23,31], having quicker access to care for simple
concerns [1,26,29], and being able to access care that was only
available for a teleconsultation but not available for in-person
consultations (eg, outside clinic opening hours) [19,30], whereas
clinicians reported the benefits of seeing more patients using
telehealth [28] and connecting with patients who preferred
technology over in-person encounters [9,25].
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Table 5. Benefits and drawbacks of telehealth according to the “Access to Care” outcome factor per perspective.

Drawbacks of telehealthPerspective and benefits of telehealth

Primary care clinician perspective

•• Harder to address language or cognition barriers [32]Greater number of patients that can be seen using telehealth
compared with in person (ie, teleconsultations tend to be shorter
and more convenient, reducing cancelation rates) [25,26]

• Need to address risks associated with digital platforms (eg, cyberat-
tacks, security, and confidentiality in web-based communication)
[25]• Enables clinicians to connect with patients who may prefer

technology over in-person encounters [25]

Patient perspective

•• Excludes and deters potentially at-risk patients who are not familiar
with the technology [21,22]

Reduced travel time [31,34]
• Improved convenience [1,22,25,26,30,31]
• Ability to book consultations outside clinic hours [25,30]
• Ability to access care quicker owing to not requiring the same

clinician for simple concerns [25,31,34]

Both primary care clinician and patient perspective

•• Insufficient technical support, infrastructure, or equipment to access
telehealth [33]

Satisfied with access and technical quality in most telehealth
consultations [1,18]

•• Varying complexity of telehealth systems needed because of different
complexities in patients’ health conditions (eg, may require special
equipment, hardware, or software or stronger internet access) [25]

Timely and more frequent access to care for at-risk patients be-
cause of convenience and shortened wait times [1,26,27,30]

However, patients and clinicians reported insufficient technical
support, infrastructure, or equipment to access telehealth and
difficulty with more complex telehealth systems that required
special hardware or software support [25,32]. Some patients
reported difficulty finding privacy at home to attend
teleconsultations [21]. Some patients felt excluded or deterred
from seeking help because of unfamiliarity with technology
[21,22]. Some clinicians reported drawbacks of telehealth, such
as it being harder to address language or cognition barriers with
patients without physical cues [22] as well as feeling concerned
with risks on digital platforms (eg, cyberattacks, security, and
confidentiality in web-based communication) [25].

Effectiveness
The NQF outcome measure “Effectiveness” (ie, represents the
systematic, clinical, operational, and technical success or barriers
of telehealth) was reported in 84% (16/19) of the included
studies. A summary of benefits and drawbacks of telehealth per
this outcome factor is provided in Table 6. Both patients and
clinicians reported that telehealth was suitable (ie, clinical
appropriateness) for infections, dermatological concerns,
renewal of prescriptions, or self-monitoring programs
[25,32,33]. Most patients reported being sufficient at
self-assessing whether they should seek a teleconsultation or
an in-person consultation according to their health concerns

[25]. Furthermore, patients could show their medication or
self-care practices at home, allowing clinicians to better
understand how their home environment may affect their
self-management, thus improving clinicians’ advice dispensed
to support their patients [1]. Clinicians also noted the benefits
of sharing medical records with patients via screen sharing,
improving their understanding [19].

However, telehealth was reported as not suitable for specific
patient groups (eg, people with unstable mental concerns or low
hearing and vision, young children unable to describe symptoms
themselves, and people with cognitive impairment) [30] or for
complex symptom presentations or diagnoses that required
physical examinations (eg, chest pain, stomach pain, and
potential new cancer) [1,9]. There is currently a lack of guidance
on identifying and addressing severe adverse events that may
occur because of telehealth (eg, lack of guidance on safety
netting for teleconsultation, uncertainty about who else is also
present but hiding during the teleconsultation, or recording
consultations without consent) [1]. Furthermore, there is a
tendency to rely more on patient-reported outcomes and
patient-directed examinations during telehealth, affecting a GP’s
assessment of the patient’s health status, which may inevitably
result in in-person consultations later on despite having had a
teleconsultation [25,33].
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Table 6. Benefits and drawbacks of telehealth according to the “Effectiveness” outcome factor per perspective.

Drawbacks of telehealthPerspective and benefits of telehealth

Primary care clinician perspective

•• Lack of guidance on appropriate ways to address serious adverse
events related to telehealth [1]

Easier to share medical records with patients via screen sharing
during video consultations [19]

•• Increased reliance on trusting patients’ reported symptoms and self-
examination assessment [33]

More efficient consultations with patients (ie, focused discussions
and pretriaging procedures to preidentify concerns) [32]

• Not suited for complex symptom presentations or diagnoses that re-
quire physical examinations (eg, chest pain, stomach pain, and poten-
tial new cancer) [1,9]

Patient perspective

•• Still requiring in-person consultations despite having had a telecon-
sultation already [25]

Improved ability for patients to self-manage their health because
of their ability to share their medications or self-care practices
at home with their clinicians [1]

• Most patients can self-assess the suitability of telehealth accord-
ing to their health concerns [25]

Both primary care clinician and patient perspective

•• Unsuitable for certain at-risk patient groups (eg, people who are
mentally unstable or have low hearing and vision, young children,
and people with cognitive impairment) [31,33]

Perceived to be suitable for dermatological concerns and renewal
of prescriptions or self-monitoring programs for improved patient
outcomes [23,25]

Experience
The NQF outcome measure “Experience” (ie, represents the
usability and effect of telehealth on patients and providers) was
reported in 89% (17/19) of the included studies. A summary of
benefits and drawbacks of telehealth per this outcome factor is
provided in Table 7.

Both clinicians and patients were satisfied with a perceived
lower risk of infection transmission during the COVID-19
pandemic as a result of using telehealth [1,25-27,30,33]. Some

reported feeling positive that they were able to maintain a
patient-provider connection via telehealth during the COVID-19
pandemic [9,32,33]. Primary care clinicians reported several
personal benefits of telehealth, including improved work-life
balance and the ability to conduct some consultations more
efficiently [33]. Clinicians also reported perceiving their patients
as feeling more relaxed in their home environments compared
with in-person consultations [33]. Overall, most patients reported
having a satisfactory experience and a willingness to use
telehealth again [21,24].

Table 7. Benefits and drawbacks of telehealth according to the “Experience” outcome factor per perspective.

Drawbacks of telehealthPerspective and benefits of telehealth

Primary care clinician perspective

•• Concerned about cultural and language barriers with patients [23]Improved work-life balance [33]
•• Lacking stimulating work for some clinicians as there is little in-

person interaction with patients [9]
Satisfied in perceiving their patients to be more relaxed in tele-
health settings [32]

• •Easier to conduct some consultations more efficiently [28] Reliant on clinicians taking on multiple roles (eg, secretary, IT sup-
port, and clinician) [26,33]

Patient perspective

•• Lacking opportunity to develop in-person rapport because of cultural
or language barriers, technological barriers, and confidentiality con-
cerns [25,29]

Satisfactory experience with telehealth consultations for surveyed
patients [24,31]

• Surveyed patients willing to use telehealth again [21]
• Lacking in establishing new patient-provider relationships [9,23]
• Impersonal in comparison with in-person care because of the remote

nature of telehealth [27,31]

Both primary care clinician and patient perspective

•• Dissatisfied with the lack of in-person physical examinations [9,24,33]Satisfied with lower risk of infection transmission [1,25-27,30]
• Positive patient-provider relationship for some patients as the

personal connection was felt in teleconsultations [32]

As reported by both clinicians and patients, the main drawback
of telehealth was dissatisfaction with a lack of in-person physical

examinations [24]. Some clinicians faced the additional
drawbacks of addressing language or cultural barriers without
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in-person cues [23] and the lack of stimulating work when there
was little in-person interaction with patients [9]. In addition,
telehealth sometimes required clinicians to take on multiple
roles in the practice to ensure it ran smoothly (eg, secretary, IT
support, and clinician) [26,33]. Patients similarly needed to
combat barriers such as the lack of opportunity to develop
rapport with their clinicians, impersonal consultations [27],
language or cultural barriers to disclosing issues, technological
barriers, and confidential concerns during web-based
communication via telehealth [23].

Financial Impact or Cost
The NQF outcome measure “Financial Impact/Cost” (ie,
potential cost savings or losses to patients, families, or providers)
was reported in 63% (12/19) of the included studies. A summary
of benefits and drawbacks of telehealth per this outcome factor
is provided in Table 8. From the clinicians’ perspective, the
infrastructure, processes, and long-term reimbursement models
of telehealth were important considerations before its full
potential and benefits could be unleashed [9,28]. For patients,
removing the need to travel and reducing the loss of pay from
taking time off work to attend in-person consultations were
important drivers for choosing telehealth [34].

Table 8. Benefits and drawbacks of telehealth according to the “Financial Impact/Cost” outcome factor per perspective.

Drawbacks of telehealthPerspective and benefits of telehealth

Primary care clinician perspective

•• Expensive to set up a telehealth system from scratch [25]Reduced telehealth setup costs because of existing infrastructure and
processes (eg, adequate funding model and absence of billing or licensure
restrictions) [9,18] • Long-term funding models are not globally determined, po-

tentially opening up opportunities for commercial entities to
exploit [25]• Cost-effective in the long run because of reduced running costs compared

with in-person consultations [9,22,31]
• Reimbursement model available for teleconsultations (eg, Medicare

support in Australia) [28,29]

Patient perspective

•• Mixed responses from some patients regarding willingness
to pay for teleconsultation [26]

Some patients prefer telehealth consultations and are willing to pay [34]
• Some patients report that telehealth consultation fees are appropriate

[24,31] • Inappropriate telehealth consultation charges felt by some
patients [24]• Saving costs using telehealth (eg, travel costs to in-person clinics and

for patients needing to take time off work for appointments) [34]

However, issues relating to long-term models of financing and
reimbursing telehealth remained a major concern [25]. For both
patients and clinicians, there were concerns that remain to be
researched about the expensive costs of acquiring the necessary
software, hardware, and infrastructure to set up telehealth when
it is unclear whether telehealth will remain a permanent service
delivery mode in the long term. Furthermore, there is potential
for commercial entities to exploit the charging or provision of
telehealth when there remains uncertainty from the government
on its long-term funding model [25]. There were mixed views
regarding whether patients were willing to pay the same rate
for telehealth consultations when compared with in-person
consultations or an alternative appropriate cost [31].

Discussion

Principal Findings
To our knowledge, this is the first systematic review reporting
visit types in primary care where telehealth was used during the
COVID-19 pandemic. Most of the included studies (13/19,
68%) were level-4 evidence (cohort studies, interviews, and
surveys), reflecting the early experience of the pandemic. Seven
primary care visit types were identified: chronic condition
management (17/19, 89%), existing patients (17/19, 89%),
medication management (17/19, 89%), new patients (16/19,
84%), mental health and behavioral management (15/19, 79%),
post–test result follow-up (14/19, 74%), and postdischarge

follow-up (7/19, 37%). Benefits and drawbacks were reported
across all visit types, with chronic condition management visits
being one of the visit types with use of telehealth reporting the
greatest number of studies during the pandemic (17/19, 89%).
Reasons for why telehealth was deemed suitable for chronic
condition management visits included patients having
pre-existing diagnoses, established patient-provider
relationships, and lack of complex physical examinations
required. Insights into both the primary care clinician and patient
perspective of telehealth use for specific visit types (ie, access
to care, effectiveness, experience, and financial impact or cost)
were also provided. Overall, benefits of telehealth included
improved convenience, focused discussions, and continuity of
care despite social distancing practices during the COVID-19
pandemic. Drawbacks of telehealth included technical barriers,
impersonal interactions, and semi-established reimbursement
models.

Strengths and Limitations
The strengths of this study include following a rigorous approach
at all stages of the systematic review. For example, a wide range
of academic databases and gray literature were searched to
ensure great coverage of literature. In total, 3 independent
researchers following predetermined eligibility criteria were
involved in article screening to reduce the risks of selection
bias. Data extraction templates (eg, the Joanna Briggs Institute
data abstraction form) were used to standardize reporting of
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findings between studies. Well-established tools (eg, GRADE
and the Mixed Methods Appraisal Tool) were used to conduct
a critical appraisal and assess levels of evidence for each
included study. Furthermore, definitions and terminologies from
widely accepted frameworks in the telehealth and primary care
communities (such as the NQF Telehealth Framework, the
RACGP, and the Medicare Benefits Schedule) were used to
ease the translation of our review.

The limitations of this review include restricting it to studies
between late 2019 and August 2022 as definitions of the
COVID-19 era, limiting it to studies written in English, and the
decision to focus on broadness rather than narrowness in our
search strategy. Publication bias (ie, the tendency to report
positive results) may be present in the included studies because
of the novel adoption of telehealth during the COVID-19
pandemic and growing interest in this research space [44]. Since
our review, additional studies may have been published focusing
on the experience of telehealth as GPs and patients have become
more experienced with its use within routine primary care
settings. Thus, despite multiple search cycles, our review may
only reflect early experiences of telehealth during the COVID-19
era. In addition, this systematic review focuses on the early
experience of the COVID-19 pandemic, where primary studies
on clinical outcomes of using telehealth during the pandemic
were not yet available. Future reviews should examine the
long-term clinical outcomes of patients using telehealth (or
hybrid models of care) in primary care settings. Our search
strategy did not use keywords related to specific visit types in
primary care. Instead, we chose to focus broadly on primary
care to ensure we captured all studies with telehealth support
conducted in primary care during the pandemic that were
reported. Future reviews could include non-English studies or
specific visit types to increase the generalizability and scope of
the findings.

Comparison With Prior Work
Before the COVID-19 pandemic, studies on telehealth focused
on issues such as particular visit types (eg, medication reviews
or chronic condition management visits) [45,49], patient
satisfaction [46,47], or nonsynchronous patient-provider
communication (eg, e-consultation portals) [48]. For example,
a review by Polisina et al [45] explored the use of an at-home
management program for a chronic condition such as diabetes.
A systematic review by Hanjani et al [49] focused explicitly on
medication reviews via telehealth and identified similar
facilitators and barriers to those of our review. Most of the
benefits and drawbacks of telehealth reported in this review,
such as ease of use, reduced travel times, low cost, and improved
communication (in some instances), were also found by Kruse
et al [46] in their systematic review. Other studies such as that
by Hollander and Goldwater [47] examined the use of telehealth
in orthopedic surgery, and Villarreal et al [48] reviewed mobile
systems designed for health care monitoring.

Our systematic review focused on studies published in the
COVID-19 era to consider how telehealth was used in primary
care during the pandemic. A recent systematic review by
Snoswell et al [15] aligns with our recommendations, stating
that telehealth services are equivalent to or (at times) more

effective than in-person care. However, Snoswell et al [15] did
not report telehealth experience during the COVID-19 pandemic,
instead focusing on studies from 2010 to 2019. A recent
systematic review from Carrillo de Albornoz et al [50] evaluated
the effectiveness of teleconsultations in primary care and mental
health services in comparison with in-person visits, providing
similar insights into the usability of telehealth as an effective
alternative to in-person consultations. However, although this
study was published following the emergence of COVID-19,
the included studies were not conducted during the COVID-19
pandemic and, therefore, this study does not reflect on the
effectiveness of teleconsultations in light of the pandemic.

A rapid scoping review by Jonnagaddala et al [51] explored
facilitators and inhibitors of primary care informatics to
COVID-19 in Australia. Similarly, we found limited high-quality
evidence on the effectiveness, access, equity, utility, safety, and
quality of digital health during the COVID-19 pandemic.
However, our review differs in the systematic review approach.
We identified 7 visit types where telehealth was used in primary
care during the pandemic, outlining the benefits and drawbacks
of using telehealth for each visit type and in primary care
overall.

Implications for Digital Health, Clinical Practice, and
Future Research
In total, 3 key insights have emerged from this review.

Key Insight 1: Rigorous Research Is Needed to
Investigate Which Visit Types Are Indeed Suitable for
Telehealth in Primary care
The results of our systematic review identified a lack of quality
evidence on primary care visit types suitable for telehealth.
Most of the included studies (13/19, 68%) were level-4 evidence
(ie, case series or cross-sectional studies), which are subject to
self-report bias. Furthermore, there is a lack of focus on how
telehealth was used for different visit types in primary care. The
saturation of level-4 evidence in this space conveys that these
study designs are indeed the current state of the art, presumably
from the relatively short time since the start of the pandemic as
well as the lack of ability to conduct follow-up or person-facing
studies because of social distancing restrictions. As we move
into the era of living with COVID-19, studies with a longitudinal
follow-up that focus on specific visit types are required to assess
the long-term suitability of telehealth in primary care. In
addition, there was a lack of research in the included studies
reporting clinical outcomes related to telehealth use during the
pandemic, presumably because, at the time of searching and
writing (ie, early phases of the COVID-19 pandemic), studies
assessing clinical outcomes of using telehealth during the
pandemic would not have yet been available. When those studies
become available, future systematic reviews may wish to assess
clinical outcomes of using telehealth during the pandemic so
that the findings in this review reporting the suitability of
telehealth for primary care visits can be validated.

Key Insight 2: Long-term Models of Telehealth and Their
Impact on Patient Outcomes and Health Service Use
As a result of COVID-19, several countries (eg, Australia, the
United States, and the United Kingdom) have introduced
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permanent or long-term funding for telehealth in primary care.
For example, the Australian government introduced long-term
funding for telehealth in December 2021 to align with initiatives
to reduce community COVID-19 transmission [52]. Australians
have welcomed telehealth consultations, with >86 million
primary care telehealth consultations completed in Australia
since the beginning of the COVID-19 pandemic [8]. Other
countries such as the United States and the United Kingdom
are exploring a permanent funding scheme for telehealth within
their existing health care models. Almost every state Medicaid
program has a reimbursement coverage account for telehealth
services in the United States [53]. The Centers for Disease
Control and Prevention also introduced multiple waivers during
the COVID-19 pandemic to grant payment parity for telehealth
[54].

Before the pandemic, telehealth policies in the United Kingdom
alone were underdetermined across England, Wales, Northern
Ireland, and Scotland. Challenges related to outdated systems
and underinvestment in telehealth have hindered the progress
of digitization [55]. During the COVID-19 pandemic, health
care services under the National Health Service took a “total
triage” approach where all patients were referred first to
telehealth services over face-to-face services [55]. According
to the Health Foundation, this initiative has caused a rapid and
significant increase in telehealth use, reporting the highest-ever
number of telephone consultations in English primary care as
a consequence of the pandemic [56]. For example, a
videoconferencing telehealth platform called “Near Me”
reported having been used by approximately 300 people per
week at the start of 2020, rising to approximately 20,000
appointments every week by mid-2020 [55]. By July 2021, >1
million appointments were delivered via telehealth services
[55]. Furthermore, 11.4 million telephone consultations were
reported to have been completed in March 2021 compared with
3.5 million in March 2019 [56]. This rapid and unforeseen
uptake of telehealth services raises questions as to whether
unintended consequences and safety risks may have been
introduced as well [55].

Governments have recognized the value of telehealth during
the pandemic, especially for patients who struggle with mobility
[1,25], live remotely or rurally [15], or are unable to find suitable
times to attend in-person consultations [8], regardless of their
COVID-19 status. Future research ought to examine how
long-term funding models of telehealth affect patient outcomes,
help-seeking behaviors, and health service use patterns. For
example, further research is required to compare the health
outcomes and quality of care between patients who primarily
use telehealth experiences versus those who use in-person care.
In addition, further research is required to analyze how changes
in health service use patterns because of routine telehealth use
affect the funneling of resources, particularly training
opportunities for health care providers on how to use telehealth
optimally and the communication skills required in telehealth.

Furthermore, there is the additional consideration of how designs
of telehealth need to evolve with emerging safety, ethical, and
equitable concerns, for example, how to ensure that all patients
can equally access care, regardless of the digital divide, if more

resources are directed to providing telehealth over in-person
services. In addition, further research is required to explore how
to support patient-provider relationships when care is delivered
across a blended model of approaches, as well as further research
into appropriate safety-netting practices during teleconsultations
[57].

Key Insight 3: Patient Safety at Home Is Paramount as
Care and Technology Are Increasingly Used Outside
Clinical Settings
Increasingly, care is moved closer to patients’ homes, blended
with technology. The pandemic has accelerated the movement
of blending care and technology at home. For example, home
oximetry monitoring programs have been introduced for
monitoring positive COVID-19 patients in the United Kingdom,
and a recent prospective study has reported patient satisfaction
and early success [58]. Other digital health services have also
been increasingly introduced for use outside clinical settings,
such as assistive technology to support independent living at
home [13,59], remote monitoring mobile apps [60,61], and
e–mental health services (eg, Betterhelp and Headspace) [52].

Introducing technologies directly into patients’ homes as part
of routine service delivery may encourage more frequent
monitoring of signs and symptoms. However, patient-facing
medical devices and at-home care can introduce a new
dimension of patient risk [62]. Historically, the role of
conducting physical examinations and use of medical devices
was reserved for health care professionals [63]. However, with
telehealth and remote care services, the responsibility of physical
examination and monitoring falls onto the patient, requiring
patients to have the necessary knowledge and skills to conduct
these previously clinician-directed tasks effectively by
themselves or be aware of when to seek additional assistance
[63]. As a result, patients could become vulnerable to
unanticipated risks such as inaccurate self-examination [64,65],
unreliable patient self-reports, reduced person-centered care
because of language or cognitive barriers, inability to conduct
a physical examination properly, or incapacity to receive care
properly because of technological limitations [62,63]. Further
investigation is required to identify the types of adverse events
that can occur during remote care (eg, whether people are using
technologies as intended or whether technologies are introducing
unintended consequences) and ways to combat these adverse
events [64].

Conclusions
This systematic review identified 7 visit types in primary care
with telehealth support during the COVID-19 pandemic, with
the greatest number of studies reporting benefit findings for
chronic condition management visits (17/19, 89%). Benefits
and drawbacks of using telehealth were reported across different
visit types from patient and clinician perspectives, as well as
the circumstances in which telehealth was found to be suitable
(or not) for each primary care visit type. As telehealth potentially
becomes a long-term care delivery model, improving telehealth
consultation delivery while monitoring patient safety at home
will emerge as an important priority area.
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Abstract

The value of virtual world and digital phenotyping has been demonstrated in several fields, and their applications in the field of
surgery are worthy of attention and exploration. This viewpoint describes the necessity and approach to understanding the deeper
potential of computer-assisted surgery through interaction and symbiosis between virtual and real spaces. We propose to embed
digital twin technology into all aspects of computer-assisted surgery rather than just the surgical object and further apply it to the
whole process from patient treatment to recovery. A more personalized, precise, and predictable surgery is our vision.

(JMIR Med Inform 2022;10(11):e35138)   doi:10.2196/35138
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Introduction

As is well known, computer-assisted surgery (CAS) has been
widely used in the field of surgery. It enables the precise
positioning and visualization of the patient’s deconstructive
structures and surgical instruments by integrating medical
imaging, spatial positioning technology, and various computer
technologies. Therefore, with CAS, the surgeon can plan the
surgical procedure in a precise manner before the operation,
such as the access point, implant selection, and placement [1].
However, intraoperative planning cannot be implemented
accurately during surgery due to intraoperative disturbances
such as respiratory movements and tissue deformation.
Moreover, CAS is still lacking in postoperative prediction,
prevention of surgical complications, and postoperative
evaluation.

Digital twin (DT) is a concept or technology that refers to create
a multiphysical, multiscale, and high-fidelity virtual
representation of physical entity in the virtual space. We call
this virtual representation the DT of its corresponding physical
entity. The virtual representation can be dynamically updated

when the physical entities change, enabling real-time mapping
from physical space to virtual space. DT originates in the
industry [2] and is now used in many fields such as precision
health [3], manufacturing, construction, product design, and
weather prediction [4]. Considering the features of CAS and
DT, we propose to bring DT to CAS and explain why and how
DT can be used to enhance the application of CAS in all its
phases, especially the potential value in remote surgery when
combining CAS with DT.

Bringing DT to CAS

Figure 1 illustrates our proposed DT-based CAS solution. We
collect data related to surgical objects, surgical instruments, and
medical devices in the preoperative period, and use these data
to build their multiphysical, multiscale, and high-fidelity DT
models in virtual space by mathematical simulation and
modeling [5]. DT models can dynamically simulate a wide range
of properties of the patient’s tissues and organs, such as
geometric, physical, physiological, and behavioral properties.
Therefore, preoperative planning, surgical simulation, and
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postoperative prediction based on these models will be more
accurate and comprehensive.

Information, as well as the changes of information from surgical
instruments and the patient (such as anatomical structure,
position, posture, etc), are acquired during surgery using
real-time imaging technologies and a variety of sensors. Due
to the high requirements for real-time performance, it is much
more difficult to obtain whole information intraoperatively
compared to preoperatively. For example, the clarity of the
patient’s anatomical structure obtained by ultrasound imaging
is much less than that of preoperative CT (computed
tomography) and MRI (magnetic resonance imaging). However,
we can quickly capture local feature information from ultrasound
images through advanced methods such as deep learning [6].
Combining this local information with the preoperative DT
models, which already have physical, physiological, and
behavioral characteristics, it is possible to obtain the overall
dynamic changes of the patient’s anatomical structure. In this
way, intraoperative changes can be evaluated in real time, and
all the information in the virtual space can be visualized when
using extended reality (virtual reality, augmented reality, and
mixed reality), and it also provides the surgeon with real-time,
accurate surgical navigation.

Sensors can collect a variety of data that are needed to update
the DT during the procedure. Commonly used sensors are
physiological, mechanical, and position sensors. Among them,
position sensors play a key role in positioning and tracking in
surgical navigation and can help achieve a baseline position

mapping relationship between the real surgical space and the
DT surgical space. Optical sensors have higher accuracy and
real-time performance compared with other position sensors.
They are able to collect position and posture data of the optical
marker in real time in the form of quaternions or transformation
matrix. We usually fix the optical marker on the object of
interest. For example, we can fix the optical marker on the
ultrasound probe before the procedure and obtain the conversion
between the optical marker coordinate system and the ultrasound
image coordinate system by ultrasound probe calibration [7].
Intraoperatively, we can not only collect real-time position and
posture information of the ultrasound probe in real time but also
obtain the spatial position of any point displayed on the
ultrasound image.

An application programming interface is a software intermediary
that can create data links between different devices. We can use
application programming interfaces of medical devices to obtain
operational data in real-time and update the DTs. Through these
DTs, we can monitor, control, and manage medical devices in
a uniform way.

While the surgery is being performed in real space, a digital
record of the surgery is updated simultaneously in virtual space,
which we call the process twin of the whole surgery process.
This record can be used for postoperative evaluation of the
patient, including the evaluation of the actual surgery, the
surgical procedure, the choice of strategy, and so on. It can also
act as an important reference for postoperative follow-up.

Figure 1. Digital twin–based computer-assisted surgery (CAS) solution. With the support of digital twin surgery, we can perform monitoring, optimization,
recording, and prediction for the real surgery. API: application programming interface; AR: augmented reality; CT: computed tomography; MR: mixed
reality; MRI: magnetic resonance imaging; VR: virtual reality.
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Potential in Remote Surgery

It is the establishment of an accurate match between the real
world and the virtual space that enables effective remote surgery
on real patients using DTs. The surgeon can obtain the real-time
situation of the surgery at the remote end by the dynamically
updated DTs and can use a haptic device to remotely control
the robotic arm to perform the surgery [8] through high-speed,
low-latency communication technologies such as 5G. Since the
DTs contain rich information about the surgical object, the
surgeon can obtain important feedback information [9] at the
remote end through the haptic device without any other sensors.
For each surgical device, it can also be monitored and controlled
remotely through their DTs in virtual space.

Data Processing and Security

Data-driven approach is one of the core approaches to implement
DT. The process of dynamically updating the DTs
intraoperatively requires a large amount of data computation
and interchange. By using cloud computing technology [10],
hardware costs can be effectively reduced. Medical Cyber
Physical Systems are the networked health care integration of
medical devices [11]. They provide a superior way to capture,
store, and securely access large amounts of medical data. In the
future, its development may provide important data support for
the application of DT [12]. Additional attention needs to be paid

to the fact that the collection of private health data on human
individuals may raise complex ethical issues [13]. Thus, data
security should be carefully considered for the storage and
retrieval of operation data, and data process encryption should
be embodied in DT.

Discussion

Bringing DT to CAS is to monitor, optimize, record, and predict
the surgical process in the real space by creating a virtual twin
surgical space (including the DTs of the surgical object, surgical
instruments, and medical equipment). In this way, it can leverage
and integrate data from the entire surgical phase and is applied
to the patient from treatment to recovery. This also determines
the higher level of complexity of the DT systems. Different
types of data from multiple devices need to be integrated within
the same system and ensure the system’s stable operation. The
real-time dynamic response of the DTs requires high data
transmission speed and network speed, especially in the remote
surgery. In addition, the simulation of complex physiological
signals of biological tissues is still a challenge that needs to be
faced if a more detailed patient model is desired. In the future,
the virtual twin space can be used as a carrier to establish an
integrated, digital surgical process management system and to
form a new clinical implementation system. Under such a
system, surgical treatment will be more personalized, precise,
and predictable.
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Abstract

Background: Given the costs of machine learning implementation, a systematic approach to prioritizing which models to
implement into clinical practice may be valuable.

Objective: The primary objective was to determine the health care attributes respondents at 2 pediatric institutions rate as
important when prioritizing machine learning model implementation. The secondary objective was to describe their perspectives
on implementation using a qualitative approach.

Methods: In this mixed methods study, we distributed a survey to health system leaders, physicians, and data scientists at 2
pediatric institutions. We asked respondents to rank the following 5 attributes in terms of implementation usefulness: the clinical
problem was common, the clinical problem caused substantial morbidity and mortality, risk stratification led to different actions
that could reasonably improve patient outcomes, reducing physician workload, and saving money. Important attributes were those
ranked as first or second most important. Individual qualitative interviews were conducted with a subsample of respondents.

Results: Among 613 eligible respondents, 275 (44.9%) responded. Qualitative interviews were conducted with 17 respondents.
The most common important attributes were risk stratification leading to different actions (205/275, 74.5%) and clinical problem
causing substantial morbidity or mortality (177/275, 64.4%). The attributes considered least important were reducing physician
workload and saving money. Qualitative interviews consistently prioritized implementations that improved patient outcomes.

Conclusions: Respondents prioritized machine learning model implementation where risk stratification would lead to different
actions and clinical problems that caused substantial morbidity and mortality. Implementations that improved patient outcomes
were prioritized. These results can help provide a framework for machine learning model implementation.

(JMIR Med Inform 2022;10(11):e40039)   doi:10.2196/40039
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Introduction

Machine learning has had growing popularity in clinical settings
related to the widespread adoption of electronic health records
[1-3], combined with increasing data storage and computational
ability [4]. In this setting, machine learning can be useful for
multiple purposes including (1) to facilitate diagnoses, as in
pathology [5,6] and radiology [7]; (2) to make predictions about
outcomes for risk stratification; and (3) to improve resource
utilization by anticipating volumes of patients or services [8].
However, despite the initial enthusiasm around machine learning
in health care, domain experts have expressed caution [9,10].
Similar information technology solutions have commonly failed
to be implemented or provide utility [11].

An important consideration impacting utility is choosing the
clinical setting and problem in which a machine learning model
is to be implemented [11]. A machine learning model’s
predictions need to augment current approaches in a way that
is meaningful and actionable without introducing excessive
burden. It is important to carefully plan a machine learning
model’s implementation because the costs of model deployment
are considerable. Such costs may include resources required to
develop and maintain the machine learning model, training of
the intended model users regarding how to access and interpret
the model’s predictions, and support to help users implement
the results into practice [12,13].

Given these costs, a systematic approach for determining which
machine learning models should be prioritized for
implementation into clinical practice may be valuable. In
determining priorities, it would be important to involve key
stakeholders at the institution in which deployment is planned.
We chose to survey 2 pediatric centers, 1 in the United States
with a more established biomedical informatics program, and
1 in Canada with a less established biomedical informatics
program, to gain insight into whether experience and expertise
affected preferences for machine learning model prioritization.
Consequently, the primary objective was to determine the health
care attributes respondents at 2 pediatric institutions rate as
important when prioritizing machine learning model
implementation. The secondary objective was to describe their
perspectives on machine learning model implementation using
a qualitative approach.

Methods

Study Design and Setting
This was a mixed methods study that included a quantitative
and a qualitative component. The institutions were The Hospital
for Sick Children (SickKids) in Toronto, Ontario, Canada, and
Lucile Packard Children’s Hospital in Palo Alto, California,
United States.

Participants
We included health system leaders, physicians, and data
scientists at SickKids and Lucile Packard Children’s Hospital
at the time of survey distribution. We excluded trainees.

Procedures
The survey was developed by the study team based on their
impression of health care attributes respondents might consider
to be important; the machine learning–focused questions are
presented as Multimedia Appendix 1. Potential participants
were identified through organizational emailing lists. The
quantitative survey was distributed by email and participants
completed the survey in REDCap [14]. The survey asked
respondents to indicate whether they were health system leaders,
physicians, or data scientists; respondents could indicate
multiple categories. Demographic variables included clinical
specialty (if applicable), years employed following completion
of training, and gender.

We then asked about their knowledge of artificial intelligence
on a 5-point Likert scale ranging from 1 (no knowledge at all)
to 5 (a lot of knowledge). We asked them to rate their
understanding of how machine learning models are built and
interpreted, and how statistics are conducted and interpreted,
using 5-point Likert scales ranging from 1 (no understanding)
to 5 (fully understand). We asked if they had decision-making
ability to implement artificial intelligence initiatives within their
work environment, and how many machine learning models
had been deployed at their institutions in the last 5 years.

The next section asked respondents to rank the following 5
clinical problem and implementation consequence attributes in
terms of whether machine learning implementation would be
useful: “the clinical problem being solved is common,” “the
clinical problem causes substantial morbidity or mortality,”
“risk stratification would lead to different clinical actions that
could reasonably improve patient outcomes,” “implementing
the model could reduce physician workload,” and “implementing
the model could save money.” Important attributes were defined
as those ranked as most important or second most important
(rank of 1 or 2) by respondents. The survey then asked 2
open-ended questions focused on clinical areas where being
able to accurately predict an outcome might be useful, and
clinical areas in which prioritization or reorganization of
waitlists might be useful. Finally, the survey asked whether they
would be willing to participate in a qualitative interview.

For the qualitative aspect, we purposively sampled respondents
to maximize variation by institution and self-rated understanding
of machine learning. Semistructured interviews were conducted
using Zoom (Zoom Video Communications, Inc.) or Microsoft
Teams by a member of the SickKids team (EP) with expertise
in the conduct of qualitative interviews. Respondents were asked
to list 3 scenarios in which a machine learning model for risk
stratification could be useful and then to state which scenario
was the most important to implement first and the rationale for
the choice. They were then asked how they would feel about
using a machine learning model for risk stratification as opposed
to their current approach, and to describe concerns they had
about using a machine learning model to guide patient care.
The interviews were recorded and transcribed verbatim.

Analysis
The data from the quantitative survey from SickKids and Lucile
Packard Children’s Hospital were compared using the Fisher
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exact test. Analyses were performed in R (R Core Team) using
RStudio version 3.6.1 [15,16].

The analysis of qualitative data was performed according to the
principles of grounded theory methodology; data collection and
analysis occurred concurrently. Qualitative transcripts were
analyzed by 2 independent reviewers (NA and EP) using the
constant comparative method to develop a theoretical framework
for respondents’ perspectives of machine learning that are
grounded in their individual experiences and understandings.
Sampling was continued until saturation was reached, which
was defined as the point in which no new themes emerged from
the data.

Ethics Approval
The study was approved by the Research Ethics Board at
SickKids. The need for Institutional Review Board approval
was waived by Lucile Packard Children’s Hospital as the data
collection was performed by SickKids personnel. For the
quantitative survey, completion of the survey was considered
implied consent to study participation. For the qualitative
component, respondents provided verbal consent to participate.

Results

The quantitative survey was distributed at SickKids between
November 1, 2021, and January 6, 2022 and at Lucile Packard
Children’s Hospital between March 15, 2022, and April 12,
2022. Among 613 eligible respondents, 275 (44.9%) responded.
Figure 1 shows the participant identification and selection
flowchart, including the number participating in the qualitative
interviews when saturation was reached.

Table 1 presents the demographic characteristics of respondents;
physician specialty (P<.001) and years from completion of
training (P=.006) were significantly different between the 2
institutions. The majority of respondents were physicians
(165/195, 84.6%, at SickKids and 73/80, 91.3%, at Lucile

Packard Children’s Hospital). The number of respondents who
had decision-making ability to implement artificial intelligence
initiatives was 99/195 (50.8%) at SickKids and 41/80 (51.3%)
at Lucile Packard Children’s Hospital. Most respondents did
not know the number of machine learning models deployed at
their institution over the last 5 years (137/195, 70.3%, at
SickKids and 53/80, 66.3%, at Lucile Packard Children’s
Hospital).

Table 2 illustrates respondents’ self-perceived knowledge of
artificial intelligence and understanding of machine learning
and statistics. There were no statistically significant differences
in these ratings by institution (artificial intelligence knowledge,
P=.93; machine learning development and interpretation, P=.72;
statistics conduct and interpretation, P=.19). The percentage of
respondents who stated they had “moderate” or “a lot” of
artificial intelligence knowledge was 17.9% (35/195) at
SickKids and 17.5% (14/80) at Lucile Packard Children’s
Hospital. Multimedia Appendix 2 compares respondent
characteristics by those who self-rated their artificial intelligence
knowledge as high (score of 4 or 5 on the 5-point Likert scale)
versus not high across institutions. Those who self-rated their
knowledge as high were significantly more likely to be males
(P=.02) and nonphysicians (P=.006). The percentage of
respondents who stated they understood machine learning
development and interpretation at a “moderate” level or “fully”
was 15.9% (31/195) at SickKids and 11.3% (9/80) at Lucile
Packard Children’s Hospital. Across both institutions, the
percentage who stated their understanding of machine learning
was “none” or “very little” was 146/275 (53.1%). Conversely,
the percentage of respondents who stated they understood
statistics conduct and interpretation at a “moderate” level or
“fully” was 54.4% (106/195) at SickKids and 42.5% (34/80) at
Lucile Packard Children’s Hospital. Across both institutions,
the percentage who stated their understanding of statistics was
“none” or “very little” was 30/275 (10.9%).

Figure 1. CONSORT (Consolidated Standards of Reporting Trials) diagram of participant identification, selection, and participation.
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Table 1. Demographic characteristics of participants at 2 pediatric institutions (N=275).

P valueLucile Packard Children’s Hospital (n=80), n (%)SickKids (n=195), n (%)Characteristic

.6435 (43.8)93 (47.7)Male gender

Professional rolea

.2073 (91.3)165 (84.6)Physician

.0517 (21.3)22 (11.3)Health system leader

.182 (2.5)15 (7.7)Data scientist

<.001Physician specialty

14 (17.5)33 (16.9)Hematology oncology

7 (8.8)21 (10.8)General medicine

12 (15.0)11 (5.6)Critical care medicine

0 (0)14 (7.2)Emergency medicine

7 (8.8)9 (4.6)Cardiology

3 (3.8)11 (5.6)Neurology

6 (7.5)10 (5.1)Endocrinology and metabolism

0 (0)9 (4.6)Gastroenterology

4 (5.0)4 (2.1)Respirology

5 (6.3)2 (1.0)Infectious disease

6 (7.5)0 (0)Surgery

0 (0)6 (3.1)Adolescent medicine

7 (8.8)20 (10.3)Other

9 (11.3)45 (23.1)Not known

.006Years from completion of training

0 (0)6 (3.1)<1

5 (6.3)38 (19.5)1-4

25 (31.3)38 (19.5)5-10

50 (62.5)113 (57.9)11+

>.9941 (51.3)99 (50.8)Decision-making ability to implement artificial intelligence
initiatives

.43Number of machine learning models deployed at institution in last 5 years

11 (13.8)31 (15.9)None

6 (7.5)7 (3.6)1

9 (11.3)14 (7.2)2-4

1 (1.3)2 (1.0)5-10

0 (0)4 (2.1)11+

53 (66.3)137 (70.3)Do not know

aRespondent may choose more than 1 option and thus, numbers do not add to 100%.
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Table 2. Self-rating of knowledge of artificial intelligence and understanding of machine learning and statistics.

P-valueLucile Packard Children’s Hospital (n=80), n (%)SickKids (n=195), n (%)Areas

.93Artificial intelligence knowledge

5 (6.3)10 (5.1)None

30 (37.5)67 (34.4)Very little

31 (38.8)83 (42.6)Some

11 (13.8)30 (15.4)Moderate

3 (3.8)5 (2.6)A lot

.72Machine learning development and interpretation

18 (22.5)44 (22.6)None

28 (35.0)56 (28.7)Very little

25 (31.3)64 (32.8)Somewhat

8 (10.0)24 (12.3)Moderate

1 (1.3)7 (3.6)Fully

.19Statistics conduct and interpretation

1 (1.3)4 (2.1)None

7 (8.8)18 (9.2)Very little

38 (47.5)67 (34.4)Somewhat

29 (36.3)78 (40.0)Moderate

5 (6.3)28 (14.4)Fully

Table 3 reveals the proportion of respondents who ranked each
attribute as important (ranked first or second among the 5
attributes) for prioritization of machine learning models. There
were no significant differences in these proportions by institution
for any of the 5 attributes (Table 3). Across both sites, the most
common important attributes were risk stratification leading to
different actions (205/275, 74.5%) and clinical problem causes

substantial morbidity or mortality (177/275, 64.4%). The
attributes considered least important were “implementing the
model could reduce physician workload” (40/275, 14.5%) and
“implementing the model could save money” (13/275, 4.7%).
The median importance scores for both institutions combined
are also shown in Table 3 (where lower is more important).

Table 3. Ranked as importanta by respondents for prioritization of machine learning.

Median importance

score (IQR)b
P-valueLucile Packard Children’s

Hospital (n=80), n (%)
SickKids (n=195),
n (%)

Attributes considered important

3 (2-3).1635 (43.8)66 (33.8)The clinical problem being solved is common

2 (2-3).0544 (55.0)133 (68.2)The clinical problem causes substantial morbidity or mortality

1 (1-2)>.9960 (75.0)145 (74.4)Risk stratification would lead to different clinical actions that
could reasonably improve patient outcomes

4 (3-4).9611 (13.8)29 (14.9)Implementing the model could reduce physician workload

5 (4-5).422 (2.5)11 (5.6)Implementing the model could save money

aImportant defined as attributes ranked as most important or second most important (rank of 1 or 2) in terms of whether a machine learning model would
be useful.
bAcross both institutions.

Table 4 shows the themes and subthemes from the qualitative
interviews. Perceived benefits of machine learning model
implementation included facilitating decision making in complex
scenarios, supporting less experienced clinicians, reducing
cognitive load, and reducing cognitive bias. It was also
expressed that machine learning models can potentially improve
the quality of care through standardization, more effective triage,
and facilitating precision medicine. Finally, machine learning

models had the potential to reduce physician workload.
However, perceived challenges of machine learning model
implementation included the potential for algorithmic bias, lack
of transparency and trust, and failure to incorporate clinical
expertise. Machine learning model implementation might also
adversely affect quality of care and respondents spoke about
the need to evaluate the impact of machine learning model
implementation. Practical concerns raised about machine
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learning model implementation included challenges
incorporating the model into the clinical workflow and questions
about accountability in the event of poor outcomes arising from
machine learning model–directed actions. Finally, uncertainty
about the physician’s role was identified. When asked to
prioritize 1 clinical scenario for machine learning model
implementation, the rationale for choosing which scenario to

implement consistently related to impact on patient outcomes:
“most benefit to kids,” “leading cause of death,” and
“implications can be extremely serious.”

Multimedia Appendix 3 illustrates examples of clinical areas
that could be prioritized for machine learning initiatives
identified from the quantitative survey.
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Table 4. Perspectives of machine learning implementation in pediatric medicine from qualitative interviews.

Example quotationsThemes and subthemes

Benefits of machine learning implementation

Facilitates decision making

To me was very disturbing scenario where a very complex child with a number of issues, [...] Having some kind
of system which alerts physicians who are directly involved as to not any in their own domains, but in other do-
mains’ risk would be helpful

Complex scenario

Well, you know where I see potential strength is not so much for the highly experienced physician, but more for
the person who’s starting out [...] and just doesn't have that experience base yet.

Support less experienced
clinicians

It can offload some of the cognitive load. So yeah, absolutely. I mean there's many times you find yourself in the
middle of the night very tired, half groggy and trying to make a decision and kind of going back and forth in your
brain. You know, for like half an hour - should I do this or that?

Reduce cognitive load

[...]  it's not that it replaces your judgment, it supplements another sense. ... your decisions informed no matter
by your experience but it's informed by thousands of experiences, computed even more times to see all the possi-

Reduce cognitive bias

bilities and then come up with a best sort of path forward. The most likely scenario. And understanding that it is
not a perfect prediction but it's a much more ... It's where that big data come in, right? It's really powered by
real knowledge. It's not personal perceptions or personal experience, which is very biased and skewed.

Improve quality of care

There probably is some significant interpersonal variability in terms of interpreting the guidelines and then decision
making around management, and so if we could use machine learning so that there’s less of that, all the while
providing I guess more accurate or better care. I think that would be very helpful.

Standardize care

I feel like if we were able to use machine learning to risk stratify so that kids who are at higher risk could get
more timely access to a referral. Recognizing that in this particular situation, certainly early diagnosis and
management can really impact the trajectory of a child’s outcome. I think that would be helpful.

More effective triage

And what I mean by that if you look at it, look at a population of babies who were all born, say at 25 weeks. There
will be individual differences that should [...] be detectable by machine learning or artificial intelligence. So instead

Facilitate precision
medicine

of treating every baby as simply a member of the population, I can sort of drill down onto specific physiological
and clinical factors for that baby, [...] get closer to the idea of personalized medicine.

Reduce physician workload

If it was really useful, then maybe it would free me up to do things that only I can do.Freeing up time for
physicians

Challenges with machine learning implementation

Hinders decision making

It's all about the biases like built into the system and how it's learned the data that you're putting in, and then
how you get that out and how it would either pick up on our own biases, or like pre-existing, whether those are
like systemic like sort of racial, ethnic or gendered biases [...] And so then that's not really helping us.

Algorithmic bias

Understanding what it is doing: like if it's doing things that I can't follow or don't understand, I'm going to be
less to trust its opinion [...] I want to understand how it came to that decision so I can ask myself if I agree.

Lack of transparency and
trust

I think it's like all the tools we have in medicine that if you use it appropriately, it can be incredibly powerful.
But if it's used as a, you know, let me abandon all my other skills and I'll just follow this kind of direction, it po-
tentially could be harmful, so I think a lot of thought will be needed.

I mean in some ways it helps to predict, but I think I've always been a little skeptical about machine learning
because biology and people do not follow an algorithm, they don’t follow a formula.

Not incorporating clinical
expertise into decisions

Negative impact on quality of care

[...] looking at what the outcomes are and that we're actually improving patient care. So if we're admitting more
but the outcomes are the same and the return visits are the same, then did it really matter and are we improving

Need for outcome evalua-
tion

patient care or we just increasing cost to the system? And so, I think it needs constant evaluation, just like anything
else that we do...

Of course, you know your outcome or the recommendation, or how machine learning is used is always only as
good as the input, right?

Data quality

Practical concerns

I guess there’s going to be some learning curve. How do we use it? Is it feasible? Is it on my iPhone? Do I have
to go into certain area, how fast will it take me to get the response and along with the interface, how friendly is
the interface? You know things that are related to stuff that we have not seen yet.

Challenges in workflow
implementation
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Example quotationsThemes and subthemes

The challenge with machine learning over clinical decision rules is right now with the accountability piece and
it's just getting to what that's going to be like. We don't blame, you know, the lab test or the lab. You know, if we
don't pick it up. But right now, I think people feeling if they go against it, what does that mean and do we have
to add like admit everybody or treat everybody based on that, knowing that like you alluded on the first question
that it is a probability [...] So what does that mean for the provider thing choose to ignore it versus if they choose
to follow it in harm happens

Accountability

Physician role

On the other hand, you know, maybe it also kind of takes away a little bit from like, I guess there's a fear of what
exactly is the doctor's role. If the computer can do a better job at diagnosing then I can

Uncertainty in physician
role

Discussion

In this mixed methods study, we found that the attributes most
commonly listed as important for machine learning model
implementation were risk stratification leading to different
actions that could reasonably improve patient outcomes and a
clinical problem that causes substantial morbidity or mortality.
Few respondents considered reducing physician workload and
saving money as important. We also found that important
attributes were similar at the 2 institutions despite different
levels of biomedical informatic program establishment and
different health care systems.

The wide range of recommended areas for machine learning
model implementation highlights the need for prioritization
given the likely limited capacity to develop, deploy, and monitor
machine learning models, even at large institutions with mature
bioinformatics programs. This study is important as it provides
a framework by which institutional leaders could make decisions
about which machine learning models to prioritize for
implementation. While we found that risk stratification that
improves patient outcomes was the most common important
attribute, additional considerations include actions that would
arise from high- and low-risk labels, evidence that differential
actions will improve outcomes, and identifying ideal thresholds
for risk categorization. Even once a model is deployed, ongoing
monitoring of model performance and the impact of model
deployment on patient care and clinical workflows are additional
postimplementation considerations.

While we evaluated attribute importance across respondent
types, Wears and Berg [11] previously discussed the complex
relationship between decision makers, beneficiaries of a machine
learning solution, and those who shoulder the burden of
implementation. They noted that a mismatch between these
individuals can lead to failure. More specifically, it is often the
administrator who is the decision maker and recipient of
benefits, while it is the clinician who often shoulders the burden
of implementation [11]. Anticipation and acknowledgement of
conflicting perspectives will be required during the prioritization
process among stakeholder types.

We also found that across both institutions, respondents had
greater confidence in their understanding of statistics and
relatively lower confidence in their understanding of machine
learning. These perspectives did not differ between the 2
institutions despite different levels of establishment of their

biomedical informatic programs. Our results suggest that across
pediatric medicine in general, more education focused on
machine learning is required during training and continuing
education.

Our results complement the work of others who have highlighted
the requirements of clinical decision support including those
based on machine learning. Items important to consider include
the need to avoid black boxes, excessive time requirement, and
complexity in addition to ensuring relevance, respect, and
scientific validity [17-19]. It also accompanies work
demonstrating that barriers to adoption of artificial intelligence
are not restricted to clinicians but also include parents [20,21].
It may also be useful to compare our findings with studies
conducted outside of pediatric medicine. We found that the
main anticipated benefits of machine learning implementation
were facilitation of decision making, improvement in quality
of care, and reduction in physician workload. Compared with
our findings, benefits and challenges associated with artificial
intelligence were similar in ophthalmology, dermatology,
radiology, optometry, and surgery [22,23]. However, our study
is unique because of the consideration of how to prioritize
problems for implementation, a pragmatic consideration in
developing a clinical program. In addition, the focus on
pediatrics may be important as the nature of clinical problems,
perspectives, and stakeholders can differ between pediatric and
adult patient populations.

The strengths of this study include its mixed methods design
and inclusion of 2 different pediatric institutions by country and
establishment of their biomedical informatic programs.
However, our results should be interpreted in light of their
limitations. We had a relatively low response rate; respondents
were likely biased in favor of interest in machine learning. Thus,
nonrespondents likely would have had lower familiarity with
machine learning and likely would have had less strong opinions
about attributes considered important for machine learning
prioritization. We also had a greater proportion of physicians
than system leaders or data scientists; these groups may have
different priorities or implementation concerns.

In conclusion, respondents prioritized machine learning model
implementation where risk stratification would lead to different
actions and clinical problems that caused substantial morbidity
and mortality. Implementations that improved patient outcomes
were prioritized. These results can help provide a framework
for prioritizing machine learning model implementation.
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Abstract

Background: Nursing care is a critical determinant of patient outcomes in the intensive care unit (ICU). Most studies of nursing
care have focused on nursing characteristics aggregated across the ICU (eg, unit-wide nurse-to-patient ratios, education, and
working environment). In contrast, relatively little work has focused on the influence of individual nurses and their characteristics
on patient outcomes. Such research could provide granular information needed to create evidence-based nurse assignments, where
a nurse’s unique skills are matched to each patient’s needs. To date, research in this area is hindered by an inability to link
individual nurses to specific patients retrospectively and at scale.

Objective: This study aimed to determine the feasibility of using nurse metadata from the electronic health record (EHR) to
retrospectively determine nurse-patient assignments in the ICU.

Methods: We used EHR data from 38 ICUs in 18 hospitals from 2018 to 2020. We abstracted data on the time and frequency
of nurse charting of clinical assessments and medication administration; we then used those data to iteratively develop a deterministic
algorithm to identify a single ICU nurse for each patient shift. We examined the accuracy and precision of the algorithm by
performing manual chart review on a randomly selected subset of patient shifts.

Results: The analytic data set contained 5,479,034 unique nurse-patient charting times; 748,771 patient shifts; 87,466
hospitalizations; 70,002 patients; and 8,134 individual nurses. The final algorithm identified a single nurse for 97.3%
(728,533/748,771) of patient shifts. In the remaining 2.7% (20,238/748,771) of patient shifts, the algorithm either identified
multiple nurses (4,755/748,771, 0.6%), no nurse (14,689/748,771, 2%), or the same nurse as the prior shift (794/748,771, 0.1%).
In 200 patient shifts selected for chart review, the algorithm had a 93% accuracy (ie, correctly identifying the primary nurse or
correctly identifying that there was no primary nurse) and a 94.4% precision (ie, correctly identifying the primary nurse when a
primary nurse was identified). Misclassification was most frequently due to patient transitions in care location, such as ICU
transfers, discharges, and admissions.

Conclusions: Metadata from the EHR can accurately identify individual nurse-patient assignments in the ICU. This information
enables novel studies of ICU nurse staffing at the individual nurse-patient level, which may provide further insights into how
nurse staffing can be leveraged to improve patient outcomes.

(JMIR Med Inform 2022;10(11):e37923)   doi:10.2196/37923
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Introduction

Critical care nurses encompass the single largest workforce in
the intensive care unit (ICU) and provide essential patient care
24 hours a day, 7 days a week. Adequate nurse staffing is
essential for high-quality critical care; a large body of literature
shows an association between patient outcomes and nurse
staffing patterns, including nurse-to-patient ratios, nurse
education, and nurse work environments [1-7]. This literature
has been instrumental in the development of ICU staffing
guidelines that strengthen ICU nursing, leading to lower
mortality in US hospitals [8,9]. As beneficial as these guidelines
have been, one limitation is that they focus on ICU nurses on
average, rather than as individuals with varying levels of
expertise, experience, and familiarity with the other members
of the interprofessional care team. As a result, these approaches
fail to consider the specific actions and knowledge of individual
critical care nurses at the bedside and fail to account for staffing
changes that occur throughout a patient’s ICU stay. These
approaches are also subject to the ecological fallacy, since
epidemiological relationships observed at the group level may
not exist at the individual patient level [10].

More research is needed to understand how individual nurse
characteristics, not just nursing characteristics in aggregate,
influence patient outcomes. A critical barrier to progress in this
area is the lack of a valid and reliable approach to link specific
nurses to specific patients on a large scale. The electronic health
record (EHR) is a potentially valuable resource for addressing
this gap. Nurses use EHRs for a wide variety of tasks, including
assessment documentation and medication administration. When
completing these tasks, the nurse leaves behind metadata in the
form of an electronic signature indicating that they were the
person that performed the assessment or administered the
medication. In theory, these metadata could be used to link
individual nurses to specific patients during a shift, thereby
generating a high-granularity measure of individual
nurse-to-patient assignments. This approach would facilitate
individual-level research examining the association between
various nurse characteristics and patient outcomes. This research
could also aid in the development of sophisticated algorithms
that generate personalized nurse-to-patient assignments based
on nurse skill and patient need. The objective of this study was

to determine the feasibility of using the metadata from the EHR
in the form of electronic signatures to determine nurse-patient
assignments in the ICU.

Methods

Study Design and Data
We developed and validated an algorithm for retrospectively
linking individual nurses to individual patients at the level of
the nursing shift. The study was conducted in a multihospital
health care system in Western Pennsylvania in the United States.
All hospitals shared a single enterprise-wide electronic medical
record (Cerner PowerChart, Cerner Corporation) with all data
warehoused in a single integrated database. All patient-level
data and nurse metadata were obtained from this warehouse.
To collect the data, key data elements were first identified by
investigators with knowledge of the relevant clinical workflows.
Relevant data were then extracted from the Cerner Millennium
database (Oracle Cerner) using Cerner command language by
a centralized research information technology team and
transferred to the investigative team as text files (.txt) via Globus
secure transfer. Data integrity was assessed for issues such as
delimiter and string errors using Python (version 3.10.7; Python
Software Foundation). The resulting text files were uploaded
into a Microsoft SQL Server database (Microsoft Corp).
Metadata of interest included date- and time-stamped electronic
signatures on clinical assessments (eg, level of sedation, cardiac
rhythm assessments, and neurological assessments) and
medication administrations (Figure 1). Patient data included
demographics, discharge disposition, as well as date and time
stamps for admissions and discharges at the hospitalization and
ICU-stay level. Patient data and nursing metadata were linked
using direct patient identifiers.

Patients qualifying for inclusion in the analytic sample included
adult patients admitted to 38 ICUs in 18 hospitals with discharge
dates from January 1, 2018, to September 30, 2020. There were
no specific exclusion criteria. We divided all ICU admissions
between January 1, 2018, and August 31, 2020, into mutually
exclusive 12-hour nursing shifts. We defined the day shift as 7
AM to 6:59:59 PM, and the night shift as 7 PM to 6:59:59 AM
the following morning.

Figure 1. Sample screenshot of the location of nurse metadata in Cerner PowerChart. Higher-resolution version of this figure is available in Multimedia
Appendix 1.
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Algorithm Development and Validation
Our algorithm has 2 main input variables from the nurse
metadata: (1) the count of the number of unique times a nurse
charted per patient shift and (2) the length of time between the
nurse’s first and last charting times per patient shift. The count
of the number of times a nurse charted per patient shift was used
based on the assumption that a patient’s primary nurse would
chart more frequently than other nurses. We only counted unique
times instead of all charting instances because nurses could
electronically sign multiple charting instances at one time. The
second input variable—the length of time between the nurse’s
first and last charting times per patient shift—was used based
on the assumption that the primary nurse would have a longer
interval between first and last charting times compared to other
nurses.

Using these 2 input variables, we developed a 2-step algorithm
with the following processing methods. In step 1 of the
algorithm, for each patient shift, we identified the primary nurse
as the nurse with the highest number of charting times during
the shift, breaking ties by the longest interval between first and
last charting times. If a tie remained (ie, there was more than
one nurse with the same number of charting times and same
charting interval), we considered there to be no primary nurse
during that shift. We made this decision because we felt we
could not further downselect without introducing randomness
into the algorithm. In step 2, we repeated the method in step 1
but excluded the nurse from the current shift if they were the
primary nurse in the prior shift (from step 1), based on the
assumption that the algorithm might erroneously identify a nurse
that performed an extensive amount of charting after their shift
was complete. At the end of this process there were 2 output
variables, as follows: (1) a binary variable indicating if each
patient shift had either a primary nurse identified or not; and
(2) the identity of the nurse for shifts in which a nurse was
identified. Figure 2 depicts the logic model of the
nurse-to-patient assignment algorithm.

To examine the underlying mechanism of the algorithm, we
examined how each shift was either assigned a primary nurse

or not assigned a primary nurse. Primary nurse assignment could
occur in one of the following 3 ways: (1) only one nurse charted
on the patient in the shift and thus had the highest number of
charting times; (2) multiple nurses charted on the patient in the
shift, but only one of them had the highest number of charting
times; or (3) multiple nurses charted on the patient in the shift,
more than one of them had the highest number of charting times,
and the tie was broken based on the charting time interval. A
shift could not be assigned a primary nurse also in one of the
following 3 ways: (1) only one nurse charted on the patient in
the shift, but it was the primary nurse in the prior shift; (2)
multiple nurses charted on the patient in the shift, more than
one of them had the highest number of charting times, and the
tie was not broken based on the charting time interval; or (3)
no nurses charted on the patient in the shift. Each shift was
categorized into one of the above groups (Table 1).

We validated the performance of the nurse assignment algorithm
against the reference standard of chart review. We selected a
stratified random sample of 200 patient shifts, matching the
proportion of patient shifts within each of the 6 categories
described above. A nurse on the research team (KR) reviewed
the charts, using the full range of clinical documentation to
identify the actual primary nurse when such a nurse existed.
We report the algorithm’s performance based on its accuracy,
defined as the sum of true positives and true negatives divided
by the sum of true positives, true negatives, false positives, and
false negatives; and precision, defined as true positives divided
by the sum of true positives and false positives. We then
performed an additional review of 50 randomly selected patient
shifts where no primary nurse was identified. We used this
review to supplement our understanding of the reasons why no
primary nurse was identified.

We described the data set and the patient sample using standard
summary statistics. Precision and accuracy are reported as
proportions with exact 95% CIs calculated using the binomial
distribution. Data management and statistical analyses were
performed using Microsoft SQL Server and Stata (version 17.0;
StataCorp).
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Figure 2. Logic model of the nurse-to-patient assignment algorithm.

Table 1. Algorithm results (N=748,771).

Patient shifts, n (%)Characteristics

Primary nurse identified (n=728,533, 97.3%)

591,578 (79)One nurse charted

130,591 (17.4)Multiple nurses charted but one nurse charted the most times

6364 (0.8)Multiple nurses charted the most times, tie broken by charting time interval

Primary nurse not identified (n=20,238, 2.7%)

14,689 (2)No nurse charted

4755 (0.6)Multiple nurses charted the most times, tie not broken by charting time interval

794 (0.1)One nurse charted and it was the primary nurse in the prior shift

Ethics Approval
The University of Pittsburgh institutional review board approved
the research protocol (19040420).

Results

The final analytic data file contained 5,479,034 nurse-patient
charting times; 748,771 patient-shifts; 87,466 hospitalizations;
and 70,002 patients (Table 2). There were 8,134 individual
nurses in the data, with 4,797 (59.0%) of them identified as the
primary nurse for at least one shift. Patients had a mean age of
63.8 (SD 17.1) years; 32,199 (46.%) were female; and 58,476
(83.5%) were White. Most patients were discharged to a
long-term acute care hospital or skilled nursing facility
(n=36,435, 52%) or home (n=22,380, 32%; Table 3).

The algorithm performance compared to the reference standard
of chart review is reported in Table 4. The algorithm was highly
accurate, correctly identifying the primary nurse or correctly
identifying that there was no primary nurse 93% of the time.
The algorithm was also quite precise, with 94.4% of cases
having the correct primary nurse when a primary nurse was

identified. In the few cases where the algorithm identified one
primary nurse, but chart review identified a different primary
nurse, it was typically due to either an operating room or floor
nurse being identified, irregular shift lengths (eg, part time
nurses), or emergent scenarios (eg, cardiac arrests) in which
nurses shared tasks.

In the 5 cases from the main chart review where the algorithm
did not identify a primary nurse and in the 50 supplemental
chart review cases, we found that the underlying cause was due
to a variety of circumstances. In about half of the cases, we
could identify a primary nurse in chart review. However, the
information was usually in elements of the EHR not visible to
the algorithm, such as transfer or discharge forms, pain
assessments, or arrangements after patient death. In other cases,
chart review revealed that there were 2 primary nurses, as one
of the nurses was being oriented to the unit. Finally, there were
some cases where no nurse was identified even via chart review
because there was no digital documentation to verify the identity
of the primary nurse. This often occurred when the patient was
admitted to the ICU late in the shift or discharged from the ICU
early in the shift, such that the time spent in the ICU was very
short.
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Table 2. Data set characteristics.

Values, nCharacteristics

18Number of hospitals

38Number of intensive care units

5,479,034Nurse-patient charting times

748,771Patient shifts

87,466Hospitalizations

70,002Patients

8134Nurses

4797Nurses ever identified as the primary nurse

Table 3. Patient characteristics (N=70,002).

ValuesCharacteristics

1.2 (0.8); (1, 33)Hospitalizations per patient, mean (SD); (min, max)

10.7 (16.4); (1, 561)Shifts per patient, mean (SD); (min, max)

63.8 (17.1); (18, 119)Age (years), mean (SD); (min, max)

32,199 (46.0)Sex (female), n (%)

Race or ethnicity, n (%)

58,476 (83.5)White

6816 (9.7)Black

680 (1)Other

4030 (5.8)Missing

Discharge disposition, n (%)

22,380 (32)Home

2087 (3)Transfer to short-term hospital

36,435 (52)Other transfer (LTACa, SNFb)

8024 (11.5)Died

895 (1.3)Hospice

181 (0.3)Other or missing

aLTAC: long-term acute care hospital.
bSNF: skilled nursing facility.

Table 4. Algorithm performance.

Different or no primary nurse in chart review, nSame or newly identified primary nurse in chart review, nCharacteristics

11 (false positive)184 (true positive)Primary nurse from algorithm

2 (true negative)3 (false negative)No primary nurse from algorithm

Accuracy and precision were calculated as follows:

Looking back at the full data set, in the 97.3%
(728,533/748,771) of patient shifts with a primary nurse
identified, the median time in the ICU during the patient shift
was 12 hours, compared to a median time in the ICU of 1.3
hours among the 2.7% (20,238/748,771) of patient shifts with
a primary nurse not identified. In specific applications,

researchers could exclude these shifts and expect an even
stronger algorithm performance.

Discussion

We developed and validated an algorithm that identifies
nurse-patient assignments using metadata from the EHR.
Building on a body of literature linking hospital-level measures
of nurse staffing to patient outcomes [11], this study presents
a novel method for characterizing individual nurse-patient
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assignments. This method opens several new avenues of research
into the influence of nurse staffing patterns on patient outcomes.
With a direct linkage of nurse to patient, it will be possible to
investigate the mechanisms, nursing characteristics, and team
dynamics underlying the relationship between nurse staffing
and patient outcomes. Our methodology can also be applied to
other roles in the care team to investigate if similar associations
are present.

More broadly, this study demonstrates the potential value of
EHR metadata as a tool for understanding and improving health
care delivery in the ICU. Existing publicly available data sets,
such as Medical Information Mart for Intensive Care, use patient
data from the EHR but do not contain information at the
individual provider level or link those providers to patients [12].
Registered nurses provide bedside surveillance 24 hours a day,
7 days a week and are often the first members of the care team
to recognize patient deterioration. By linking individual nurses
to patients, our methods progress beyond unit-wide measures
of staffing and nurse characteristics and allow the generation
of more granular measures to study the relationship between
nurse staffing and patient outcomes.

Our work builds off prior efforts that use EHR metadata to
assess health care team structure and function [13-19]. Unlike
those studies, our study focused on a specific provider type and
used patient care–focused metadata rather than data less tightly
linked to actual care, such as the data left when an electronic
chart is accessed. Informed by prior work, our method could be
applied to other roles within the health care team (eg, respiratory
therapists and physical therapists) to examine and optimize team
dynamics and collaboration [13,15,16]. Similar to work
conducted by Hribar and colleagues [14] in outpatient clinics,
we may be able to examine the timing and density of tasks in
the EHR to optimize scheduling of various interventions (eg,
spontaneous breathing trials).

The main strengths of this study include the use of a large,
multicenter data set with varying ICU types, and the innovation
inherent in developing a novel yet generalizable algorithm that
links nurses to patients using the EHR. Along with these
strengths, this study also had several limitations that may be
sources of bias or imprecision. First, the metadata we obtained
were limited to EHR documentation of clinical assessments and
medication administration. We focused on these domains
because we considered them to be most tightly linked to clinical

care, and therefore, most indicative of the actual bedside nurse.
However, nurses chart other information in the EHR, and it is
conceivable that using additional sources of metadata could
lead to a misidentification of the bedside nurse, thereby
worsening algorithm performance. Since the vast majority of
shifts included relevant metadata, we suspect that any bias was
minimal and overall would serve to increase the accuracy and
precision of the algorithm. We also used only EHR metadata
and not data from other sources, such as bed-tracking data that
might directly identify the bedside nurse. Although these data
may more readily allow for an accurate and precise identification
of the bedside nurse, we made this decision to make our
algorithm maximally generalizable, since many hospitals do
not use bed-tracking software, while an increasing number of
hospitals use EHRs [20]. We also chose to retain all patient
shifts, not limiting to those with 12 hours in the ICU. With less
time in the ICU, there is less of a chance for the primary nurse
to leave behind their digital signature and a higher likelihood
of misidentification (eg, assigning the ward nurse). Excluding
such shifts would likely improve our algorithm performance,
but we felt keeping them makes our algorithm more
generalizable. Finally, the algorithm was developed using EHR
data from several ICUs belonging to a large hospital system in
Western Pennsylvania, which may lack generalizability to other
settings and hospital systems. However, these hospitals are
diverse in terms of size and academic status, making them
largely representative of the US health care system.

In future work, it may be possible to apply this algorithm to
other roles within the care team, such as respiratory therapists
and physical therapists. Ultimately, identifying links between
individual providers and individual patients will open new lines
of inquiry into how provider characteristics and team
characteristics are associated with individual patient outcomes.
Beyond creating evidence-based nurse-to-patient assignments
where the nurse’s skills are matched to the patient’s needs, we
can also intentionally construct the care team to maximize care
continuity and team connectedness [21,22].

In conclusion, this algorithm can accurately identify
nurse-patient assignments based on nurse documentation in the
EHR. This algorithm can be used by researchers to generate
data on nurse-patient assignments and answer questions related
to nurse health services research at the patient level and nurse
assignment level.
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Abstract

Background: Since the use of electronic health records (EHRs) in an automated way, pharmacovigilance or
pharmacoepidemiology studies have been used to characterize the therapy using different algorithms. Although progress has been
made in this area for monotherapy, with combinations of 2 or more drugs the challenge to characterize the treatment increases
significantly, and more research is needed.

Objective: The goal of the research was to develop and describe a novel algorithm that automatically returns the most likely
therapy of one drug or combinations of 2 or more drugs over time.

Methods: We used the Information System for Research in Primary Care as our reference EHR platform for the smooth algorithm
development. The algorithm was inspired by statistical methods based on moving averages and depends on a parameter Wt, a
flexible window that determines the level of smoothing. The effect of Wt was evaluated in a simulation study on the same data
set with different window lengths. To understand the algorithm performance in a clinical or pharmacological perspective, we
conducted a validation study. We designed 4 pharmacological scenarios and asked 4 independent professionals to compare a
traditional method against the smooth algorithm. Data from the simulation and validation studies were then analyzed.

Results: The Wt parameter had an impact over the raw data. As we increased the window length, more patient were modified
and the number of smoothed patients augmented, although we rarely observed changes of more than 5% of the total data. In the
validation study, significant differences were obtained in the performance of the smooth algorithm over the traditional method.
These differences were consistent across pharmacological scenarios.

Conclusions: The smooth algorithm is an automated approach that standardizes, simplifies, and improves data processing in
drug exposition studies using EHRs. This algorithm can be generalized to almost any pharmacological medication and model the
drug exposure to facilitate the detection of treatment switches, discontinuations, and terminations throughout the study period.

(JMIR Med Inform 2022;10(11):e37976)   doi:10.2196/37976
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electronic health records; data mining; complex drug patterns; algorithms; drug utilization; polypharmacy; EHR; medication;
drug combination; therapy; automation; drug exposition; treatment; adherence
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Introduction

The recent rise in the use of electronic health records (EHRs)
has had a major impact on epidemiological research. These
databases provide a low-cost means of accessing longitudinal
data such as demographic, vital signs, administrative, medical
and pharmacy claims, clinical, and patient-centered data on
large populations for epidemiologic research [1,2].

However, in their current form, EHRs are complex and imperfect
data sets that can be enhanced in a dizzying number of often
ineffective ways. Although the challenges of working with
EHRs in clinical trials have been identified [3-5], more research
is needed to develop new and better ways to use them.

From the data mining perspective, addressing these data is
particularly challenging as the outcomes can be significantly
affected depending on the quality, validity, completeness, and
heterogeneity of the available data [6]. Besides technical
perspective, researchers have their particular ways of addressing
EHR, dealing with EHR complexity, and their decisions have
been shown to have a significant impact to the results [7,8].
Approaching these challenges in a heterogeneous and biased
way favors the emergence of inconsistencies between similar
studies [9].

In studies with EHR-based databases, information on drug
exposure is usually obtained from electronic prescription,
electronic dispensation, or invoice of drugs. This information
is widely used and accepted in clinical research as the
availability of longitudinally recorded data allows for a detailed
characterization of both the exposure to medication and the
outcome of interest, and mining the data contained within EHRs
can potentially generate a greater understanding of medication
effects in the real world, complementing what we know from
randomized control trials [10].

Focusing on pharmacovigilance or pharmacoepidemiology when
using EHRs, one of the main objectives is to characterize the
therapy in terms of duration [11], discontinuation [12,13],
changes [14], and adherence to pharmacological treatments
[15]. Although progress has been made in this area for
monotherapy [16], when we study treatment exposure in diseases
such as hypertension, diabetes, or chronic obstructive pulmonary
disease, treatment often switches from monotherapy to
combinations of two or more drugs, which significantly
increases the challenge of characterizing the treatment. In our
experience [17], polytherapy in EHR-based studies creates

complex treatment patterns that are challenging to analyze or
interpret, can be blinded to researchers, and can be a source of
misunderstanding as it is difficult to distinguish whether they
are real occurrences or recording errors. To address this, we
propose a novel algorithm called smooth to obtain the most
likely therapy of one or more drugs over time.

Methods

Data Sources
We used the Information System for Research in Primary Care
(SIDIAP) [18] as our reference EHR platform for the algorithm
development. The SIDIAP includes information recorded by
health professionals during routine visits at 287 primary health
care centers from the Catalan Health Institute (Institut Català
de la Salut).

The platform includes information on disease diagnoses
(International Classification for Diseases, 10th Edition), drug
prescriptions and drug invoices in the primary care setting
(Anatomical Therapeutic Chemical [ATC] classification
system), and clinically relevant parameters (eg, weight, blood
pressure, laboratory tests) as well as sociodemographic
characteristics. It is also linked to a hospital discharge database
for patients admitted to the Catalan Health Institute hospitals
(30% of the SIDIAP population). The SIDIAP has
pseudonymized records for more than seven million people and
is representative of the Catalan population in terms of age, sex,
and geographic distribution [19].

For the algorithm development and validation study, we used
a subset of patients drawn from all Catalan Health Institute
primary care centers. From this population, we also obtained
sociodemographic characteristics: sex, age, country of origin,
profession, socioeconomic index, smoking habits, alcohol intake,
institutionalization in nursing homes, comorbidities, and
electronic prescriptions of pharmacological treatments.

In SIDIAP, electronical prescriptions and drug invoices are
stored in longitudinal format. Each record comprises the
pseudonymized patient identifier, ATC code, and prescription
or invoice date. The end of the prescription is determined by
the health professional, whereas in drug invoice records we only
have the month in which the invoice was made, and thus the
end of the treatment is usually inferred based on the number of
packages collected. Each prescription or invoice is recorded
independently of the health problem, and duplicate records or
overlaps are common (Figure 1A).
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Figure 1. Overview of the smooth algorithm workflow with an illustrated example. (A) Horizontal axis is follow-up time in days, and the vertical axis
is the different drugs prescribed. Box length indicates the period in which the prescription is active. (B) Patient profile after combining all active
prescriptions in the same day, the first step of data process. (C) Example of complex patterns and 4 ways to overcome them. (D) Result obtained after
passing the data through the smooth algorithm.

Ethics Approval
The study protocol was approved by the Research Ethics
Committee of Fundació Institut Universitari per a la recerca a
l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol;
AR20/029, SIDIAP 386 on June 3, 2020). This is a database
research study that has been conducted according to the
guidelines of the Declaration of Helsinki (Fortaleza, Brazil
2013) and does not require consent from the people included
to participate or for publication. The need for consent was
waived by the Research Ethics Committee of IDIAPJGol as it
is deemed unnecessary according to European legislation
(Regulation [EU] 2016/679).

Finding the Most Likely Therapy Using the Smooth
Algorithm
The process has 2 parts: data mining to look for treatments
recorded daily and applying the smooth algorithm to the data
(Figure 1).

For the first part, we looked at all drugs of interest that are active
on the same day (Figure 1A and Figure 1B). This step simplifies

the prescription or invoice records but frequently reveals
complex patterns that should be considered before conducting
any analysis. Data are processed based on assumptions about
those patterns by individual researchers and therefore give
nonhomogeneous results. In Figure 1C, we imagined 4 scenarios
(but there could be more) to handle the same problem
(highlighted area during the first half of 2019). While some
researchers may consider that the first therapy lasts until we
observe a change in the treatment, others with different
backgrounds may decide that a change from double to triple
therapy can only be considered if the triple therapy lasts longer
than an arbitrary period (eg, 60 days).

The smooth algorithm is inspired by statistical methods using
simple moving averages that calculate trends or smooth time
series [20]. For EHRs, we changed the concept of moving
averages to a moving window from where we choose the most
frequent treatment. Thus, by moving the window one day at a
time, we identify the most frequent pattern over the study period
(Figure 1D).

In Figure 2, we can see a detailed description of the algorithm.
It is an iterative process that works as follows:
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• Starting from the first prescription or dispensation at day
ti, we opened a window of specific length in days (Wt) in
which we search for the most frequent treatment

• That treatment was assigned to the whole window unless
we had a draw (2 treatments are active for the same number
of days), in which case we carried the previous treatment
(ti-1) forward.

• We then shifted the window forward one day at a time,
repeating the process until the end of follow-up (Figure
2A).

• After the first iteration, we had up to Wt possible treatments
(or candidates) for each day

• Finally, we chose the candidate most frequently observed
on that day (Figure 2B).

Figure 2. Smooth algorithm in detail.

Window Size
The length of Wt is the only parameter that needs to be defined
beforehand, and its value can modify the outcome (Figure 3).
The length of Wt determines the level of smoothing, and the
value can go from 1 day to the total days of follow-up. Thus,
for Wt of 1 day, we are not changing the data while for a Wt
equal to the number of days of follow-up, we expect to reduce
all records to the most frequent treatment. Therefore, small
values of the Wt parameter will not significantly modify the
raw data, whereas increasing the size of the window is expected
to have a larger impact on the data.

In a more in-depth analysis, a simulation study was conducted
using 7132 patients who were under long-term administration
of aspirin, statins, beta-blockers, and angiotensin-converting
enzyme (ACE) inhibitors or angiotensin-receptor blockers
between 2018 and 2020. The smooth algorithm was run on this
data using 6 Wt values: 10, 20, 30, 45, 60, and 90 days. For each
Wt, we counted the number of patients with at least one change
in the treatment pattern; out of these, we calculated the
percentage of smooth as the ratio of the number of days changed
by the algorithm divided by the total number of days with active
treatment.
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Figure 3. Example of how the outcome changes according to the value of the Wt parameter.

Validation Study
To understand how the algorithm performs from a clinical or
pharmacological perspective, we conducted a validation study.
We identified 4 pharmacological scenarios where the algorithm
could be needed—combination of 3 or more drugs (platelet
aggregation inhibitors, beta-blockers, and ACE inhibitors),
treatments likely to discontinue (antidepressants), long-term
combination of 2 drugs (insulins and oral antidiabetics), and
short-term treatment (systemic antibiotics)—and asked to 4
independent professionals with experience in databases and
drug exposure studies to compare a traditional method with the
smooth algorithm.

The traditional method is a more intuitive and simple approach,
commonly observed in the literature, to address noise and
variability in electronic drug records [21,22]. Briefly, it starts
with the first treatment observed and accepts a treatment change
only if the new one is longer than a certain period of time. This
period is generally arbitrary, an assumption done by the
researcher based on the characteristics of the drug. For our
validation study, we set the period to 60 days except for
antibiotics (the short-term treatment), with a period of 15 days.

For the smooth algorithm, the Wt parameter was set to 60 days
in all 4 scenarios.

Before conducting the validation, we prepared a training session
with the 4 reviewers consisting in an introduction to the data,
drugs of study (including the selected ATC codes), explanation
of the algorithms, and discussion of the common criteria to
apply during the validation. From their feedback, and after the
training, we decided to include all health problems related to
the treatment as it may facilitate the evaluation and give more
importance to clinical criteria (see validated sample in
Multimedia Appendix 1, Figure S1).

Our primary objective was changes to the original data; we
analyzed whether the algorithms improved, worsened, or made
no changes to the original data. In addition, we asked the
reviewers to choose between the traditional method and the
smooth algorithm and evaluate its value for detecting treatment
switches and/or discontinuations.

Each professional reviewed 100 patient records with one-quarter
of the records being assigned to all reviewers to analyze
consistency across validations. To reduce potential biases,
reviewers were blinded and they did not know which method
or algorithm generated the results (Table 1).

Table 1. Description of drugs and distribution of samples in the validation study.

Samples repeated across re-
viewers, total (per reviewer)

Samples analyzed,
total (per reviewer)

Prescriptions
in the data set

Description (ATCa code)Treatment pattern of use

40 (10)80 (20)10,846,282Systemic antibiotics (J01)Short-term drugs

40 (10)80 (20)3,859,496Antidepressants (N06a)Likely to discontinue

60 (15)120 (30)22,271,154Insulins and oral antidiabetics (A10)Long-term combinations of 2 drugs

60 (15)120 (30)21,253,742Platelet aggregation inhibitors (B01Ac)Combination of 3 or more drugs

aATC: Anatomical Therapeutic Chemical.
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Statistical Methods
We determined that a sample size of 400 patients would be
enough to ensure 80% power assuming a minimum effect size
of 0.3062 with two degrees of freedom for a Chi-square test
under a significance level of 5%.

Categorical variables were described with relative and absolute
frequencies, and results from numerical variables were reported
using means and standard deviations. For the validation study,
we used the Chi-square test to evaluate differences between the
traditional method and smooth algorithm on performance
compared with the raw data. The algorithm was programmed
in R (version 4.1.0, R Foundation for Statistical Computing),
and all analyses were performed in R.

Results

Impact of Wt Parameter and Simulation Study
In Figure 3, we show how the results changed according to the
Wt value. In the example, for the raw data we note that during
the first period of follow-up, the main treatment was a
monotherapy followed by a complex pattern during the first
6-month semester of 2019 (Figure 3A). To reduce noise in the
pattern, we applied the smooth algorithm using Wt values of 30
and 90 days. With a Wt of 30 days (Figure 3B), we retained the
combination of 2 drugs during the early stages of follow-up;
during months with more changes, patient moved from

monotherapy to a combination of 2 drugs (A+C and A+B) prior
to switching to the A monotherapy. In contrast, with a Wt of 90
days (Figure 3C), the entire treatment pattern was simplified.
During the first year of follow-up, we observed a monotherapy;
during the most complex pattern, the algorithm smoothed the
changes to a single combination of A+C before returning to a
monotherapy.

Results of the simulation study are represented in Figure 4. With
a Wt of 10 days, 11.4% (814/7132) had their treatment pattern
changed, while with a 90-day window, 39.6% (2822/7132) had
their treatment pattern modified; 31.5% (2244/7132), 33.8%
(2413/7132), and 39.6% (2822/7132) of patients with Wt values
of 45, 60, and 90 days, respectively, saw at least 1 change. Thus,
the effect of Wt was not linear as the expected progression of
the number of patients being smoothed was different than the
results from the simulation.

As a relative measure, we reported the percentage of days
changed, ranging from 0.27 (IQR 0.09, 0.36) to 2.28 (IQR 1.09,
3.65). Thus, for each of the Wt values 10, 20, 30, 45, 60, and
90 days in a 1000-day period of follow-up, the algorithm
modified 2.7, 4.6, 6.4, 10, 14.6, and 22.8 days, respectively. At
windows from 10 to 30 days, the percentage of days changed
always remain below the 5%, but as we increased the Wt to 45,
60, and 90 days, we started to observe patients with more than
5% of the data smoothed.

Figure 4. Statistics of the simulation study using 6 Wt values on 7132 patients under treatment for cardiovascular disease between 2018 and 2020.
*100 x Number of days changed / Total days under prescription.
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Validation Study
Multimedia Appendix 2 includes the results of the validation
study. For the 400 samples, the smooth algorithm improved the
raw data for 56.8% (227/400) of individuals, while 42.5%
(170/400) benefited from using the traditional method. In 39%
(156/400) of the samples, the outcome provided by each
algorithm did not change the patterns, and 4.2% (17/400) of
cases reported worsening after being processed by the smooth
algorithm. The traditional method resulted in a worse outcome
for 18.5% (74/400) of the samples, and the observed differences
between algorithms were statistically significative (P<.001).

Significant differences were also observed between algorithms
stratified by scenario. With a combination of 3 or more drugs
(platelet aggregation inhibitors, beta-blocker, and ACE
inhibitors), drugs likely to be discontinued (antidepressants),
and the combination of 2 or more long-term drugs (insulins and
antidiabetics), the smooth algorithm improved 69.2% (83/120),
61.3% (49/80), and 60.0% (72/120) of samples, respectively.
In short-term treatment (systemic antibiotics), 90.0% (72/80)
of samples did not show changes and 28.7% (23/80) were
improved by the smooth algorithm.

As for the samples validated by the 4 professionals (Table 1),
they decided in 88.0% (44/50) of patients to choose the smooth
algorithm over the traditional method (Multimedia Appendix
2 and Multimedia Appendix 1, Figure S2). It was in the
short-term treatment scenario where we observed less of a
consensus, 70% (7/10), whereas for the rest of scenarios the 4
reviewers agreed in 93.3% (14/15), 100% (10/10), and 86.7%
(13/15) of the samples, respectively.

The smooth algorithm performed better than the traditional
method in detecting discontinuations (350/366, 95.6%) and
treatment switches (138/230, 60.0%; see Multimedia Appendix
1, Table S1).

Discussion

Principal Findings
Since the use of EHR databases began in
pharmacoepidemiologic studies, researchers have been trying
to establish algorithms to model drug exposure [23]. This
becomes even more challenging when trying to assess drug
exposures with multiple pharmacologic treatments, which
happens quite often in older people, as they are prescribed with
up to 5 drugs simultaneously [24]. Thus, we have developed an
automatic algorithm to model drug exposure through EHRs,
which standardizes the data mining process to obtain more
consistent and replicable results across studies.

The algorithm is inspired by time series forecasting methods
and requires a parameter to be set beforehand. This is commonly
observed in similar statistical methods such as autoregressive
models or moving averages [25], and it is known that the value
of the parameter can modify the outcome significantly [26-28].
The simulation study shows the impact of the Wt value. Small
values hardly change the original data, but as the parameter
value increases, the raw data can be affected to the point of
losing clinical relevance. In the worst-case scenario, we

observed changes in up to 40% of the patients, with 75% of
those having at least 1% of the records smoothed.

Interestingly, the simulation shows that at a certain Wt value,
the number of individuals modified reaches a plateau. The data
changed by the algorithm are less than expected, particularly
when Wt is greater than 30 days, suggesting that independently
of the parameter, some patients will never be changed by the
algorithm.

In the validation study, we observed that most times our
algorithm improved the data patterns. It was designed to improve
polypharmacy exposure assessment, and we were interested in
the results for combinations of 3 or more drugs. In this scenario,
both the traditional and smooth approaches demonstrated
usefulness, and the percentages of improved samples were
similar, although the smooth algorithm performed significantly
better. These differences were also observed in the other
scenarios, and we believe that the smooth algorithm not only
improves the treatment pattern but also does not make it worse.
In addition, the performance was not affected by the window
length, since for antibiotics and antidepressants (short- and
long-term drug use, respectively) the smooth algorithm
performed well using the same Wt window.

The traditional method proved to be a good approach, and
similar versions are being used in other studies [21,22,29], but
it differs according to drug or study characteristics and so is
less generalizable. In fact, it has not worked well for systemic
antibiotics even though we specifically changed it to fit for its
characteristics. Overall, the validations for the smooth algorithm
were consistent between scenarios and reviewers.

Potential Uses and Strengths
We believe that the smooth algorithm has significant potential
to assess exposure for treatment combinations, especially in
chronic treatments, since it allows us to have a time sequence
of exposure to the treatment. This sequence allows us to better
model the drug exposition and detect discontinuations, switches,
and periods of interaction with other drugs of short duration. In
addition, it can be of great help in estimating adherence to a
combination treatment [30]. With the smooth algorithm, we can
easily calculate the exposure time using only electronic
prescriptions without the need to know the dosage posology.

From a clinical point of view, the smooth algorithm has great
advantage when estimating polypharmacy adherence [31].
Patients affected by chronic conditions in need of polypharmacy
may have differing levels of adherence to individual medications
within their regimen, and this could lead to varying health
outcomes and misleading results if the methodological approach
assumes as equivalent adherence to all medications. These
patients also face other acute conditions requiring the addition
of drugs or modification of doses while maintaining their actual
medication regimen.

Another research area in which our algorithm could be of utility
is the study of adverse events due to lack of effectivity
(antibiotics or hypertension treatments) and drug-drug
interactions (anticoagulants and nonsteroidal anti-inflammatories
combined for short time periods).
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Although we cannot ever know a patient’s true adherence, the
smooth algorithm is an automated way to analyze EHR data
offering methodological consistency across studies. In several
studies, assumptions were made prior to the data processing,
and this may have impacted the results of the analyses by
introducing bias on the final results [32]. Algorithms like smooth
can help standardize these assumptions and minimize
inconsistencies between studies with similar databases.

Limitations
Due to the nature of the algorithm eliminating complex patterns,
we may lose relevant exposures of a short period of time, and
smooth is not recommended for all scenarios. Similarly, smooth
may not work well in long-acting drugs.

We were not able to capture the posology with the SIDIAP
database, so we could not estimate the length of treatment
through the dose prescribed. The treatment doses can change
throughout the year (decreased use of diuretics during
summertime, when traveling, etc).

From a technical perspective, using the smooth algorithm is a
time-consuming process. To run the algorithm on big data sets
like EHRs, good information technology is needed. The time
needed to complete the process may vary depending on the
number of patients and follow-up time.

In addition, before running the algorithm, we must set a
parameter, Wt, that allows us to choose between precision and
simplicity. Setting this parameter is not straightforward, and it

is important to understand the effect on the outcome to use a
good value. This is an inherent limitation of the algorithm and,
as a guide, we recommend setting the Wt value within the range
of 30 to 60 days to reduce complex patterns without
compromising relevant information. Moreover, the Wt can be
changed so the algorithm can be used in short (antibiotics) and
long-term (antidepressants) treatments as well as in drug
combinations for chronic conditions such as diabetes and
hypertension.

Another limitation of the study is that the validation was done
with the traditional method instead of other algorithms as a
comparator. Moreover, in our experience, we commonly see
the traditional method being used with some differences or
criteria according to the framework or objectives of the study.
For example, in projects with the European Medicines Agency,
we have never seen a method or an automatic approach to deal
with drug exposure other than the one we call traditional [33].

Conclusion
The smooth algorithm is an automated approach to estimate the
most likely drug exposure pattern. We proved that it
standardizes, simplifies, and improves the data processing steps
before performing the study analysis; can model the drug
exposure to detect cotreatment, switches, discontinuations, and
treatment terminations; and facilitates adherence calculations
throughout the study period. In future pharmacoepidemiological
studies, we aim to further validate the algorithm and analyze
the impact the algorithm can have on the main results.
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Abstract

Background: Often missing from or uncertain in a biomedical data warehouse (BDW), vital status after discharge is central to
the value of a BDW in medical research. The French National Mortality Database (FNMD) offers open-source nominative records
of every death. Matching large-scale BDWs records with the FNMD combines multiple challenges: absence of unique common
identifiers between the 2 databases, names changing over life, clerical errors, and the exponential growth of the number of
comparisons to compute.

Objective: We aimed to develop a new algorithm for matching BDW records to the FNMD and evaluated its performance.

Methods: We developed a deterministic algorithm based on advanced data cleaning and knowledge of the naming system and
the Damerau-Levenshtein distance (DLD). The algorithm’s performance was independently assessed using BDW data of 3
university hospitals: Lille, Nantes, and Rennes. Specificity was evaluated with living patients on January 1, 2016 (ie, patients
with at least 1 hospital encounter before and after this date). Sensitivity was evaluated with patients recorded as deceased between
January 1, 2001, and December 31, 2020. The DLD-based algorithm was compared to a direct matching algorithm with minimal
data cleaning as a reference.

Results: All centers combined, sensitivity was 11% higher for the DLD-based algorithm (93.3%, 95% CI 92.8-93.9) than for
the direct algorithm (82.7%, 95% CI 81.8-83.6; P<.001). Sensitivity was superior for men at 2 centers (Nantes: 87%, 95% CI
85.1-89 vs 83.6%, 95% CI 81.4-85.8; P=.006; Rennes: 98.6%, 95% CI 98.1-99.2 vs 96%, 95% CI 94.9-97.1; P<.001) and for
patients born in France at all centers (Nantes: 85.8%, 95% CI 84.3-87.3 vs 74.9%, 95% CI 72.8-77.0; P<.001). The DLD-based
algorithm revealed significant differences in sensitivity among centers (Nantes, 85.3% vs Lille and Rennes, 97.3%, P<.001).
Specificity was >98% in all subgroups. Our algorithm matched tens of millions of death records from BDWs, with parallel
computing capabilities and low RAM requirements. We used the Inseehop open-source R script for this measurement.

Conclusions: Overall, sensitivity/recall was 11% higher using the DLD-based algorithm than that using the direct algorithm.
This shows the importance of advanced data cleaning and knowledge of a naming system through DLD use. Statistically significant
differences in sensitivity between groups could be found and must be considered when performing an analysis to avoid differential
biases. Our algorithm, originally conceived for linking a BDW with the FNMD, can be used to match any large-scale databases.
While matching operations using names are considered sensitive computational operations, the Inseehop package released here
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is easy to run on premises, thereby facilitating compliance with cybersecurity local framework. The use of an advanced deterministic
matching algorithm such as the DLD-based algorithm is an insightful example of combining open-source external data to improve
the usage value of BDWs.

(JMIR Med Inform 2022;10(11):e36711)   doi:10.2196/36711

KEYWORDS

data warehousing; clinical data warehouse; medical informatics applications; medical record linkage; French National Mortality
Database; data reuse; open data, R; clinical informatics

Introduction

Vital status is important information for medical research. While
real-world evidence from the analysis of biomedical data
warehouse (BDW) records has gained popularity in recent years
[1], the longitudinal value of the information is weakened by
the uncertainty of patients’ vital statuses. This information is
often limited to inpatients who died while hospitalized.

France has a long tradition of administrative centralization
inherited from the Napoleonian era. When a resident dies on
French territory, French city halls are required to send a death
report to the Institut National de la Statistique et des Études
Économiques (INSEE), translated to the French National
Institute of Statistics and Economic Studies [2]. This report is
used to complete the French National Mortality Database
(FNMD). This database, which contains tens of millions of
records, is updated monthly and has been open access since
2019 [3].

Record linkage (also referred to as data matching or entity
resolution) is the process of quickly and accurately identifying
records corresponding to the same individual entity from one
or more data sources [4]. A recent literature review by
Bounebache et al [5] presents record linkage and its multiple
challenges. Two different approaches exist: (1) deterministic
record linkage, which uses expert knowledge and possible
statistical learning [5]; and (2) probabilistic linkage, which relies
on a statistical model to evaluate the contribution of each
variable in the record linkage strategy [6,7]. Matching
large-scale BDW records with the FNMD presents multiple
challenges. The first is the absence of a unique common
identifier, such as a social security number. Second, surnames
are shared within families and may change over one’s lifetime
based on varying cultural practices regarding marriage.
Additionally, first and middle names can be confounded or
compound. Third, clerical errors can occur when identities are
administratively recorded in both databases [4]. Furthermore,
in practice, the exponential number of comparisons often
prohibits direct matching of millions of database records to the
FNMD, which contains tens of millions of records.

Consequently, little has been published on the computational
performance of record linkage, its accuracy, and its
determinants. Moore et al [8] state that record-linkage
performance must be evaluated to validate statistical analyses.
For example, they showed that a specificity of <95% prevents
estimating a significant risk ratio of 2. Previous studies [9,10]
have used record linkage with the FNMD. Most of these studies
used suboptimal references to evaluate algorithm performance,

small databases (ie, <20,000 patients), were monocentric, or
did not share their source code. Bannay et al [11] linked a BDW
with Système National des Données de Santé (SNDS), translated
to the French National Health Database. As the extraction from
the SNDS was anonymized in accordance with national
legislation, they implemented a semideterministic record linkage
procedure based on the variables of the hospital discharge report
(ie, sex, year of birth, month of birth, admission and discharge
dates, diagnoses, etc).

To routinely update vital status in BDW records from the FNMD
on a large scale, we developed a deterministic matching
algorithm based on Damerau-Levenshtein distance (DLD) and
compared its performance with that of a direct-matching
algorithm as a reference for 3 regional hospital BDWs.

Methods

Data and Databases
FNDM files were downloaded from the national open data
website [12] and included the following fields: birth surname,
first name, middle names, birth date, sex, city and country of
birth, death date, and zip code of the place of death. We found
11,490,867 records for the period between 2001 and 2020.

Three university hospitals in France were involved in this study:
Lille, Nantes, and Rennes. Each hospital’s BDW contains
administrative, clinical, biological, and drug data.

In the Lille BDW, vital status information was available on June
1, 2021, for 1,609,515 patients who had at least 1 hospital stay
between January 1, 2008, and June 1, 2021. The data showed
that 1,570,320 (98%) patients were living, and 39,195 (2%)
were deceased.

For the Nantes BDW, vital status information was available on
January 14, 2021, for 2,035,805 patients who had at least 1
hospital encounter during the previous 20 years. The data
showed that 1,974,786 (97%) patients were living and 61,019
(3%) were deceased.

For the Rennes BDW, vital status information was available on
January 4, 2021, for 1,262,072 patients. The data showed that
1,221,817 (97%) patients were living, 37,986 (3%) were
deceased, and 346 had no recorded vital status.

Hereafter, samples extracted from the BDWs are referred to as
“local databases.”

Record-Linkage Algorithms
To assess the performance gain induced by advanced data
cleaning and DLD use, we used a simple direct-matching
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algorithm as a reference. Characteristics of the data cleaning
and the algorithms used are presented in Multimedia Appendix
1.

Direct-Matching Algorithm as a Reference
The direct-matching algorithm removed accents from patients’
first name and surname because the FNMD does not use accents.
All letters were transformed into lowercase. Two records were
linked between the local database and the FNMD if both records
had the exact same surname, first name, birth date, and sex. The
surname chosen was the birth surname if present or the current
surname if not.

DLD-Based Algorithm as a Deterministic Solution
The DLD between 2 strings is the sum of necessary operations
to transform string 1 into string 2, among insertion of a
character, deletion of 1 character, substitution of 1 character by
another, or transposition of 2 adjacent characters [13]. Examples
are available in Multimedia Appendix 2.

Distances were calculated between the local database and
FNMD for first name, surname, birth date, sex, and city of birth.
For sex, a distance of 0 indicates that the sex is the same in both
records, and a distance of 1 indicates a mismatch between the
2 records.

A 4-Step Algorithm
The algorithm can be divided into four consecutive steps:
cleaning the data, creating new variables, validating pairs with
blocking techniques, and choosing the more pertinent pairs.

Data Cleaning
In the FNMD, birth dates may be expressed with a missing day
and month (eg, 1956-00-00). In these cases, the algorithm
automatically attributed January 1 to the date to obtain a valid
date format. If the birth date was invalid, the month and day
were inverted and tested before choosing January 1. For
example, the date 1960-31-03 is invalid (ie, there are not 31
months in a year); however, the date 1960-03-31 is valid, so
1960-03-31 was chosen. Another example is the date
1959-32-33: the dates 1959-32-33 and 1959-33-32 are also
invalid; thus, the date 1959-01-01 was chosen.

Characters other than letters (eg, numbers and special characters)
were removed from the local database and FNMD. All letters
were changed to lowercase, and accents were removed.

In both the local database and FNMD, mentions of the district
were suppressed, and only the city of birth was used. For
example, “Paris, 13ème arrondissement” was changed “paris.”

New Variable Creation
In the local database, a transformed city of birth variable was
created wherein abbreviations were transformed into full text.
For example, “St-Martin-sr-Ocre” was transformed into
“saintmartinsurocre.”

In the FNMD, the variable fnmd_firstname_0 was created from
the first element of the first name (eg, “pierre” from
“Pierre-Olivier”), and the variable fnmd_firstname_12 was
created from concatenation of the first name and middle name
(eg, “marieclaire” from first name “Marie” and middle name
“Claire”). Other examples are available in Table 1.

Table 1. Examples of first name–related data created for first name Damerau-Levenshtein distance (DLD) computation.

Data created for first name DLDb computationOriginal data from the FNMDa

fnmd_firstname_12fnmd_firstname _1fnmd_firstname_0First middle ameFirst name

jeanJeanjeanN/AcJean

marieclairemariemarieClaireMarie

pierreolivierchristianpierreolivierpierreChristianPierre-Olivier

elonlouiselonlouiselonN/AElon-Louis

aFrench National Mortality Database.
bDamerau-Levenshtein distance.
cNot applicable.

Pair Validation
Records from the local database and the FNMD matched if all
the following conditions were valid: (1) the DLD of the first
name was ≤ the maximal first name DLD, (2) the DLD of the
surname was ≤ the maximal surname DLD, (3) the DLD of the
birth date was ≤ the maximal birth date DLD, (4) the DLD of
the sex was ≤ the maximal sex DLD, and (4) the total sum of
the 4 previous DLDs (ie, the total DLD) was ≤ the maximal of
the total DLD.

The DLD chosen for the surname was the shorter DLD among
(1) the birth surname in the local database and the surname in

the FNMD and (2) the current surname in the local database
and the surname in the FNMD.

The DLD chosen for the first name was the shorter DLD among
(1) the first name in the local database and fnmd_firstname_0,
(2) the first name in the local database and fnmd_firstname _1,
and (3) the first name in the local database and
fnmd_firstname_12.

The DLD chosen for the birth city name (option for the more
pertinent pairs selection) was the shorter DLD among (1) the
original city of birth in the local database and city of birth in
the FNMD and (2) the transformed city of birth in local database
and city of birth in the FNMD.
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Matching 2 databases (A and B) without a common identifier
implies evaluating the match or nonmatch status of every
element of AxB, called a pair [5]. The number of pairs to
compare is given by the number of records in A multiplied by
the number of records in B. This formula is particularly
concerning when matching BDWs with the FNMDs, both of
which potentially contain tens of millions of records, potentially
leading to quadrillions of pairs to compare. Blocking techniques
reduce the number of pairs to compare [5] and thus the execution
time and RAM requirements. We successively applied a simple
blocking technic 2 times, which consist of only comparing the
pairs that contained the same value for 1 defined variable: first,

the birth date and second, the concatenation of the first 4
characters of the first name and the first 4 characters of the
surname (the birth surname when present and the current
surname elsewhere). This allowed us to process the pairwise
comparison, even if the birth date or the first 4 characters of
first name/surname contained mismatches (but not if both birth
date and the first 4 characters of the first name/surname
contained mismatches).

Table 2 presents examples of pairs going through comparison
process or not, given the 2 successive blocking processes used
in the DLD-based matching algorithm.

Table 2. Examples of the blocking process for the Damerau-Levenshtein distance (DLD)–based matching algorithm.

Comparison during first
name/family name con-
catenation blocking

Comparison during
birth date blocking

Local database first

name/surname concatenationb
Local database
birth date

FNMD first name/surname

concatenationb
FNMDa birth date

YesYeslouidefu1935-06-29louidefu1935-06-29

NoNomaricall1931-10-08louidefu1935-06-29

NoNojeanpoku1940-26-11louidefu1935-06-29

NoNochardegu1956-23-12louidefu1935-06-29

NoNolouidefu1935-06-29maricall1956-12-18

YesNomaricall1931-10-08maricall1956-12-18

NoNojeanpoku1940-26-11maricall1956-12-18

NoNochardegu1956-23-12maricall1956-12-18

NoNolouidefu1935-06-29jeanpoqu1940-11-26

NoNomaricall1931-10-08jeanpoqu1940-11-26

NoYesjeanpoku1940-11-26jeanpoqu1940-11-26

NoNochardegu1956-23-12jeanpoqu1940-11-26

NoNolouidefu1935-06-29maricuri1940-11-26

NoNomaricall1931-10-08maricuri1940-11-26

NoNochardegu1956-23-12maricuri1940-11-26

NoNochardegu1956-23-12maricuri1940-11-26

aFNMD: French National Mortality Database.
bConcatenation of the 4 first characters of the first name and the 4 first characters of the surname (birth surname if present, current surname elsewhere).

Choice of More Pertinent Pairs
One patient from a local database could be matched with none,
1, or multiple records from the FNMD. An algorithm is proposed
in Multimedia Appendix 3 to select the most pertinent pairs for
the last cases.

Data Sampling for Statistical Learning, Performance
Evaluation, and Large-scale Testing
For all individuals, the following variables were extracted: birth
surname, current surname, first name, birth date, sex, city and
country of birth, vital status, and, if present, death date.

To learn the optimal parameters of the DLD-based algorithm,
we randomly selected 3600 patients from the Nantes BDW,
with 450 per stratum: (1) men born in France (MBIF) who died
between 2001 and 2020 (deceased MBIF). These were the MBIF
whose deaths were registered in the BDW between 2001 and

2020; (2) MBIF alive on 1 January 2016 (living MBIF). These
were the MBIF with at least 1 hospital encounter between
January 1, 2001, and December 31, 2015, and another hospital
encounter between January 2, 2016, and December 31, 2020;
(3) women born in France (WBIF) who died during between
2001 and 2020 (deceased WBIF); (4) WBIF who were alive on
January 1, 2016 (living WBIF); (5) men born outside France
(MBOF) who died between 2001 and 2020 (deceased MBOF);
(6) MBOF who were alive on January 1, 2016 (living MBOF);
women born outside France (WBOF) who died between 2001
and 2020 (deceased WBOF); and (7) WBOF who were alive
on January 1, 2016 (living WBOF).

For the DLD-based algorithm, a maximal DLD of 2 was learned
for the first name, 1 for the surname, 1 for the birth date, 1 for
sex, and 2 for the total DLD.

To evaluate the specificity and sensitivity of both the DLD-based
and direct algorithms, samples of 8000 patients were randomly
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extracted from each of the 3 BDWs. The sample from Nantes
did not contain patients used for statistical learning of the
DLD-based algorithm parameters (ie, the maximal DLDs). Each
sample contained 1000 deceased MBIF, 1000 living MBIF,
1000 deceased WBIF, 1000 living WBIF, 1000 deceased MBOF,
1000 living MBOF, 1000 deceased WBOF, and 1000 living
WBOF.

Finally, to assess the low RAM requirements and parallel
processing capabilities of the DLD-based algorithm, a sample
of 2 million patients was randomly extracted from the Nantes
BDW, and 11 million records (between 2001 and 2020) were
randomly extracted from the FNMD.

Specificity and Sensitivity Evaluated on Separate Data
Sets
Sensitivity and specificity were evaluated for 8000 patients
from every hospital for both the direct and DLD-based
algorithms. Sensitivity (or recall) was evaluated for patients
who died between January 1, 2001, and December 31, 2020,
and were registered as the gold standard for each BDW. The
algorithm classified patients as deceased if they were linked by
at least one FNMD record. Specificity was evaluated for patients
alive on 1 January 2016 (ie, patients with at least 1 hospital
encounter between January 1, 2001, and December 31, 2015,
and another hospital encounter between January 2, 2016, and
December 31, 2020). The algorithm classified a patient as alive
if the patient was not linked to the FNMD. The same patient
could be present in both the sensitivity and specificity data sets
(eg, a patient who died on May 13, 2017). This was not a
problem because to evaluate specificity, we only used deaths
registered in the FNMD between January 1, 2001, and January
1, 2016. To evaluate sensitivity, we used all deaths registered
in the FNMD between January 1, 2001, and December 31, 2020.
Specificity and sensitivity were calculated for each maximal
total distance parameter of the DLD-based algorithm, from 0
to 5.

Our gold standard for the matching algorithms was for it to be
reliable both for sensitivity and specificity evaluation. First, it
was completely independent from the FNMD. Second, deceased
status in the hospital databases was reliable because vital status
at discharge is a necessary information for the stay fee payment
to the hospital by public health insurance in France. Finally,
alive status at a certain time was also reliable because it was
searched for between 2 distinct encounters.

Global performances, global performance per hospital,
performances per sex and per hospital, and performances per
country of birth and per hospital were calculated using the
stratified sampling proportion method. To calculate these
performances, we needed the percentages of patients born
outside of France for the 3 cities. French national census data
for 2012 [14] yielded 4.5% (40,394/897,639) for Nantes, 4.3%
(29,697/690,618) for Rennes, and 8.4% (97,988/1,166,527) for
Lille. For this calculation, we considered half of the population
to be composed of men and the other half of women.

Implementation and Execution Time Evaluation
We developed an R package to run on parallel cores and
automatically select by default the most efficient number of
cores to use depending on the number of records to match, the
number of available cores, and the available RAM. The number
of cores used still fit in the parameters. We used the packages
“future” and “future.apply” to enable Linux and Windows
compatibility. We measured the execution time to successively
match 200, 2000, 20,000, 200,000, and 2 million patients from
the Nantes BDW with 11 million records from the FNDM. We
tested various core numbers on 3 cores and 15 GB of RAM (1
core and 1 GB of RAM on the laptop used were left free for the
operating system).

Ethical Considerations
Each of the 3 BDWs had a previous authorization from the
National Information Science and Liberties Commission. These
authorizations included data quality controls that our algorithm
contributes to.

Results

Performances of the Matching Algorithms
Table 3 compares the performances between the direct and
DLD-based algorithms for all 3 hospitals combined. Sensitivity
of the DLD-based algorithm was 11% higher than that of the
direct algorithm (93.3%, 95% CI 92.8-93.9 vs 82.7%, 95% CI
81.8-83.6; P<.001). Specificity of the DLD-based algorithm
was <1% lower than that of the direct algorithm (99%, 95% CI
98.7-99.2 vs 99.9%, 95% CI 99.8-100; P<.001). Table 4 presents
overall performances by hospital for both algorithms. Sensitivity
of the DLD-based algorithm for the Rennes and Lille samples
was 12% higher than that for the Nantes sample (85.3%, 95%
CI 83.8-86.8 vs 97.3%, 95% CI 96.7-97.9; P<.001). Specificity
of the DLD-based algorithm was >98% in all samples (98.2%
to 99.4%; P<.001).

Table 5 presents the performances of the DLD-based algorithm
per sex and per hospital. In Lille, sensitivity was equal for both
sexes (97.3%; P>.99). Sensitivity was higher for men than for
women in Nantes (87%, 95% CI 85.1-89.0 vs 83.6%, 95% CI
81.4-85.8; P=.006) and in Rennes. In all hospitals, specificity
for women (98.6% to 99.6%) was higher than that for men
(97.9% to 99.2%), but with no statistically significant differences
(P>.05).

Table 6 presents performances of the DLD-based algorithm per
birth country and per hospital. For every hospital, sensitivity of
the DLD-matching algorithm was ~10% higher (P<.001) for
people born in France than for people born outside France
(Nantes: 85.8%, 95% CI 84.3-87.3 vs 74.9%, 95% CI 72.8-77.0;
P<.001). Specificity was >98% for every sample (range
98.2%-99.8%). In Lille, specificity was equal for people born
both in and outside of France (99.4%, 95% CI 99-99.7; P<.99).
In Nantes and Rennes, specificity for people born out of France
(98.8%) was higher than that for people born in France (98.2%
to 99.3%; P<.05).
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Table 3. Global performances of the Damerau-Levenshtein distance (DLD)–based algorithm versus that of the direct-matching algorithm.

Specificity, % (95% CI)Sensitivity, % (95% CI)Sample size, NMatching algorithm

99 (98.7-99.2)93.3 (92.8-93.9)21860Distance-baseda

99.9 (99.8-100)82.7 (81.8–83.6)21860Direct

<.001<.001N/AbP value McNemar test

aMaximal total distance: 2.
bN/A: not applicable.

Table 4. Global performances of the Damerau-Levenshtein distance (DLD)–based algorithm versus the direct-matching algorithm per university
hospital.

Sp direct, %
(95% CI)

Spd DLD, %
(95% CI)

Se directc, %
(95% CI)

Sea DLDb, %
(95% CI)

Patients born outside of
France used for weights, %

Total sample, nUniversity hospital

99.9 (99.7-100)99.3 (99-99.7)74.6 (72.8-76.4)85.3 (83.8-86.8)4.5Se: 3660

Sp: 4000

Nantes

100 (99.9-100)98.2 (97.7-98.8)86.0 (84.6-87.4)97.3 (96.7-97.9)4.3Se: 2500

Sp: 4000

Rennes

99.9 (99.8-100)99.4 (99-99.7)87.5 (86.2-88.8)97.3 (96.8-97.9)8.4Se: 3700

Sp: 4000

Lille

.01<.001<.001<.001N/AN/AeP value Fisher exact test

aSe: sensitivity.
bDLD: Damerau-Levenshtein distance–based matching algorithm (Maximal total distance used: 2).
cDirect: direct-matching algorithm.
dSp: specificity.
eN/A: not applicable.

Table 5. Performances of the Damerau-Levenshtein distance (DLD)–based matching algorithm by sex and university hospital.

P value

Fisher exact test

Sp men, %
(95% CI)

Spb women, %
(95% CI)

P value

Fisher exact test

Se men, %
(95% CI)

Sea women, %
(95% CI)

Total sampleUniversity
hospital

.5799.2 (98.7-99.8)99.4 (99-99.9).00687 (85.1-89)83.6 (81.4-85.8)Se women: 1660

Se men: 2000

Sp women: 2000

Sp men: 2000

Nantes

.1297.9 (97.0-98.8)98.6 (97.8-99.3)<.00198.6 (98.1-99.2)96 (94.9-97.1)Se women: 1300

Se men: 1200

Sp women: 2000

Sp men: 2000

Rennes

.0899.1 (98.6-99.6)99.6 (99.2-100)>.9997.3 (96.6-98)97.3 (96.5-98.1)Se women: 1700

Se men: 2000

Sp women: 2000

Sp men: 2000

Lille

aSe: sensitivity.
bSp: specificity.

Finally, use of the DLD was more efficient for women and
people born outside France than for men and people born in
France. In Nantes, an increase from 0 to 2 for the maximal total
DLD increased the sensitivity by 1.85% for MBIF, 4.4% for
MBOF, 2.9% for WBIF, and 6.6% for WBOF. Performances
per sex, birth country, and maximal total DLD for the

DLD-based algorithm are available for Nantes hospital in
Multimedia Appendix 4.

Details on the performances per strata and repartition of the
DLD of the valid (sensitivity) and invalid (specificity) pairs are
available for Nantes hospital in Multimedia Appendices 5-6.
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Table 6. Performances of the Damerau-Levenshtein distance (DLD)–based matching algorithm per birth country and per university hospital.

P value

Fisher exact test
Spb BOOF, %
(95% CI)

Speb BIF, %
(95% CI)

P value

Fisher exact test
Seb BOOFd, %
(95% CI)

Sea,b BIFc, %
(95% CI)

Sample sizeUniversity
hospital

.0399.8 (99.6-100)99.3 (98.9-99.7)<.00174.9 (72.8-77)85.8 (84.3-87.3)Se, BIF: 2000

Se, BOOF: 1660

Sp, BIF: 2000

Sp, BOOF: 2000

Nantes

<.00199.8 (99.5-100)98.2 (97.6-98.7)<.00187.6 (84.7-90.5)97.8 (97.1-98.4)Se, BIF: 2000

Se, BOOF: 500

Sp, BIF: 2000

Sp, BOOF: 2000

Rennes

>.9999.4 (90-99.7)99.4 (99-99.7)<.00186.8 (85.2-88.4)98.3 (97.7-98.9)Se, BIF: 2000

Se, BOOF: 1700

Sp, BIF: 2000

Sp, BOOF: 2000

Lille

aSe: sensitivity.
bMax total distance used: 2
cBIF: patient born in France.
dBOOF: patient born out of France.
eSp: specificity.

Application of the Nantes BDW
Among the 1,974,786 (97%) patients recorded as living in the
Nantes BDW, 205,698 (10.4%) were matched to the FNMD.
Table 7 presents the sex repartition among these patients, and

Table 8 presents the age at death by sex. Among all patients
linked to the FNMD, 117,563 (57%) were men, and they died
8 years earlier than women did (age 74 years vs 82 years,
respectively).

Table 7. Sex of patients recorded as living in the Nantes biomedical data warehouse (BDW) and linked to the French National Mortality Database
(FNMD).

Patients in Nantes BDWa (N=205,698), n (%)Sex

88,090 (42.82)Women

117,563 (57.15)Men

45 (0.022)Unknown

aBDW: biomedical data warehouse.

Table 8. Age at death of patients recorded as living in the Nantes biomedical data warehouse (BDW) and linked to the French National Mortality
Database (FNMD).

Unknown (N=45)Men (N=117,563)Women (N=88,090)Variable

69 (21)74 (21)82 (20)Death age (years), median (IQR)

Large-scale Testing
On our laptop, the execution time to match 200 patients from
BDW with the FNMD was 3 minutes, and it was 78 hours to
match 2,000,000 patients from BDW with the FNMD. The
execution time per patient decreased with the total number of
patients. Details are available in Multimedia Appendix 7. The
use of blocking techniques reduced the number of required
comparisons by at least 40,000 times.

Open-Access R Code
The R package for the DLD algorithm, called Inseehop, is open
access on GitLab [15] and will be maintained and updated by
the authors.

Discussion

Background
We developed a large-scale DLD-based record-linkage
algorithm to match patients from BDWs in France with the
FNMD. We then compared the algorithm’s performances with
those of a direct-matching algorithm for 3 samples from the
Lille, Nantes, and Rennes BDWs.

Performances That Increased Sensitivity/Recall and
Reduced Differential Biases
Overall, sensitivity/recall was approximately 11% higher with
the DLD-based algorithm than with the direct algorithm. This
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highlights the importance of advanced data cleaning and
knowledge of a naming system through DLD use.

Moreover, sensitivity was approximately 12% higher for the
Lille and Rennes evaluation samples than for the Nantes sample,
possibly owing to differences in the BDW data quality or less
efficient death report management by regional city halls. Hence,
when possible, each center interested in reusing our algorithm
should compute its own FNMD-matching performance
evaluation.

Sensitivity was approximately 3% lower for women than for
men in the Nantes and Rennes samples. This may have been
because women are more likely to change their surname after
marriage, whereas most men do not; thus, women’s birth
surnames are not always registered. The 2020 Réferentiel
d’Identitovigilance National Identity Monitoring Guidelines in
France [16] recommendusing patients’birth surnames, even for
married women. These differences should consequently
disappear in the future.

Sensitivity was higher for people born in France than for those
born outside France. This result was expected because other
countries’ administrations do not send death reports to INSEE
when their citizens die on their territory. Another explanation
is that the same surname, first name, or middle name of a
non-French patient can have multiple translations in French.

These sensitivity differences (per sex, birth country, or hospital)
must be considered when performing an analysis to avoid
differential biases between groups.

Finally, increasing the maximal total DLD in the DLD-based
algorithm reduced performance gaps between men and women
and patients born in and outside of France, which helped limit
the differential biases between groups. Specificity was ≥98%
for both sexes, birth country, and hospital, which greatly reduced
the risk of differential biases between groups.

Blocking the birth date and then concatenating the first 4
characters of the first name and the first 4 characters of the
surname reduced the time needed to match 2 million patients
from ~366 years to 78 hours. However, records from the local
database cannot be compared with those from the FNMD if
both these blocking criteria differ; they can only be compared
if only 1 differs or both are equal.

Death Prevalence Was Greatly Underestimated in the
BDWs
Applying the DLD-based algorithm to the Nantes BDW revealed
that >200,000 patients registered as alive were actually linked
to the FNMD, which was approximately 3 times more than the
60,000 patients initially registered as deceased. More men died,
and at younger ages, which is consistent with the actual
demographic data discussed earlier in this paper.

Large-scale Matching on a Daily Routine Basis With
Minimal Local Computing Capabilities
The program implemented in R software to work on parallel
cores was able to run with 2 million patients from the Nantes
BDW and 11 million deceased people from the FNMD on 15
GB of RAM and 3 cores in a reasonable duration. Execution
time could be improved with higher performance platforms;
our laptop was not ideal due to its low computing capabilities
and overheating problems during the 3 cores calculations.
Because data stayed on hospital computers and no external
service was involved, confidentiality was optimal. Moreover,
only popular R packages were necessary to run it, which is
useful for users who lack administrator rights on their machines.

Quality of the Gold Standard
As described earlier in this paper, our gold standard was reliable
both for sensitivity and specificity evaluation because (1) it was
completely independent from the FNMD, (2) deceased status
in the hospital databases was reliable, and (3) alive status at a
certain time was searched between 2 distinct encounters. For
some patients in our sample, names, surnames, birth date, or
sex may have been incorrect, as in every database. Nevertheless,
this was not a problem because our algorithm could manage
these kinds of errors.

Additional Use Cases
Although our algorithm was originally conceived for linking a
large-scale BDW with the large-scale FNMD, it can be used
for other purposes, such as matching a large hospital database
with an insurance database.

Limitations
Initially, the expected sample size to evaluate performance at
each center was 8000. However, in some cases, there were too
few patients with a registered birth country to obtain 1000
patients per strata per center, particularly for WBOF.
Nevertheless, sample sizes were sufficient to yield small
confidence intervals and significant P values.

Another limitation was our methodology, which likely
overestimated the sensitivity. Deaths of patients that occurred
both inside and outside the hospital and were then communicated
to the hospital were not representative of all deceased people.
The only way to improve the gold standard would be to conduct
an individual investigation of vital status for every patient, which
is not possible without significant resources on a large scale.

Conclusions
While matching operations using names are sensitive
computational operations, the Inseehop package we released is
easy to run on premises, facilitating compliance with local
cybersecurity frameworks. The use of advanced deterministic
matching algorithm such as the DLD-based algorithm is an
insightful example of combining open-source external data to
improve the usage value of BDWs.
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Abstract

Background: The COVID-19 disease has multiple symptoms, with anosmia and ageusia being the most prevalent, varying
from 75% to 95% and from 50% to 80% of infected patients, respectively. An automatic assessment tool for these symptoms will
help monitor the disease in a fast and noninvasive manner.

Objective: We hypothesized that people with COVID-19 experiencing anosmia and ageusia had different voice features than
those without such symptoms. Our objective was to develop an artificial intelligence pipeline to identify and internally validate
a vocal biomarker of these symptoms for remotely monitoring them.

Methods: This study used population-based data. Participants were assessed daily through a web-based questionnaire and asked
to register 2 different types of voice recordings. They were adults (aged >18 years) who were confirmed by a polymerase chain
reaction test to be positive for COVID-19 in Luxembourg and met the inclusion criteria. Statistical methods such as recursive
feature elimination for dimensionality reduction, multiple statistical learning methods, and hypothesis tests were used throughout
this study. The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis)
Prediction Model Development checklist was used to structure the research.

Results: This study included 259 participants. Younger (aged <35 years) and female participants showed higher rates of ageusia
and anosmia. Participants were aged 41 (SD 13) years on average, and the data set was balanced for sex (female: 134/259, 51.7%;
male: 125/259, 48.3%). The analyzed symptom was present in 94 (36.3%) out of 259 participants and in 450 (27.5%) out of 1636
audio recordings. In all, 2 machine learning models were built, one for Android and one for iOS devices, and both had high
accuracy—88% for Android and 85% for iOS. The final biomarker was then calculated using these models and internally validated.

Conclusions: This study demonstrates that people with COVID-19 who have anosmia and ageusia have different voice features
from those without these symptoms. Upon further validation, these vocal biomarkers could be nested in digital devices to improve
symptom assessment in clinical practice and enhance the telemonitoring of COVID-19–related symptoms.

Trial Registration: Clinicaltrials.gov NCT04380987; https://clinicaltrials.gov/ct2/show/NCT04380987
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Introduction

In the context of the COVID-19 pandemic, declared by the
World Health Organization in early March 2020, the fast and
easy diagnosis of the disease has become an important concern.
Anosmia, an olfactory dysfunction that leads to a temporary or
permanent loss of olfaction, is present in 75% to 95% [1-3] of
infected patients, whereas ageusia, a gustatory dysfunction
resulting from the loss of functions of the tongue, is present in
50% to 80% [1,2,4,5] of infected people and can predict
infection [6], depending on the virus strain and population
characteristics. Proportionally, younger and female patients
showed higher rates of these symptoms—a proven correlation
due to differences in cytokine storms [5,7].

Monitoring these symptoms is highly needed and could be
facilitated with an easy-to-use digital health solution. In
individual who are infected but not tested, checking such
symptoms could also serve as a rapid screening solution and
suggest the realization of a test to limit the spread of the virus.
There are also many concerns about the so-called Long COVID,
where anosmia and ageusia are frequently reported [8]. A fast,
noninvasive symptom assessment tool would be useful to better
understand the whole spectrum of the disease and monitor Long
COVID's evolution over time. Furthermore, these symptoms
are associated with neurodegenerative diseases such as
Parkinson and Alzheimer diseases [9,10] and can lead to
multiple impacts, such as nutritional deficits [11].

The human voice is a rich medium that serves as a primary
source of communication between individuals. Furthermore,
talking is a uniquely human ability; it is one of the most natural
and energy-efficient ways of interacting with each other. Slight
alterations, for instance, due to a COVID-19–related symptom,
are made by changes either in respiration, phonation, or
articulation—the 3-stage process of voice production
[12]—which will result in variations of pitch, tone, fundamental
frequency, and many other aspects of our voice. Recent
developments in audio signal processing and artificial
intelligence methods have enabled a more refined and in-depth
voice features analysis that surpasses the human level of
perception and can solve complex problems in the health care
domain.

This study aimed to test the hypothesis that anosmia and ageusia
following a SARS-CoV-2 infection can result in modifications
in voice production that could help detect and monitor these
specific symptoms. To achieve our objective, we used data from
the prospective Predi-COVID cohort study, where both voice
and COVID-19–related symptoms were frequently recorded.
We analyzed voice signals, built panels of vocal biomarkers,
and internally validated them using the developed prediction
models.

Methods

Study Population
This study used data from the Predi-COVID cohort [13]—a
prospective, hybrid cohort started in May 2020 composed of
adult patients (aged >18 years) who were confirmed, by a
polymerase chain reaction test, to be positive for COVID-19 in
Luxemburg, both in and out of the hospital.

The first contact with potential participants was made via phone
by collaborators from the Health Inspection. Those who agreed
to take part were contacted by an experienced nurse or clinical
research associate from the Clinical and Epidemiological
Investigation Center, who explained the study and organized
visits at home or the hospital, and informed consent for
participation was obtained.

Through the first 14 days following inclusion, participants were
assessed daily through a web-based questionnaire. A subcohort
agreed to be digitally followed by a digital app that was
dedicated to voice recording in cohort studies. To guarantee a
minimum quality standard, participants were instructed to
register the audio in a calm place while keeping a specific
distance from the microphone. An audio example of what was
expected was also available.

Each day, 2 types of voice recordings were performed. In the
first recording, called Type 1 audio, participants had to read an
extract from the Declaration of Human Rights, Article 25,
paragraph 1 (Multimedia Appendix 1) in their preferred
language: French, German, English, or Portuguese; and in the
second recording, called Type 2 audio, they were asked to hold
the “[a]” vowel phonation without breathing as long as they
could. For this analysis, we considered only voice recordings
from the first 2 weeks after inclusion where the symptoms were
collected regularly. Since the study is in a real-life setting, the
number of vocal samples per participant may have differed.

Ethics Approval
The study was approved by the National Research Ethics
Committee of Luxembourg (study 202003/07) in April 2020
and is registered on ClinicalTrials.gov (NCT04380987).

Inclusion Criteria
All participants who had no missing data on sex, information
on the studied outcome, and both types of audio recordings on
the same day during the first 14 days of follow-up were included
in the model.

Anosmia and Ageusia
In this study, both anosmia and ageusia were the outcomes and
were united in a single variable based on the participant’s
perception. The specific question was the following: “Did you
notice a strong decrease or a loss of taste or smell?” The possible
answers were “yes” or “no.” Since the loss of smell can
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substantially affect taste functions [14], uniting the 2 symptoms
is expected to be a more realistic strategy because the outcome
is self-reported, and it would not be easy for the participant to
clearly distinguish between ageusia and anosmia.

Prediction Data
The prediction models were based on both Type 1 and Type 2
voice recordings to predict the outcome. To maximize the
information given to the model, both types were concatenated
and used as a single input to the learning model. The audio
format and recording settings varied depending on the operating
system of the smartphone used to record it: Android devices
were registered in 3gp format, whereas iOS devices were

registered in m4a format. These 2 formats were also analyzed
separately to create predictive models for each type of operating
system.

Voice Signal Treatment
The audios were preprocessed to remove poorly recorded or
corrupted files, and the remaining ones were then normalized
and cleaned for noise. Type 1 and Type 2 audios were both
sampled with an 8000 Hz sample rate, as different rates did not
significantly improve the model. Audios were then concatenated,
which resulted in a final sample from which the features were
extracted. The pipeline can be found in Figure 1.

Figure 1. Learning pipeline to the discovery of biomarkers. (A) Data collection from Predi-COVID and exclusion criteria. (B) Data treatment of audio
data and studied outcome. (C) Data analysis for both audio formats done in parallel.

OpenSMILE
The Munich Open-Source Media Interpretation by Large
Feature-Space Extraction (openSMILE) is a modular and
flexible research-only toolkit for extracting features for signal
processing and machine learning applications. It is widely used
in the speech recognition community, the area of affective
computing, and music information retrieval [15]. The package
provides many functionalities, such as windowing functions,
resampling, and fast Fourier transform. It can extract a wide
range of features including frame energy, Mel-frequency cepstral
coefficients, loudness, jitter, shimmer, and many others. The
specific openSMILE feature set is the same as that used in The

Interspeech 2016 Computational Paralinguistics Challenge [16],
originally chosen to assess sentiments through the voice. Within
it, there are 2 feature levels: functionals, which gather much
more detailed information and reach up to 6473 different
features; and low-level descriptors, measures that are closely
related to the signal and reach up to 66 features [17]. The latter
feature level is embedded in the functional features, and the full
set of feature categories is shown in Multimedia Appendix 2.

Recursive Feature Elimination
Recursive feature elimination (RFE) is a dimensionality
reduction method that recursively ranks features according to
a measure of importance defined by another classifier (linear
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regression and random forests, for example), and at each
iteration, the ones with the lowest rank are removed until the
desired number is reached [18]. The minimum number of
features was set to 10, a linear regression was used to define
the weights, and 25 features were removed at each iteration
(step=25). This process was performed using 10-fold
cross-validation.

Statistical Analysis Methods
Chi-square test and Student t test (2-tailed) were used in this
study. We applied standard machine learning algorithms that
work with structured data to analyze the extracted features.
Random forests [19], k-nearest neighbors (KNN) [20], and
support vector machines [21] were used to avoid biases from a
single predictor and test different approaches on the same data.

All hyperparameters were hyper tuned using grid search from
scikit-learn (version 0.22.2) [22], maximizing the weighted area
under the receiver operating characteristic curve (ROC AUC).
The data were divided into a 60%/20%/20% proportion for
training, validation, and testing, respectively. To evaluate its
sensibility, 10-fold cross-validation was first performed on the
training set to analyze the dispersion of the metrics, and then
the final model was built on the testing set.

The final model was chosen based on the following metrics:
precision, recall, F-measure, and accuracy. Given the nature of
the problem, we assumed that having false negatives was worse
than having false positives, since one can develop severe
symptoms and continue to spread the virus if misclassified, so
the recall for those positive to the studied outcome should be
maximized. The weighted ROC AUC was also taken into
account since it indicates the overall performance of the model
in terms of its accuracy at various diagnostic thresholds used
to discriminate between 2 classes [23].

To derive the vocal biomarker from the prediction model, we
used the final probability of being classified as having anosmia
or ageusia; its distribution was further evaluated in both groups.

Results

Descriptive Data
After excluding all data that did not meet the inclusion criteria,
we used descriptive statistics to characterize the study
participants. The final study population had a total of 259
participants, and age, sex, and BMI were associated with the
outcome (P<.001, P<.001, P<.001, respectively). Younger (aged
<35 years) and female participants showed higher rates of
ageusia and anosmia.

Participants were aged 41 (SD 13) years on average with a BMI
of 25.4 (SD 4.6)—the intersection between normal weight and
overweight [24]. Antibiotics intake, asthma, and smoking were
highly unbalanced clinical features (present in n=29, 11.2%;
n=10, 3.9%; and n=177, 68.3% of participants, respectively).
The data set was balanced for sex (female: n=134, 51.7%; male:
n=125, 48.3%), and the analyzed symptom was present in 94
(36.3%) out of 259 participants and in 450 (27.5%) out of 1636
of audio recordings. This result occurs due to a variation in the
number of recordings per participant, with each one having an
average of 6 audio recordings. Finally, Type 1 audio had an
average length of 28.5 s, whereas Type 2 audio had an average
length of 18.9 s.

As the audio format was linearly separable when analyzing the
outcome, shown in Figure 2, they were separated in the analysis.
When divided by audio format, no significant difference was
found between the 2 sets of participants. Clinical features and
audio data can be seen in Tables 1-2.

Figure 2. Sample plot with linear separation between 3gp and m4a audio formats. Principal component analysis was used on the extracted features,
and the first 2 dimensions were used to plot the samples.
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Table 1. Description of the participants, containing clinical data to characterize the general population of the study and the loss of smell and taste. All
categorical data are represented as the total number and its percentage.

P valueaAudio format, operating systemTotal (N=259)Description

3gp, Android (n=98)m4a, iOS (n=161)

.51Symptom, n (%)

60 (61.2)105 (65.2)165 (63.7)Normal taste and smell

38 (38.8)56 (34.8)94 (36.3)Loss of taste and smell

.14Sex, n (%)

45 (45.9)89 (55.3)134 (51.7)Female

53 (54.1)72 (44.7)125 (48.3)Male

.42Antibiotic, n (%)

89 (90.8)141 (87.6)230 (88.8)No

9 (9.2)20 (12.4)29 (11.2)Yes

.88Asthma, n (%)

94 (95.9)155 (96.3)249 (96.1)No

4 (4.1)6 (3.7)10 (3.9)Yes

.85Smoking, n (%)

65 (66.3)112 (69.6)177 (68.3)Yes

18 (18.4)26 (16.1)44 (17)Never

15 (15.3)23 (14.3)38 (14.7)Former smoker

.9340.7 (11.5)40.6 (13.4)40.6 (12.7)Age (years), mean (SD)

.8025.5 (4.1)25.4 (4.9)25.4 (4.6)BMI (kg/m²), mean (SD)

aAll P values were calculated through chi-square or Student t test between m4a and 3gp formats.

Table 2. Description of the audio samples, with their general information.

P valueaAudio format, operating systemTotal (N=1636)Description

3gp, Android (n=637)m4a, iOS (n=999)

.06Audio samples per symptom, n (%)

445 (69.9)741 (74.2)1186 (72.5)Normal taste and smell

192 (30.1)258 (25.8)450 (27.5)Loss of taste and smell

—b6.5 (4.6)6.2 (4.4)6.3 (4.5)Number of audio samples per participant, mean (SD)

—28.9 (4.2)28.3 (4.1)28.5 (4.1)Text reading duration (s), mean (SD)

—20 (7.1)18.2 (6.6)18.9 (6.8)Vowel phonation duration (s), mean (SD)

aAll P values were calculated through chi-square or Student t test between m4a and 3gp formats.
bNot available.

Feature Extraction
We extracted 6473 features from the concatenated audios.
Constant features throughout all the audios were removed from
the analysis (50 for Android and 49 for iOS). A RFE method
was used to find the best number of features (Multimedia
Appendix 3). For 3gp and m4a audios, we selected 3248 and
849 features, respectively.

After extraction, a density plot for the low-level descriptors was
made, as shown in Multimedia Appendices 4-5. It can be seen
that the distribution of the variables varies depending on the

outcome, which reinforces the hypothesis that there are vocal
changes related to COVID-19 infection.

Prediction Models’ Performances
The algorithms were first hyper tuned and then trained on all
the extracted features and the ones selected through RFECV.
All models used an 80%/20% stratified proportion for training
and testing, respectively, and 10-fold cross-validation was used
to assess its sensitivity. The numpy seed and the random state
of all processes were set to 42 to assure reproducibility, and the
samples were weighted to correct the models for unbalanced
data.
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Models trained on all features had an overall lower performance
than those trained with selected features, mainly due to the
removal of noise and correlated features (complementary
information). The final models for the 3 tested learning
algorithms are shown in Table 3. For both formats of audio, we
identified KNN as the best method—showing better
performances. The AUC was used to choose the best algorithm,
and in the end, 3gp had an AUC of 87%, whereas m4a had an
AUC of 80%. The specific hyperparameters for each algorithm
can be found in Multimedia Appendix 6.

The final models for classifying the loss of taste and smell were
KNN for both audio formats and presented a good weighted
precision (88% for Android and 85% for iOS), weighted recall
(88% for Android and 85% for iOS), and weighted AUC (87%
for Android and 80% for iOS). The main difference between
the 2 final models is on the recall for the symptomatic class,

which was to be maximized (82% for Android and 69% for
iOS).

The final vocal biomarker of loss of taste consisted of the
probability of being classified as having the symptoms,
calculated from the combination of all features selected for each
audio format. Its range is shown in Figure 3A, and there was a
significant difference between the distribution of probabilities
for both 3gp and m4a formats (P<.001 and P<.001 respectively),
which confirms that the model can statistically distinguish the
2 possible conditions, as the probability distribution differs
between outcomes.

Figure 3 also presents the confusion matrix for the best
classifiers, which shows that they are slightly better in correctly
classifying the absence of symptoms than its presence.
Additionally, the ROC AUC for each best model is plotted,
proving its good learning thresholds.

Table 3. Performance for the 3 different learning methods for each audio formata.

10-fold AUC (SD)Weighted AUCbAccuracyRecall 1Weighted recallWeighted precisionAudio format (number of selected
features), algorithm

3gp (n=3248)

0.89 (0.05)0.870.880.820.880.88KNNc

0.86 (0.03)0.640.770.330.770.77Random forest

0.87 (0.03)0.760.810.640.810.81SVMd

m4a (n=849)

0.89 (0.01)0.800.850.690.850.85KNN

0.76 (0.02)0.700.780.300.770.75Random Forest

0.90 (0.01)0.700.790.520.790.78SVM

aThe final model was selected using weighted AUC and is highlighted in italics. Cross-validation was used in the training set as a validation method,
and the final model on the testing set showed good adherence to it. The other differences in k-fold and weighted AUC are due to differences in the
testing and training set sizes.
bAUC: area under the curve.
cKNN: k-nearest neighbors.
dSVM: support vector machines.
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Figure 3. Final models for each audio format. (A) Biomarkers and P values from two-sided student's t-test for the presence of anosmia and ageusia
were calculated using the probability of classifying as positive. (B) Confusion matrix of the best model. (c) ROC AUC curve. Class 0 represents absence
of symptoms and Class 1 the presence of it. ROC AUC: area under the receiver operating characteristic curve.

Discussion

Principal Findings
In this study, we trained artificial intelligence–based algorithms
to predict the presence of ageusia and anosmia in patients with
COVID-19. In total, 2 predictive models were created based on
each smartphone operating system (iOS or Android). We derived
2 sets of vocal biomarkers from these predictive models that
should be used together as a single classifier. The biomarkers
were then calculated and, after an external validation, can be
used to accurately identify patients who present a loss of taste
and smell.

Biological Background
Voice is a proven source of medical information, can be easily
recorded on a large scale through smart devices [25], and can
be easily used to build personalized corpora [26]. Studies have
shown great results in the early diagnosis of neurological
disorders such as Parkinson disease [27,28], Alzheimer disease
[29], and mild cognitive impairment [30,31], since they directly
alter the voice, but also in nonneurological conditions such as
cardiometabolic [32] and pulmonary [33] diseases. It is
important to note that the analysis in this study is new since
examples in the literature only analyze short audios (shorter
than 5 s) and usually use coughs and other sources of sound
[34-36].

Anosmia and ageusia are common COVID-19 symptoms that
usually emerge after 5 days of infection [37]. The upper part of
the respiratory tract, mainly the olfactory epithelium, is rich in
ACE2 and TMPRSS2, 2 main SARS-CoV-2 receptors [38].
Olfactory sensory neurons, on the other hand, were not found
to express these receptors, which indicates that the disease itself
probably does not directly alter the mechanisms of smell and
taste. The infection of support cells, mainly sustentacular and
Bowman glands, of these regions and their subsequent
malfunction result in alterations in the environment, causing

local neuronal death and the final symptom of loss of taste and
smell [38,39].

Given that there is no neuronal causality between the loss of
taste and smell and voice production, the main pathway in the
voice likely involves mechanical influences of COVID-19
infection. The disease alters various systems, such as the
respiratory, cardiovascular, and gastrointestinal systems, that
if impaired, can directly impact voice characteristics. In mild
cases, general symptoms frequently associated with the loss of
taste and smell such as dry coughs, insufficient airflow, and
pulmonary status also directly affect the production of sounds,
resulting in variations that can be used to predict the loss of
taste and smell [12].

Strengths and Limitations
The main strengths of this study come from the fact that all
participants were confirmed to be positive for COVID-19 by a
polymerase chain reaction test. Besides, the majority of the
published studies relied on data from hospitalized patients.
Therefore, having a cohort of participants mostly at home brings
complementary information on the entire spectrum of the disease
severity of COVID-19 (from asymptomatic to severe cases).
The audio recording is based on a standardized text that has an
official translation in many languages, which ensures the high
reproducibility of the task in future studies in other countries.
The second audio type is a sustained vowel and is, therefore,
language-independent and allows analysis without risks of biases
due to different articulatory factors, speaking rates, stress,
intonations, or any other characteristics that may vary between
languages.

This study also has limitations. The recordings are performed
in a real-life, noncontrolled environment, which may increase
the variability in the quality of the voice recordings. However,
since the ultimate objective is to deploy a digital health solution,
we cannot rely on well-controlled audio recordings based on a
unique device to train the algorithms and should integrate from
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scratch the diversity of devices and audio recording
environments. This study integrates a mixture of different
languages in the cohort, but the developed vocal biomarkers
cannot be applied to other languages yet. Even though the text
is the same, different languages and accents might result in
different model performances. Additional external validation
studies in other populations that are not well represented in this
study (young people) are required at this stage.

In conclusion, we demonstrated that people with COVID-19
who had anosmia and ageusia had different voice features and
that it is feasible to accurately predict the presence or absence
of this frequent COVID-19 symptom with just a few seconds
of the individual’s voice. The derived vocal biomarker is
strongly associated with the presence of the symptom and could
soon be integrated into digital health solutions to help clinicians
enhance their consultations or in telemonitoring solutions for
remote monitoring. Further external validation studies in other
populations and languages are now required.
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Abstract

Background: The quest for improved diagnosis and treatment in home health care models has led to the development of wearable
medical devices for remote vital signs monitoring. An accurate signal and a high diagnostic yield are critical for the
cost-effectiveness of wearable health care monitoring systems and their widespread application in resource-constrained
environments. Despite technological advances, the information acquired by these devices can be contaminated by motion artifacts
(MA) leading to misdiagnosis or repeated procedures with increases in associated costs. This makes it necessary to develop
methods to improve the quality of the signal acquired by these devices.

Objective: We aimed to present a novel method for electrocardiogram (ECG) signal denoising to reduce MA. We aimed to
analyze the method’s performance and to compare its performance to that of existing approaches.

Methods: We present the novel Redundant denoising Independent Component Analysis method for ECG signal denoising based
on the redundant and simultaneous acquisition of ECG signals and movement information, multichannel processing, and
performance assessment considering the information contained in the signal waveform. The method is based on data including
ECG signals from the patient’s chest and back, the acquisition of triaxial movement signals from inertial measurement units, a
reference signal synthesized from an autoregressive model, and the separation of interest and noise sources through multichannel
independent component analysis.

Results: The proposed method significantly reduced MA, showing better performance and introducing a smaller distortion in
the interest signal compared with other methods. Finally, the performance of the proposed method was compared to that of wavelet
shrinkage and wavelet independent component analysis through the assessment of signal-to-noise ratio, dynamic time warping,
and a proposed index based on the signal waveform evaluation with an ensemble average ECG.

Conclusions: Our novel ECG denoising method is a contribution to converting wearable devices into medical monitoring tools
that can be used to support the remote diagnosis and monitoring of cardiovascular diseases. A more accurate signal substantially
improves the diagnostic yield of wearable devices. A better yield improves the devices’ cost-effectiveness and contributes to their
widespread application.

(JMIR Med Inform 2022;10(11):e40826)   doi:10.2196/40826
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Introduction

Problem Statement
Digital health provides the opportunity to combat pandemics,
to deliver health care in remote regions, and to reduce the carbon
footprint of health care delivery. Telehealth and remote
monitoring, particularly in patients’ homes, has become an
important option due to problems associated with keeping
patients in hospitals and care centers for extended periods: the
increase in the probability of acquiring nosocomial infections
[1]; the deficiency in medical infrastructure to meet the demand
of patients [2]; the increase in therapeutic dependence by older
adult patients [3]; and the increase in hospitalization costs. These
issues have led to a search for alternatives in medical care such
as home health care.

This has led to an increase in the development of remote
monitoring technologies of patients’ vital signs to improve the
medical diagnosis [4,5]. Wearable devices for monitoring vital
signs have become a powerful tool to improve health services
and to implement home health care models [6,7]. These will
allow to acquire vital signs of patients in daily environments
while they carry out their activities in a normal way, allowing
to obtain complementary information to improve the medical
diagnosis, to constantly monitor the patient’s condition, and to
improve their treatments [7,8].

A major challenge for the diffusion of digital health technologies
lies in the signal quality of sensors for remote diagnosis and
monitoring of patients, including electrocardiogram (ECG)
signals of moving patients, which require the denoising of
motion artifacts (MA). ECG is an important diagnostic technique
for application in wearable devices, owing to the amount of
information contained in the acquired waveform, distributed in
different peaks and undulations called segments (P, Q, R, S, T,
and U). The P segment represents atrial depolarization, the QRS
complex represents ventricular depolarization and atrial
repolarization, the isoelectric ST segment is the time when both
ventricles are completely depolarized, the T segment represents
ventricular repolarization, and the U segment represents
papillary muscle repolarization [9,10]. Each segment is
characterized by its unique shape, amplitude, duration, and time
of occurrence, allowing to identify the way in which the
electrical impulse is conducted through the heart muscle [10].

State of the Art
Newer devices have been developed to identify cardiovascular
diseases in early stages (asymptomatic). Some of them are
external loop recorders, implantable loop recorders, and Zio
patches as well as wearable ECGs. Similar to traditional Holter,
they share a sensitivity to artifacts [11], which leads to repeated
ECG monitoring with cost increases in 11.1% of cases [9]. In
the case of wearable ECGs, the information provided by these
devices is not considered for clinical use owing to the
contamination by different noise sources such as power line
interference, baseline wander, and MA that have nonlinear,
nonstationary, and unpredictable character, as well as ECG
bandwidth overlaps [12-14]. In addition, the effects of daily life
movements on the signal are difficult to predict, which makes
the devices’ validation for medical use in home health care and

outdoor conditions even more difficult. This motivates the
development of techniques that allow the reduction of
interference in the ECG signal.

Previously, research has been conducted to develop techniques
that solve the problem of combined interference of MA, baseline
wander, and power line interference in ECG signals [15].
Performance assessments of denoising techniques such as
wavelet shrinkage (WS), empirical mode decomposition (EMD),
wavelet independent component analysis (WICA), and EMD
independent component analysis (ICA) have been performed.
These methods present problems, although some of these work
in the denoising of synthetic signals when working with signals
from patients in movement. One of them is that their signal
databases only consider a single source of information (ECG
signal) to perform signal denoising, which makes it difficult to
acquire the dynamics introduced by movement and significantly
affects the performance of artifact reduction methods. However,
it was found that depending on the segment of the ECG signal
to be preserved, it is possible to use a specific denoising
technique for that segment [16].

In recent years, significant advances in the development of
techniques for feature extraction from cardiovascular signals in
wearable monitoring have been made. The presence of MA has
been identified as a significant source of noise in signal
acquisition, masking information about the physiological process
and leading to misdiagnosis. The MA reduction problem is still
addressed in different ways as proposed by Yang and
Tavassolian [17], where it is possible to obtain cardiovascular
parameters from the seismocardiography signal analysis; they
used the ICA on the inertial signals acquired from inertial
measurement units (IMUs) and used the ECG and
photoplethysmography (PPG) signals as reference signals. An
and Stylios [18] evaluated conventional filtering methods using
finite impulse response, infinite impulse response, moving
average, moving median filters, and advanced decomposition
methods such as wavelet, EMD, and adaptive filters to compare
their performance. They found that all these methods have their
limitations, but the best method was considered to be the
adaptive filter. However, it depends on a good selection of the
reference signal and still introduces distortion to the signal
[18,19].

Other approaches use adaptive noise signal detection, EMD, or
wavelet decomposition of the signal of interest and dynamic
time warping (DTW) component selection to reduce baseline
wandering and high-frequency noise, and they achieved signal
improvements of up to 25% [11,20,21]. On the other hand, the
electrode configuration and its interaction with the skin had
been evaluated to determine the impedance variation and the
noise introduction in the signal acquisition [22-24]. Many
authors agree that the way to approach the problem is through
the use of signal decomposition methods such as wavelets,
EMD, and ICA, among others [25-27]. In addition, including
multiple sources of information such as pressure signals, PPG
and movement are essential to estimate the physiological
parameters of interest [28].
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Study Objectives
Although some of these methods use the acquisition of multiple
signals as other sources of information for the determination of
cardiovascular parameters, few of them are focused on
evaluating the recovery of the waveform of the ECG signal.
Similarly, dealing with the acquisition of multiple physical
magnitudes such as pressure or PPG through a single channel
does not allow confirmation of the correct denoising of the
signal of interest. The method proposed in this paper allows the
redundant and simultaneous acquisition of ECG signals and
movement signals to obtain more complete information of the
physiological process masked by the movement artifacts.

It has been observed that the correct location of the electrodes
on the volume conductor of the patient has a great influence on
the result of the ECG, to the point that a bad location of these
can lead to diagnostic mistakes [29,30]. However, it has been
identified that certain modifications in the signal acquisition
hardware, such as adding additional leads in the back and taking
information of the movement of the person, allow obtaining
additional information of the signal of interest [16,31]. In this
study, additional electrodes were added to the acquisition
hardware of the ECG signal in the chest and back of the
volunteers. This represents a novel method for the acquisition
of the signals in a redundant and simultaneous way to improve
the denoising, decreasing the distortion introduced in the MA
reduction process.

The distortion concept in the context of biomedical signal
processing refers to the change in the natural shape of the signal
due to external processes or disturbances, which include changes
in the amplitude, duration, or time of occurrence of the segments
that compose the signal and lead to loss of information. The
concept of redundant measurement refers to the acquisition of
information from the same interest source from ≥2 different
measurement points, with the purpose of preventing the loss of
information or increasing the sources of information of interest,
as is true in this study. Redundant measurements are performed
simultaneously to ensure that the information acquired from the
different measurement points is synchronized, which is defined
as multichannel synchrony.

Further improvement of noise and MA reduction is critical to
achieve an optimal diagnostic yield with wearable health care
monitoring systems. The diagnostic yield will be an important
determinant of the devices’ cost-effectiveness [32]. Only with
a reliable diagnosis of specific cardiac arrythmias such as atrial
fibrillation will the devices’cost-effectiveness allow widespread
application, even in resource-constrained environments [33].

Methods

Overview
This paper presents a novel method for the reduction of noise
and MA in ECG signals from walking individuals in ambulatory
vital signs monitoring applications. We have introduced a new
method called Redundant denoising Independent Component
Analysis (Rd-ICA). It is based on (1) redundant and
simultaneous measurement of ECG signals in the chest and
back; (2) acquisition of triaxial movement signals from IMUs;

(3) a reference signal synthesized from an autoregressive model,
which considers the features of a resting ECG signal obtained
through ensemble average (EA) ECG [9,16]; and (4) separation
of interest sources and noise sources through multichannel ICA.
After the separation of the signals, the identification of the ECG
signal is made through the comparison of the components with
the synthesized reference ECG signal.

The performance of this method is tested with a database
composed of data sets of movement signals and ECG signals
acquired in the chest and the back from healthy volunteers in
conditions of rest and movement. In addition, the performance
of the Rd-ICA method is compared with the performance
presented by state-of-the-art denoising methods such as the WS
method and the WICA method. The calculation of performance
indexes is performed with indexes such as the signal-to-noise
ratio (SNR), the DTW, and a proposed index defined as
weighted distortion assessment (WDA). It measures the
characteristics of the shape of wave found with the EA ECG
method.

This section shows the protocol for recording ECG signals,
presents some previous state-of-the-art methods for ECG signal
denoising, and finally shows the proposed Rd-ICA method. In
this work, the comparison of the methods’ performance was
also carried out. A new index based on the signal distortion
characterization through the EA ECG has been proposed.

Register Protocol
A database of ECG signals acquired from a population of 20
healthy volunteers aged, on average, 26.3 (SD 5.7) years with

an average BMI of 24.4 (SD 4.8) kg/m2 was registered. Database
registration was performed for bipolar leads DI, DII, and DIII
in the chest and the back and the triaxial movement signal of
the volunteer. The experiment was divided into 3 stages: (1)
rest before movement, (2) controlled movement in laboratory
conditions, and (3) rest after movement. Each volunteer was
asked in the first stage to remain at rest for 5 minutes, which
led to the acquisition of reference ECG and motion signals. In
the second stage, each volunteer was asked to perform a walk
at a normal travel speed of 4.2 (SD 0.8) km/h for 5 minutes,
which produces contamination that masks and distorts the ECG
signal significantly. In the third stage, each volunteer was asked
again to be at rest for 5 minutes. This protocol was performed
to obtain a database of ECG signals contaminated with MA
composed of redundant and simultaneous ECG signals acquired
in the chest and the back, also with the movement of the
volunteer registered through IMUs [24]. ECG signals were
acquired at a sampling frequency of 250 Hz and 24-bit resolution
[34]. Informed consent was obtained from all participants
involved in the study.

To acquire signals, a custom wearable device was used that
performs the acquisition of the signals of ECG; PPG; and
noninvasive blood pressure that is redundant, simultaneous, and
synchronized [31,35]. The ECG is acquired on the volunteer’s
chest and back, and an IMU is included on each ECG lead to
record the inertial activity and movement. It similarly occurs
for the PPG signal that is acquired both in the left wrist and the
right wrist and for the noninvasive blood pressure signal that is
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recorded in both arms through the oscillometric method [8].
The IMUs allow acquiring the inertial activity and movement
to analyze the nonlinear dynamics of artifact contamination on
the signal.

All the signals are recorded simultaneously and synchronized
in time to guarantee signal redundancy and the possibility of
applying the Rd-ICA method. For the ECG signal, Ag/AgCl
electrodes were used, which have proven to be the ones with
the least interference in recording of the signals due to their
correct coupling with the skin.

In clinical ECG, it is common to place the electrodes on the
arms such as the left and right wrists and the left foot under the
Einthoven triangle model. In long-term examinations such as
Holters, it is common to use the positioning of the electrodes
according to the Einthoven triangle under the Mason-Likar [36]

method in which the electrodes are located on the person’s chest.
This model is the most frequently used in ECG wearable
monitoring [36,37]. Signals were acquired through the
connection of an electrophysiological signal recording
equipment to acquire the biopotentials in the torso and back of
20 volunteers as previously validated [24,31]. A group of sensors
were placed in the location proposed by the Einthoven triangle
in the Mason-Likar [36] method in the chest. These locations
were interpolated on the back of the volunteer, considering
anthropometric locations [38]. In addition, the acquisition of
triaxial movement signals was performed through an IMU
located in the electrophysiological sensors. It should be noted
that the acquisition of electrophysiological signals in the chest
and back was performed redundantly and simultaneously,
synchronized with the movement signals. Figure 1 shows the
distribution of electrodes in the chest and back of the volunteer.

Figure 1. Electrodes' distribution for the acquisition of electrocardiogram signals according to the Einthoven triangle in the Mason-Likar [38] method
over the chest and back of the volunteer. LA: left arm; LL: left leg; RA: right arm; RL: right leg.

Techniques to Reduce MA
The most frequently used techniques to reduce MA have
previously been described in detail, including WS, ICA, and
WICA [17].

Wavelet Shrinkage
The discrete wavelet transform (DWT) allows to represent a
signal as a set of waves through 2 types of functions called
mother wavelet and father wavelet, which contain high and low
frequency information [39-41]. DWT is a denoising method for
ECG signals in a process known as multiresolution analysis
[42], where the signal is decomposed in different levels through
Mallat tree decomposition and Daubechies 8 mother wavelet
selection [43-45]. Then, the thresholding method reduces the
noise components with the RiskShrink algorithm from the signal
before the reconstruction through inverse DWT is performed
[46,47]. In this study, the WS method was applied on each
acquired derivation in the chest of volunteers to perform the

denoising of ECG signals to compare the performance with the
proposed method [48].

Independent Component Analysis
Some measured signals can be considered a linear mixture of
information from independent sources, such as artifacts, noise,
and interest signals. It is possible to separate these sources with
the ICA method [49,50]. To apply the ICA, it is necessary to

have a set of observations x = (x1, x2,...xm)T taken from m
sensors. The observations are modeled as the linear combination

of a set of signals s = (s1, s2,...sn)
T, as is described by the mixing

model (equation 1) [49,51].

Where the mixing matrix A = (a1, a2,...an) that has a size of m
× n and ai are the vectors of the mixture.

To apply the ICA, it is necessary to assume that the sources’
signals are independent; just one component has a Gaussian
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distribution at most; and the number of sensors must be equal
to the number of independent sources (m = n) [51]. Through
the ICA method, the separation matrix w = (wij)(n x n) and the n

separate signals Y = (y1, y2,...yn)
T can be obtained (equation 2).

Y = Wx = WAs = Gs (2)

Some of the sources are noise sources and should not be
considered in the model to perform the denoising. Then, some
elements of the separation matrix W must be forced to 0 to
reduce the influence of the artifacts on the interest signal [51].

WICA Denoising
As previously described, some extensions of the ICA using
decomposition techniques such as DWT have been proposed

to denoise physiological signals [17]. The WICA performs the
DWT decomposition to obtain multichannel signals from a
single-channel signal before applying the ICA method [52].
The process is outlined in the form of an algorithm in Textbox
1.

In this study, the WICA method was applied to the ECG signals
acquired in the chest of the volunteers to evaluate its
performance. The selection of noise sources or artifacts is
performed conventionally through visual inspection as is
proposed by other studies, which is one of the main drawbacks
of this method [51,52].

Textbox 1. Wavelet independent component analysis (ICA) algorithm.

Algorithm

1. Select the mother wavelet and the order of the wavelet transform.

2. Apply the wavelet decomposition (discrete wavelet transform [DWT]) to generate the input matrix for the ICA algorithm.

3. Apply the ICA method to the set of wavelet components and derive the corresponding mixing (A) and demixing (W) matrices.

4. Select the sources of interest, force the others to 0, and multiply this selection with the mixing matrix (A) to back-reconstruct their appearance
in the set of wavelet components.

5. Apply the inverse DWT over the new set of wavelet components to back-reconstruct the enhanced signal.

EA Electrocardiogram
The EA ECG allows the characterization of the ECG signal
through the measurement of segments’ features that compose
the ECG signal (P, Q, R, S, T, and U). This method has been
used to evaluate the ECG signal distortion introduced by MA.
It allows to evaluate the performance of denoising methods
quantitatively considering the waveform of the signal. This is
done by finding the average pattern of a signal that has a
periodically repeated waveform, which is the case for the ECG
signal [16].

In the EA ECG computing process, it was necessary to select
a fiducial point on the standard waveform, which was the
reference in time to synchronize the signal waveforms. The R
peak was selected because it has the maximum amplitude in
waveform. On the other hand, the size in time or in samples
that have the standard waveform was determined to perform
the partition of the signal, the synchronization through the
fiducial points and the averaging of the signals. This time was

determined as the time elapsed between 2 consecutive R peaks
and corresponds with the heart rate.

In this study, the method was used first to perform the
characterization of the ECG signals acquired at rest as a
reference. In addition, the method was used to measure the
performance by state-of-the-art denoising methods and the
proposed Rd-ICA method. Furthermore, the features obtained
through the EA ECG were used to synthesize a reference signal
from an autoregressive model that considers these features and
the heart rate to present a synthetic ECG signal that resembles
its real counterpart [9].

Redundant Denoising ICA Method
The method proposed in this paper is based on the simultaneous
and redundant acquisition of the ECG signal, the movement of
the person, the separation of multichannel components, and the
selection of the improved signal through the comparison with
a modeled signal from previous information. The processing
scheme of the Rd-ICA method is presented in Figure 2.
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Figure 2. Block diagram representing the proposed Redundant denoising Independent Component Analysis method. The method considers the
simultaneous and redundant acquisition of the electrocardiogram (ECG) signal contaminated with motion artifacts (green), the signal characteristics
determination and the reconstruction of a reference ECG signal from a resting ECG signal of the same volunteer (blue), the components separation
(purple), and the selection of the improved ECG signal (watermelon). HR: heart rate; ICA: independent component analysis.

Acquisition of Redundant ECG and Motion Signals
The first step of the method consists in the acquisition of the
redundant and simultaneous ECG signals and the movement
signals of the person. The acquisition of the ECG signals in
leads DI, DII, and DIII was performed both in the chest and
back of the volunteers [24]. Redundancy of the signals is
achieved by acquiring the leads of the ECG signal in the chest
and back of the volunteer [53]. The acquisition in the chest and
back is carried out simultaneously so the leads DI, DII, and DIII
acquired in both areas are synchronized in time. The volunteers’
ECG segments acquired at rest were analyzed by a cardiologist
to validate that the volunteers did not present evident cardiac
pathology before analysis, confirming that the parameters of
the signal segments are within the normal range in physiological
terms.

Some of the ECG signals acquired from a healthy volunteer
used in this work are presented (Figure 3). Figure 3A and Figure
3B show the ECG signal acquired at rest in the chest and back
of the volunteer, respectively. Figure 3C and Figure 3D show
the ECG signal with MA acquired in the chest and back of the
volunteer, respectively, while the volunteer performed
movement. Each figure has a sample of 30 seconds and a detail

of 3 seconds to show the waveform. In addition, the
synchronization between the signals acquired in the volunteer’s
chest and back was presented, as there is no lag in the QRS
complexes of each pair of signals.

The electrode movement pattern was acquired by adding an
IMU on each electrode. That information was acquired
simultaneously with the ECG signals, thus increasing the amount
of information available for multichannel signal analysis. For
the ECG signals contaminated with MA, the time that elapses
between 2 consecutive R peaks was measured. This
measurement represents the heart rate of the ECG signal during
the movement. This feature of the signal was used to synthesize
the reference ECG signal.

To calculate the heart rate, it is necessary to measure the time
between 2 consecutive heartbeats. It is common to identify the
QRS complex and measure the time elapsed between 2 of them
consecutively. This method was used to calculate the heart rate,
both in the signals acquired at rest and while moving (equation
3).

Figure 3. Epochs of 30-second lead III electrocardiogram (ECG) acquired in the chest and back of healthy volunteers at rest and with motion artifacts.
The left panel in 4 axes shows 30-second epochs, while the right one shows a 3-second detail of the ECG signals. (A) Lead III from chest at rest, (B)
lead III from back at rest, (C) lead III from chest with movement, and (D) lead III from back with movement.
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Modeling the Reference ECG Signal
To perform the comparison and selection of the resulting
components after the multichannel analysis, a reference ECG
signal was modeled from an autoregressive model that considers
the features of the ECG signal segments such as amplitude,
duration, and time of appearance of each segment [9,54]. It
should be noted that the synthesized signal from an
autoregressive model is only used as a comparison reference to
determine which of the components obtained in the Rd-ICA
method contains the highest percentage of information on the
physiological signal of interest.

Synthesis of the reference ECG signal is based on the modeling
of a group of functions S0(t), which represent each of the
segments of the ECG signal as a modified waveform of the Sj(t),
which is obtained through Fourier models in the time interval
(0≤t≤T) [9]. This time interval corresponds to the time between
2 consecutive R peaks that the modeled signal must have and
is taken from the measured heart rate of the signal contaminated
with MA. The mathematical equation describes the construction
of each segment of the reference ECG signal (equation 4).

S0(t) = ajSj(djt + tj) + cj; aj>0,dj>0 (4)

Where aj, dj, tj, and cj are the coefficients of amplitude, duration,
time of appearance, and offset of the signal, respectively. If the
variation of the baseline is subtracted in the processing step, cj

can be omitted.

The autoregressive model requires the definition of the features
of each segment of the signal (P, Q, R, S, T, and U) and the
heart rate that the modeled signal will have. The features of
amplitude, duration, and time of appearance of each segment
were obtained from applying the EA ECG method to a signal
previously obtained during the volunteer’s rest [16]. The EA
ECG method allows to characterize the waveform of the ECG
signal acquired at rest and to extract the coefficients for the
synthesis of the reference ECG signal (equation 4). This later
has the waveform of the ECG signal at rest, which is free of
artifacts but includes the heart rate of the ECG contaminated
with MA.

Separation and Selection of Multichannel Sources
With the premise that the interest information of the ECG signal
comes from an independent source, which is the heart, and the
MA come from sources other than this; the redundant
measurement of the ECG signal was used to obtain information
from a single source in 2 different sensors. Each of these sensors
acquires information from artifacts from different sources. We
assumed that redundant signals will have a common component
that will be the ECG lead that is being measured in the chest
and back of the volunteer and will have independent components
from different sources of MA.

To identify the relative movement of the volume conductor, a
set of signals formed by the redundant evaluations of an ECG
derivation acquired in the volunteer’s chest and back is obtained
as well as the movement signals in 3 orthogonal axes obtained
with the IMU.

In this regard, the ICA method was used to perform an analysis
of the signal data set to identify common information between
the different sensed channels and to separate it from independent
sources, using the ICA model.

Once the independent components were obtained, the component
with more information about the ECG signal was determined.
For this, the reference ECG signal was used that was synthesized
from the features of the signal acquired at rest from the same
volunteer, the heart rate measurement from the ECG signal with
MA and the autoregressive model that considers the
characteristics and heart rate [9]. Figure 4 presents the
assessment and selection method of different components with
ECG information.

Each component resulting from the ICA method is compared
with the reference signal through the correlation method (Figure
4), which provides a quantitative measure of the similarity
between 2 signals. After that, the selection of the component
with the highest correlation with the reference ECG signal is
made. This component is processed in the final stage of filtering.

Figure 4. Selection method for the component that contains the greatest amount of information of the electrocardiogram signal source. CORR: correlation.

Final Stage of ECG Signal Filtering
Once the component with the most ECG information is obtained,
it is filtered and improved with the WS method. With this

method, noise filtering of components of the signal with high
and low frequency is performed to obtain an improved ECG
signal.
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Validation and Assessment of the Rd-ICA Method

Overview
To validate the Rd-ICA method, the performance presented by
it is evaluated and compared with that of other state-of-the-art
denoising methods such as the WS and WICA methods [16].

As presented earlier, the WS and WICA methods were applied
only to the leads acquired on the chest of the volunteers, as each
of these methods proposes, and the performance presented by
these methods was measured. On the other hand, the Rd-ICA
method was applied to the same set of signals but included the
redundant signals and motion signals as proposed. The
performance of this method was also measured.

The performance measurement presented by these methods was
performed through the calculation of indexes traditionally used
in signal processing. These indexes were the SNR, DTW,
cross-correlation, and the measurement of the difference
percentage of the signals’ features through the EA ECG method
with respect to an ECG signal acquired at rest from the same
volunteer. For this, an index that considers the distortion
introduced by the denoising methods when performing the signal
improvement was proposed. This index was called WDA.

Signal-to-Noise Ratio
The SNR was used to quantify the improvement of the enhanced
signal after the denoising methods were applied. The SNR
reflects the difference between input (reference signal) and
output (enhanced signal) of the specific denoising methods
(equations 5, 6, and 7) [55,56].

Where xc is the clean ECG signal, xn denotes the noisy ECG,
and xd represents the denoised ECG.

Dynamic Time Warping
The DTW method allows to calculate the minimum Euclidean
distance between each sample of the signal to be compared Sj(t)
and each point of the reference signal S0(t) [57,58]. The method
uses 2 matrices of identical size to perform the calculation.
Matrix S1m×n contains m copies of the reference signal S0(t)1×n

in the rows, and matrix S2m×n contains n copies of the signal to
compare Sj(t)m×1 in the columns [17]. The distance matrix Dm×n

is calculated using the single dimension Euclidean distance as
shown in equation 8.

Where 1 ≤ x ≤ m and 1 ≤ y ≤ n. Starting in position (1,1) of D,
a cost matrix C is created to store the accumulated distance of
the previous column and row, which are calculated with equation
9.

The path of minimum distance is found from cost matrix C,
starting at the position (m,n) of the matrix and moving toward
the adjacent position of lowest cost until reaching the beginning.
These positions are saved and will then be identified in matrices
S1 and S2 to create the minimum difference aligned signals S1w

and S2w, respectively. In this process, it is possible that some
samples of the matrix S1 or S2 are repeated to conform to the
vectors S1w and S2w, which is an index of the difference between
both signals and the distortion of the evaluated signal. Through
this method, the distance between the standard waveform of the
modeled reference ECG signal at rest and the enhanced ECG
signal is determined.

Cross-Correlation
Cross-correlation is a measure of similarity between 2 signals.
This is measured from the displacement and the superposition
of one signal on the other to determine the level of similarity
between both. This is known as sliding dot product and is
defined in equation 10.

In this work, cross-correlation was used as an index to determine
the performance of the denoising methods. Similarity between
the reference ECG signal and the enhanced ECG signal was
evaluated through the cross-correlation index.

Weighted Distortion Assessment
For the calculation of the WDA index, the percentage similarity
vector of the features (△EA) and (△W) and the vector of
weighted weights for the features are defined. These 2 vectors
are defined by equations 11 and 12.

△EA = [aP, dP, tP-R, aR, dR, tR-T, aT, dT] (11)

△W = [wP1, wP2, wP3, wR1, wR2, wR3, wT1, wT2] (12)

aP, dP, tP-R, aR, dR, tR-T, aT, dT corresponds to the similarity
percentages of each feature obtained from the EA ECG. These
are calculated using equation 13 [16]. wP1, wP2, wP3, wR1, wR2,
wR3, wT1, wT2 correspond to the weights to define the relevance
that each feature will have on the calculation of the WDA index.
The WDA index is described in equation 14.

Similarity = (100% − %difference) / 100 (13)

The coefficients’ values of the weight vector (△W) must be
chosen between 0 and 1. These represent the percentage of
relevance given to the preservation of a certain feature in the
WDA performance index assessment. In this study, 4 different
cases were evaluated: (1) all features have equal weight, so all
the coefficients in the vector (△W) will be equal to 1; (2) the
amplitude of the P wave will be more relevant in the analysis,
thus wP1=0.9 and the other coefficients will have a weight of
0.5; (3) the amplitude of the QRS complex will be more relevant,
wR1=0.9, and the other coefficients will have a weight of 0.5;
and (4) the amplitude of the T wave will be more relevant,
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wT1=0.9, and the other coefficients will have a weight of 0.5.
A high value of the WDA index indicates that the denoising
was performed satisfactorily and the distortion introduced by
the denoising methods was low, also indicating a better
conservation of the features of the ECG signal.

Ethics Approval
The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Human Studies
Institutional Ethics Committee of Universidad de Antioquia
(protocol code 16-59-711 of May 19, 2016). Informed consent
was obtained from all participants involved in the study.

Results

This section shows the results of the Rd-ICA method application
for the reduction of MA in ECG signals and the assessment and
comparison of the Rd-ICA method performance with the WS
and WICA methods applied on ECG signals acquired from

healthy volunteers in rest and movement. The performance
evaluation of the Rd-ICA method was conducted through the
measurement of indexes such as SNR, DTW, and the WDA
index proposed in this paper based on the measurement of
features from the EA ECG.

EA ECG of the ECG Signal at Rest and Movement
The EA ECG method was applied to ECG signals of volunteers
acquired in resting conditions (Figures 3A and 3B) and to ECG
signals acquired with MA (Figures 3C and 3D).

Figure 5A and Figure 5B show the EA ECG of the signals
acquired in resting conditions in the chest and back of a
volunteer, respectively. The solid line represents the average
signal and the dashed lines represent the SD signals. Figures
5C and 5D present the acquired signals in movement conditions;
in the same way it presents the average signal by means of the
continuous line and the SDs by means of the dashed lines. The
dispersion of the different waves that compose the EA is
observed during the movement.

Figure 5. Ensemble average (EA) electrocardiogram (ECG) for ECG signals acquired at rest and movement, on the chest and back of the volunteer.
The continuous centerline represents the EA ECG of the signal while the dashed lines represent the SD of the EA ECG. (A) Lead III from chest at rest,
(B) lead III from back at rest, (C) lead III from chest with movement, and (D) lead III from back with movement. HR: heart rate; P: P segment; Q: Q
segment; QRS: QRS complex; ST: ST interval; T: T segment.

Application of Denoising Methods
Some state-of-the-art denoising methods were applied to ECG
signals contaminated with MA. These signals were selected
only from the chest of the volunteers while they performed
movement. The methods applied were the WS and WICA
method.

The Rd-ICA method was applied to the redundant and
simultaneous ECG signals contaminated with MA and acquired
in the volunteer’s chest and back. The comparison was made
with a reference ECG signal synthesized from an autoregressive
model. The result of applying denoising methods on the ECG
signal of a volunteer is presented (Figure 6). In addition, the
EA ECG of the denoising result of the ECG signal through the
WS, WICA, and Rd-ICA methods is shown (Figure 7).
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A graphic comparison between the results of the denoising
presented by each of the evaluated methods is presented (Figure
6). In addition, the result of applying the EA ECG over the

improved signals with each of the methods, including average
and SD signals is presented (Figure 7).

Figure 6. Epochs of 30-second lead III electrocardiogram (ECG) signal contaminated with motion artifacts (MA) after denoising and enhancement.
The left panel in 4 axes shows 30-second epochs, while the right one shows a 4-second detail of the ECG signals. (A) ECG lead III with MA, (B) ECG
lead III with WS denoising, (C) ECG lead III with WICA denoising, and (D) ECG lead III with Rd-ICA denoising. Rd-ICA: Redundant denoising
Independent Component Analysis; WICA: wavelet independent component analysis; WS: wavelet shrinkage.

Figure 7. Ensemble average (EA) electrocardiogram (ECG) for enhanced ECG signals through the wavelet shrinkage (WS), wavelet independent
component analysis (WICA) and Redundant denoising Independent Component Analysis (Rd-ICA) methods. The continuous centerline represents the
EA ECG of the signal while the dashed lines represent the SD. (A) ECG lead III with WS denoising, (B) ECG lead III with WICA denoising, and (C)
ECG lead III with Rd-ICA denoising. HR: heart rate; P: P segment; Q: Q segment; QRS: QRS complex; ST: ST interval; T: T segment.

Validation and Assessment of the Rd-ICA Method

SNR Results
To determine the performance of the denoising methods, the
improvement SNR (SNRimp) was evaluated on the enhanced
ECG signals (Figure 6). The SNRimp was calculated using
equation 7 as the difference between the SNRin measured on
the ECG signal contaminated with MA before enhancement
and the SNRout measured on the enhanced ECG signal through
each method. The SNRin obtained for the signal contaminated

with MA was −4.64 (SD 0.43). A SNRout of −3.94 (SD 0.35)
for WS, −3.22 (SD 0.34) for WICA, and −1.07 (SD 0.15) for
Rd-ICA was obtained. The above represents a SNRimp of 0.70
(SD 0.37) for WS, 1.42 (SD 0.31) for WICA, and 3.58 (SD
0.36) for the Rd-ICA method. A larger SNRimp was observed
in the Rd-ICA method, followed by the WICA method and
finally by the WS method.

DTW Results
Through the DTW method, it was possible to identify the
distance percentage between a waveform of a reference signal

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e40826 | p.89https://medinform.jmir.org/2022/11/e40826
(page number not for citation purposes)

Castaño Usuga et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


with the waveform of a signal under evaluation. This percentage
was calculated from the DTW method [57]. The lower the
percentage, the greater the similarity between the evaluated
signal and the reference signal.

The DTW showed 42.62% (SD 8.64%) of difference between
MA contaminated signal and the reference signal. Distance
percentages of 41.32% (SD 8.01%) for WS, 44.23% (SD
16.31%) for WICA, and 19.72% (SD 6.25%) for Rd-ICA were
obtained. A smaller percentage of distance was obtained in the
result of the Rd-ICA method. For the WICA and WS methods,
an increase in the distance percentage was observed with respect
to the signal contaminated with MA, which suggests a distortion
increase.

Cross-Correlation
Cross-correlation provides information about the similarity
between 2 signals. In this case, the similarity between the
reference ECG signals obtained from the model and the
enhanced ECG signals was evaluated. For ECG signal
contaminated with MA it was obtained a cross-correlation of
6.08 (SD 1.48). Cross-correlation of 5.74 (SD 0.67) for WS,
5.84 (SD 1.31) for WICA, and 8.66 (SD 0.39) for Rd-ICA were
obtained.

WDA and Difference Percentage
From the EA ECG, the features of the resting ECG signals,
ECG signals contaminated with MA, and the enhanced ECG
signals were measured. The difference percentage of the features
between the contaminated and enhanced ECG signals relative
to the signal acquired at rest was measured [16]. Table 1 shows
the difference percentage for each ECG signal feature through
the EA ECG method. The average and SD values are presented.

The WDA index assessment was performed for 4 different cases:

1.
All features with equal relevance level .

2.
Greater relevance of the P wave .

3.
Greater relevance of the QRS complex .

4.
Greater relevance of the T wave .

Table 2 shows the result of the distortion analysis through the
WDA index for signals contaminated with MA and enhanced
through denoising methods.

Previous results show the method that presents the best
performance in denoising and that preserves the signal waveform
features with less distortion is the Rd-ICA method. This supports
the results obtained from the other indexes evaluated.

Table 1. Difference percentage between the features of enhanced electrocardiogram signals and electrocardiogram signals acquired at rest.

Rd-ICAb, mean (SD)WICAa, mean (SD)Wavelet, mean (SD)Movement, mean (SD)Difference

27.46 (7.37) c42.03 (36.77)59.91 (25.06)52.56 (23.20)Amplitude P

14.59 (7.58)30.19 (9.49)14.83 (6.78)25.86 (19.79)Duration P

13.87 (8.37)20.56 (11.50)26.99 (16.26)30.63 (10.62)Time P-QRS

3.24 (2.00)9.76 (8.61)4.38 (1.85)18.62 (4.87)Amplitude QRS

4.89 (2.58)9.62 (9.33)6.37 (5.04)11.29 (7.88)Duration QRS

20.10 (7.91)33.70 (15.90)31.05 (14.68)40.58 (20.12)Time QRS-T

18.63 (5.53)53.36 (35.22)52.24 (43.02)47.01 (19.61)Amplitude T

11.54 (5.32)10.73 (7.80)12.06 (8.07)27.03 (9.86)Duration T

13.04 (5.83)26.24 (16.83)25.88 (15.09)31.70 (14.49)Average

aWICA: wavelet independent component analysis.
bRd-ICA: Redundant denoising Independent Component Analysis.
cItalicized values indicate the best performance in the dynamic time warping assessment.

Table 2. Evaluation of the weighted distortion assessment (WDA) index from the enhanced electrocardiogram signals for 4 different cases of specific
feature relevance.

Rd-ICAbWICAaWaveletMovementWDA

2.35 c2.092.101.93Case 1

2.181.911.851.74Case 2

2.262.022.051.87Case 3

2.161.871.881.76Case 4

aWICA: wavelet independent component analysis.
bRd-ICA: Redundant denoising Independent Component Analysis.
cItalicized values indicate the best performance in the dynamic time warping assessment.
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Discussion

Principal Findings
This paper presents a novel method for MA reduction in ECG
signals through the acquisition of redundant and simultaneous
signals, acquisition of the person’s movement, modeling of the
reference signal from prior knowledge of the ECG signals at
rest, and processing of this set of signals through multichannel
processing techniques. This method was called Rd-ICA. This
was applied to a data set composed of ECG signals acquired
from healthy volunteers at rest and in movement conditions.

The performance of the proposed Rd-ICA method was compared
with state-of-the-art methods for MA reduction such as WS and
WICA. To compare the performance of the different methods,
each was applied to the data set, and the performance was
evaluated from the measurement of indexes such as SNR, DTW,
cross-correlation, and the proposed WDA that consider the
morphological features of the signal [16].

The use of a single denoising method does not guarantee the
reduction of noise in all features. Sometimes it is necessary to
use specific denoising methods to improve the signal and
maintain some feature with fidelity. Despite this, the Rd-ICA
method presents a good alternative for the reduction of MA in
contaminated ECG signals, as shown by the results obtained in
this paper.

Comparison With Prior Works
The ECG signals acquired redundantly in the chest and back of
the volunteers showed similar information from the same source;
this information belongs to the ECG signal that is of interest in
this study [59]. In addition, it contains information from other
sources among which are MA, which are measured as
information from independent sources. This allowed the
separation of the signal of interest and the signal of artifacts
through the proposed multichannel signal processing technique.

Most of the methods reported are based on the separation by
components, the extraction of the noise components and their
elimination, then the reconstruction of the signal of interest.
The works at the frontier of knowledge make use of methods
such as EMD, wavelet, and adaptive filters with some
modifications and improvements, and these are the ones that
have presented the best performance, but according to those
reports, they also introduce a large amount of distortion in the
signal of interest.

The method proposed in this paper is advantageous and novel
from the point of view that it acquires the signal redundantly,
thus providing a way to validate the processing applied to the
signal of interest. Other finding was that both components of
the ECG signal acquired on chest and back were significantly
similar, while the artifacts contamination showed differences
between the 2 signals acquired on the chest and back of
volunteers [24]. In addition, the motion component helps to
determine the dynamics of the signal, evaluate the nonlinearity
of contamination by artifacts and perform a better estimation
of the components of interest through the proposed Rd-ICA
method.

Application Spectrum
This technique presents its application with wearable vital signs
monitoring devices, which have their main field of application
in outpatient vital signs monitoring. This technique requires a
modification in the signal acquisition hardware as it requires
redundant and simultaneous ECG signal acquisition from the
chest and back of patients. In addition, it requires the
measurement of movement through IMUs. These modifications
are possible to implement in wearable devices [31]; therefore,
the technical feasibility can be affirmed for implementation in
outpatient monitoring.

The proposed technique has important potential in the processing
of physiological signals from different sources with the use of
redundant acquisition of the interest signals. It shows its
application in the identification of signals from cardiac
arrhythmias in conjunction with the EA ECG method and the
proposed WDA index. Some of the ECG monitoring devices
that potentially may include this technique to reduce artifacts
and to improve their diagnostic potential are external loop
recorders, implantable loop recorders, traditional Holter, and
wearable ECGs. This kind of improvement will reduce the
associated costs with repeated tests.

The method proposed in this paper presents a considerable
advance in the reduction of MA in ECG signals as the results
showed an improvement in the denoised signal. Its advantage
is not only in the evaluation of signal indexes such as SNR but
also in the preservation of the signal waveform, low distortion
introduction, and the potential use in medical diagnosis. It was
observed that the Rd-ICA method presents a significant
improvement in the conservation of the characteristics of the
signal compared with the WS and WICA when it was evaluated
using the EA ECG method.

In the same way, the possibility to have the redundant ECG
signal and the motion signals from the inertial sensors provides
the proposed method with the capability to separate the
component of interest from the components of artifacts. At the
same time, it allows the method to determine these components
autonomously by comparing this signal with a reference signal
built from an autoregressive model that considers the
cardiovascular characteristics of the volunteer. This allows the
proposed method to be implemented in wearable monitoring
systems and in autonomous monitoring systems.

Future Work
On the other hand, there is evidence of the need to carry out
more extensive research to evaluate the reliability and clinical
validity of this method in patients with relevant diseases.
Although this method presents the possibility to differentiate
events coming only from the cardiovascular system and separate
them from external events such as the volunteer’s movement.
This is due to the possibility of obtaining the ECG signals
redundantly and simultaneously. In addition, the need to add
new sensors for the redundant measurement of the signals and
the obtaining of the movement signal through IMUs implies
significant modifications in the hardware of the existing
monitoring systems. Despite this, the possibility of making these
modifications is evident and opens the possibility to generate
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new designs, enabling the growth of the market for wearable
medical devices.

Currently, the research and development of biosensors have a
great boom thanks to the advantages they show, such as easy
application and portability. Their easy implementation in
wearable devices for the continuous measurement of different
vital sign signals or physiological variables in everyday
environments makes these devices a great option in vital signs
monitoring [60]. Despite its great applicability, the information
acquired by these biosensors is distorted by different sources
of noise and artifacts, such as MA. The method proposed in this
work is not limited to the denoising of the ECG signal, but it
can be used for other physiological signals that can be
redundantly acquired and are susceptible to be affected by MA.
Some of these sensors are PPG biosensors, enzymatic biosensors
for glucose measurement, intraocular pressure, and hydration
percentage [60,61].

Conclusions
The technique’s ability to improve the quality of the signal is
critical for diagnosing specific cardiac arrhythmias in real-world
use. The diagnostic yield has been shown to be a major
determinant in a technique’s economic assessment; for example,
in diagnosis after palpitations [62] or syncopes [63,64], in
screening of athletes [65,66], or in identifying asymptomatic
atrial fibrillation [33,67]. To explore these applications, the
acquisition of a database that considers more extreme
movements and patients with common cardiac pathologies is
required, which will provide information about the effect of
artifact promotion techniques in the correct identification of
arrhythmias or the malfunction of heart. Such a database would
allow future work on the proposed method and a benchmark
with existing methods to evaluate their performance in MA
reduction as well as its benefits in the identification of
waveforms modified by specific cardiac arrhythmias.
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Abstract

Background: Studies have shown that hospitals or physicians with multiple malpractice claims are more likely to be involved
in new claims. This finding indicates that medical malpractice may be clustered by institutions.

Objective: We aimed to identify the underlying mechanisms of medical malpractice that, in the long term, may contribute to
developing interventions to reduce future claims and patient harm.

Methods: This study extracted the semantic network in 6610 medical litigation records (unstructured data) obtained from a
public judicial database in China. They represented the most serious cases of malpractice in the country. The medical malpractice
network of China was presented as a knowledge graph based on the complex network theory; it uses the International Classification
of Patient Safety from the World Health Organization as a reference.

Results: We found that the medical malpractice network of China was a scale-free network—the occurrence of medical
malpractice in litigation cases was not random, but traceable. The results of the hub nodes revealed that orthopedics, obstetrics
and gynecology, and the emergency department were the 3 most frequent specialties that incurred malpractice; inadequate informed
consent work constituted the most errors. Nontechnical errors (eg, inadequate informed consent) showed a higher centrality than
technical errors.

Conclusions: Hospitals and medical boards could apply our approach to detect hub nodes that are likely to benefit from
interventions; doing so could effectively control medical risks.

(JMIR Med Inform 2022;10(11):e35709)   doi:10.2196/35709

KEYWORDS

medical malpractice; complex network; scale-free network; hub nodes; patient safety management; health systems

Introduction

Background
Medical malpractice is a complex issue involving many different
elements and their mutual relationships. The interacting elements

in medical malpractice could comprise individuals (such as
physicians and patients) and institutions (such as hospitals).
These elements play particular roles in medical malpractice and
have strong or weak connections with it. For example,
physicians with poor malpractice records are more likely to stop
practicing medicine, switch to smaller practice settings [1,2],
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or practice defensive medicine. Most malpractice cases are
brought against the same physician and occur in the same
specialty [3-5]. Owing to the complexity of the topic, it is
difficult to describe the organizational themes in medical
malpractice using a model or mathematical formula.

The construction and structure of networks may help to
understand the complex issues—network thinking focuses on
relationships among entities rather than on the entities
themselves. Network thinking provides novel ways to address
difficult problems such as how to control epidemics; how to
target diseases that affect complex networks in the body; and,
more generally, what kind of resilience and vulnerabilities are
intrinsic to natural, social, and technological networks as well
as how to exploit and protect such systems [6]. Similarly,
establishing a reasonable medical malpractice network is of
great significance for examining common patterns among
entities. For example, AIDS network studies [7-9] have
suggested that safe sex campaigns, vaccinations, and other
interventions should be mainly targeted at hubs in sex contact
networks. With complex networks and limited resources, hub
targeting would be the most cost-effective strategy [10,11].

Medical malpractice in China is an issue that needs immediate
attention. According to statistics from the Supreme Court of
China [12], there are >10,000 medical lawsuits each year, and
the number of cases has increased markedly. The impact of
medical litigation cases is excessive. Wang et al [13] and Li et
al [14] estimated that approximately 70% of medical lawsuits
in China were related to alleged inadequacies in the quality of
health care. However, in Denmark and Sweden, medical
litigation cases resulting from insufficient quality of care
accounted for only approximately 50% of medical lawsuits
[15,16]. The frequent occurrence of such cases will not ease the
current tense physician-patient relationship [17,18] and could
induce defensive medical behavior. It is believed that defensive
medicine either promotes the rise of medical costs or reduces
care quality. Unlike the soaring insurance costs caused by the
“malpractice crisis” in Europe and the United States, the cost
to China’s insurance system appears to be stable, but there may
be a huge impending crisis. In China, health care services are
mainly provided by public hospitals. Hospitals generally do not
purchase commercial insurance and, thus, they bear the medical
risks. The lack of a medical risk-sharing mechanism makes it
more likely that payments incurred by lawsuits will be
potentially diverted from patients’medical costs; this will make
the direct and indirect costs of malpractice more difficult to
control.

Studies on medical malpractice have mostly investigated what
motivates patients to sue and how malpractice claims affect
physicians’ behavior—the aim has been to determine the
incentives to practice defensive medicine and change treatment
patterns. However, the analytic methods of such studies have
been limited to describing characteristics, time trends, and
associations; each method has had potential drawbacks and
limitations. The complex network theory can provide
methodological support for understanding the complexity of a
health care system; however, few studies have focused on
interactive behavior in medical malpractice in terms of network
thinking.

Background Literature
In 2000, the US Institute of Medicine released a report titled
“To Err Is Human: Building a Safer Health System” [19], which
attracted public attention to incidents of medical malpractice.
In recent years, in the United States and Europe, there has been
an increase in the number of malpractice claims against health
care providers as well as in the amount of payment awarded to
plaintiffs. Many descriptive studies have undertaken
retrospective analyses of claims [20] with respect to specialties
[4,19,21], regional factors [13,22], and medical errors
[14,19,23]. On this basis, correlation studies have been
conducted, including the following areas: correlations between
physician traits and claims [24-26], quality of care and claims
[27,28], and medical insurance costs and the medical liability
system [29,30]. In the United States in particular, researchers
have attempted to explain the sudden increases in claims and
sharp rise in insurance premium rates; some believe that such
trends may have been caused by a decline in care quality or a
lack of efficient incentive schemes provided by legislation.
Many studies on medical malpractice have examined the
characteristics of liability systems and their ability to prevent
negligence and make policy recommendations for ongoing
system reform. Other studies have focused on analyzing the
impact of medical malpractice on physicians’behavior and their
motives for defensive medicine [31-33].

Health care is complex. Renkema et al [33] identified the
complexity of care as a major factor affecting the relationship
between malpractice claim risk and physicians’behavior. Given
the complexity of health care, complex theory has been applied
to studies on health in many ways. A much-cited article in The
British Medical Journal by Plsek and Greenhalgh [34] has
provided a powerful impetus for the application of complex
theory in the field of health. This introductory article argued
that, to cope with the growing complexity of health care, linear
models had to be abandoned and unpredictability accepted,
calling for consideration of the complexity of health services.
As an emerging field in complexity research, complex network
theory abstracts complex systems into networks, with nodes
and connected edges to analyze topology and common patterns
for systems. Two well-studied models in complex network
theory are the small-world network and scale-free network
models [10,35,36]. Originally described in social networks, the
small-world property means that the distance between any 2
nodes in a network is unexpectedly small. The scale-free
network property means that numerous weakly connected nodes
(noninfluential nodes) coexist with a few highly connected
nodes (influential nodes).

The complex network theory has been used for studies in
evaluating health policy, the spread of infectious diseases, and
the mechanism of physiological systems. Yue et al [37]
investigated the implementation process of essential drug policy
in 3 rural areas in China through the lens of complexity. The
authors identified the importance of adaptiveness and
self-organizing behavior as well as the role of nonlinear
feedback loops in the implementation process. In 2001, a
research team of sociologists and physicists from Sweden found
that the network of human sexual contacts showed a scale-free
structure [7]. Other research has drawn similar conclusions.
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These findings have provided valuable information for epidemic
control, such as with AIDS—in the case of limited resources,
it is most cost-effective to prioritize behavioral education or
vaccination of the hub node (the most influential node) in the
sex network. Several studies in brain science have found that
human and other animals’ brain structures and functional
networks have the following features: small-world topologies
[38-41], highly connected hub nodes [42], and modular
partitions [43]. There has been limited research on applying
complex network theory to medical malpractice. This study
used data on medical litigation from China and applied the
complex network theory aiming to construct the topology of a
medical malpractice network.

Methods

Overview
In this study, we constructed a knowledge graph (KG) to
represent the medical malpractice network of China (MMNC).
Our null hypothesis was that claims are random
events—attributable to bad luck with random frequency.
Correspondingly, our alternative hypothesis was that medical
malpractice is not random; this reflects the belief that hospitals
or physicians with multiple malpractice claims are more likely

to be involved in new claims. As medical malpractice is a
complex issue, this study applied the complex network theory,
which provided the methodological support for understanding
interactive behavior in medical malpractice. Specifically, this
study extracted the semantic network in 6610 medical litigation
records (unstructured data) obtained from a public judicial
database in China. They represented the most serious cases of
malpractice in the country. The MMNC was presented as a KG;
it uses the International Classification of Patient Safety from
the World Health Organization (WHO-ICPS) as a reference.

Construction of the Malpractice Network

Overview
A complex network can be represented as a KG, which is widely
used to express a semantic network. A difficulty in this regard
is how to generate an effective, reliable KG. This study followed
the general steps of KG development shown in Figure 1. In that
process, this research adopted top-down logic (ie, designing the
data model first; filling the specific data to the model; and,
finally, forming a KG). We stored the KG in Neo4j Community
Edition (version 3.5.5; Neo4j, Inc) [44], which is the world’s
leading graph database and has been widely used because of its
higher performance. The structural medical malpractice network
can be represented as a KG through the following 4 steps.

Figure 1. Process of constructing the medical malpractice knowledge graph (KG). The International Classification of Patient Safety from the World
Health Organization (WHO-ICPS) is a conceptual framework with an ontological basis. However, the WHO-ICPS was not a complete classification at
that time. We adopted and localized several key concepts from the WHO-ICPS (details in Table 1).

Step 1: Knowledge Modeling
The knowledge model is the top-level design with a KG—it
determines the range of data collected and the structure of the
data. From a technological perspective, it defines the schema
of the KG. In this study, we examined dynamic development
in the MMNC—we attempted to determine the underlying
mechanism, and the logic can be summarized in chronological
order as follows. Patients seek medical advice because of illness.
In the case of several medical errors or relatively unsatisfactory
outcomes, patients become discontented with the efforts of
medical providers and have the incentive to undertake legal

action. Each malpractice claim concludes with a legal judgment.
The patient, medical provider, and court were considered as
stakeholders in the MMNC.

To extract medical litigation texts from the database in China,
we referred to the WHO-ICPS [41,45], which offers a conceptual
framework using an ontological basis. All definitions and the
knowledge model were clarified after repeated discussions by
an expert panel (details are described in step 4). The WHO-ICPS
is an internationally standardized domain ontology, and it can
be directly used as a model when constructing a KG for patient
safety. Therefore, this study examined the WHO-ICPS to help
construct a theoretical model in step 1.
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The actual practice knowledge modeling adhered to the
following steps.

First, we defined the network nodes and their properties. The
aforementioned stakeholders were classified and served as the
nodes. Furthermore, nodes were assigned several properties that
were used to form a comprehensive description of the nodes.

Second, we estimated a continuous measure of the association
among the nodes. Given that medical litigation cases were in
text format, specific sentences that described the relationships
among key concepts were abstracted as the relationships. For
example, we abstracted “seek medical service” as a relationship
from the sentence “Patient A sought medical service from the
oncology department at Hospital B.”

Third, we generated an association matrix by compiling all
pairwise associations among nodes. We kept the relationships
directed (in chronological order) to allow us centrality analysis
and weighted (weight was the number of relationships).

Step 2: Knowledge Extraction
From step 2, we obtained information about the nodes and their
relationships and properties. Records relating to medical lawsuits
were in the form of unstructured data; they covered the contents
of patients’medical records, medical expert opinions, and court
decisions. To extract knowledge from the unstructured litigation
data, we used the knowledge model built in step 1 as our
structural ontology. Through manual questionnaire entry and
crawler codes, we structuralized all the litigation data.

Step 3: Knowledge Fusion
This step solved the problem of inconsistent data quality and
structure. We adopted a top-down KG construction method.
We used a single data source to avoid, to some extent, such
problems as uneven information quality and lack of a
hierarchical structure. However, during step 2 (especially with
manual data entry), there were differences in understanding
among data entry operators. To address these problems, we
conducted group training before data entry and answered any
questions promptly during the process of data entry. After
completing the entry, we undertook data verification to ensure
reliability; 20% (1322/6610) of the records were double entered
(details are provided in the Graph Theoretical Approaches to
Network Analysis section).

Parallel Step: Expert Opinions and Validation
Expert judgment techniques are useful for various reasons,
including cost and lack of sufficient observations for
quantification with real observed data. We sought expert opinion
with the aforementioned 3 steps—especially where little or no
data were available for a node or relationship of interest or the
existing data were unreliable.

We selected the experts based on their recognized proficiency
and experience in medical malpractice, patient safety, KGs, and
IT related to this study. We chose our panel of experts from a
number of reputable Chinese medical institutions, including the
China Hospital Development Institution of Shanghai Jiao Tong
University and the School of Public Health of Shanghai Jiao
Tong University. All the experts had access to the medical
litigation data stored in the PKULaw database and were involved
in all stages of modeling, extraction, and fusion.

Data Collection and Preparation
After finalizing the structure of the KG (knowledge model and
its graphical representation), we used the available data to
quantify the KG. We used the PKULaw database (a publicly
available database) as the basis for our study. The database is
a national repository of all medical malpractice litigation cases
against hospitals and has been admitted by the Supreme Court
of China since 2003. As of December 30, 2019, the database
covered >76 million litigation cases. All the medical malpractice
litigation cases in the database were in text format; however,
they all had similar content and structure. Specifically, each
case was required to have recorded all the following information:
the plaintiff and defendant, any medication involved, any
hospital-acquired injury, adverse outcomes, evidence of potential
negligence, legal questions, and relevant legislation and
judgment.

We searched the PKULaw database and downloaded files on
litigation cases that were concluded from January 1, 2008, to
December 31, 2018, in the category of “liability for medical
malpractice disputes.” The inclusion criteria were (1) cases
concluded with a civil judgment and related to grade-A tertiary
hospitals and (2) tertiary hospitals on one of the ranking lists
published by the Chinese public authorities. We filtered the
records using each eligible hospital’s name as a keyword. We
excluded records where basic information was missing or
duplicate records of individual cases. If a case was reported in
multiple records, we kept only the record of the final judgment
(Figure 2).
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Figure 2. Flowchart of selection of medical malpractice claims in China from 2008 to 2018. a: Civil ligations have three results in China: civil ruling,
civil judgment, and civil mediation in court. Cases that end in a civil ruling or mediation do not record relevant information in detail, especially medical
information; thus, we excluded such cases. b: Grade-A tertiary hospitals are the highest-level institutions in China. Our selected 351 grade-A tertiary
institutions amounted to only 1.1% of all hospitals in China; however, their total number of admissions in 2018 was estimated to be 28 million. We
gathered information mainly from the hospitals’ official websites. These 28 million admissions accounted for 11% of the nation’s total number of
admissions in 2018 (254 million, gathered from the China Health Statistics Yearbook [National Health Commission of the People’s Republic of China
2019]). c: Eligibility required that a hospital be on a list of public authorities in any previous year. We included four influential ranking lists by public
authorities in China: the Best Hospital Ranking by the Hospital Management Institute of Fudan University, the Science and Technology Evaluation
Metrics of Hospitals by the Chinese Academy of Medical Sciences, the Hospital Competitiveness Ranking by the Alibi Hospital Management Research
Center, and the Best Clinical Specialty Assessment Ranking by Peking University.

Graph Theoretical Approaches to Network Analysis

Overview
To investigate networks systematically, we had to define
precisely what we meant by “network.” In the simplest terms,
a network is a collection of nodes connected by relationships.
Nodes correspond to the entities in a network and links to the
connections among them [46]. If a network has a large number
of nodes with complex relationships, it can be called a complex
network. In network science, the number of relationships coming
into (or out of) a node is called the degree of that node—that
is the most fundamental network measure; most other measures
are ultimately linked to node degree [46].

We examined the network structure to gain greater insight into
what we were dealing with. Two types of models are often
examined: random and scale-free networks. Random networks
assume that all connections are equally probable, resulting in a
Poisson or bell-shaped degree distribution [47]. A scale-free
network assumes that the degree distribution follows a power
law [35]. In this study, we plotted the degree distribution [36]
of the MMNC to gain a preliminary understanding of its
architecture. We then conducted a scale-free network test, which
allowed us to determine the best-fitting power-law model, test
its statistical plausibility, and compare it with alternative
distributions using a likelihood ratio test [48]. We analyzed the
data using R code posted on the web by Clauset et al [48].

We further examined the topological properties of complex
systems, such as centrality [49] and distribution of network hubs

[50]. The term “hubs” refers to nodes with high degree or high
centrality; the removal of hubs can offer advantages with respect
to the MMNC. The centrality metrics used in this study included
in-degree, closeness, betweenness, and PageRank; they
represented a node’s distance advantage through its direct
connection to others, a node being accessible to others, a node
being an intermediary between others, and a node’s importance,
respectively. In this study, we used the centrality algorithms
provided in Neo4j.

Degree Centrality
Degree centrality measures the number of incoming and
outgoing relationships of a node and, thus, can help us find
popular nodes in a network [35]. The degree centrality of a node
i reflects its connectivity in the network and is written as
D(i)=di/(N−1), where N is defined as the number of nodes and
di is defined as the degree of node i, that is, the number of
incoming and outgoing relationships of node i.

Closeness Centrality
Closeness centrality is a way of detecting nodes that are able
to spread information very efficiently through a given network.
Nodes with a high closeness score have the shortest distances
to all other nodes [51], meaning that they are convenient to
reach other nodes. The closeness of node i is defined as

C(i)=(N−1)/ , where N is defined as the number of nodes and
Dij is defined as the shortest path between nodes i and j. When
no path exists between nodes i and j, Dij is equal to 0.

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e35709 | p.101https://medinform.jmir.org/2022/11/e35709
(page number not for citation purposes)

Dong et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Betweenness Centrality
Betweenness centrality is a way of detecting the amount of
influence a node has on the flow of information in a network,
first described by Anthonisse [52] and Freeman [53]. It is often
used to find nodes that serve as a bridge from one part of a
network to another. For example, people with high betweenness
centrality tend to be brokers on social networks by combining
different perspectives, transferring ideas between groups. The
betweenness of a node i reflects its transitivity and is defined

as B(i)= , where gab is the sum of all the shortest paths

between nodes a and b, is the number of the shortest paths
that pass through node i, and a≠b≠i.

PageRank Centrality
PageRank centrality measures the transitive influence or
connectivity of nodes, and it is used to rank websites in Google
search results. For example, the home page usually has the
highest PageRank centrality as it has incoming links from all
other pages. The PageRank score of node i counts the number
and quality of links to a page, which determines an estimation
of how important the page is and is written as PR(i)=(1–d)+d
(PR[T1]/C[T1]+...+PR[Tn]/C[Tn]), where we assume that a
page i has pages T1 to Tn that point to it and d is a damping
factor that can be set between 0 and 1. It was set to 0.85 in this
study. C(i) is defined as the number of links going out of page
i.

Ethics Approval
The data used in this study were publicly available and
considered “not regulated” by the institutional review boards
of the relevant hospitals.

Results

Conceptual Structure of the KG
We abstracted and integrated 8 key concepts and 9 types of
relationships into the conceptual graph representation of the
MMNC (the overall graph in Figure 3). Multiple medical errors
in a case were connected sequentially by the order of occurrence
(error subgraph in Figure 3). For instance, patient A had breast
cancer, and she also had diabetes. She sought medical services
from the oncology department at hospital B. Owing to a delay
in treatment and other risk factors, patient A unfortunately died.
A malpractice claim was filed, and hospital B paid compensation
according to the legal judgment. All the key concepts in the
MMNC are defined in Table 1.

The distribution of the number of relationships per node was
highly skewed, with a median of 1 relationship per node. The
top 0.78% (149/19,099) nodes accounted for most
(28,850/57,700, 50%) relationships in the graph. In the graph,
34.45% (6580/19,099) of nodes had only a single relationship.

Figure 3. Conceptual knowledge graph representation of the medical malpractice network of China.
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Table 1. Definitions of nodes and relationships.

NumberDefinitionTypeName

6582NodePa • Plaintiffs, claims of negligence in the medical service they received
• This type of node recorded selected attributes of a patient such as patient demographics.

351NodeHb • Defendants offering medical services for plaintiffs
• This type of node recorded selected attributes of a hospital such as hospital level or geographic lo-

cation.

38NodeSc • Physicians’ specialty
• This type of node recorded selected attributes of a specialty such as type.

5NodeOd • The impact on a patient, which is wholly or partially attributable to an error or a series of errors
• This type of node recorded the degree of an outcome, which was adapted from Patient Outcome in

the WHO-ICPSe, including the followingf:
• None: patient outcome is not symptomatic, or no symptoms are detected and no treatment is

required.
• Minor injury: patient outcome is symptomatic, symptoms are mild, loss of function or harm

is minimal or intermediate but short term, and no or minimal intervention is required.
• Severe injury: patient outcome is symptomatic, requiring life-saving intervention or major

surgical or medical intervention, shortening life expectancy, or causing major permanent or
long-term harm or loss of function.

• Death: on balance of probabilities, death was caused or brought forward in the short term by
the error(s).

• Mental injury only: patient outcome is only mentally symptomatic, and no other symptoms
are detected.

6610NodeCg • Malpractice claims because of professional misconduct or error or demonstration of an unreasonable
lack of skill with the result of injury, loss, or damage to the patient

• This type of node recorded selected attributes of a claim such as case details or the court.

20NodeCDh • Comorbidities according to the CCIi

• This type of node recorded scores on the CCI.

125NodeEj • A failure to carry out a planned action as intended or application of an incorrect plan
• This type of node recorded types of errors, which was adapted from incident type in the WHO-ICPS

and revised by expert opinions, generally classified into “technical error” (related to diagnosis or
drugs used) and “nontechnical error” (related to medical records, informed consent, or privacy).
More details are provided in Multimedia Appendix 1.

5368NodeDk • Disease groups; diseases were classified into 23 categories according to the ICD-10l used by the

WHOm.
• This type of node recorded selected attributes of a disease such as its status and group.

2097RelationshipWith • Patients’ comorbidities; links between P and CD

6610RelationshipSuffer from • Patients’ disease groups; links between P and D

6610RelationshipSeek medi-
cal advice

• Patients’ admission specialties; links between P and S

6610RelationshipAffiliated • The subordinate relationship between admission specialties and hospitals; links between H and S

4821RelationshipError • The occurrence of medical errors based on court judgments; links between H and E

6610RelationshipAccept judg-
ment

• Court decision of malpractice claims; links between H and C

4821RelationshipCause • Hospitals’ negligence causes patients’ bad outcome; links between O and C

13,320RelationshipSue • Patients (with bad outcome) bring hospitals to court; links between O and C or P and H

6201RelationshipOrder • The occurrence order of errors; links between E and E

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e35709 | p.103https://medinform.jmir.org/2022/11/e35709
(page number not for citation purposes)

Dong et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


aP: patient.
bH: hospital.
cS: specialty.
dO: outcome.
eWHO-ICPS: International Classification of Patient Safety from the World Health Organization.
fIn practice, we measured “Outcome” by combining the 10 types of relationships based on disability levels, which were classified by the Medical
Accident Grading Standard in China (for Trial Implementation since 2002), into four categories: minor injury (injury below the disability level of 5),
serious injury (disability level of 1 to 5), death, and mental injury only. The more serious the injury, the lower the disability level; disability level 1 is
the most serious injury excepting death.
gC: case.
hCD: comorbidity.
iCCI: Charlson Comorbidity Index.
jE: error.
kD: disease.
lICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th Revision.
mWHO: World Health Organization.

Distribution of the Malpractice Network
In medical malpractice, random events do not occur. The steep
curve in Figure 4 shows that the network had many nodes with
only a small number of relationships; a few hubs exhibited an
extraordinarily large number of relationships. The distinguishing
feature of a power law is that there are many small events, and
numerous tiny events coexist with a few very large ones. These
extraordinarily large events simply do not exist in a bell curve.

In accordance with the method by Clauset [48], we obtained
our best-fitting power-law distribution model with the
parameters Xmin=137 and α=2.463458. After we performed

2500 Kolmogorov-Smirnov tests, 2489 (99.56%) failed to reject
the scale-free hypothesis. We also fitted an exponential and
log-normal distribution to medical malpractice data and
performed a goodness-of-fit test to see if these fits were any
good. We obtained our best-fitting exponential distribution
model with the parameter λ=0.1889905 and our best-fitting
log-normal distribution model with the parameters µ=0.5699136
and σ=1.846312. After we performed 2500
Kolmogorov-Smirnov tests for each distribution model, the
results were similar; that is, 100% (2500/2500) rejected the
scale-free hypothesis. We concluded that the power-law
distribution displayed a good fit to the degree distribution of
nodes from the MMNC (ie, it was a scale-free network).

Figure 4. Degree distribution of the network.

Hub Nodes in the Malpractice Network
Scale-free networks are characterized by high clustering and
skewed degree distributions. Such features predict that each
scale-free network will have several large hubs that will
fundamentally define the network’s topology (Tables 2 and 3).
More information about the sample characteristics is provided
in Multimedia Appendix 2.

Table 2 reports the top 10 nodes by degree, closeness,
betweenness, and PageRank. Orthopedics, obstetrics and

gynecology, emergency medicine, gastroenterology, general
surgery, and cancer were ranked as the top specialties in all 4
metrics. On the basis of degree, betweenness, and PageRank,
the 3 outcome nodes for death, minor injury, and severe injury
were ranked close to the forefront. Specific medical errors
appear a number of times in Table 2: inadequate informed
consent, delay in treatment, and failure to recognize
complications. In general, the results of the 4 centrality metrics
were relatively consistent; the nodes that were ranked at the top
had a higher degree of coincidence.
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Similarly, Table 3 indicates that a few nontechnical errors such
as inadequate informed consent and illegible medical records
appeared as the top errors with almost all metrics. However, in
terms of betweenness, technical errors (including delay in
treatment and failure to recognize complications) had higher

values. All the top 10 errors with the PageRank metric were
nontechnical. In general, the error nodes that were ranked high
were relatively consistent, and nontechnical errors were more
central than technical errors.

Table 2. Top 10 nodes by degree, closeness, betweenness, and PageRank in the overall graph.a

PageRankBetweennessClosenessDegreeRank

DeathDeathOrthopedicsDeath1

Minor injuryOrthopedicsEmergency medicineMinor injury2

Severe injuryMinor injuryFailure to perform preoperative

evaluationb
Severe injury3

OrthopedicsEmergency medicineMissed diagnosisbOrthopedics4

Inadequate informed consentbObstetrics and gynecologyObstetrics and gynecologyInadequate informed consentb5

Obstetrics and gynecologyGastroenterologyDelay in diagnosisbObstetrics and gynecology6

Delay in treatmentbInadequate informed consentbGastroenterologyEmergency medicine7

Emergency medicineSevere injuryInadequate informed consentbOther comorbidities8

GastroenterologyCancerFailure to recognize complica-

tionsb
Gastroenterology9

Failure to recognize complica-

tionsb
General surgeryCancerDelay in treatmentb10

aThe definitions of all the nodes can be found in Table 1.
bThese are error nodes; all errors are described in Multimedia Appendix 1.

Table 3. Top 10 errors by degree, closeness, betweenness, and PageRank in the error subgraph.a

PageRankBetweennessClosenessDegreeRank

Inadequate informed consentDelay in treatmentbInadequate informed consentInadequate informed consent1

Supervision or patient safety man-
agement

Lack of informed consentUnclear, ambiguous, illegible, or
incomplete medical records

Unclear, ambiguous, illegible, or
incomplete medical records

2

Unclear, ambiguous, illegible, or
incomplete medical records

Failure to recognize complica-

tionsb
Delay in treatmentbSupervision or patient safety

management
3

Failure to communicate with or
instruct the patient or family

Failure to perform preoperative

evaluationb
Failure to perform preoperative

evaluationb
Delay in treatmentb4

Lack of informed consentUnclear, ambiguous, illegible, or
incomplete medical records

Supervision or patient safety man-
agement

Failure to recognize complica-

tionsb
5

Emergency managementUntimely patient roundsbFailure to perform pretreatment

evaluationb
Lack of informed consent6

Unsigned consent documentationFailure to perform pretreatment

evaluationb
Failure to identify postoperative

complicationsb
Failure to communicate with or
instruct the patient or family

7

Administrative managementDelay in diagnosisbLack of informed consentFailure to perform pretreatment

evaluationb
8

Other management-related errorsDelay in surgerybDelay in diagnosisbOther surgery-related errorsb9

Risk managementOther medicine-related errorsbDelay in surgerybOther treatment-related errorsb10

aAll errors are described in Multimedia Appendix 1.
bAttributed to technical errors.
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Discussion

Principal Findings
This study constructed a KG derived from medical malpractice
litigation data to represent the MMNC. We found that the
MMNC was a scale-free network instead of a random network.
Scale-free networks representing the MMNC were high
clustering, showed skewed degree distributions, and had hub
nodes. The results of the hub nodes revealed that orthopedics,
obstetrics and gynecology, and the emergency department were
the 3 most frequent specialties that incurred medical malpractice;
inadequate informed consent work constituted the most errors.
Nontechnical errors (eg, inadequate informed consent) showed
a higher centrality than technical errors.

Power laws are being discovered in a great number and with
various phenomena; accordingly, some authors have described
them as “more normal than ‘normal’” [54]. Power laws rarely
emerge in systems completely dominated by a roll of the dice
[55]. Thus, the power law that we observed with the MMNC
signified that real networks are far from random. Plausible
explanations for the nonrandom nature of the MMNC described
in this study include the involvement of various human factors
or errors. In the United States, the National Practitioner Data
Bank classifies medical errors according to malpractice
allegations, but subclassified terms are not further defined [56].
Numerous studies [57,58] have investigated the causal factors
of medical malpractice by developing various human factor
classification frameworks. Many countries have established
adverse event reporting systems and classified those events—it
is on such classification that the WHO-ICPS, referenced in this
study, is based. However, those classification frameworks have
not been widely used worldwide, and some frameworks have
yet to be improved.

In complex theory, the widely accepted explanation for the
existence of most (if not all) scale-free networks in the real
world is growth and preferential attachment (ie, a particular
growth process for such networks), as proposed by Barabási
and Albert [35]. Thus, each network starts with a core node and
grows by adding new nodes. There are connections among
nodes—as more nodes become connected, the number of
connections that result is greater. In the context of medical
malpractice, the more hospitals or physicians with poor
malpractice records, the greater the likelihood that they will
become involved in future such cases. This is in harmony with
the idea of the Pareto law or principle, which is also known as
the 80/20 rule [59]. Accordingly, there has to be some order
behind these complex systems [46,55]. The causes of the power
law found in the MMNC need to be further studied.

The network analysis help identify hub nodes for interventions.
The inevitability of the existence of hub nodes in scale-free
networks presents an opportunity for prevention and control of
medical malpractice. Consistent with the findings of recent
research [2-4,13,14,19,20,23], we found that specialties such
as orthopedics, obstetrics and gynecology, and the emergency
department incur a disproportionately large share of litigation
cases. The specific reasons are unknown; however, potential
explanations are that such specialties admit higher-risk patients,

operate in higher-risk environments, or are subject to the “bad
apple effect” (ie, repeatedly provide substandard care) [60]. The
hospitals included in this study are the top tertiary hospitals
across China compared with other levels of medical institutions,
which have better medical resources and treat more patients
with intractable diseases. Some specific specialties of these
hospitals are more likely to have a high incidence of medical
malpractice. Obstetrics and gynecology involves the health of
both newborns and puerpera, whereas orthopedic diseases have
a more intuitive impact on limb function and daily work. Patients
with orthopedic diseases tend to expect dramatic improvements
in limb function following a major procedure, but unsatisfactory
treatment results might occur. Emergency patients tend to have
acute onset or severe illness, especially when there is no family
member around to sign the informed consent, and the risk of
medical malpractice in such cases could be higher. The “bad
apple effect” could be explained by the anchoring effect; that
is, because of the cognitive errors, medical staff might repeatedly
provide substandard care with certain medical errors. The
cognitive errors might have formed from previously acquired
information or experience, and such errors are like an anchor
sinking to the bottom of the sea, holding medical staff’s thoughts
in place. In fact, it is what we often refer to as a “preconceived”
notion.

Compared with technical errors, nontechnical errors had greater
centrality in this study. However, descriptive studies in this field
[13,14] show that technical errors occur more frequently. Our
findings suggest that it may be effective to improve nontechnical
skills to reduce accidents [61]. Our findings demonstrated that
one of the most prominent nontechnical errors involved
inadequate informed consent. Informed consent has always been
one of the most common medical errors in China. In total, 2
Chinese studies [62,63] found that 23% to 43% of medical
lawsuits involved incomplete consent notification for patients.
Owing to the information asymmetry between physicians and
patients, coupled with the tense relationship between physicians
and patients in China [18], patients’ doubts will trigger medical
malpractice once medical staff are insufficient in risk
notification. In addition, errors related to medical records were
particularly prominent among nontechnical errors. A plausible
explanation is that medical records are the main evidence in the
mediation of medical malpractice in China, and irregular writing
will directly affect the judgment of medical litigation [14].

We found that the dominant factors in technical errors were
inadequate attention and delays, including treatment delay,
failure to recognize complications, and delays in surgery and
diagnosis. Unlike in the United States, where diagnostic errors
are the most common cause of malpractice claims [64,65],
treatment and surgical errors are more frequent in China. The
difference may be due to the fact that the medical system in the
United States may be relatively fragmented (eg, the diagnosis
and treatment of the same patient may be divided into different
institutions, resulting in medical staff often diagnosing based
on more fragmented information). Diagnostic errors may be
ignored in China as medication and surgical errors are more
easily observed during medical treatment. There is still
considerable room in China for enhancing the quality of health
care and patient safety management. There are variations in
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trends of technical errors in different specialties in China;
however, there may be common interventions for nontechnical
errors. For example, shared decision-making approaches can
be and have been applied to all specialties; this helps protect
physicians from malpractice claims and ensures that patients
are better informed [66].

This study has found a number of hub nodes in the MMNC,
including technical and nontechnical errors, which could be
helpful for preventive education for medical malpractice.
Nontechnical errors occupy an important position in the MMNC,
reflecting the lack of awareness of error prevention in medical
institutions and their medical staff. Compared with technical
errors, nontechnical errors related to informed consent
notification, physician-patient communication skills, and
medical record writing could be relatively easily avoided by
strengthening related training. However, the education of
medical students in China places the most emphasis on clinical
skills and scientific research, and training to avoid medical
errors, especially nontechnical errors, is very limited. We believe
that medical education and training should be strengthened to
constantly improve clinical performance and the awareness of
nontechnical errors among medical students and staff.

Network analysis provides a useful tool for analyzing medical
malpractice. It does not require a complete map of medical
malpractice, only measuring the degree distribution by analyzing
a representative subset of the complete network [55]; we do so
in this study. It is impossible to obtain medical malpractice data
without omissions and build a complete malpractice network.
Fortunately, a complete map of medical malpractice is not
necessary to determine whether it is scale-free or random [55].
Another problem is identifying the hubs—doubtlessly, many
hubs may have gone undiscovered in this study, and we may
have included a few nonhubs. Decades of research have
produced numerous graph methods for identifying hubs. Such
methods may be imperfect, but they are still useful—it is
possible to identify the hubs with a certain probability. Dezső
and Barabási [10] demonstrated that any policy that displayed
bias toward more connected nodes—even a small bias—restored

the finite epidemic threshold. In the context of malpractice, it
may not be possible to find all the hubs; however, by attempting
to do so, the spread of medical malpractice can be limited.
Network analysis is an emerging research field that has grown
with the development of network theory and computer
technology. In the real world, there are many fields that can be
abstracted into complex networks. Physicists have found that
power laws frequently signal a transition from disorder to
order—such a distribution pattern is observed in most
self-organized complex systems in nature, technology, and
society [46,55]. Many people feel that they do not live in a
random world—there have to be certain key organizational
principles behind complex systems. Finding the rules hidden
behind the structure in the MMNC is the next future direction.

Limitations
This study had several limitations. First, medical malpractice
litigation cases presumably represent the tip of the iceberg with
medical errors, in which patients receive poor-quality health
care [67]. Second, we assumed that the Chinese judiciary system
is fair, independent, and strong; however, there are several
deficiencies or flaws in medical malpractice law in China.
Finally, simplified network models cannot explain everything
regarding their real-world counterparts. With the MMNC, we
assumed that all the nodes were identical except for their degree
and that all links were of the same type and had the same
strength; however, that is not the case in real-world networks.

Conclusions
This study constructed a KG derived from medical malpractice
litigation data to represent the MMNC. We demonstrated that
it was a scale-free network, not a random network, and showed
that the occurrence of medical malpractice was traceable. The
MMNC was in transition from chaos to order, reflecting from
the results of the hub nodes that there were several key
specialties and errors. Faced with limited resources, it is
necessary to make specific interventions for key specialties and
errors as well as pay greater attention to nontechnical errors;
doing so could effectively control medical risks.
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Abstract

Background: Remote monitoring programs based on the collection of patient-reported outcome (PRO) data are being increasingly
adopted in oncology practices. Although PROs are a great source of patient data, the management of critical PRO data is not
discussed in detail in the literature.

Objective: This first-of-its-kind study aimed to design, describe, and evaluate a closed-loop alerting and communication system
focused on managing PRO-related alerts in cancer care.

Methods: We designed and developed a novel solution using an agile software development methodology by incrementally
building new capabilities. We evaluated these new features using participatory design and the Fit between Individuals, Task, and
Technology framework.

Results: A total of 8 questionnaires were implemented using alerting features, resulting in an alert rate of 7.82% (36,838/470,841)
with 13.28% (10,965/82,544) of the patients triggering at least one alert. Alerts were reviewed by 501 staff members spanning
across 191 care teams. All the alerts were reviewed with a median response time of 1 hour (SD 185 hours) during standard business
hours. The most severe (red) alerts were documented 56.83% (2592/4561) of the time, whereas unlabeled alerts were documented
27.68% (1298/4689) of the time, signaling clinician concordance with the alert thresholds.

Conclusions: A PRO-based alert and communication system has some initial benefits in reviewing clinically meaningful PRO
data in a reasonable amount of time. We have discussed key system design considerations, workflow integration, and the mitigation
of potential impact on the burden of care teams. The introduction of a PRO-based alert and communication system provides a
reliable mechanism for care teams to review and respond to patient symptoms quickly. The system was standardized across many
different oncology settings, demonstrating system flexibility. Future studies should focus on formally evaluating system usability
through qualitative methods.

(JMIR Med Inform 2022;10(11):e38483)   doi:10.2196/38483

KEYWORDS

patient-reported outcome measures; delivery of health care; self-report; quality of care; neoplasms; surveys and questionnaires;
clinical decision support systems

Introduction

Background
Patient-reported outcomes (PROs) are being increasingly
collected as a part of routine clinical care, capturing patients’
self-reported symptoms, function, and quality of life. They

support the goal of facilitating clinician-patient communication,
mutual understanding of patient preferences, and enabling shared
decision-making with an impact on treatment decisions [1-7].
PRO data collection is particularly significant for the oncology
patient population, especially for patients on clinical trials,
because of the critical need to track symptomatic adverse events
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related to cancer treatments, which have a significant impact
on the clinical outcomes and quality of life of patients [5,8-14].
In addition, PROs are relied on for managing health care use
[4,8,11]. PRO data are only valuable as long as patients complete
the surveys accurately and timely. Limited survey completion
rates minimize the ability to draw clinical conclusions from
sparsely filled out data [15]. Studies have shown that clinician
engagement in the process of administering PRO programs via
patient education or outreach has a direct positive impact on
patient engagement [16-18]. Provider disengagement in the
process of reviewing the data may disincentivize patients from
completing their PRO assessments [19]. Therefore, it is essential
for clinicians to follow-up with patients regarding any significant
outcomes reported in a streamlined and timely manner.

As with many other clinical applications, there has been an
interest to integrate PROs within clinical workflows; however,
evidence shows limited success [14,20-24]. Sources of
patient-generated health data such as PROs are relatively new
to the standard of care practices, and there is not always a
standard mechanism in place for clinicians to handle PROs
appropriately with varying implementation strategies [9]. At
the same time, notifying clinicians about all patient responses
does not always result in a timely follow-up with the patient if
there are workflow barriers impeding communication, such as
reviewing too many PRO responses [25-27].

The concept of alerting is not new to health care, with
long-standing applications in clinical decision support systems
for drug-drug interactions [28,29], adverse event monitoring
[20,30,31], abnormal laboratory results [25,32-36], and many
others [37]. The idea of PRO alerts is distinct from the standard
clinical alerts mentioned, in that it involves asynchronous
interruptive and noninterruptive communication between
patients and care team members as well as coordination among
care team members within the system. Several studies have
mentioned using alert-based features within the context of PROs;
however, none of them have discussed the communication aspect
with patients, analyzed the impact on workload, and described
the detailed designs of such alerting systems [8,9,38-40].

Given the rise in the popularity of remote monitoring programs,
including the use of PRO data during the COVID-19 pandemic,
there have been several enthusiastic studies on program
evaluations, and remote monitoring programs are expected to
increase in adoption in the post–COVID-19 pandemic years
[41-44]. Remote monitoring programs are novel in and of
themselves; therefore, as a part of this study, it was important
to consider the design aspect of a work management system to
handle critical results in a timely manner. In addition, it was
critical to understand the impact of running such programs
asynchronously from clinical visits to allocate appropriate
resources to respond to patient-specific needs outside standard
staffed business hours, with implications for program monitoring
and management.

Objectives
To date, there has been pervasive interest in using PROs for
remote symptom management in oncology standard of care
practice, but very little is known about the management of
critical patient symptom responses and the engagement of

clinical staff in the review of patient responses to address them
appropriately. Given the increasing adoption of PROs in
standard oncological practices, we identified a need to design
a robust PRO alert management and communication system
that scales with increasing clinic patient volumes and patient
demand for asynchronous communication. Considering the
potential clinic disruption, it was important to quantify the
impact of such a new system on clinic workloads. For this study,
we designed and implemented the alert and communication
system separate from the electronic health record (EHR) but
with a tight integration of key results. It was unknown what
features would be needed in such a system and whether staff
adoption of and engagement with such a system would be
successful. The findings presented in this paper provide insights
into the architectural design and a detailed list of features for
any organization considering implementing a mechanism for
handling the critical PROs reported.

In this paper, we present the results of our PRO-based alerting
and communication system design, summarize key quantitative
results, and reflect on the implications of scaling the adoption
of this technology more widely. To our knowledge, this is the
first paper to report on the design, implementation, and use of
a closed-loop alert management and communication system
specifically for managing PRO data in cancer care.

Methods

Ethics Approval
This retrospective cohort study was approved by the Memorial
Sloan Kettering (MSK) Cancer Center institutional review board
(approval number 19-090) to be conducted between September
2016 and January 2021.

Setting
The study was conducted at a high-volume National
Comprehensive Cancer Network in and near the New York City
area, across all sites of care, including ambulatory care clinics,
inpatient services, ambulatory surgery centers, inpatient surgery,
and urgent care. The PRO data collection and alerting system
was implemented as a standard of care for multiple cohorts of
patients with cancer through individually managed PRO
programs consisting of interdisciplinary clinical, administrative,
and technical teams. Notably, the novel COVID-19 screening
questionnaire and COVID-19 symptom questionnaires were
administered to virtually all patients coming to MSK for any
appointment. Patients enrolled in these programs would have
characteristics similar to those of patients who were more prone
to receiving cancer treatments. All numerical results reported
were for the entire study period, between September 2016 and
January 2021. The median age of the patients was 61 years, and
overall instrument compliance was 36.89% (447,562/1,213,271)
across all patient cohorts that were part of this study.

Engage System Overview
From September 2016 to August 2017, we launched a pilot
where we added alerting features incrementally into Engage,
our PRO app, and by rolling out the Recovery Tracker, an
electronic postoperative symptom survey based on the
PRO–Common Terminology Criteria for Adverse Events [45]
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that is assigned for 10 days after ambulatory surgery cases. The
surveys were completed by patients at home via the patient
portal account either through a web browser or our mobile app.
Engage, although not the focus of this study, was the
foundational backbone for the alert notification and
communication system discussed in this study. We launched a
total of 86 PRO survey instruments in Engage, including
standard of care forms such as intake forms, screening
questionnaires, short-term symptom assessments, long-term
follow-up questionnaires, and research-based questionnaires.
Engage was developed as a stand-alone app; it is tightly
integrated within MyMSK (developed internally at MSK patient
portal), patient-clinician secure messaging system, and the EHR
system [7,46]. Engage is depicted in Figure 1 and consists of 4
key subsystems (survey configuration and deployment, alert

notification system, patient and clinician user interfaces, and
secure messaging system). Engage is further integrated with
upstream databases to support cohort identification and
scheduling. It is also integrated with downstream clinical
information and documentation systems within the existing
clinician and support staff workflows to support clinical charting
and escalation workflows. In addition to the technical aspects,
the system consists of a governance committee overseeing key
design and program decisions called the eForms Committee.
The focus of this study is to demonstrate the process behind the
design, development, and implementation of the alert
notification system and its integrations with upstream (ie, survey
library, target cohorts, and complex scheduling) and downstream
systems (ie, EHR). The design of Engage (our PRO system) is
beyond the scope of this study.

Figure 1. Overview of the homegrown patient-reported outcome (PRO) system called Engage. EHR: electronic health record.

System Governance
To drive decisions and formal governance of the alert
notification system, we leveraged our electronic forms
committee (eForms Committee), which met monthly. The
committee was established at the launch of our PRO initiatives
in 2016 to oversee PRO instrument development, evaluate
patient burden, discuss impacts on clinician workflow, review
regulatory and legal implications, and approve significant
changes to the features that were requested by clinical user
groups. It is a multidisciplinary committee consisting of health
informatics specialists, app development team members, patient
engagement specialists, clinicians, researchers, biostatisticians,
health information management staff, and hospital

administration. In addition to the eForms Committee, PRO work
groups were created for each survey instrument, which met
more frequently to discuss the management and implementation
considerations of the Engage system and provide frequent
feedback on system design proposals. PRO work groups also
met to decide on setting the initial alerting criteria and adjusting
thresholds as needed.

Steps for Alert Notification System Design
We sought to design and implement a robust and agile
PRO-based critical results alert system that notifies the patient
and the entire care team of a clinically meaningful patient
response as it happens in real time at an oncology care setting.
One of the goals for the design was to provide the ability to
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facilitate secure nonstructured communication between the
patient and care team about the abnormal results and to resolve
it within the same workflow. A secondary objective of this study
was to describe alert volumes, response times, and triaging
patterns to understand the implications for scale and feasibility
of implementing PROs system wide for all patients with cancer.
In addition to the system design and implementation, we created
a feedback and governance structure around system
enhancements and content revisions based on the Scaled Agile
Framework. The feedback was gathered through a series of
regular meetings with all project stakeholders including end
users, program managers, clinicians, and system developers.

Owing to the lack of an existing methodology for the
management of PRO related to critical values (eg, a very severe
symptom being reported several days after a surgical event),
we referenced models of critical result communication based
on abnormal laboratory or radiological findings by reviewing
the literature to determine an initial set of desirable system
components and features for our PRO-based alert notification
system. We conducted a literature review of the existing clinical
decision support interventions in PubMed to identify key system
components that were necessary to enable clinical alert
generation and management. The sample search terms included
“critical alert management,” “clinical alert notification,” “critical
result notification,” and “abnormal result management.” We
identified 5 key capabilities, which were enabled in our alert
notification system: alert rule configuration, alert messaging,
acknowledgment, triage, and alert export for documentation in
the EHR. Once the alerting components were enabled during
the pilot, they were adopted by 7 other PRO-based projects, as
described in more detail in Multimedia Appendix 1.

Overall, 8 questionnaires were configured with alerting
functionalities, targeting more acute symptom assessments,
following a recent clinical event that served as a trigger in the
target cohorts. In these scenarios, MSK’s best practice
expectation was a call back within 2 business days after the

clinical event, which would be supplemented with automated
symptom assessments. The patients in these cohorts were
defined as those who have recently had a surgical event,
radiation treatment, chemotherapy treatment, or COVID-19
diagnosis.

Figure 2 shows the alert management workflow followed by
the care team members. An alert was defined as a notification
that went out to the care team members because of a survey
submission by the patient. A patient could report multiple
alerting events in surveys that were designed to be recurring for
several days (eg, 10 events in a row for a 10-day survey; each
survey can result in an alert). In addition, we implemented a
patient-facing alert notification, whereby a patient was notified
when their responses triggered a concerning symptom via a
pop-up on their screen. The notification advised the patient to
call their physician’s office if they were concerned about the
symptom worsening. At the same time, this triggered an alert
message to be sent to their physician’s inbox. Upon reviewing
the message, a care team member had the option to call the
patient directly to follow-up on any concerning symptoms or
reply to the message. Then, they also have the option to flag
the message as an escalation indicator for a more senior care
team member. Standard nurse phone calls with patients
undergoing oncology treatments included questions about any
follow-ups after the treatment (eg, symptom assessments and
clarifications about PRO responses that may be concerning or
need to be elaborated on). Nursing teams also handled triage of
any patient concerns as they arose during phone call
conversations, including providing patient education materials,
facilitating referrals for prescription refills, and referring patients
to urgent care facilities or specialty treatment referrals. The
decision to call the patient was based on the guidance established
by each clinic and the clinical judgment of the care team
members. Finally, users have the option to send the message to
the EHR to further document it in a clinical note by clicking
the “ClinDoc” button.
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Figure 2. End-to-end processes for alert message management. EHR: electronic health record.

Applying the Fit Between Individuals, Task, and
Technology Framework
During the pilot period between September 2016 and August
2017, we participated in biweekly PRO work group meetings
consisting of frontline staff, including physicians, nurses, and
advanced practitioners; office staff; and administrative staff to
solicit ideas about the system features desired by the care team
members reviewing the critical PRO results and communicating
with patients. We mapped these features in the Fit between
Individuals, Task, and Technology (FITT) framework. We
selected the FITT framework because it considers the
sociotechnical aspects of a successful system adoption, enabling
us to understand the attributes of users, technology, and tasks
leading to successful adoption. It also allowed us to consider
the interaction of all 3 attribute types to envision a more holistic
solution. We continued to use the framework throughout the
implementation period to elucidate additional features that were
important to consider about the tool, task, and person performing
the task for each component of the critical result notification
framework identified specifically for PROs [47]. In addition,
we discussed workflow aspects of the management of symptom

alerts and clinical decision-making processes. Through these
meetings, we elucidated the key person and task attributes of
designing a PRO-focused alert management system. We
presented the model to our biweekly informatics working group
consisting of informaticians, system developers, and product
managers, where we discussed the task- and tool-related
attributes of these capabilities. After each feedback session, we
documented features, success criteria, and interventions against
the key system capabilities identified in the previous section
into a FITT framework, charting them into tool-, task-, and
person-related buckets.

Data Collection and Analysis
System use data were collected by querying the underlying
reporting database collecting the following variables (defined
in Textbox 1) for data between September 2016 and January
2021: patient adoption, patient engagement, alert volume, alert
rate, alert types, messaging status, triaging and escalation flags,
response times, and clinician involvement. Data were queried
using DBeaver software (DBeaver Corporation). Descriptive
statistics and data visualizations were developed using Tableau
software (Tableau Software, Inc).
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Textbox 1. Description of the variables used for analysis.

Variable name and definition

• Patient adoption

• The total number of patients that completed a patient-reported outcome questionnaire and volume of questionnaires completed

• Patient engagement

• The percentage of patients who completed a questionnaire out of the total numbers of questionnaires that were assigned per patient

• Alert volume and rate

• The total number and rate of alerts that were fired per alert-eligible questionnaire

• Alert type

• The severity level of the alert message (red [severe], red-yellow [severe and moderate], and yellow [moderate]) including unlabeled messages
(shown as alert)

• Message status

• The final status of the alert message in the secure messaging system (read, replied, completed, and documented).

• Message reassignment flag

• An indicator of whether a message has been reassigned to someone else

• Message escalation flag

• An indicator of whether a message has been flagged for review by another care team member (either a registered nurse or physician)

• Response time

• The time between when the alert message was created to when it was last updated by a care team member (in hours)

• Clinician involvement

• The total number of care teams that were assigned alert messages as measured by unique care team inboxes, including the total number of
individual care team members who reviewed, responded to, or handled the alert messages within the care team inboxes

Results

Overview
The findings explain how our system was designed, features
identified within the FITT framework, how our system creates
and schedules alerts, the management and delivery of the alerts,
and descriptive statistics of alert management and adoption by
the care team members.

Alert Notification System Components and Features
The main system framework components for identifying and
communicating critical PRO responses, which we evaluated
against the FITT framework and subsequently implemented in
our production PRO tool within our patient portal and secure
messaging system, are illustrated in Figure 3 and described in
Textbox 2.

Figure 3 depicts the overview of the alerting system at a high
level. Starting with the source system, Engage, where
questionnaires are built, the alerts are configured and patient
survey responses are captured and stored. Once a patient submits
a questionnaire, the responses are reviewed by a listener to see
whether they pass a predefined threshold. Then, when a trigger
event specifying the timing of the alert message is detected, the
target recipient is identified (this is captured upfront in the
patient cohort definition stage based on coverage), and the
message is routed to the appropriate communication channel.
In our case, this was routed to a secure messaging system, but
we configured for an omnichannel communication strategy.
The message is sent to a mailbox and reviewed by the care team
members, who have the option to escalate it to other care team
members or document the conversation in the downstream EHR
clinical note.
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Figure 3. Patient-reported outcome alert system capabilities and process flow. EHR: electronic health record; MD: Medical Doctor; RN: registered
nurse.

Textbox 2. Key components of the alert notification system and their descriptions.

Key component and description

• Alert source and threshold

• Establish a scoring algorithm based on a single response value or a combination of response values to flag a notification to be sent based
on a specific patient submission. One submission can consist of multiple question responses (eg, severe pain and severe fatigue). Responses
were presented in sections and color coded to show the most critical alerts first in red, followed by responses that were not critical in yellow
so that the care team could triage and prioritize their responses to patients.

• Trigger

• Define a technical method to schedule the notification to be sent when a patient reports a certain value. Alert messages were stored as JSON
objects, and the notification was done in real time for critical alerts.

• Target

• Define the target system where the message will be visible by the entire patient care team and identify who will receive and manage the
message based on their specific clinical role, care relationship with patient, coverage, and availability.

• Communication mode

• Determine the specific alert communication preferences based on a clinician’s role or their tool preference. The communication tools of
choice of care team members often varied based on their clinical role. The app accommodated multiple communication modes and the ability
to honor the preferred method of communication of each user.

• Acknowledgment and escalation

• Identify discrete steps in the acknowledgment cycle, including escalation of messages to senior clinical roles for more critical follow-ups.
Buttons were created to manage each discrete step in the acknowledgment and escalation processes.

• Documentation

• Record the most recent status of an alert in the source system, including escalation, or document the follow-up with the patient in the medical
record.

FITT Framework Results: Alert Features by Person,
Task, and Tool
After we attended biweekly PRO working groups, we charted
the desired features and user needs into a modified FITT
framework that was stratified by each major component

identified in the literature review, as summarized in Textbox 2.
This resulted in a comprehensive list of program management
processes and system requirements and informed our user
acceptance testing scenarios during the development and
subsequent rollout of the app. The results are summarized in
Table 1.
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Table 1. Summarizing capabilities by the tool, task, and person features of our alert system.

Person featuresTask featuresTool featuresComponent

• Care team identification and au-
thentication to all systems

• Patient access to survey submis-
sion tool to submit and review pa-
tient alerts

• Training of users to access and
navigate between systems

• Navigation between apps used to
respond to an alert

• User account verification and
management

• Care team tracking system in place

• Identify systems for generating and receiving
notifications

• Single sign on to all applications

Alert source authentication

• Governance for creating, review-
ing, and tuning alert triggers and
thresholds

• Patient knowledge of alert cre-
ation

• Establish trigger points

• Identify alert severity levels

• Analyze data and tune thresholds
for triggers

• Define workflows by alert
severity (urgent, semiurgent, or
nonurgent)

• Define the customizability points of an alert
(frequency, mode, method, and target [person])

• Enable a rules engine to define threshold
setting rules and optimization

• Bundled alert creation

Alert creation

• Availability and coverage of the
care team

• Notification preferences estab-
lished (tool of preference to log
into for alerts) by event type or
service or patient procedures

• Digital communication between
the care team and patient

• Redundancy management

• Alert bundling and sorting based
on similar alerts

• Develop definitions of severity
language

• Interoperable modes of communication estab-

lished (EHRa, patient portal, SMS text messag-
ing, apps, email, and telecom [pager, Vocera,
telephone, and e-fax])

• Manage preferences for the mode of alert
communication

Communication

• Department-specific training on
acknowledgment management and
follow-up actions

• Monitoring of escalation patterns

• Rules for reminders

• Rules for escalation

• Autoescalation

• Due date escalation

• Missed alert handling

• Method in place to set reminder schedule for
critical alerts if they have not been reviewed

• Autoescalation of alerts that have not been
reviewed

Reminders and escalation

• Training to the care team mem-
bers on acknowledgment manage-
ment and follow-up actions

• Monitoring of acknowledgment
rates

• Define actions that reflect ac-
knowledgment (time, action, and
role)

• Prioritization based on severity

• Voluntary forwarding of alerts

• Handling errors in communica-
tion

• Identify systems receiving acknowledgment

• Rerouting of messages

• Method in place for handling errors in alert
creations and communication

• Ability to acknowledge a bundle of alerts

• Autoacknowledgment

Acknowledgment and man-
agement

• Define documentation reviewers

• Documentation workflows de-
fined to the care team members,
specific to each service and survey

• Define the levels of documenta-
tion to close loop on alert

• Feature to import alerts into EHR
templates

• Ability to document alert summary and reso-
lution findings

• Ability to copy and paste alert message con-
tents into a clinical note

Documentation

aEHR: electronic health record.

Alert Creation and Scheduling
After alert rules had been established by PRO work groups
consisting of the most up-to-date clinical standard of practice
guidelines adopted by each service, the system administrators
were responsible for implementing the criteria. Alert creation
was accomplished with a configuration tool in the alert source
system, allowing system managers to configure complex rules
based on patient responses to individual questions or a
combination of questions. The care teams also requested the
ability to specify distinct alert rules for specific clinical contexts
(such as triggering an alert based on a specific surgical
procedure, diagnosis, or treatment regimen) and to vary based
on the time span between the clinical event and the time the
questionnaire was completed by the patient (such as not firing
an alert for pain reported one day after surgery and fire starting

after day 3). The alert configuration component, depicted in
Figure 4, is where the system administrators configure the
subject of the alert message and body of the notification
message, including the ability to specify severity levels using
visual color indicators and other HTML and cascading style
sheets–based text formatting options of the message body. The
color label feature was requested by clinicians after spending a
few months responding to nonlabeled messages as a mechanism
to emphasize severity. Adding color labels that indicate the
level of severity to the subject of the message allowed the care
team members to triage these notifications appropriately. There
was also an ability to integrate the clinical context into the body
of the alert notification. Once the alert rules were configured at
the questionnaire level, setting a threshold and directionality
(greater, equal to, or less than) was the next capability, defined
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as the level that must be crossed when an alert fires. Next, we
developed a triggering mechanism, which is a technical method

to configure and synchronize the schedule of sending the
notifications based on business rules.

Figure 4. Screenshot of the survey library app, specifically the alert threshold configuration interface.

Alert Delivery and Management Workflow
Once the alert message is ready to be delivered to a target
(defined as a primary clinician taking care of the patient at the
time the survey was assigned), there is an ability for the rest of
the care team members to subscribe to the primary clinician’s
secure inbox to review and respond to patient messages on
behalf of the entire care team. A screenshot of the alert message
is shown in Figure 5. This inbox is built within our patient
portal, where the staff can securely communicate with patients
bidirectionally. The primary users of the inbox were nursing
and administrative office staff supporting the clinic. While in
the inbox, users can reassign the message to a different provider
if someone else is covering this patient. After opening the
message, the staff can acknowledge the message by marking it
as complete, reply to the patient directly, or escalate the message
to the clinician’s office staff, typically a nurse. In addition to
the digital workflow, the staff can take the manual route by
following up with the patient via a phone call and marking the

message as complete. Once an action is taken on the alert
message, users have the option to send the message thread to
the EHR so that it can be imported into a note. This last import
step closes the loop on the alert management life cycle.

Figure 5 demonstrates the output of the alert configuration,
which is the message that shows up in the care team’s inbox.
The message subject indicates the alert severity levels, and the
body contains the red or yellow symptom indicators, showing
which symptoms triggered the alert. The message body also
includes some contextual information about the patient along
with their contact information, if available, so that care team
members can reach out directly if the message is urgent. The
message controls are available on top, supporting the ability to
reassign to a different care team member, reply directly to the
patient, forward the message to email, flag the message to a
different person by role, mark the message as complete, send
the message to the EHR (ClinDoc), and finally print the
message.
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Figure 5. Screenshot of the patient-facing and clinician-facing alert messages. MSK: Memorial Sloan Kettering.

Adoption by Numbers
Through the 8 questionnaires configured with the alerting
feature, 7.82% (36,838/470,841) alerts fired per completed
symptom assessment, and 13.28% (10,965/82,544) of the
patients fired at least one alert out of all patients who received
at least one survey. This means that 92.28% (434,003/470,841)
of the patient surveys did not trigger an alert; therefore, their
responses did not need to be reviewed by the care teams. The
alerts were managed by 191 different care teams consisting of
501 staff members. Each care team configured its own mailbox,
which was set up at the physician clinic, service, or clinic
location level. Staff members subscribe to a care team mailbox
and have access to review patient messages, triage them, and
respond to the patients. A median of 5 staff members managed
each mailbox, with care team volumes ranging from a minimum
of 1 to a maximum of 75 staff members. The median number
of alerts per care team inbox was 35 (95% CI 0-145).

Alert Management Patterns
Regarding message triage and escalation, 4.4% (1631/36,838)
of the alerts were reassigned to other care teams, and 16.7%
(6156/36,838) of the alerts were flagged for another care team
member to review. The care team members who received the
reassigned messages were often located at different campuses,
closer to the patients’most recent treatment location rather than
the location of the episode that triggered the survey in the first
place. In terms of message management, care team members
replied to 24.6% (9057/36,838) of the messages and marked
40.9% (15,069/36,838) of the messages as completed (marked
as read) without replying, and 34.5% (12,712/36,838) of the

messages were further documented in a clinical note within the
EHR by following the process shown in Figure 2. Regarding
volume, 61.6% (22,692/36,838) of the alerts were yellow, 13.3%
(4896/36,838) were red-yellow, 12.4% (4561/36,838) were red,
and 12.7% (4689/36,838) were not labeled with a color, which
are referred to here as unlabeled alert.

When comparing the status of the alert against the alert level,
we saw an increase in the care team documentation activity as
the alert level increased, which provides a care team–based
validation signal of the effectiveness of the alert threshold. The
lowest level of alerts being documented were the unlabeled
alerts with 27.68% (1298/4689) of all unlabeled alerts
documented, whereas the highest level of alerts being
documented were the red alerts with 56.83% (2592/4516) of
them being documented in the EHR.

We have analyzed the turnaround time to respond to alerts by
three different time windows in Table 2: (1) during business
hours (8 AM to 6 PM on Monday to Friday), (2) outside business
hours (during weekdays between 6 PM and 8 AM the next
morning, excluding Sunday to Monday and Friday to Saturday),
and (3) over the weekend (after 6 PM on Friday until 8 AM on
Monday). The median response time during business hours was
1 hour, with response time varying by alert severity; red alerts
had a response time of under an hour, and unlabeled alerts had
a median response time of 2 hours. Alerts received outside
business hours took longer to review and had a median response
time of 6 hours, showing a decrease in response time with
increasing severity levels, indicating that care team members
used the color label as an effective triaging mechanism,
responding to the most critical alerts faster.
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Table 2. Summary of alert type by message status and alert arrival window.

Total
(N=36,838)

Red alert
(N=4561)

Red-yellow alert
(N=4896)

Yellow alert
(N=22,692)

Unlabeled alert
(N=4689)

Message status, n (%)

15,069 (40.9)695 (15.2)1630 (33.3)9718 (42.8)3026 (64.5)Completed

9057 (24.6)1274 (27.9)1378 (28.1)6040 (26.6)365 (7.8)Replied

12,712 (34.5)2592 (56.8)1888 (38.6)6934 (30.6)1298 (27.7)Documented

Time window, n (%)

19,975 (54.22)2534 (55.6)2597 (53)12,159 (53.6)2685 (57.3)During business hours

6160 (16.72)745 (16.3)836 (17)3795 (16.7)757 (16.1)Outside business hours

10,703 (29.1)1282 (28.1)1436 (29.3)6738 (29.7)1247 (26.6)Over the weekend

Time window, median response time in hours

10.5112During business hours

62769Outside business hours

222122340Over the weekend

Discussion

Principal Findings
This study is one of the first studies to report findings on the
design, implementation, and operationalization of a PRO critical
results management and communication system in cancer care.
Although many studies have reported the development of PRO
systems, none have focused in depth on the management of
results. Our findings suggest that there ought to be a mechanism
in place to handle critical patient-reported results in a timely
manner so that patients can discuss their symptoms with the
care team. To this end, we enhanced an existing secure
messaging system to facilitate asynchronous communication
between patients and their care teams. Given that the care team
can vary in size and composition owing to continually changing
shifts, our findings show a median 5-person care team; similar
findings have been reported by others [48,49]. It was important
to develop a solution where the entire care team had visibility
into the prior interactions with the patient to seamlessly pick
up the conversation where another care team member left off.
The flagging feature was useful for notifying senior team
members of a message needing their attention. Although used
less frequently, the ability to reassign patients to different care
teams allowed for a smooth hand-off between teams.

Setting Clinically Meaningful Alert Thresholds
It was critical to establish clinically meaningful thresholds on
a patient cohort, setting a baseline definition of what “normal”
symptoms might look like on any given day after a treatment
episode. The alert thresholds were a highly debated topic and
were revisited many times throughout the post–go-live period
of each instrument. The decisions were made within each
program work group, where the teams discussed the implications
of turning on the alerts and anticipated impacts on workload.
The decisions were based on the experience of handling reports
of symptoms after treatment episodes targeted for alerting.
Clinical care teams consisted of nurses who were well versed
in collecting symptom data from patients via phone calls;

therefore, they knew which symptoms they would hear on a
specific day after an event such as surgery and made their
decisions based on clinical judgment. As health care systems
learn about patient outcomes over time, it is important to be
able to adjust the thresholds. Alert rates were reviewed by staff
through summary dashboards, allowing team members to reflect
on alert workload burden of staff and determine mitigation
strategies. By reviewing the dashboards, management noticed
a high alert rate for symptoms such as pain reported the day
after a surgical event, which was determined to be a normal
clinical event. As a result, alert rules were adjusted to not fire
for specific questions within 2 to 3 days after surgery. Setting
thresholds such as “red” and “yellow,” which indicate severe
and moderate symptoms, respectively, created visual indicators
for the care team members within the subject as well as the body
of the message. Notably, we saw a substantial difference in
response times for the alerts that were marked as “red,”
suggesting that the alert color label was effectively used as a
triage mechanism. With this approach, by focusing on the alerts
that are marked as “red,” we can reduce clinician burnout by
minimizing the cognitive load associated with reading patient
messages.

Importance of PRO Governance
Similar to other studies on the importance of PRO governance
[50], this study also shows that the governance committee
(eForms Committee, 35 individuals) was instrumental in the
design and implementation of PROs. This committee met
monthly to discuss best practices of the overall system design
and implications of new feature releases and made decisions
establishing clinically meaningful alert thresholds across
different patient cohorts. Clinicians, nurses, patient education
specialists, and administrative staff served as collaborative
thought leaders consistently striving to minimize patient burden
and staff alert fatigue through critical assessment of the alert
thresholds that were set. The clinically focused PRO work group
(40 individuals) met on a more regular biweekly basis to define
staff workflows and responsibilities, provide feedback on system
design, align alerting with the existing messaging workflows,
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develop educational material for patients, create training material
for staff, and reflect on the summary data presented via real-time
dashboards. Policies were established around the roles and
responsibilities of the care team members to ensure that
messages were responded to in a timely manner. Decidedly,
nursing and office staff were instrumental in reviewing
responses, triaging, and responding directly to patients,
resonating with similar findings of nurse-led patient engagement
programs [17,51-54]. With the exception of 1 program, which
had dedicated staff reviewing patient messages on weekends,
patients were informed that the mailbox was unattended outside
of regular business hours and that they were encouraged to call
their physician in case of urgent symptoms.

PRO Integration Into Clinical Workflows
Integrating PROs into clinical workflows has always been a
challenge, and having clinicians review and act on the data is
yet another challenge. Establishing an alerting system, notifying
clinicians of only clinically meaningful patient responses via
alerts is a step toward a better direction, where clinicians only
need to review alerts if they are deemed clinically significant
by clinical expert consensus. Given the emerging problem of
clinician burnout, partially caused by information overload, by
using this alerting system, the care teams reviewed 7.82%
(36,838/470,841) of the patient responses and eliminated the
need to review over 92.28% (434,003/470,841) of the responses,
while maintaining the collection of valuable PRO data to study
long-term patient outcomes in response to treatments. Having
a seamless mechanism in place to communicate with patients
within the same workflow is yet another step in the right
direction and is aligned with findings from the literature [27].
Not only does it signal to the patient that they are being
constantly cared for, encouraging them to keep completing their
assessments, but it can also be used to address the symptoms
early, preventing any unnecessary emergency room visits.

Future Research Opportunities
Although PRO data can be a valuable tool for shared
decision-making and bridging the care gap for in-between visits,
the data are only available if patients complete their assessments.
The adoption of remote monitoring programs during the
COVID-19 pandemic [55-57] exposed the digital divide created
by programs solely relying on digital interventions. Patients
who are not as comfortable with technology or those whose
primary language is different from the language of the survey
instrument may be less likely to complete their symptom
assessments. As we scale PRO-based remote symptom
monitoring programs, we must consider studying the
sociotechnical aspects of a wholly digital intervention. There
are several implications for future research opportunities with
respect to setting meaningful alert thresholds appropriately. At
MSK, the deliberations around setting clinically meaningful

thresholds evolved over time and, ultimately, were decided
through agreement between nursing staff accountable for
responding to alerts and physicians responsible for patient
outcomes. In addition, it would be interesting to analyze the
impact of patient characteristics, such as demographics, disease
stage, or disease type, on alert response patterns and
communication with care team members. As we accumulate
more robust PRO data sets and monitor clinician triage, there
is an opportunity to build machine learning models to predict
when patients will need interventions based on their responses
to specific PROs, response patterns, and clinical context such
as disease stage and progression. In addition, automated artificial
intelligence–based chatbots can be developed to facilitate
conversations with patients, reducing the burden on nursing
staff. Further studying follow-up activities of nurses in EHRs
such as referrals, medication orders, or communication with
other care team members can inform the refinement in the
chatbot responses to patients.

Limitations
This study has some limitations. First, we report findings from
one institution, which may not be generalizable across all
settings. In addition, because we have an in-house–developed
patient engagement system, we had the flexibility to design and
implement an alert management system that was best suited to
the care team workflows, which may not be a flexibility
affordable to other health care institutions. Moreover, the care
teams that opted to implement alerting features for their PRO
programs were highly engaged in the system development life
cycle and provided ample feedback throughout the process,
which may not apply to institutions with limited resources.
System design features for most of the functionalities were
informed through discussions with a pilot work group and were
qualitative in nature, and we did not perform a formal
quantitative assessment.

Conclusions
By developing a critical symptom alerting and communication
system, we designed a system supporting the real-time delivery
of critical results based on PRO data to appropriate care team
members, including the ability for a patient and clinical staff to
communicate in a nonstructured, text-based, secure
communication format about the alert. We were able to
standardize the processing of patient-generated alert messages,
enabling the presentation of clinically meaningful PRO data
within clinical workflows in a standard format, and monitor
response times by clinical staff. This allowed us to set an
appropriate patient expectation for a response time frame by
their care team members or provided alternate communication
guidance specific to each patient and the surgical procedure
they underwent.
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MSK: Memorial Sloan Kettering
PRO: patient-reported outcome
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Abstract

Background: The automatic coding of clinical text documents by using the International Classification of Diseases, 10th
Revision (ICD-10) can be performed for statistical analyses and reimbursements. With the development of natural language
processing models, new transformer architectures with attention mechanisms have outperformed previous models. Although
multicenter training may increase a model’s performance and external validity, the privacy of clinical documents should be
protected. We used federated learning to train a model with multicenter data, without sharing data per se.

Objective: This study aims to train a classification model via federated learning for ICD-10 multilabel classification.
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Methods: Text data from discharge notes in electronic medical records were collected from the following three medical centers:
Far Eastern Memorial Hospital, National Taiwan University Hospital, and Taipei Veterans General Hospital. After comparing
the performance of different variants of bidirectional encoder representations from transformers (BERT), PubMedBERT was
chosen for the word embeddings. With regard to preprocessing, the nonalphanumeric characters were retained because the model’s
performance decreased after the removal of these characters. To explain the outputs of our model, we added a label attention
mechanism to the model architecture. The model was trained with data from each of the three hospitals separately and via federated
learning. The models trained via federated learning and the models trained with local data were compared on a testing set that
was composed of data from the three hospitals. The micro F1 score was used to evaluate model performance across all 3 centers.

Results: The F1 scores of PubMedBERT, RoBERTa (Robustly Optimized BERT Pretraining Approach), ClinicalBERT, and
BioBERT (BERT for Biomedical Text Mining) were 0.735, 0.692, 0.711, and 0.721, respectively. The F1 score of the model that
retained nonalphanumeric characters was 0.8120, whereas the F1 score after removing these characters was 0.7875—a decrease
of 0.0245 (3.11%). The F1 scores on the testing set were 0.6142, 0.4472, 0.5353, and 0.2522 for the federated learning, Far Eastern
Memorial Hospital, National Taiwan University Hospital, and Taipei Veterans General Hospital models, respectively. The
explainable predictions were displayed with highlighted input words via the label attention architecture.

Conclusions: Federated learning was used to train the ICD-10 classification model on multicenter clinical text while protecting
data privacy. The model’s performance was better than that of models that were trained locally.

(JMIR Med Inform 2022;10(11):e41342)   doi:10.2196/41342

KEYWORDS

federated learning; International Classification of Diseases; machine learning; natural language processing; multilabel text
classification

Introduction

Background
The World Health Organization published a unified
classification system for diagnoses of diseases called the
International Classification of Diseases (ICD), and the ICD

10th Revision (ICD-10) is widely used [1]. Coders classify
diseases according to the rules of the ICD, and the resulting
ICD codes are used for surveys, statistics, and reimbursements.
The ICD-10 Clinical Modification (ICD-10-CM) is used for
coding medical diagnoses and includes approximately 69,000
codes [2,3]. ICD-10-CM codes contain 7 digits; the structure
is shown in Figure 1.

Figure 1. Structure of an International Classification of Diseases, 10th Revision, Clinical Modification code.

In hospitals, diagnoses for each patient are first written as text
descriptions in the electronic health record. A coder then reads
these records to classify diagnoses into ICD codes. Because
diagnoses are initially written as free text, the text's ambiguity
makes diagnoses difficult to code. Classifying each diagnosis
is very time-consuming. A discharge record may contain 1 to
20 codes. Per the estimation of a trial, coders spent 20 minutes
assigning codes to each patient on average [4]. An automatic
tool can be used to increase the efficiency of and reduce the
labor for ICD classification.

Related Work
Recently, deep learning and natural language processing (NLP)
models have been developed to turn plain text into vectors,
making it possible to automatically classify them. Shi et al [5]
proposed a hierarchical deep learning model with an attention

mechanism. Sammani et al [6] introduced a bidirectional gated
recurrent unit model to predict the first 3 or 4 digits of ICD
codes based on discharge letters. Wang et al [7] proposed a
convolutional neural network model with an attention
mechanism and gated residual network to classify Chinese
records into ICD codes. Makohon et al [8] showed that deep
learning with an attention mechanism effectively enhances
ICD-10 predictions. Previous studies also mentioned the
necessity of enormous data sets and how privacy-sensitive
clinical data limited the development of models for automatic
ICD-10 classification [6].

Federated learning has achieved impressive results in the
medical field, being used to train models on multicenter data
while keeping them private. Federated learning is widely used
in medical image and signal analyses, such as brain imaging
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analysis [9] and the classification of electroencephalography
signals [10]. In the clinical NLP field, Liu et al [11] proposed
a 2-stage federated method that involved using clinical notes
from different hospitals to extract phenotypes for medical tasks.

Previously, we applied a Word2Vec model with a bidirectional
gated recurrent unit to classify ICD-10-CM codes from
electronic medical records [12]. We analyzed the distribution
of ICD-10-CM codes and extracted features from discharge
notes. The model had an F1 score of 0.625 for ICD-10-CM code
classification. To improve the model’s performance, we
implemented bidirectional encoder representations from
transformers (BERT) and found an improved F1 score of 0.715
for ICD-10-CM code classification [4]. We also found that the
coding time decreased when coders used classification model
aids; the median F1 score significantly improved from 0.832 to
0.922 (P<.05) in a trial [4]. Furthermore, we constructed a
system to improve ease of use, comprising data processing,
feature extraction, model construction, model training, and a
web service interface [4]. Lastly, we included a rule-based
algorithm in the preprocessing process and improved the F1

score to 0.853 for ICD-10-CM classification [13].

Objective
This study aims to further improve the performance of the
ICD-10 classification model and enable the model’s use across
hospitals. In this study, we investigated the effect of federated
learning on the performance of a model that was trained on
medical text requiring ICD-10 classification.

Methods

Ethics Approval
The study protocol was approved by the institutional review
boards of Far Eastern Memorial Hospital (FEMH; approval

number: 109086-F), National Taiwan University Hospital
(NTUH; approval number: 201709015RINC), and Taipei
Veterans General Hospital (VGHTPE; approval number:
2022-11-005AC), and the study adhered to the tenets of the
Declaration of Helsinki. Informed consent was not applicable
due to the use of deidentified data.

Data Collection
Our data were acquired from electronic health records at FEMH
(data recorded between January 2018 and December 2020),
NTUH (data recorded between January 2016 and July 2018),
and VGHTPE (data recorded between January 2018 and
December 2020). The data contained the text of discharge notes
and ICD-10-CM codes. Coders in each hospital annotated the
ground truth ICD-10 codes.

Data Description
After duplicate records were removed, our data set contained
100,334, 239,592, and 283,535 discharge notes from FEMH,
NTUH, and VGHTPE, respectively. Each record contained
between 1 and 20 ICD-10-CM labels. The distribution of labels
for each chapter is shown in Figure 2. These chapters are
classified by the first three digits. Codes for chapters V01 to
Y98 are not used for insurance reimbursement; hence, they were
excluded from our data set. The minimum number of
ICD-10-CM labels was found for chapters U00 to U99, and the
maximum number was found for chapters J00 to J99. Counts
of ICD-10-CM labels from the three hospitals are shown in
Multimedia Appendix 1.

The text in the data set contained alphabetic characters,
punctuation, and a few Chinese characters. The punctuation
count and the top 10 Chinese characters are shown in
Multimedia Appendix 2. The most common punctuation mark
was the period (“.”), and the least common was the closing brace
(“}”).
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Figure 2. Counts of ICD-10-CM labels for 22 chapters from (A) Far Eastern Memorial Hospital, (B) National Taiwan University Hospital, and (C)
Taipei Veterans General Hospital. ICD-10-CM: International Classification of Diseases, 10th Revision, Clinical Modification.

Preprocessing
We first removed duplicate medical records from the data set.
We then transformed all full-width characters into half-width
characters and all alphabetic characters into lowercase letters.
Records shorter than 5 characters were removed, as these were
usually meaningless words, such as “nil” and “none.” We also
removed meaningless characters, such as newlines, carriage

returns, horizontal tabs, and formed characters (“\n,” “\r,” “\t,”
and “\f,” respectively). Finally, all text fields were concatenated.

To choose a better method for managing punctuation and
Chinese characters during the preprocessing stage, we
determined model performance by using FEMH data, given the
inclusion of these characters in the data. Each experiment used
2 versions of the data. In the first version, we retained these
specific characters, and in the second, we removed them.
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Experiment P investigated the effect of punctuation, experiment
C investigated the effect of Chinese characters, and experiment
PC investigated the effects of both punctuation and Chinese
characters. Another method of retaining Chinese character
information is using English translations of Chinese characters.
Therefore, we also compared the model’s performance when
Chinese characters were retained to its performance when
Google Translate was used to obtain English translations.

One-hot encoding was used for the labels. Of the 69,823
available ICD-10-CM codes, 17,745 appeared in our combined
data set, resulting in a one-hot encoding vector length of 17,745.
The final cohort comprised 100,334, 239,592, and 283,535
records from FEMH, NTUH, and VGHTPE, respectively; 20%
(FEMH: 20,067/100,334; NTUH: 47,918/239,592; VGHTPE:
56,707/283,535) of the records were randomly selected for the
testing set, and the remaining records were used as the training
set.

Classification Model
We compared the performance of different variants of BERT,
including PubMedBERT [14], RoBERTa (Robustly Optimized
BERT Pretraining Approach) [15], ClinicalBERT [16], and
BioBERT (BERT for Biomedical Text Mining) [17]. BioBERT
was pretrained with text from PubMed—the most popular
bibliographic database in the health and medical science fields.
ClinicalBERT was pretrained with the MIMIC-III (Medical
Information Mart for Intensive Care III) data set, and its
vocabulary was from English Wikipedia and the BookCorpus
data set. PubMedBERT is another variant of BERT that uses

training data from PubMed. The main difference between
PubMedBERT and BioBERT is their vocabularies. The
vocabulary of BioBERT was from English Wikipedia and the
BookCorpus data set—as was the vocabulary of
BERT—whereas that of PubMedBERT was from PubMed. This
difference in vocabularies affects the ability to recognize words
in clinical text. RoBERTa used the original BERT model, but
it also used a longer training time, a larger batch size, and more
training data. The training data were from the BookCorpus,
CC-News (CommonCrawl News), and OpenWebText data sets.
RoBERTa also applied dynamic masking, which meant that the
masked tokens would be changed multiple times instead of
being fixed in the original BERT. The vocabularies and corpora
of these BERT variants are summarized in Table 1.

For our comparison, the text was first fed into the BERT
tokenizer, which transformed strings into tokens. The number
of tokens was then truncated to 512 for every text datum that
met the input length limit of 512. A linear layer connected the
word embeddings produced from the models to the output layers
of the one-hot–encoded multilabels. The output size of the linear
layer was 17,745, which matched the one-hot encoding vector
size of the labels. Binary cross-entropy was used to calculate
the model loss. We trained our model for 100 epochs, with a
learning rate of 0.00005. These models were fine-tuned for our
ICD-10-CM multilabel classification task to compare their
performance. Figure 3 summarizes the model architecture and
preprocessing flowchart. The best-performing model and
preprocessing method were chosen for subsequent federated
learning.

Table 1. Summary of the vocabulary and corpus sources for the various bidirectional encoder representations from transformers (BERT) models.

Corpus sources (training data)Vocabulary sourcesModels

PubMedPubMedPubMedBERT

The BookCorpus, CC-News, and OpenWebText data setsThe BookCorpus, CC-Newsb, and OpenWebText data setsRoBERTaa

The MIMIC-IIIc data setEnglish Wikipedia and the BookCorpus data setClinicalBERT

PubMedEnglish Wikipedia and the BookCorpus data setBioBERTd

aRoBERTa: Robustly Optimized BERT Pretraining Approach.
bCC-News: CommonCrawl News.
cMIMIC-III: Medical Information Mart for Intensive Care III.
dBioBERT: BERT for Biomedical Text Mining.

Figure 3. Model architecture and processing flowchart. CLS: class token; ICD-10-CM: International Classification of Diseases, 10th Revision, Clinical
Modification.
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Federated Learning
With federated learning, a model can be trained without sharing
data [18]. Clients (ie, local machines) keep their training data
on the same model architecture while exchanging the weights
of model parameters. A server receives the weights from each
client and averages their weights. After updating the model, the
server sends new weights back to the clients. The clients can
then start a new training round. We updated the weights of our
model parameters with the FederatedAveraging algorithm [18]
and used Flower for federated learning [19].

Flower is an open-source federated learning framework for
researchers [19]. Flower has a server-client structure. The server
and clients need to be started individually, and a server needs
to be assigned to each client. They communicate via the
open-source Google Remote Procedure Call (gRPC; Google
LLC) [20]. With the gRPC, a client application can directly call
a method on a server application, and this can be done on
different machines. There is a registration center on the server
for managing communication with all clients. There are 3 main
modules in the server. The first—a connection management
module—maintains all current gRPC connections. On the server,
each gRPC corresponds to each client. When a gRPC is

established, the register function is triggered to store the clients’
information in an array. If a client initiates a disconnection or
the connection times out, the register function will be called to
clear the client. The second module—a bridge module—caches
the information, regardless of whether the gRPC information
from the clients or the server will be stored in the module.
However, since the buffer is shared in both directions, it is
necessary to use the state transition method to ensure that all of
the information in the buffer is the same. There are five
states—the close, waiting for client write, waiting for client
read, waiting for server write, and waiting for server read states.
The third module—a server handler—manages the traffic
between the server and the clients.

Clients were set in the three hospitals, where the model was
trained on local data. The weights from each client were
transferred to the server, where the weights were averaged, and
global models were made (Figure 4). We set 5 epochs for each
training round on clients and 20 rounds for the server
aggregation. Our study was conducted on 2 nodes. Each node
had a NVIDIA RTX 2080 Ti graphics processing unit (NVIDIA
Corporation) with 64 GB of RAM, and one node had 2 NVIDIA
TITAN RTX graphics processing units with 64 GB of RAM
(NVIDIA Corporation).

Figure 4. Federated learning architecture. FEMH: Far Eastern Memorial Hospital; NTUH: National Taiwan University Hospital; VGHTPE: Taipei
Veterans General Hospital.

Label Attention
To explain the outputs of our model, we added a label attention
architecture [21]. It calculated the attention based on the inner
products of word vectors and each label vector separately. Figure
5 shows how we added the label attention architecture to our
model. First, we fine-tuned the BERT model by using the
definitions of ICD-10-CM codes to generate the label vectors.
Second, we constructed a fully connected layer, of which the
weights were initialized with the label vectors. Third, the output
produced by BERT was passed through the hyperbolic tangent
function, thereby producing word vectors. We inputted the word

vectors (Ζ) into the fully connected layer and softmax layer.
The output ( ) of the softmax layer was the attention. Fourth,
we inputted the hyperbolic tangent function of word vectors
(H), which were multiplied by attention ( ), into another fully
connected layer and sigmoid layer. This was similar to our
original architecture. The output (y) could be subtracted from
the one-hot–encoded labels for the loss calculation. Finally,
attention was used to explain how the model predicted the labels.
Attention was given to the input text for corresponding
ICD-10-CM codes. The performance of the model after adding
the label attention architecture was compared to its performance
without this architecture.
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Figure 5. Our model architecture with label attention. BERT: bidirectional encoder representations from transformers.

Metrics
We used the micro F1 score to evaluate performance because
it is the harmonic mean of precision and recall and therefore
yields more balanced results than those yielded when using
precision or recall only. The micro F1 score was calculated as
follows:

where

and

TPsum indicates the sum of true positives, FPsum indicates the
sum of false positives, and FNsum indicates the sum of false
negatives.

Results

Comparing the Performance of Different BERT
Models
The F1 scores of PubMedBERT, RoBERTa, ClinicalBERT, and
BioBERT were 0.735, 0.692, 0.711, and 0.721, respectively.
The F1 score of PubMedBERT was the highest, and that of
RoBERTa was the lowest among all models (Table 2). Due to
these results, we used PubMedBERT in the subsequent
experiments.

Table 2. Performance of different bidirectional encoder representations from transformers (BERT) models.

RecallPrecisionF1 scoreModels

0.7150.7560.735PubMedBERT

0.6660.7190.692RoBERTaa

0.6890.7350.711ClinicalBERT

0.6910.7540.721BioBERTb

aRoBERTa: Robustly Optimized BERT Pretraining Approach.
bBioBERT: BERT for Biomedical Text Mining.
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The Model’s Performance When Retaining or
Removing Punctuation or Chinese Characters
Table 3 shows the mean number of tokens for each data set
preprocessing case. The mean number of tokens when removing
punctuation and Chinese characters was 52.9. The mean number

of tokens when the characters were retained in experiment P
(punctuation), experiment C (Chinese characters), and
experiment PC (punctuation and Chinese characters) was 65.0,
53.1, and 65.1, respectively. Punctuation and Chinese characters
comprised 18.3% (1,301,988/7,096,460) and 0.1%
(7948/7,096,460) of the tokens in our data, respectively.

Table 3. Mean number of data tokens for retaining or removing punctuation or Chinese characters.

Mean number of tokensExperiment

52.9Removed punctuation and Chinese characters (baseline)

65.0Retained punctuation

53.1Retained Chinese characters

65.1Retained punctuation and Chinese characters

Table 4 shows the F1 scores for each data set preprocessing
case. The baseline performance of the model after removing
punctuation and Chinese characters was 0.7875. In experiment
P, the F1 score for retaining punctuation was 0.8049—an
increase of 0.0174 (2.21%). In experiment C, the F1 score for

retaining Chinese characters was 0.7984—an increase of 0.0109
(1.38%). In experiment PC, the F1 score for retaining
punctuation and Chinese characters was 0.8120—an increase
of 0.0245 (3.11%). In all experiments, retaining these characters
was better than removing them, with experiment PC showing
the largest improvement in performance.

Table 4. F1 scores for retaining or removing punctuation or Chinese characters.

Absolute increases (percentage)F1 scoreExperiment

N/Aa0.7875Removed punctuation and Chinese characters (baseline)

0.0174 (2.21%)0.8049Retained punctuation

0.0109 (1.38%)0.7984Retained Chinese characters

0.0245 (3.11%)0.8120Retained punctuation and Chinese characters

aN/A: not applicable.

The Model’s Performance Before and After
Translation
In the experiment where we translated Chinese into English,
the F1 score for retaining the Chinese characters was 0.7984,
and that for translating them into English was 0.7983.

Federated Learning
Table 5 shows the performance of the models that were trained
in the three hospitals. The models trained in FEMH, NTUH,
and VGHTPE had validation F1 scores of 0.7802, 0.7718, and
0.6151, respectively. The FEMH model had testing F1 scores
of 0.7412, 0.5116, and 0.1596 on the FEMH, NTUH, and
VGHTPE data sets, respectively. The NTUH model had testing

F1 scores of 0.5583, 0.7710, and 0.1592 on the FEMH, NTUH,
and VGHTPE data sets, respectively. The VGHTPE model had
testing F1 scores of 0.1081, 0.1058, and 0.5692 on the FEMH,
NTUH, and VGHTPE data sets, respectively. The weighted
average testing F1 scores were 0.4472, 0.5353, and 0.2522 for
the FEMH, NTUH, and VGHTPE models, respectively.

Table 6 shows the federated learning model’s performance in
the three hospitals. The federated learning model had validation
F1 scores of 0.7464, 0.6511, and 0.5979 on the FEMH, NTUH,
and VGHTPE data sets, respectively. The federated learning
model had testing F1 scores of 0.7103, 0.6135, and 0.5536 on
the FEMH, NTUH, and VGHTPE data sets, respectively. The
weighted average testing F1 score was 0.6142 for the federated
learning model.
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Table 5. Models that were trained in the three hospitals for International Classification of Diseases, 10th Revision classification.

Weighted average testing F1 scoresTesting F1 scoresValidation F1 scoreHospitals

0.44720.7802FEMHa • 0.7412 (FEMH)
• 0.5116 (NTUHb)
• 0.1596 (VGHTPEc)

0.53530.7718NTUH • 0.5583 (FEMH)
• 0.7710 (NTUH)
• 0.1592 (VGHTPE)

0.25220.6151VGHTPE • 0.1081 (FEMH)
• 0.1058 (NTUH)
• 0.5692 (VGHTPE)

aFEMH: Far Eastern Memorial Hospital.
bNTUH: National Taiwan University Hospital.
cVGHTPE: Taipei Veterans General Hospital.

Table 6. The federated learning model’s performance in the three hospitals.

Testing F1 scoreaValidation F1 scoreData

0.71030.7464FEMHb data

0.61350.6511NTUHc data

0.55360.5979VGHTPEd data

aThe weighted average testing F1 score was 0.6142.
bFEMH: Far Eastern Memorial Hospital.
cNTUH: National Taiwan University Hospital.
dVGHTPE: Taipei Veterans General Hospital.

Label Attention
The F1 scores of the model with and without the label attention
mechanism were 0.804 (precision=0.849; recall=0.763) and
0.813 (precision=0.852; recall=0.777), respectively.

Figure 6 shows a visualization of the attention for ICD-10-CM
codes and their related input text. The words were colored blue
based on the attention scores for different labels. The intensity
of the blue color represented the magnitude of the attention
score. We used ICD-10-CM codes E78.5 (“Hyperlipidemia,
unspecified”) and I25.10 (“Atherosclerotic heart disease of
native coronary artery without angina pectoris”) as examples.
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Figure 6. Attention for International Classification of Diseases, 10th Revision, Clinical Modification codes (A) E78.5 (“Hyperlipidemia, unspecified”)
and (B) I25.10 (“Atherosclerotic heart disease of native coronary artery without angina pectoris”). The intensity of the blue color represents the magnitude
of the attention score.

Discussion

Principal Findings
The federated learning model outperformed each local model
when tested on external data. The weighted average F1 scores
on the testing set were 0.6142, 0.4472, 0.5353, and 0.2522 for
the federated learning, FEMH, NTUH, and VGHTPE models,
respectively (Table 5 and Table 6). The model’s performance
decreased when tested on external data. Because different
doctors, coders, and diseases are found in different hospitals,
the style of clinical notes may be distinct across hospitals.
Overcoming such gaps among hospitals is challenging. Although
the performance of the federated learning model was inferior
to that of the models trained on local data when tested on local
data, its performance was higher than that of the models trained
on local data when tested on external data. Moreover, in the
VGHTPE data set, the label distribution was very different from
the label distributions in the other two hospitals’ data sets
(Figure 2). Therefore, the VGHTPE model only achieved F1

scores of 0.1058 and 0.1081 on the NTUH and FEMH testing
sets, respectively. The FEMH and NTUH models had F1 scores
of 0.1596 and 0.1592, respectively, on the VGHTPE testing set
(Table 5).

Federated learning improves model performance on external
data. Federated learning can be used to build an ICD coding
system for use across hospitals. However, the training time
required for federated learning is longer than the training time
required for local deep learning. Federated learning takes
approximately 1 week, and local training takes approximately
2 days. There are 2 reasons for this. First, the communication
between the server and the clients takes longer if the model is
large. The size of our model is approximately 859 MB. Second,
different clients may have different computing powers, and the

slower client becomes a bottleneck [22,23]. Other clients may
wait for the slower client until it completes its work.

The performance of PubMedBERT was better than that of
BioBERT, ClinicalBERT, and RoBERTa. Table 2 shows that
the vocabulary of BERT models is an important factor of model
performance. The vocabulary of PubMedBERT contains
predominantly medical terms, whereas the vocabularies of the
other three models contain common words. This difference
affects the ability to recognize words in clinical text. Most
published BERT models use a vocabulary of 30,522 WordPieces
[24]. However, these vocabulary data do not contain some words
from special fields. For example, the medical term “lymphoma”
is in the vocabulary of PubMedBERT but not in the vocabularies
of BioBERT, ClinicalBERT, and RoBERTa. The term
“lymphoma” can be transformed into the token “lymphoma”
by the PubMedBERT tokenizer, but the term would be split
into 3 tokens—“l”, “##ymph”, and “##oma”—by BioBERT,
ClinicalBERT, and RoBERTa.

In most scenarios, nonalphanumeric characters are removed
because they are considered useless to the models [25]. In
contrast to models with attention mechanisms, early NLP models
could not pay attention to punctuation. Additional characters
would make the models unable to focus well on keywords. The
removal of punctuation in English text and text in other
languages, such as Arabic, has been performed for NLP [26].
Ek et al [27] compared 2 data sets of daily conversation
text—one retained punctuation, and the other did not. Their
results showed better performance for the data set that retained
punctuation.

For experiments P, C, and PC, all models performed better when
additional characters were retained (Table 4). Experiment P
demonstrated that PubMedBERT could use embedded
punctuation. As punctuation marks are used to separate different
sentences, removing them connects all sentences and thus makes
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it harder for a model to understand the text content. The
improvement in our F1 score for retaining punctuation is similar
to the results of previous work by Ek et al [27]. Our results
demonstrate that retaining punctuation can improve the
performance of text classification models for text from the
clinical field. Experiment C demonstrated that PubMedBERT
could use embedded Chinese characters. Although
PubMedBERT was pretrained with mostly English text, its
vocabulary contains many Chinese characters. The tokens from
Chinese characters may contribute to the ICD-10 classification
task for clinical text because they provide information such as
place names, trauma mechanisms, and local customs. The results
of experiment PC indicate that the benefits of retaining
punctuation and retaining Chinese characters are additive. In
the translation experiment, the F1 scores did not considerably
differ. This result indicates that the model can extract
information from clinical text in either English or Chinese. The
use of the attention mechanisms of BERT increased our model’s
ability to pay attention to keywords. Punctuation and Chinese
characters contribute helpful information to these models.
Therefore, this preprocessing strategy—retaining more
meaningful tokens—provides more information for ICD-10
classification task models.

In our previous study, we introduced an attention mechanism
to visualize the attention given to the input text for ICD-10
definitions [4]. Through this approach, we trained a model to
predict ICD-10 codes and trained another model to extract
attention data. This approach might result in inconsistencies
between the predictions and attention. In this study, we
introduced the label attention architecture to visualize the
attention given to the input text for ICD-10 codes [21]. This
method better illustrated the attention given to the input words
that were used to predict ICD codes, as it is consistent with the
methods used by prediction models.

The F1 score of the model, after the label attention mechanism
was added, decreased by 0.009. Although the F1 score decreased,
we obtained explainable predictions. For ICD-10-CM codes
E78.5 (“Hyperlipidemia, unspecified”) and I25.10
(“Atherosclerotic heart disease of native coronary artery without
angina pectoris”), our model successfully paid great attention

to the related words “hyperlipidemia” and “coronary artery”
(Figure 6). Our visualization method (ie, highlighting input
words) allows users to understand how our model identified
ICD-10-CM codes from text.

Limitations
Our study has several limitations. First, our data were acquired
from 3 tertiary hospitals in Taiwan. The extrapolation of our
results to hospitals in other areas should be studied in the future.
Second, although our results suggest that model performance
is better when punctuation and Chinese characters are retained,
this effect may be restricted to specific note types. This finding
should be further examined in the context of classifying other
types of clinical text. Third, the translated text in our last
experiment may not be as accurate as translations by a native
speaker. However, it is difficult to manually translate large
amounts of data. As such, we could only automatically translate
the text by using Google Translate.

It should be noted that there is a primary and secondary
diagnosis code for each discharge note. Although choosing the
primary code makes reimbursements different, the model
proposed in this study did not identify primary codes. To make
our model capable of identifying a primary code, we proposed
a sequence-to-sequence model in our previous work [4]. It
transforms the original predicted labels that were concatenated
alphabetically, so that they are ordered by diagnosis code. This
structure can be added to the model proposed in this study.
Predictions based on primary and secondary diagnosis codes
can further improve the usability of this system.

Conclusions
Federated learning was used to train the ICD-10 classification
model on multicenter clinical text while protecting data privacy.
The model’s performance was better than that of models that
were trained locally. We showed the explainable predictions by
highlighting input words via a label attention architecture. We
also found that the PubMedBERT model can use the meanings
of punctuation and non-English characters. This finding
demonstrates that changing the preprocessing method for
ICD-10 multilabel classification can improve model
performance.
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Abstract

Background: In recent years, the progress and generalization surrounding portable ultrasonic probes has made ultrasound (US)
a useful tool for physicians when making a diagnosis. With the advent of machine learning and deep learning, the development
of a computer-aided diagnostic system for screening renal US abnormalities can assist general practitioners in the early detection
of pediatric kidney diseases.

Objective: In this paper, we sought to evaluate the diagnostic performance of deep learning techniques to classify kidney images
as normal and abnormal.

Methods: We chose 330 normal and 1269 abnormal pediatric renal US images for establishing a model for artificial intelligence.
The abnormal images involved stones, cysts, hyperechogenicity, space-occupying lesions, and hydronephrosis. We performed
preprocessing of the original images for subsequent deep learning. We redefined the final connecting layers for classification of
the extracted features as abnormal or normal from the ResNet-50 pretrained model. The performances of the model were tested
by a validation data set using area under the receiver operating characteristic curve, accuracy, specificity, and sensitivity.

Results: The deep learning model, 94 MB parameters in size, based on ResNet-50, was built for classifying normal and abnormal
images. The accuracy, (%)/area under curve, of the validated images of stone, cyst, hyperechogenicity, space-occupying lesions,
and hydronephrosis were 93.2/0.973, 91.6/0.940, 89.9/0.940, 91.3/0.934, and 94.1/0.996, respectively. The accuracy of normal
image classification in the validation data set was 90.1%. Overall accuracy of (%)/area under curve was 92.9/0.959..

Conclusions: We established a useful, computer-aided model for automatic classification of pediatric renal US images in terms
of normal and abnormal categories.

(JMIR Med Inform 2022;10(11):e40878)   doi:10.2196/40878

KEYWORDS

transfer learning; convolutional neural networks; pediatric renal ultrasound image; screening; pediatric; medical image; clinical
informatics; deep learning; ultrasound image; artificial intelligence; diagnostic system
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Introduction

Renal abnormalities are important findings in pediatric medicine.
It is well accepted that “silent” renal abnormalities can be
effectively detected through ultrasound (US) screening, which
makes both early diagnoses and intervention possible [1,2]. US
is a safe, relatively cheap, and convenient medical modality.
Portable ultrasonic probes and internet connections have largely
developed in recent years, even extending the coverage of
pediatric renal US screening throughout the world. However,
current methods remain limited due to the lack of automated
processes that accurately classify diseased and normal kidneys
[3].

Common renal abnormalities identified in US images in a series
of more than 1 million school children included hydronephrosis
(39.6%), unilateral small kidney (19.8%), unilateral agenesis
(15.9%), cystic disease (13.9%), abnormal shapes—ectopic,
horseshoe, and duplication of kidney (8%)—as well as others,
that is, stones, tumors, and parenchymal diseases (1.5%) [1].

Thus far, publications regarding computer-aided US image
interpretation have been much fewer than those based on
computerized tomography or magnetic resonance imaging [4,5].
The use of US presents unique challenges, such as different
angles of image sampling, low image quality caused by noise
and artifacts, high dependence on an abundance of operators,
and high inter- and intra-observer variability across different
institutes and manufacturers’ US systems [6]. From the review
about medical US published in 2021 [7], there were only 3
studies involving deep learning for renal US image classification
[5,8,9].

This study was performed to select normal pediatric renal US
images, as well as different types of renal abnormalities
previously mentioned, for purposes of machine learning.
Through the pretreatment of original images, adequate grouping

of images, and deep neural network training, we hope that renal
images can be correctly classified as either normal or abnormal.
The aim of this study is to establish an artificial intelligence
(AI) model for screening renal abnormalities to enhance the
well-being of children even in areas where there is no pediatric
nephrologist.

Methods

Ethics Approval
This study was approved by the institutional review board of
Taichung Veterans General Hospital (No. CE20204A).

Materials
The images used were all created from the original images in
the pediatric US examination room at Taichung Veterans
General Hospital from January 2000 to December 2020. Here
were 4 different US machines manufactured by both Philips
and Acuson, which were used in this study. All images were
obtained by a US technician having more than 20 years of
experience, using a 4 MHz sector transducer. We chose only
images taken of a longitudinal view from the right and left
kidney.

We established 2 data sets. One data set was for training, and
the other was for validation. The images in these 2 data sets
were totally different.

Image Preprocessing and Data Cleaning
All images were detached from their original general data,
including name, date of birth, date of examination, and chart
number. The size of all the images was 600x480 pixels. We
processed the images using software to obtain adequate
illustrations for machine learning. As shown in Figure 1, after
preprocessing, the images contain a kidney, a square of liver
obtained from the examination simultaneously, and a gray scale
gradient seen in the left upper part of the image.

Figure 1. Preprocessing images for machine learning.

Image Grouping
Normal images were those having a normal size and shape, as
well as a clear renal cortex or medulla without hydronephrosis,
hyperechogenicity, cysts, stones, or any space-occupying lesion.
We prepared 330 images for this group. There were a total of
1269 abnormal renal images. The abnormalities included
hydronephrosis, hyperechogenicity, cysts, stones, and

space-occupying lesions. The number of images and
examinations are summarized in Table 1. The hyperechogenicity
of the renal US images included increased renal cortex
echogenicity as compared to the liver, a poor differentiation of
the renal cortex or medulla, and an inversed echogenicity of the
renal cortex or medulla. These findings were judged by 2
pediatric nephrologists.
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Table 1. Distribution of images and examinations in the training and testing augmented database.

Totals (cases/images)Testing (cases/images)Training (cases/images)Diagnosis

164/33032/66132/264Normal

Abnormal

183/42737/85146/342Stone

125/26825/53100/215Cyst

75/16515/3360/132Hyperechogenicity

134/22626/45108/181Space-occupying lesions

84/18316/3768/146Hydronephrosis

765/1599151/319614/1280Total

Machine Learning
We performed feature extraction with the pretrained model of
ResNet-50 [8-10] in PyTorch from the data set ImageNet [11].
We used the pretrained weight of ResNet, so there was no
backpropagation during feature extraction for training US
images. The input data used were renal US images of 800x600
pixels in size. We normalized the dimension to 224x224 pixels
prior to feeding the images into the network.

For the classification purpose, we redefined the final fully
connected layers, which output image classification as abnormal
or normal. After the training images went through Resnet50,
there were 2048 outputs. There were 4 components in the final

fully connected layer. The first was a linear layer with the 2048
feature extractions and 512 outputs. The second was rectified
linear unit, which was a piecewise linear function that only
outputted the positive result. Subsequently, we added the
dropout layer to prevent overfitting. The 4th component was
another linear layer, performing with 512 inputs and 2 outputs,
which stand for the 2 categories, that is, abnormal and normal
class with their probabilities.

We optimized the model with the Adam optimizer at a learning
rate of 0.01 [12]. There were a total of 30 epochs used for
convolutional neural network training. We created a 94 MB
size model to classify normal versus abnormal renal US images.
Figure 2 is a summary of our deep learning structure.
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Figure 2. Brief summary of machine learning.

Experimental Setup
We implemented the training-testing approach. The data set
was randomly divided into 1272/1599 (79.55%) images for
training and 327/1599 (20.45% )images for testing to establish
the model. We performed a 10-time randomization of the data
set to repeat the machine learning described in the previous
paragraph. For validation of the 94 MB model, there was another
validation data set with 327 pediatric renal US images, including
66 (20.2%) normal, 37 (11.3%) hydronephrosis, 53 (16.2%)
cyst, 95 (29.1%) stone, 53 (16.2%) hyperechogenicity, and 26
(7.9%) space-occupying US images. All these images were
totally different from the data set for establishing the model.

Evaluation of Performance
We evaluated the performance from a single image result. The
diagnostic performance was measured by accuracy, specificity,
sensitivity, positive predictive value, and negative predictive
value. To calculate the above metrics, we defined an abnormal
result as positive and a normal result as negative.

Results

After 30 epochs for these 1599 pediatric renal US images, we
obtained satisfactory results. The performance metrics in the
test part of the data set are shown in Table 2. The accuracy in
different abnormalities ranged from 95% to 100%.
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Table 2. Evaluation metrics for screening different abnormalities from test renal ultrasound images in the data set.

NPVc (%)PPVb (%)AUC-ROCaSpecificity (%)Sensitivity (%)Accuracy (%)Diagnosis (number)

1001000.974100100100Stone

91.71000.94510088.595.2Cyst

97.11000.93810096.298.3Hyperechogenicity

97.11000.93510095.698.7Space-occupying lesions

1001000.998100100100Hydronephrosis

97.21000.96110096.3998.4Overall

aAUC-ROC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.

The accuracies of each abnormality ranged from 95.2% to 100%,
with an overall accuracy as 98.4%. The area under curves
(AUCs) were from 0.935 to 0.998. The AUC for overall
performance was 0.961. There was no difference between these
10 random tests (P>.05). We repeated the 10 experiments using
different randomizations involving 80%/20% training/test
images to check the consistency of the machine learning
performance. The accuracies ranged from 95.2% to 98.4%.
There was no difference between these 10 tests (P>.05). We
performed a 5-fold cross test, and the results are shown in Table
3.

We validated the 94 MB model through machine learning with
another 327 pediatric renal US images. The classifications
included 66 (20.2%) normal, 37 (11.3%) hydronephrosis, 53
(16.2%) cyst, 95 (29.1%) stone, 53 (16.2%) hyperechogenicity,
and 26 (7.9%) space-occupying US images. The performances
based on each single image are summarized in Table 4.
Accuracy in the different abnormalities ranged from 89.9% to
94.1%, with an average of 92.3%. AUC was from 0.934 to 0.996
(Figure 3). The overall performance in AUC was 0.959. The
macro F1 was 0.924.

Table 3. Results of the 5-fold cross test.

OverallTest 5Test 4Test 3Test 2Test 1

86.3287.987.987.987.980Normal accuracy (%)

91.60/0.92794.3/0.92789.4/0.92589.4/0.92392.9/0.89791.2/0.925Stone accuracy (%)/AUCa

85.3/0.90382.1/0.89190.6/0.89884.9/0.92790.6/0.89675.4/0.858Cyst accuracy (%)/AUC

84.2/0.85981.8/0.89181.8/0.86281.8/0.86281.8/0.85584.8/0.848hyperechogenicity accuracy (%)/AUC

86.8/0.89682.6/0.86383.0/0.87494.5/0.91784.9/0.88192.5/0.903Space-occupying lesion accuracy (%)/AUC

94/0.92891.4/0.87194.6/0.93289.2/0.94091.9/0.888100/0.965Hydronephrosis accuracy (%)/AUC

88.3/0.90087.7/0.90187.5/0.90287.8/0.92889/0.88787.8/0.903Overall accuracy (%)/AUC

aAUC: area under curve.
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Table 4. Evaluation metrics for screening different abnormalities from other renal ultrasound images for validation.

F1-scoreNPVc (%)PPVb (%)AUC-ROCaSpecificity (%)Sensitivity (%)Accuracy (%)US images, n (%)Diagnosis

N/AN/AN/AN/A90.9%N/AN/Ad66 (20.2)Normal

0.92792.393.20.973N/A94.793.293 (28.4)Stone

0.91893.891.60.940N/A92.591.653 (16.2)Cyst

0.89790.989.90.940N/A88.789.953 (16.2)Hyperechogenicity

0.92396.8191.30.934N/A92.391.326 (7.9)Space-occupying lesions

0.95710094.20.996N/A10094.137 (11.3)Hydronephrosis

0.924e77.9293.60.959N/A96.192.9328 (100)Overall

aAUC-ROC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dN/A: not applicable.
eMacro F1.

Figure 3. Area under the receiver operating characteristic curves of different image abnormalities and the overall performance. AUC: area under curve.

Discussion

The main finding of this study is a useful AI model for screening
abnormal pediatric renal US images. The average accuracy can
be 92.9%. The results can fulfill the main purpose of this
study—to develop a useful computer-aided diagnosis model for
screening various pediatric renal US abnormal patterns
automatically. In this study, the machine learning methods were
based upon convolutional neural network and fine-tuning, along
with our unique methods for image preprocessing, as well as
strategies for classification, which achieved a feasible model
for clinical purposes. We constructed the stable classifier that
combined both the transfer learning and training from scratch,
balancing the training of a medical data set taken from an
adequate sample size.

Clinical applications of AI in nephrology are versatile, but the
use of renal US in this field is still in its infancy [13,14]. The
reports derived from renal US images alone have been relatively
limited up until now, with the major reports involving acute

and chronic injuries [15-17]. Most renal image studies for AI
used magnetic resonance imaging, computerized tomography,
and patient histology for tumors, stones, nephropathy,
transplantation, and other conditions [18-21]. The key challenges
associated with deep learning involving US include reliability,
generalizability, and bias [22]. The basic studies for enhancing
AI performance in renal US have begun and remain undergoing
[23-25].

There have been 4 reports from studies involving clinical AI
applications in pediatric renal US abnormalities [3, 5,8,9]. Zheng
et al [3] found that the deep transfer learning method offers
satisfactory accuracy in identifying congenital anomalies in the
kidney and urinary tract, even when the data set is as small as
only having 50 children with congenital anomalies in the kidney
and urinary tract and 50 children as the control. Yin et al [5]
performed a similar study to detect posterior urethral valves.
Sudarharson et al [8] used 3 variant data sets for identifying
renal cysts, stones, and tumors, with an accuracy rate of 96.54%
in images of quality and 95.58% in images of noise. Smail et
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al [9] attempted to use AI for grading hydronephrosis involving
the 5-point scoring system from the Society of Fetal Urology
(SFU). The best recorded performance was a 78% accuracy rate
by dividing hydronephrosis into mild and severe. However, the
accuracy rate was only 51% when using the 5-point system. In
our study, we established a single 94 MB model to classify
normal versus abnormal pediatric renal US images. The items
seen in the abnormalities included renal cysts, stones, and
tumors, as reported by Sudarharson et al [8]. In addition, the
model was able to identify images of hydronephrosis and
hyperechogenicity. Comparing the results from the study
performed by Smail et al [9], our results showed a better
classification accuracy for hydronephrosis. The 37 validated
images were moderate or severe hydronephrosis, that is, the
SFU class II, III, and IV. Our model can achieve 100%
sensitivity, comparing the sensitivity of 46%-54%, as previously
reported [26].

In terms of SFU class I, our model had an accuracy of 71.7%
(119/166). Up until now, grading of hydronephrosis has been
an ongoing challenge [27]. Extremely early intervention for
treatment of mild hydronephrosis remains inadequate. If a child
with mild hydronephrosis is also experiencing other renal
abnormalities, such as stones, cysts, or hyperechogenicity, it is
highly possible our model would be capable of providing any
alarming information surrounding these conditions.

The unique pretreatment of images for machine learning
performed in this study was performed to provide a comparison
of liver echogenicity in the simultaneous study. This step is
necessary for identifying hyperechogenicity. Other
abnormalities, such as hydronephrosis, cysts, stones, and tumors,
showed no difference in classification, regardless of whether
we inputted the images with the addition of the square
containing liver echogenicity and the gray scale gradient in the
left part of the image shown in Figure 1. As demonstrated in
Table 4, the accuracy and sensitivity for hyperechogenicity
identification was lower than it was with other abnormalities.
Increased echogenicity is an important finding in evaluating

muscle, thyroid, vascular, and renal diseases [28]. The gray
scale US presents a general sensitivity rate of 62% to 77%, a
specificity of 58% to 73%, and a positive predictive value of
92% for detecting microscopically confirmed renal parenchymal
diseases. The above results reveal that the echogenicity change
was not sensitive enough for detecting renal disease.
Abnormalities in renal echogenicity include increased
echogenicity, poor differentiation of the cortex or medulla, and
inversed echogenicity of the renal cortex and medulla [29]. In
practice, it is quite often that we cannot obtain a square
containing homogenous liver echogenicity for purposes of
machine learning. When the classification is compared by a
pediatric nephrologist, the results are acceptable. It is also
difficult for the naked eye to discriminate between the
not-so-significant gray scale differences. Currently, the so called
“radiomics” information, which can aid US imaging in AI, is
emerging [30], with a more precise assessment of US pixels
possibly enhancing the utility of hyperechogenicity.

A limitation of this study is the single medical center image
source. More images from different hospitals, areas, ethnicities,
and US companies need to be used. We conducted a small-scale
external validation using US images from different companies,
including General Electric, Siemens, and Toshiba. After image
pretreatment, the results could be 100% sensitivity, 80%
specificity, and 90% accuracy. Another limitation is the
moderate image number of images contributing to the data set.
We did not divide images from right or left kidney for training,
though the results can be acceptable. We will further validate
our method based on larger data sets.

In conclusion, this study proposed the use of an automatic model
for purposes of screening various abnormalities in pediatric
renal US images. We will continue to enhance the model’s
performance as we conduct additional evaluation studies
surrounding its future clinical applications, including being an
auxiliary software for screening children’s renal abnormalities
in remote areas.
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Corrigenda and Addenda

Correction: Web-Based Software Tools for Systematic Literature
Review in Medicine: Systematic Search and Feature Analysis
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Corresponding Author:
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Related Article:
 
Correction of: https://medinform.jmir.org/2022/5/e33219
 

(JMIR Med Inform 2022;10(11):e43520)   doi:10.2196/43520

In “Web-Based Software Tools for Systematic Literature Review
in Medicine: Systematic Search and Feature Analysis” (JMIR
Med Inform 2022;10(5):e33219) the authors noted some errors
and made the following corrections:

1. For the “Access” category in Table 4, features included free,
living, public outputs, and multiple users. In the originally
published article, the feature "public outputs" was not counted,
understating the total features offered. Therefore, Table 4 has
been revised, as follows:

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e43520 | p.150https://medinform.jmir.org/2022/11/e43520
(page number not for citation purposes)

Cowie et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:kevinkallmes@supedit.com
https://medinform.jmir.org/2022/5/e33219
http://dx.doi.org/10.2196/43520
http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Feature assessment scores by feature class for each systematic review tool analyzed. The total number of features across all feature classes is
presented in descending order.

Total (n=30),
n (%)

Access (n=4),
n (%)

Admin (n=6),
n (%)

Output (n=5),
n (%)

Extraction
(n=4), n (%)

Appraisal
(n=6), n (%)

Retrieval (n=5),
n (%)

Systematic review tool

27 (90)3 (75)6 (100)3 (60)4 (100)6 (100)5 (100)Giotto Compliance

26 (87)2 (50)6 (100)4 (80)3 (75)6 (100)5 (100)DistillerSR

26 (87)4 (100)6 (100)5 (100)2 (50)5 (83)4 (80)Nested Knowledge

25 (83)3 (75)5 (83)3 (60)4 (100)6 (100)4 (80)EPPI-Reviewer Web

23 (77)4 (100)6 (100)3 (60)3 (75)5 (83)2 (40)LitStream

21 (70)3 (75)5 (83)4 (80)2 (50)4 (67)3 (60)JBI SUMARI

21 (70)1 (25)6 (100)3 (60)2 (50)4 (67)5 (100)SRDB.PRO

20 (67)1 (25)5 (83)2 (40)4 (100)5 (83)3 (60)Covidence

20 (67)4 (100)5 (83)2 (40)2 (50)3 (50)4 (80)SysRev

19 (63)3 (75)4 (67)2 (40)3 (75)5 (83)2 (40)Cadima

19 (63)4 (100)6 (100)1 (20)3 (75)3 (50)2 (40)SRDR+

18 (60)2 (50)3 (50)2 (40)1 (25)6 (100)4 (80)Colandr

18 (60)3 (75)3 (50)2 (40)2 (50)6 (100)2 (40)PICOPortal

18 (60)2 (50)4 (50)2 (40)2 (50)5 (83)3 (60)Rayyan

17 (57)3 (75)6 (100)3 (60)2 (50)1 (17)2 (40)Revman Web

16 (53)1 (25)5 (83)1 (20)0 (0)6 (100)3 (60)SWIFT-Active Screener

15 (50)2 (50)5 (83)1 (20)1 (25)5 (83)1 (20)Abstrackr

14 (47)2 (50)5 (83)2 (40)0 (0)3 (50)2 (40)RobotAnalyst

14 (47)4 (100)5 (83)2 (40)2 (50)0 (0)1 (20)SRDR

12 (40)2 (50)2 (33)1 (20)2 (50)4 (67)1 (20)SyRF

10 (33)4 (100)3 (50)0 (0)1 (25)0 (0)2 (40)Data Abstraction Assistant

9 (30)1 (25)2 (33)0 (0)0 (0)4 (67)2 (40)SR-Accelerator

8 (27)1 (25)2 (33)1 (20)2 (50)0 (0)2 (40)RobotReviewer

6 (20)3 (75)1 (17)2 (40)0 (0)0 (0)0 (0)COVID-NMA

The originally published Table 4 can be found in Multimedia
Appendix 1.

Accordingly, the in-text references to Table 4 were revised in
the article, as follows:

2. In the originally published article, in the Abstract, the section
"Results" was the following:

Of the 53 SR tools found, 55% (29/53) were excluded,
leaving 45% (24/53) for assessment. In total, 30
features were assessed across 6 classes, and the
interobserver agreement was 86.46%. DistillerSR
(Evidence Partners; 26/30, 87%), Nested Knowledge
(Nested Knowledge; 25/30, 83%), and EPPI-Reviewer
Web (EPPI-Centre; 24/30, 80%) support the most
features followed by Giotto Compliance (Giotto
Compliance; 23/30, 77%), LitStream (ICF), and
SRDB.PRO (VTS Software). Fewer than half of all
the features assessed are supported by 7 tools:
RobotAnalyst (National Centre for Text Mining),
SRDR (Agency for Healthcare Research and Quality),
SyRF (Systematic Review Facility), Data Abstraction

Assistant (Center for Evidence Synthesis in Health),
SR Accelerator (Institute for Evidence-Based
Healthcare), RobotReviewer (RobotReviewer), and
COVID-NMA (COVID-NMA). Notably, of the 24
tools, only 10 (42%) support direct search, only 7
(29%) offer dual extraction, and only 13 (54%) offer
living/updatable reviews.

In the Abstract, the section "Results" has been revised, as
follows:

Of the 53 SR tools found, 55% (29/53) were excluded,
leaving 45% (24/53) for assessment. In total, 30
features were assessed across 6 classes, and the
interobserver agreement was 86.46%. Giotto
Compliance (27/30, 90%), DistillerSR (26/30, 87%),
and Nested Knowledge (26/30, 87%) support the most
features, followed by EPPI-Reviewer Web (25/30,
83%), LitStream (23/30, 77%), JBI SUMARI (21/30,
70%), and SRDB.PRO (VTS Software) (21/30, 70%).
Fewer than half of all the features assessed are
supported by 7 tools: RobotAnalyst (National Centre
for Text Mining), SRDR (Agency for Healthcare
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Research and Quality), SyRF (Systematic Review
Facility), Data Abstraction Assistant (Center for
Evidence Synthesis in Health), SR Accelerator
(Institute for Evidence-Based Healthcare),
RobotReviewer (RobotReviewer), and COVID-NMA
(COVID-NMA). Notably, of the 24 tools, only 10
(42%) support direct search, only 7 (29%) offer dual
extraction, and only 13 (54%) offer living/updatable
reviews.

3. In the originally published article, under Methods, the first
paragraph of the section “Evaluation of Tools” was the
following:

For tools with free versions available, each of the
researchers created an account and tested the
program to determine feature presence. We also
referred to user guides, publications, and training
tutorials. For proprietary software, we gathered
information on feature offerings from marketing
webpages, training materials, and video tutorials. We
also contacted all proprietary software providers to
give them the opportunity to comment on feature
offerings that may have been left out of those
materials. Of the 8 proprietary software providers
contacted, 50% (4/8) did not respond, 38% (3/8)
provided feedback on feature offerings, and 13% (1/8)
declined to comment. When providers provided
feedback, we re-reviewed the features in question and
altered the assessment as appropriate.

The first paragraph of the section “Evaluation of Tools” has
been revised, as follows:

For tools with free versions available, each of the
researchers created an account and tested the
program to determine feature presence. We also
referred to user guides, publications, and training
tutorials. For proprietary software, we gathered
information on feature offerings from marketing
webpages, training materials, and video tutorials. We
also contacted all proprietary software providers to
give them the opportunity to comment on feature
offerings that may have been left out of those
materials. Of the 8 proprietary software providers
contacted, 38% (3/8) did not respond, 50% (4/8)
provided feedback on feature offerings, and 13% (1/8)
declined to comment. When providers provided
feedback, we re-reviewed the features in question and
altered the assessment as appropriate. One provider
gave feedback after initial puplication, prompting
issuance of a correction.

4. In the originally published article, under Results, the section
"Feature Assessment" was the following:

DistillerSR (26/30, 87%), Nested Knowledge (25/30,
83%), and EPPI-Reviewer Web (24/30, 80%) support
the most features, followed by Giotto Compliance
(23/30, 77%), LitStream, and SRDB.PRO (VTS
Software). The top 16 software tools are ranked by
percent of features from highest to lowest in Figure
2. Fewer than half of all features are supported by 5

tools: RobotAnalyst (National Centre for Text
Mining), SRDR (Agency for Healthcare Research and
Quality), SyRF (Systematic Review Facility), Data
Abstraction Assistant (Center for Evidence Synthesis
in Health, Institute for Evidence-Based Healthcare),
RobotReviewer (RobotReviewer), and COVID-NMA
(COVID-NMA; Table 3).

The section “Feature Assessment” has been replaced, as follows:

Giotto Compliance (27/30, 90%), DistillerSR (26/30,
87%), and Nested Knowledge (26/30, 87%) support
the most features, followed by EPPI-Reviewer Web
(25/30, 83%), LitStream (23/30, 77%), JBI SUMARI
(21/30, 70%), and SRDB.PRO (VTS Software) (21/30,
70%).

The top 16 software tools are ranked by percent of
features from highest to lowest in Figure 2. Fewer
than half of all features are supported by 7 tools:
RobotAnalyst (National Centre for Text Mining),
SRDR (Agency for Healthcare Research and Quality),
SyRF (Systematic Review Facility), Data Abstraction
Assistant (Center for Evidence Synthesis in Health,
Institute for Evidence-Based Healthcare),
SR-Accelerator, RobotReviewer (RobotReviewer),
and COVID-NMA (COVID-NMA; Table 3).

5. In the originally published article, the section "Feature
Assessment: Breakout by Feature Class" was the following:

Of all 6 feature classes, administrative features are
the most supported, and extraction features are the
least supported (Figure 3). Only 2 tools, Covidence
(Cochrane) and EPPI-Reviewer, offer all 4 extraction
features (Table 4). DistillerSR, Nested Knowledge,
and JBI SUMARI (JBI) support all 4
documentation/output features.

The section “Feature Assessment: Breakout by Feature Class”
has been revised, as follows:

Of all 6 feature classes, administrative features are
the most supported, and output and extraction features
are the least supported (Figure 3). Only 3 tools,
Covidence (Cochrane), EPPI-Reviewer, and Giotto
Compliance, offer all 4 extraction features (Table 4).
DistillerSR and Giotto support all 5 retrieval features,
while Nested Knowledge supports all 5
documentation/output features. Colandr, DistillerSR,
EPPI-Reviewer, Giotto Compliance, and PICOPortal
support all 6 appraisal features.

6. In the originally published article, under Discussion, the
“Principal Findings” section was the following:

Our review found a wide range of options in the SR
software space; however, among these tools, many
lacked features that are either crucial to the
completion of a review or recommended as best
practices. Only 63% (15/24) of the SR tools covered
the full process from search/import through to
extraction and export. Among these 15 tools, only
67% (10/15) had a search functionality directly built
in, and only 47% (7/15) offered dual data extraction
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(which is the gold standard in quality control).
Notable strengths across the field include
collaborative mechanisms (offered by 20/24, 83%
tools) and easy, free access (17/24, 71% of tools are
free). Indeed, the top 4 software tools in terms of
number of features offered (DistillerSR, Nested
Knowledge, EPPI-Reviewer, and Giotto Compliance)
all offered between 80% and 87% of the features
assessed. However, major remaining gaps include a
lack of automation of any step other than screening
(automated screening offered by 13/24, 54% of tools)
and underprovision of living, updatable outputs.

The section “Principal Findings” has been revised, as follows:

Our review found a wide range of options in the SR
software space; however, among these tools, many
lacked features that are either crucial to the
completion of a review or recommended as best
practices. Only 63% (15/24) of the SR tools covered
the full process from search/import through to
extraction and export. Among these 15 tools, only
67% (10/15) had a search functionality directly built

in, and only 47% (7/15) offered dual data extraction
(which is the gold standard in quality control).
Notable strengths across the field include
collaborative mechanisms (offered by 20/24, 83%
tools) and easy, free access (17/24, 71% of tools are
free). Indeed, the top 4 software tools in terms of
number of features offered (Giotto Compliance,
DistillerSR, Nested Knowledge, and EPPI-Reviewer
all offered between 83% and 90% of the features
assessed. However, major remaining gaps include a
lack of automation of any step other than screening
(automated screening offered by 13/24, 54% of tools)
and underprovision of living, updatable outputs.

The authors confirm that these data changes do not affect the
conclusions of the paper.

The correction will appear in the online version of the paper on
the JMIR Publications website on November 23, 2022, together
with the publication of this correction notice. Because this was
made after submission to PubMed, PubMed Central, and other
full-text repositories, the corrected article has also been
resubmitted to those repositories.
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Abstract

Background: The use of artificial intelligence (AI)–based tools in the care of individual patients and patient populations is
rapidly expanding.

Objective: The aim of this paper is to systematically identify research on provider competencies needed for the use of AI in
clinical settings.

Methods: A scoping review was conducted to identify articles published between January 1, 2009, and May 1, 2020, from
MEDLINE, CINAHL, and the Cochrane Library databases, using search queries for terms related to health care professionals
(eg, medical, nursing, and pharmacy) and their professional development in all phases of clinical education, AI-based tools in all
settings of clinical practice, and professional education domains of competencies and performance. Limits were provided for
English language, studies on humans with abstracts, and settings in the United States.

Results: The searches identified 3476 records, of which 4 met the inclusion criteria. These studies described the use of AI in
clinical practice and measured at least one aspect of clinician competence. While many studies measured the performance of the
AI-based tool, only 4 measured clinician performance in terms of the knowledge, skills, or attitudes needed to understand and
effectively use the new tools being tested. These 4 articles primarily focused on the ability of AI to enhance patient care and
clinical decision-making by improving information flow and display, specifically for physicians.

Conclusions: While many research studies were identified that investigate the potential effectiveness of using AI technologies
in health care, very few address specific competencies that are needed by clinicians to use them effectively. This highlights a
critical gap.

(JMIR Med Inform 2022;10(11):e37478)   doi:10.2196/37478
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Introduction

Artificial intelligence (AI), defined as the “branch of computer
science that attempts to understand and build intelligent entities,
often instantiated as software programs,” [1] has been applied
in the health care setting for decades. Starting in the 1960s, a
cadre of computer scientists and physicians developed an interest
group around AI in Medicine (AIM) [2]. By the time funding
sources became aligned with opportunities in the 1980s, AI was
in its “expert system” era, using rules and knowledge derived
from human experts to solve problems, primarily related to
medical diagnosis [3]. Projects that developed these
knowledge-based systems resulted in the creation of valuable
information infrastructures, including standards, vocabularies,
and taxonomies that continue to anchor electronic health records
(EHR) [4]. Rule-based clinical decision support (eg,
case-specific clinical alerts) is an important component of
today’s EHR, but it is no longer considered to be true AI [5].

Since these early forays into AI, great progress has been made
in the structure and scope of information and computing
technologies, as well as in data and computational resources,
enabling the development of a much more powerful generation
of AI tools. Human-machine collaborations exploiting these
tools are already evident across professional health care practice.
The ubiquitous use of personal computers and smartphones
linked to external databases and highly connected AI-driven
networks supports individual, team, and health system
performance. This powerful new generation of AI-based tools
will have wide-ranging impacts on the entire health care
ecosystem, but concerns about potentially serious technical and
ethical liabilities have also emerged [6].

Despite inevitable challenges, all those engaged in the practice
and administration of health care should prepare for a future
shaped by the presence of increasingly intelligent technologies,
including robotic devices, clinical decision support systems
based on machine-learning algorithms, and the flow of data and
information from multiple sources, ranging from health
information technology systems to individual patient sensors.
While the health care and health professions education
community are perched on the forefront of these complex
developments, like many organizations, they may not be
prepared to recognize and adequately respond to the
deep-change indicators of next-generation technologies [7].
Eaneff and others recently called for new administrative
infrastructures to help manage and audit the deluge of
AI-induced change [8]. It is imperative for educators to be a
part of that infrastructure—to actively engage in deliberations
about intended changes in the working-learning
environment—so that implications for learning and the needs
of learners will be considered as a part of any change
management process.

This impending onslaught also creates an urgent mandate for
health care organizations, educators, and professional groups

to consider the range of professional competencies needed for
the effective, ethical, and compassionate use of AI in health
care work. While numerous authors have called for structured
and intentional learning programs, to date, there has been no
published framework to guide teaching, learning, and assessing
health care students and practitioners in this emerging and
transformative domain [7,9-12]. Additionally, while there are
many accredited programs (including board certification) in
clinical informatics, they are focused on developing,
implementing, and managing AI-based tools. However, these
programs do not provide competencies for noninformatics users
of AI-based tools, which represents a large gap in knowledge.

To inform these critical needs, this study aimed to systematically
identify research studies that reported on provider competencies
and performance measures related to the use of AI in clinical
settings.

Methods

Study Design
A scoping review was conducted in accordance with
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
[13,14] with an a priori protocol. The objective was to
systematically identify studies that specify competencies and
measure performance related to the use of AI by health care
professionals. Studies had to include students or postgraduate
trainees in clinical education settings across medicine, nursing,
pharmacy, and social work, or practicing clinicians participating
in professional development activities.

Search Strategy
A systematic search query of MEDLINE via PubMed, CINAHL,
and the Cochrane Library was conducted to identify references
published or available online between January 1, 2009, and July
22, 2020 (Tables S1 to S3 in Multimedia Appendix 1). Queries
including medical subject headings (MeSH) and keywords were
designed around the following PICOST (population,
intervention, control, outcomes, study design, and time frame)
framework: (1) populations under consideration included all
participants in any phase of clinical education including faculty
and health care worker professional development (eg, clinical
education participants in medical, nursing, or pharmacy; medical
faculty and professional development; health care, clinical, or
medical social workers); (2) interventions focused on AI-based
tools (eg, AI terms, precision medicine, decision-making, speech
recognition, documentation, computer simulation, software,
patient participation or engagement, patient monitoring, health
information exchange, EHR, and cloud computing) used in all
settings; (3) no comparisons were required; (4) outcomes
included the identification of clinical competencies and their
respective measurements or domains; (5) study settings and
limits included those with an abstract, conducted in humans,
designed as primary studies or systematic reviews (with the
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same inclusion criteria), took place in US settings, and were
published in English language; and (6) time—the introduction
of the Health Information Technology for Economic and Clinical
Health Act of 2009 was a distinguishing time point for this
protocol [15,16]. AI-related tool use increased dramatically
because of the organizational changes needed to accommodate
meaningful use of health information technology in clinical
care, justifying 2009 as a logical start point for this review.

Notably, during the protocol generation and scoping of the
literature, it was determined that the MeSH term “informatics”
lowered the precision (ie, irrelevant records returned) of our
search strategy and greatly expanded the scope of literature to
be reviewed. As such, exploded terms (eg, retrieving results
under that selected subject heading and all of the more specific
terms listed below in the tree) under the MeSH term “medical
informatics,” including “health information exchange,” and
fully exploded terms under “medical informatics applications”
were applied. MeSH terms including “decision-making,”
“computer-assisted,” “decision support techniques,” “computer
simulation,” “clinical information systems,” and “information
systems,” were among the relevant terms used. Similarly, due
to imprecision, “information technology” MeSH term and
“digital health” keyword were substituted with specific relevant
examples for this study. Please see the search strategies provided
in Tables S1 to S3 in Multimedia Appendix 1, which were
created to support this scoping review protocol.

Screening Process
Screening of each title and abstract and each full text was
performed by a single reviewer for relevance against the
inclusion/exclusion criteria (Table S4 in Multimedia Appendix
1).

Studies with a population exclusively limited to other types of
clinicians, including allied health professionals (eg, dental
hygienists, diagnostic medical sonographers, dietitians, medical
assistant, medical technologists, occupational therapists, physical
therapists, radiographers, respiratory therapists, and speech
language pathologists), dentists, and counselors were excluded.

Relevant AI-based tools could be used in all settings (eg,
outpatient, inpatient, ambulatory care, critical care, and
long-term care) of clinical practice, and there was a focus on
subsets that incorporated either machine learning, natural
language processing, deep learning, or neural networking.
Exclusions were made for AI-based tools that did not meet
inclusion criteria, such as studies using technology that did not
incorporate relevant AI-based tools, when the methods provided
regarding the tool did not explicitly define what type of AI
methodology is incorporated, or if the AI is not machine

learning, natural language processing, deep learning, or neural
networking. Studies on robotics (eg, robotic surgery) were
excluded unless AI was a noted part of the technology.

To identify studies that specified competencies and measured
performance related to the use of AI by health care professionals,
the inclusion criteria (Table S4 in Multimedia Appendix 1) were
limited to the 6 professional education domains of competence
(eg, patient care, medical knowledge or knowledge for practice,
professionalism, interpersonal and communication skills,
practice-based learning and improvement, and systems-based
practice) or Entrustable Professional Activities and performance.
Studies were excluded if they did not report on
competency-based clinical education to provide either an
evaluation of a program and its outcomes related to learner
achievement; a framework for assessing competency including
a performance level (ie, appraisal) for each competency; or
information related to instructional design, skills validation, or
attitudes related to competency mastery.

The results were tracked in DistillerSR [17]. Additionally, a
validated AI-based prioritization tool embedded in DistillerSR
was used to support the single screening of titles and abstracts
to modify or stop the screening approach once a true recall at
95% was achieved [18]. Studies had to specify competencies
and measure performance related to the use of AI by health care
professionals.

Data Extraction
Data were abstracted into standardized forms (Table S5 in
Multimedia Appendix 1) for synthesis and thematic analysis by
1 reviewer, and the content was examined for quality and
completeness by a second reviewer, assuring that each included
manuscript was dually reviewed. Abstraction for clinical
education outcomes focused on how the necessary clinician
competencies were described and measured. Conflict resolution
was provided by consensus agreement.

Study Quality
Study quality was assessed by dual review using the Oxford
levels of evidence [19].

Results

Search Outcomes
Literature searches yielded 3476 unique citations (Figure 1), of
which 109 (3.14%) articles were eligible for full-text screening.
Upon full-text screening, 4 articles met our inclusion criteria
[20-23]. Abstractions of the included studies can be found in
Tables 1 and 2 and Table S5 in Multimedia Appendix 1.
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Figure 1. Results of literature search, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram [14]. Summary
of articles identified by systematic search queries and tracking of articles that were included and excluded across the study screening phases with reasons
for exclusion of full texts provided. AI: artificial intelligence.

Table 1. Summary of study characteristics: design and population.

Study du-
ration or
follow-up

Age (years),
race or eth-
nicity (%)

Total, n
(% male)

Stage of clinical
use

Stage of clinical
educationUsers of AIbClinical setting

Design; level

of evidencea
Ref.,
Year

Ref.
No.

N/RN/R (N/R)N/Rd

(N/R)

ImplementationPracticing physi-
cians

Orthopedic
surgeons; gen-
eral radiolo-
gists

Large academic hospi-
tal; imaging department

Modeling and
evaluation;

2bc

Bien,
2018
[23]

1

~9
months

N/R (N/R)12 (N/R)ImplementationGraduate medical
education (inter-
nal medicine resi-
dents and interns;
nephrology fel-
lows)

Internal
medicine
physicians;
nephrologists

Large private hospital;
large academic medical
center; nephrology and
internal medicine depart-
ments

Evaluation; 4eHirsch,
2015
[22]

2

N/RN/R (N/R)N/R
(N/R)

ImplementationPracticing nursesIntensive care
unit nurses

Large academic hospi-
tal; cardiothoracic inten-
sive care department

Evaluation; 4Jor-
dan,
2010
[21]

3

N/RN/R (N/R)10 (N/R)ImplementationPracticing physi-
cians

Ophthalmolo-
gists

Large academic hospi-
tals, large health sys-
tems, and specialist of-
fice; ophthalmology
department

Experimental
3-arm observa-
tional study;
2b

Sayres,
2019
[20]

4

aAdapted from Oxford Levels of Evidence [19].
bAI: artificial intelligence.
dLevel 2b: individual cohort, modeling, or observational studies.
cN/R: not reported.
eLevel 4: case series or poor-quality cohort studies.
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Table 2. Summary of study characteristics: clinical competency and performance assessment.

Performance assessmentUser-AIa interface training
and description

Description (implied or ex-
plicit) of competency

Professional education do-
mains of competence

Ref., YearRef.
No.

Metric N/Pc; evaluate if AI assistance
improves expert performance in

reading MRId images

Training N/Rb; interface not
described

Implied in methods; im-
prove image interpretation

Bien, 2018
[23]

1 • Patient care—clinical
skills

Questionnaire; evaluate time and effi-
ciency in information processing for
patient care

Training N/R; authenticated
user queries the database for
a patient and is provided with
a visual summary of content
containing all visit, note, and
problem information

Implied in methods; im-
prove summarization of
longitudinal patient record
and information processing
in preparation for new pa-
tients

Hirsch,
2015 [22]

2 • Patient care—clinical
skills

Questionnaire; evaluate if AI-based
tool performs better than physicians
to provide clinical information and

patient status in ICUe handovers

Training N/R; patient summa-
rization and visualization tool
are used as an overlay to the
existing electronic patient
record

Implied in methods; im-
prove handovers in peri-op-
erative patient care by reduc-
ing communication and in-
formational errors

Jordan,
2010 [21]

3 • Communication
• Patient care—clinical

skills
• Systems-based practice

Metric N/P; evaluate if AI assistance
increases severity grades in model
predictions by assessing sensitivity
and specificity of reader

Readers were provided train-
ing and similar instructions
for use; interface not de-
scribed

Implied in methods; im-
prove reader sensitivity and
increase specificity of fundal
images

Sayres,
2019 [20]

4 • Patient care—clinical
skills

aAI: artificial intelligence.
bN/R: not reported.
cN/P: not provided.
dMRI: magnetic resonance imaging.
eICU: intensive care unit.

Study Characteristics
Of the 4 studies, 3 (75%) studies were published in the past 5
years, and all 4 of the included studies were conducted in large,
academic hospitals [20,22,23]. All AI-based tools in these
identified studies were in a mature implementation phase and
were being evaluated with either practicing physicians, residents,
fellows, or nurses [20-23]. All 4 studies were undertaken to
characterize the performance of internally developed niche AI
software systems when used by health care professionals in
specific practice settings (Table 1) [20-23].

All AI-based tools examined in these identified studies aimed
to enhance an existing process, create new efficiencies, improve
an outcome, and ultimately reduce cost of care [20-23]. Two of
the AI-based tools were built on natural language processing
frameworks [21,22] and 2 were based on deep learning processes
[20,23]. One of the studies provided decision support in
interpreting magnetic resonance imaging exams of the knee
[23], 1 on enhancing clinician performance in detecting diabetic
retinopathy [20], 1 on expediting EHR review prior to patient
encounters [22], and 1 on enhancing the quality of patient
handovers in the intensive care unit [21]. These systems were
evaluated with measures of user satisfaction, usability, and
performance outcomes. Studies used either observational or
minimally controlled cohort designs, in which performance of
the human-AI dyad was compared to expert performance or
generalist performance alone. Three studies indicated moderate
success with the AI interventions [20,21,23], and 1 had a neutral
result (Table S2 in Multimedia Appendix 1) [22].

The impact of advanced data visualization, computerized image
interpretation, and personalized just-in-time patient transitions
are described in all 4 studies [20-23]. Competencies observed
for use of these AI systems fell within the Accreditation Council
for Graduate Medical Education patient care and communication
competency domains [24]. However, the specific competencies
clinicians required to use these innovations most effectively
were not clearly described. Only 1 of the studies mentioned any
form of training [20]; 3 did not describe any skill development
processes for learners. None of the studies specified any need
for understanding of basic AI forms, and none described the
background information clinicians received about the
development, training, and validation of the tools (Table 2).

Study Quality
Using Oxford Levels of Evidence [19] to examine study quality
to measure the extent that methodological safeguards (ie, internal
study validity) against bias were implemented, 2 studies
provided Level 2b evidence as modeling summarizations
[20,23], and 2 studies provided Level 4 evidence [21,22]. The
overall quality identified is moderate to low, as half of the
curated evidence was classified as Level 4.

Discussion

Principal Findings
The volume of studies initially identified for our review confirms
predictions about the growth of AI in health care. However, of
these nearly 3500 articles, only 4 met the inclusion criteria. This
result begs a few questions. Were our requirements overly
rigorous or are the research gaps truly that numerous? Moreover,
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does this result reinforce concerns about a lack of organizational
preparedness?

Failure to address user competencies was the most common
reason for study exclusion. Many of the excluded studies
compared AI tool performance with that of practicing clinicians
(human versus machine), while others used simulations to
demonstrate the potential of AI innovations to improve clinical
outcomes. Only 4 research studies were identified in our search
[20-23] that addressed professional competencies observed by
this new AI landscape; however, none of the identified studies
described new AI-related clinical competencies that had to be
developed. The limited evidence derived from this review points
to a large gap in adequately designed studies that identify
competencies for the use of AI-based tools.

While many skills will be specific for the AI intervention being
employed, these “questions of competence” are broader than
the technical skills needed for use of any one AI tool or type of
intelligent support [25]. All health professionals will interact
with these types of technologies during their daily practice and
should “know what they need to know” before using a new
system. System characteristics will profoundly impact patient
and clinician satisfaction as well as clinical recommendations,
treatment courses, and outcomes, so health system leaders must
also know what to know before adopting new technologies across
entire health care delivery enterprises. Health care professionals
at all levels have the educational imperative to articulate,
measure, and iterate competencies for thriving in this evolving
interface of smart technology and clinical care.

The implementation of AI into clinical workflows without
sufficient education and training processes to apply the
technology safely, ethically, and effectively in practice could
potentially negatively impact clinical and societal outcomes.
Real-world deployment of AI has caused harms due to data bias
(eg, algorithms trained using biased or poor-quality data) and
societal bias (eg, algorithmic output reflects societal biases of
human developer) [6,26]. These biases can inflate prediction
performance, confuse data interpretation, and exacerbate existing
social inequities (eg, racial, gender, and socioeconomic status).
These ethical considerations bring additional responsibilities
and oversight of both AI-based tool implementation and its
associated data to the clinical care team. The scalability of
AI-based tools can also increase the scale of associated risks
[8,10]. These difficulties and potential risks should be identified
and understood proactively, and skills for clinicians to approach
them must be included in any comprehensive training program.

The scarcity of competencies identified by this scoping review
reiterates the need to develop and recommended professional
competencies for the use of AI-based tools [27,28]. Ideally,
these competencies should promote the effective deployment
of AI in shared decision-making models that sustain or even
enhance compassion, humanity, and trust in clinicians and
clinical care [29]. Additionally, user-centered design (eg, more
specifically, human-centered design to develop human-centric
AI algorithms) should also be considered in the development

of educational frameworks to support AI-related competencies
required for all clinicians to use these tools effectively in clinical
settings. In follow-up to this report, the authors carried out
structured interviews with thought leaders to develop such a
competency framework, which subsequently can be tested and
iteratively refined within both simulated and authentic workplace
experiences [30].

Strengths and Limitations
This scoping review has several strengths. First, this is a novel
and rigorous synthesis that adhered to PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
standards. Second, its search strategy was comprehensive and
inclusive, using keywords and MeSH terms for trainee
populations, settings, interventions, and outcomes that would
uncover all potential accounts of currently available evidence.
Moreover, the availability of these comprehensive searches will
support other studies examining AI and clinical education. Third,
this study included the multiple types of health care
professionals who might receive training and education for the
use of AI in the clinical environment.

Our results should be interpreted in the context of a few
limitations. The inclusion of US-only sites limits generalizability
to other global settings and health system structures. It also may
have eliminated additional salient investigations, although we
imagine that the dearth of US studies predicts a similar deficit
from other countries. Further, due to the heterogeneity of
identified interventions, it would not have been possible to
compare one training approach to another. A quality assessment
tool was intentionally employed, as we only planned to measure
the extent that methodological safeguards (ie, internal validity)
against bias were implemented. Alternatively, a risk of bias
assessment would have offered a bias judgement (ie, estimation
of intervention effects) on such a quality assessment, and
judgement of the evidence may have shifted with this approach
[31]. The search cutoff date is another limitation, as other
evidence may have been published since May 2020. Other
limitations include single screening of titles and abstracts,
English language restriction, and exclusion of studies reported
in gray literature, including conference abstracts. In addition,
we excluded articles that investigated the development of
robotics-assisted competencies and those that measured the
impact of computer vision tools in supporting technical learning
in real and simulated settings. Finally, we restricted studies to
those that evaluated the use of clinical AI and excluded those
supporting other learning processes, although we recognize that
tools such as AI-augmented learning management systems will
also become a growing part of the health professions education
landscape.

Conclusions
While many research studies were identified that investigate
the potential effectiveness of using AI technologies in health
care, very few address specific competencies that are needed
by clinicians to use them effectively. This highlights a critical
gap.
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Abstract

Background: The increasing availability of “real-world” data in the form of written text holds promise for deepening our
understanding of societal and health-related challenges. Textual data constitute a rich source of information, allowing the capture
of lived experiences through a broad range of different sources of information (eg, content and emotional tone). Interviews are
the “gold standard” for gaining qualitative insights into individual experiences and perspectives. However, conducting interviews
on a large scale is not always feasible, and standardized quantitative assessment suitable for large-scale application may miss
important information. Surveys that include open-text assessments can combine the advantages of both methods and are well
suited for the application of natural language processing (NLP) methods. While innovations in NLP have made large-scale text
analysis more accessible, the analysis of real-world textual data is still complex and requires several consecutive steps.

Objective: We developed and subsequently examined the utility and scientific value of an NLP pipeline for extracting real-world
experiences from textual data to provide guidance for applied researchers.

Methods: We applied the NLP pipeline to large-scale textual data collected by the Swiss Multiple Sclerosis (MS) registry. Such
textual data constitute an ideal use case for the study of real-world text data. Specifically, we examined 639 text reports on the
experienced impact of the first COVID-19 lockdown from the perspectives of persons with MS. The pipeline has been implemented
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in Python and complemented by analyses of the “Linguistic Inquiry and Word Count” software. It consists of the following 5
interconnected analysis steps: (1) text preprocessing; (2) sentiment analysis; (3) descriptive text analysis; (4) unsupervised
learning–topic modeling; and (5) results interpretation and validation.

Results: A topic modeling analysis identified the following 4 distinct groups based on the topics participants were mainly
concerned with: “contacts/communication;” “social environment;” “work;” and “errands/daily routines.” Notably, the sentiment
analysis revealed that the “contacts/communication” group was characterized by a pronounced negative emotional tone underlying
the text reports. This observed heterogeneity in emotional tonality underlying the reported experiences of the first COVID-19–related
lockdown is likely to reflect differences in emotional burden, individual circumstances, and ways of coping with the pandemic,
which is in line with previous research on this matter.

Conclusions: This study illustrates the timely and efficient applicability of an NLP pipeline and thereby serves as a precedent
for applied researchers. Our study thereby contributes to both the dissemination of NLP techniques in applied health sciences
and the identification of previously unknown experiences and burdens of persons with MS during the pandemic, which may be
relevant for future treatment.

(JMIR Med Inform 2022;10(11):e37945)   doi:10.2196/37945
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Introduction

Recent innovations in natural language processing (NLP)
techniques and software have resulted in the emergence of
numerous conveniently accessible and open-source analytical
tools for the efficient evaluation of free-text data [1-4]. Textual
data constitute a rich source of information, allowing the capture
of unique perspectives, experiences, and individual needs
through a broad range of different sources of information (eg,
health-related content and emotional tone) [5,6]. While larger
positive emotion vocabulary is linked to more mental well-being
and better physical health, larger negative emotion vocabulary
is associated with distress and decreased physical health [7].

In health research, the increasing availability of “real-world
data” in the form of, for example, written text, constitutes a
promising avenue to gain valid insights into themes that concern
persons with chronic diseases in everyday life and thus are key
to tailor individual support [8-10]. Many studies rely on
interview techniques to gain such insights [11-16]. While
conducting interviews represents the “gold standard” for gaining
qualitative insights into individual experiences and perspectives,
they may not always be feasible to assess individuals on a large
scale. Scalable methods, which are very well suited for
standardized quantitative assessments, may instead miss
important information because they consist of predetermined
items. Surveys that include open-ended text assessments can
therefore be an appropriate way to qualitatively explore
individual-level experiences and perspectives on a large scale
in real-world environments.

Concurrently, practical guidelines for applied researchers
concerning processing and evaluation procedures for textual
information at a magnitude that is not feasible for manual
analyses seem to be lacking. Given the novelty of the NLP
method in the field of health research, we aim to share our work
and experience in this manuscript to support applied researchers
in implementing the NLP method in their own research.
Therefore, the high-level aims of this study pertain to the

investigation of the feasibility, usability, and scientific value of
an NLP pipeline applied to the exploration of important life
topics and themes in a large sample of persons with multiple
sclerosis (MS) collected during a major health crisis. This study
aims to provide practical guidance for applied researchers and
leverages textual data from 639 well-documented persons with
MS who described their live experiences during the first
COVID-19 lockdown in Switzerland, as well as the availability
of easy-to-use open-source tools for NLP.

At the content level, we addressed several specific research
questions. We aimed to (1) identify cluster groups of persons
with MS based on reported COVID-19–related topics; (2)
determine the emotional tone underlying participants’ text
entries; and (3) describe persons allocated to the same cluster
group. For validation purposes, our analysis results were
complemented by including independently collected information
from the same database and a critical review by experts from
the clinical or epidemiological research field.

Methods

Setting and Context
As laboratory-confirmed SARS-CoV-2 infections increased to
up to almost 1500 cases daily (population size: 8.6 million
inhabitants), the Swiss government implemented an initial
lockdown between March 16 and April 27, 2020, to flatten the
infection curve. On April 27, 2020, hairdressers, garden centers,
flower shops, building supplies stores, and massage and beauty
salons could reopen. In addition, entry requirements had been
relaxed. On May 11, 2020, shops, restaurants, markets, libraries,
and primary and secondary schools were reopened. The
relaxations were accompanied by protection concepts. At the
beginning of June 2020, all tourist facilities could open in
compliance with protection measures. Events with up to 300
people could be held again, and gatherings with a maximum of
30 people were allowed again. On June 15, 2020, Switzerland
lifted the entry regulations concerning all European
Union/European Free Trade Association states and the United
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Kingdom. On June 19, 2020, the Swiss Federal Council lifted
the state of emergency. Most COVID-19 measures were lifted
from June 22, 2020 (exception: large events with over 1000
people remained forbidden until the end of August 2020). All
places open to the public needed to have a protection concept
[17,18]. This first lockdown in Switzerland due to the
COVID-19 pandemic resulted in pervasive and high levels of
distress and isolation in the general population. These
repercussions had a disproportionate effect on vulnerable
subgroups of the population already burdened with pre-existing
chronic diseases, such as MS. During the early stages of the
pandemic, MS was also considered a risk factor for more severe

COVID-19 symptoms, and persons with MS were advised to
strictly adhere to preventive measures (ie, staying at home and
keeping physical distance). At the end of April 2020, the
lockdown measures were gradually lifted.

Data Sources
To assess the impact of the lockdown on the everyday lives of
persons with MS, the Swiss MS Registry conducted a
COVID-19–focused online survey among its over 2500
participants (Figure 1). The Swiss MS Registry is a nationwide
survey-based registry encompassing adults with MS who reside
in or receive MS-related care in Switzerland.

Figure 1. Flow diagram displaying the assessment procedure and subsequent selection procedure for online participants. Only online participants who
described the experienced impact of COVID-19 on their personal life with at least 10 words were included in the text analysis.

The “COVID-19 survey” was a brief online survey released by
the Swiss MS Registry in response to the lockdown measures
for the first wave, which assessed mental well-being and
difficulties in accessing health care in times of COVID-19. The
complete survey is provided in Multimedia Appendix 1. The
COVID-19 survey starts with a short introduction, followed by
a section on mental well-being, in which depressive symptoms
are assessed using the Beck Depression Inventory FastScreen
questionnaire [19]. This is followed by an assessment of physical
well-being (ie, possible worsening of health or MS symptoms),
fear of the presence of a serious illness (eg, coronavirus) in
addition to MS, and perceived loneliness. The survey finally
assesses general changes in individuals’ life situations due to
the coronavirus. The open question, which is analyzed in the
present, concerned the pandemic’s perceived impact on
respondents’ daily lives. Specifically, participants were asked
the following question: “How does the current coronavirus
situation affect your personal life (eg, in terms of social contacts,
everyday tasks, and health care provision)?” Participants were
invited to document their answers without a maximum word
limit in either German, French, or Italian (ie, the 3 official
languages of the Swiss MS Registry). The COVID-19 survey
was released online on April 10, 2020, and remained accessible
until October 31, 2020. The current analysis includes all data
collected until September 7, 2020.

For this study, the COVID-19 survey data were combined with
sociodemographic and health-related data collected as part of
the semiannual Swiss MS Registry assessments preceding the
COVID-19 survey. Specifically, we employed the Self-Reported
Disability Status Scale (SRDSS) to determine MS physical gait
impairments. In this regard, the SRDSS classifies gait
impairments based on 2 self-report questions that assess walking
distance and the use of assistance devices [20]. Further, we
determined health-related quality of life using the EuroQol
5-dimension scale (EQ-5D; index and visual analog scale) [21].

Ethics Approval
Approval has been obtained from the Cantonal Ethics
Committee Zurich (PB-2016-00894). All participants enrolled
in the Swiss MS Registry provided written (paper-pencil
participants) or electronic (online participants) informed consent
[22,23].

Descriptive Statistics
To characterize and compare online participants from the Swiss
MS Registry participating in the COVID-19 survey with
nonparticipants, sociodemographic and health characteristics
were analyzed by means of N (%) for categorical data and
medians (IQR) for continuous data. Descriptive statistics were
based on the brief entry questionnaire, which is mandatory for
all Swiss MS Registry participants and includes information on
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age, sex, MS type, diagnosis date, and any disease-modifying
treatments.

Preprocessing and Analysis Pipeline for Free-Text
Entries
This research implemented and evaluated a preprocessing and
analysis pipeline to characterize and cluster free-text entries.
To this end, we applied this pipeline to free-text entries about
the impact of COVID-19 on the everyday lives of persons with
MS. The entries were collected as part of the Covid-19 survey.
The text preprocessing and analysis pipeline to be examined in
this research consists of the following 5 interlinked consecutive
steps: (1) text preprocessing; (2) descriptive text analysis; (3)
sentiment analysis; (4) topic modeling; and (5) results
interpretation and validation. An overview of the tools used in
each step of the NLP pipeline can be found in Multimedia
Appendix 2.

Step 1: Text Preprocessing
As the first step of the preprocessing procedure, Italian and
French texts were translated into German using “DeepL Pro”
[24], a tool for automatic text translation. Initially, we specified
a cutoff for the minimum number of words for a text entry to
be considered in the subsequent pipeline. As there are no
generally valid guidelines applicable for our research in this
regard, we based our decision on prior screening of the text
entries and determined 10 words as cutoff to ensure sufficient
informative content for the research question that we were
interested in. Translation accuracy was checked manually and
found to be very high. Further, punctuations and stop words (ie,
common words without specific meaning like “the”) were
removed using a publicly available German stop word list [25].
The remaining words were lemmatized (ie, changed to their
root such as “studies” to “study”). Words not listed in
dictionaries were converted into generic terms (eg, “Skype” to
“video call”). This part of the pipeline was implemented using
the Python library “spaCy” (version 2.3.2) [26].

Step 2: Descriptive Text Analyses
The second step of the pipeline concerned descriptive text
analyses that involved determination of word frequencies as
well as their visualization. For word frequency visualization,
“word clouds” were compiled, which position all words into a
graph where their relative size is determined by their overall
frequency (ie, more frequent words are displayed larger in the
plot) using the Python library “Wordcloud” (version 1.7.0) [27].

Step 3: Sentiment Analysis
The next step in pipeline pertained to the determination of
linguistic indicators of overall text emotionality through
sentiment analysis. To this end, 2 different text analysis
resources were used: the well-established text analysis software
“Linguistic Inquiry and Word Count” (LIWC) and further
“SentimentWortschatz” (short “SentiWS”), a publicly available
German-language resource for sentiment analysis. Sentiment
analysis implemented in LIWC involved determining the text
entries’ overall “emotional tone.” [28] “Emotional tone” is a
summary variable provided by LIWC and represents the overall
emotional coloration of a text. Scores range from 0 (negative
tone) to 100 (positive tone), where a score of 50 indicates an

even balance between positive and negative emotion words.
Furthermore, we quantified text-based emotionality through
“polarity scores” using the SentimentWortschatz
sentiment-analysis resource (“SentiWS”) [29]. Polarity scores
computed by SentiWS assess whether a word has a positive or
negative connotation, ranging between −1 and 1. They are
computed through a dictionary-based scoring algorithm that
identifies words reflecting a negative or positive emotion. The
SentiWS dictionary does not contain any polarity “shifters” or
“intensifiers,” that is, words with an amplifying function, which
weaken, intensify, or even reverse the meaning of an emotional
word (eg, “not happy” or “very happy”). Since such amplifying
words are key to accurately determine the polarity of a sentence,
a German-language extension dictionary was used.

Step 4: Unsupervised Machine Learning–Topic Modeling
The final step of the pipeline concerns the implementation of
“topic modeling,” which is an unsupervised text classification
method with the aim to identify distinct clusters of common
topics underlying free text (ie, underlying participants’ text
entries) [30]. To determine distinct topic clusters, we
implemented nonnegative matrix factorization, which is a topic
modeling approach based on dimension reduction. Such
dimension-reduction models are based on understanding a text
corpus as a compilation of term frequencies. Nonnegative matrix
factorization is based on a “bag of words” model, where text
elements are represented in an unordered fashion. We further
worked with unigrams, which means that each word corresponds
to a text element (contrary to, for example, a bigram where a
text element consists of 2 consecutive words). The reason for
this methodological decision is that the majority of the words
in the present data are meaningful in themselves in terms of
co-occurrence and frequency.

We implemented this step using the Python libraries
“scikit-learn” and “gensim” [31,32]. To determine the most
suitable solution in terms of the number of distinct topics, we
used the commonly used coherence score “C_v” as a criterion.
“C_v” ranges from 0 (no topic coherence) to 1 (complete topic
coherence). “C_v” scores for a modeling solution with 1 to 30
distinct topics are presented in Multimedia Appendix 3. We
also computed the coherence score “UMass” but based the final
topic modeling solution on “C_v” as it has been shown to be
more appropriate for text data consisting of few words [33]. For
sensitivity purposes, we repeated our analysis based on all
available entries (ie, without word count restriction) in order to
verify that topic clusters were stable.

Step 5: Results Interpretation and Validation
Finally, we labeled each of the distinct topic clusters with the
term that occurred most often within the specific topic cluster.
To further characterize individuals allocated to the distinct topic
clusters, we compared independently collected
sociodemographic measures across the groups through
descriptive analyses. Given the descriptive nature of this
research, we present 95% CIs instead of P values. We further
linked emotional tone to the SRDSS score and years since
diagnosis, which were both assessed as part of the previous
biannual registry surveys. We also calculated the associations
between emotional tone and the occurrence of new symptoms,
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the worsening of old symptoms, the presence of depressive
symptoms, and the feeling of loneliness. For associations
between interval-scaled variables, we calculated the Pearson
correlation coefficient. For associations with ordinal variables,
we computed the Spearman correlation coefficient. For
correlations between interval-scaled and binary variables, we
calculated the biserial point correlation coefficient. All
associations were computed using the R package “psych” [34].
CIs for the Spearman correlation coefficient were computed
using the R package “DescTools” [35]. Finally, the findings
were critically reviewed by a team of experts coauthoring this
study. The experts’ backgrounds and specialist knowledge
include neurology, neuropsychology, and epidemiology, as well
as a personal health history of MS.

Results

Sample Characteristics
A total of 885 Swiss MS Registry participants (44.5% of all
participants) completed a questionnaire pertaining to COVID-19
(Figure 1). As presented in Table 1, COVID-19–related survey
respondents had a median age of 48 years, 70.3% (622/885)

were female, and 67.9% (601/885) had relapsing-remitting MS
(that is, with intermittent recovery of acute MS symptoms as
opposed to continuously worsening primary and secondary
progressing MS). Overall, participants who completed the
COVID-19 survey were similar to nonparticipants (n=1149) in
terms of their baseline characteristics (median age 47 years,
72.6% [834/1149] female, and 66.9% [769/1149]
relapsing-remitting MS). From the overall sample of available
survey responses (n=885; study flow chart provided in Figure
1), this study focused on entries of at least 10 words (n=639;
Figure 2A). As there are no generally valid guidelines applicable
for our research in this regard, we based our decision on prior
screening of the text entries and determined 10 words as cutoff
to ensure sufficient informative content for the research question
that we were interested in. From this data source, 639 entries
were used for the text analyses in this study.

The following sections describe the results obtained from the
text preprocessing and analysis pipeline, which was applied to
a sample of 639 COVID-19–related text entries provided by
the Swiss MS Registry participants. The rationale for the
methodological decisions of this study is provided in the
Methods section.
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Table 1. Description of Swiss Multiple Sclerosis Registry online participants and nonparticipants.

Participants (completed the COVID-19
survey; N=885)

Nonparticipants (did not complete the
COVID-19 survey; N=1149)

Characteristica

Age

48.0 (39-56)47.0 (38-56)Value (years), median (IQR)

25 (2.8)50 (4.4)Missing information, n (%)

Gender, n (%)

622 (70.3)834 (72.6)Female

262 (29.6)315 (27.4)Male

1 (0.1)0 (0)Missing information

Language, n (%)

695 (78.5)903 (78.6)German

153 (17.3)206 (17.9)French

37 (4.2)40 (3.5)Italian

MSb type, n (%)

16 (1.8)31 (2.7)CISc

94 (10.6)99 (8.6)PPMSd

601 (67.9)769 (66.9)RRMSe

142 (16.0)134 (11.7)SPMSf

27 (3.1)30 (2.6)Transition between 2 MS types or unspecified

5 (0.6)86 (7.5)Missing information

Disease-modifying MS medication (immunotherapy), n (%)

586 (66.2)285 (24.8)Yes

222 (25.1)188 (16.4)No

77 (8.7)676 (58.8)Missing information

Disease duration

10.0 (4-17)10.0 (5-18)Value (years), median (IQR)

34 (3.8)104 (9.1)Missing information, n (%)

VASg (health-related QLSh)

80 (60-90)77 (54-90)Value, median (IQR)

121 (13.7)185 (16.1)Missing information

EQ-5Di

69.1 (51-91)68.3 (49-88)Value, median (IQR)

121 (13.7)185 (16.1)Missing information

aPercentages were rounded and may thus not add up to 100%.
bMS: multiple sclerosis.
cCIS: clinically isolated syndrome.
dPPMS: primary progressive MS.
eRRMS: relapsing-remitting MS.
fSPMS: secondary progressive MS.
gVAS: visual analog scale.
hQLS: quality of life scale.
iEQ-5D: EuroQol 5-dimension scale.
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Figure 2. Survey responses included in this study. (A) Histogram depicting the text entries of different word lengths on the self-reported daily-life
impact of COVID-19 (n=885). The number of words per text entry are plotted along the y-axis. (B) Amount of completed surveys across time (April
8, 2020, to August 27, 2020). Overall, 86.9% (555/639) of the responses were collected during the first lockdown (ie, before April 27, 2020). The
number of completed surveys is displayed on the y-axis. Time (ie, days) is plotted along the x-axis.

Descriptive Text Analyses
Among all text responses used in this study, 86.9% (555/639)
were collected during the first lockdown (before April 27, 2020;
Figure 2B). In total, 80.1% (512/639) of these text entries were
in German, 16.0% (102/639) in French, and 3.9% (25/639) in

Italian. The median number of words per entry was 26 (IQR
16-44; following translation to German if necessary). Figure 3
visualizes the 15 most frequent keywords across the sample of
text entries examined in this research. The most frequent words
were “contact” (n=621), “errand” (n=364), “family” (n=307),
“work” (n=307), and “home” (n=220).
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Figure 3. Most frequent keywords across free-text descriptions on participants’ perceived impact of COVID-19 on their personal life. Only text entries
with at least 10 words in total were considered (n=639). “Stop words” (eg, “and” and “the”) were removed prior to the analysis.

Sentiment Analysis
The possible full range of emotional tone of text entries ranged
from 0 (negative) to 50 (neutral) up to 100 (positive). The mean
emotional tone of participants’ text entries was 34.7 (SD 37.7),
thus reflecting an overall negative emotional tone. The
distribution of emotional tone quartiles (1st quartile: 0-24; 2nd
quartile: 25-49; 3rd quartile: 50-74; 4th quartile: 75-100)
revealed that most of the 639 entries fell into the 1st quartile
and thus were of overall negative quality (439/639, 68.7%).
Importantly, most of the remaining text entries fell into the 4th
quartile and thus were unambiguously of positive quality
(160/639, 25.0%), while only few text entries were allocated to
the intermediate quartiles (2nd quartile: 7/639, 1.1%; 3rd
quartile: 33/639, 5.2%). The skewed distribution of the
emotional tone of the participants’ text entries explains the large
standard deviation.

In terms of changes in COVID-19 measures across time, the
average emotional tone across text entries did not differ during
the lockdown (April 6 to 27; n=555; mean 35.32, SD 37.98;
95% CI 32.16-38.48) compared to the period during which
restrictive measures were gradually lifted (April 28 to September
07; n=84; mean 30.58, SD 35.68; 95% CI 22.95-38.21).

Text-based polarity scores (ranging from −1 to 1) were
comparable to those for emotional tone. Polarity scores were
of overall negative valence (mean −0.10, SD 0.65), and 38.8%
(248/639) of the entries had a polarity score below 0. Polarity
scores based on text entries collected during first lockdown did
not differ from those based on text entries collected during the
time when measures were eased (following the lockdown; mean
−0.13, SD 0.62).

Unsupervised Learning–Topic Modeling
Finally, the 639 text entries were grouped into distinct clusters
through an unsupervised topic modeling procedure. Results
revealed that a 4-group solution would be most suitable for the
data structure. A word cloud visualizing the most frequent
keywords related to the impact of COVID-19 on participants’
personal lives across the complete study sample can be found
in Figure 4. Word clouds for the 4 distinct topic groups are
provided in Multimedia Appendix 4. The 4 distinct “topic
groups” were labeled with the most frequent keywords (group
1: “contacts/communication,” group 2: “social environment,”
group 3: “work,” and group 4: “errands/daily routines”). A table
characterizing the 4 distinct “topic groups” is provided in
Multimedia Appendix 5. Text entries that were allocated to the
“contacts/communication” group (group 1; 14.6% [119/639] of
all text entries) captured how persons with MS experienced the
contact restrictions. One of the most frequent words in this topic
group was “miss.” Importantly, text entries allocated to this
group were of increasingly negative polarity. On the other hand,
polarity scores in the “social environment” group (group 2;
21.4% [174/639] of all entries) and “work” group (group 3;
17.9% [146/639] of all entries) were more balanced. Finally,
the “errands/daily routines” group (group 4; 24.5% [200/639]
of all entries) included keywords that reflected daily routines
(eg, “errands” and “going for a walk”). This group included the
largest percentage of positive polarity scores (56.5%, 113/200).
Repetition of the topic modeling analyses using all available
text entries consistently found modeling 4 topic clusters to be
ideal.
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Figure 4. Word cloud visualizing the most frequent keywords related to the impact of COVID-19 on participants’ personal lives across the complete
study sample. Word size reflects the relative frequency of a specific word in comparison to the total number of analyzed words. Only text entries with
at least 10 words in total were considered (n=639).

Sociodemographic and Health Characteristic Profiles
Additionally, we examined whether different sociodemographic
and health characteristics were linked to distinct topic groups.
The “contacts and communication” topic group tended to be
older (median age: 49.5 years), live alone (27.7%, 33/119), be
employed (second most; 63.9%, 76/119), and have lower levels
of ambulatory disability (ie, persons who can move around
without walking aids as measured with the self-reported
disability scale [SRDSS], scores ranging between 0 and 3.5;
76.5%, 91/119). This group also reported the second highest
health-related quality of life (median visual analog scale score:
80). Individuals allocated to the “social environment” topic
group were more likely to have children (highest percentage;
50.6%, 88/174) who were typically under 18 years old (27.0%,
47/174). Further, pronounced mobility restrictions (ie, SRDSS
scores greater than 3.5, thus requiring walking aids such as
crutches or a wheelchair) were more frequent in this group,
while health-related quality of life was comparatively lower
(median EQ-5D: 0.65; median visual analog scale score: 75).
Individuals allocated to the “work” topic group were most often
employed compared to individuals in the other 3 topic groups
(87.0%, 127/146), had SRDSS scores in the 0-3.5 range (highest
proportion; 82.2%, 120/146), and had overall good quality of
life (median EQ-5D index: 0.75; median visual analog scale
score: 81). The “errands/daily routines” topic group had the
most number of female research volunteers (79.0%, 158/200)
and the highest proportion of persons on disability benefits
(36.5%, 73/200). Quality of life in this group was higher as
indicated by the visual analog scale (median score: 81). Finally,
we examined the characteristics of online participants whose
text entries had to be excluded as they were too short (n=176
entries). Individuals whose text entries had to be excluded were
comparable to those of topic group 2 in terms of their
sociodemographic characteristics (data not shown). Notably,
the 3 most frequent keywords in the excluded entries (ie,
“contacts,” n=64; “errands,” n=13; and “work,” n=10) were
also present in the 4 topic groups.

We further examined whether emotional tone was linked to
measures of physical or mental well-being. Emotional tone was

not linked to the SRDSS score (rho=−0.02, 95% CI −0.09 to
0.06; S=39575496, P=.69) or the number of years since the
initial MS diagnosis (r=−0.03, 95% CI −0.11 to 0.05;
t628=−0.68333; P=.49). It was also not linked to the occurrence
of new symptoms (r=−0.04, 95% CI −0.12 to 0.03; t633=−1.121;
P=.26) or the worsening of new symptoms (r=−0.07, 95% CI
−0.14 to 0.01; t636=−1.67; P=.09). However, emotional tone
was significantly correlated with the presence of depressive
symptoms (r=−0.10, 95% CI −0.19 to −0.02; t627=−2.49; P=.01)
and feelings of loneliness (r=−0.12, 95% CI −0.18 to −0.02;
t630=−2.92; P=.004). For all measures, less than 4% of the values
were missing.

Discussion

Principal Findings
Here, we illustrate the application and subsequent evaluation
of an NLP pipeline for the analysis of free-text data.
Specifically, we applied this pipeline to text data on the
experienced impact of the first COVID-19 lockdown from the
perspectives of persons with MS collected by the Swiss MS
Registry. Our study thus sheds light on individual daily-life
experiences of the first COVID-19 lockdown in a vulnerable
population.

In this study, we demonstrated both the feasibility and scientific
value of an automated text preprocessing and NLP analysis
pipeline based on existing open-source software in Python
suitable for large-scale text data. The pipeline allows to
preprocess real-world text data in an efficient fashion and to
conduct timely and innovative analyses, including unsupervised
machine learning. In light of a dearth of practical guidance for
such real-world text data preprocessing and analysis procedures
suitable for applied researchers, this pipeline has the potential
to contribute to the dissemination of methodological knowledge,
allowing to tap the potential of free-text data to capture
individual perspectives and needs in health research. This study
is embedded into the Swiss MS Registry, which is a large-scale
well-documented longitudinal study. The registry’s data thus
constitute an optimal use case for the application and evaluation
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of such a pipeline and the broad range of available data sources
allowed that characterize individuals allocated to the distinct
topic cluster groups in terms of specific characteristics. This
study demonstrates the potential of open-ended questions in
complementing traditional standardized assessment methods to
capture unexplored information from individuals’ own words
and thereby may spark new hypotheses and future avenues in
health research. This type of language processing would
essentially constitute a synergy between structured data
collection and other forms of qualitative assessments, which
tend to be more time-consuming in terms of processing and
analysis (eg, interviews). Real-world data are afflicted with a
broad range of challenges (eg, typos and dialect), which need
elaborate consideration through text preprocessing to ensure
the validity of subsequent complex analyses. Our study is thus
timely and innovative in nature given its focus on key challenges
when leveraging text data sources originating from a real-world
setting through an efficient pipeline programmed in Python.

In terms of individual experiences of the first COVID-19
lockdown, the themes that concerned persons with MS most
during the first COVID-19 lockdown differed substantially
across study participants. Specifically, our study identified the
following 4 distinct COVID-19–related topic groups, which
participants could be assigned to based on their experiences:
“contacts/communication” (group 1); “social environment”
(group 2); “work” (group 3); and “errands/daily routines” (group
4). It is important to mention that between-group comparisons
of sociodemographic and health-related characteristics
corroborate the disparity of the 4 topic groups. This new
topic-based approach to characterize persons with MS provides
a novel perspective on individual experiences of the first
COVID-19 lockdown and further highlights heterogeneity in
terms of individual needs. To the best of our knowledge, there
are no comparable in-depth studies researching the individually
perceived impact of COVID-19 using participants own words.
With regard to the overall emotional tone underlying the text
entries, our findings revealed that most text entries reflected
negative emotional states. This adds to research emphasizing
the high burden of COVID-19–related restrictions for persons
with MS given their prior vulnerability [12]. Further, from a
methodological perspective, the context of our study was ideal
for the identification of distinct topic commonalities of
wide-ranging relevance as the spectrum of topics that
participants were concerned with was confined. On the contrary,
studies researching mundane everyday life situations of persons
with MS are likely to identify considerably more diverse topics
(with smaller population sizes per topic group), which results
in the necessity of more data and participants, as suggested by
an ongoing analysis of health diary entries collected before the
COVID-19 pandemic from the same study population
(manuscript in preparation).

In parallel with this finding, the 4 topic groups also differed in
terms of the emotional tone underlying their text descriptions.
It is important to mention that the emotional tone was
determined through an independent analysis approach (sentiment
analysis). A correlation analysis revealed that emotional tone
was not associated with MS traits or measures of physical
well-being, but with psychological well-being in the form of

depressive symptoms and feelings of loneliness. This result
suggests that “emotional tone” in this study primarily reflects
emotions that are directly related to the content of the text and
the individual’s situation. The most negative entries occurred
in topic groups whose text entries predominately pertained to
contacts and communication themes (group 1). In the topic
groups concerning social environment (group 2) and work
(group 3), the underlying emotional tone was more balanced,
while in the topic group pertaining to errands and daily routines
(group 4), the entries’ emotional tone was predominantly
positive. This observed heterogeneity in emotional tonality
underlying the reported experiences of the first
COVID-19–related lockdown is likely to reflect differences in
emotional burden, individual circumstances, and ways of coping
with the pandemic, which is in line with previous research in
this matter. For instance, a US telephone survey on persons with
MS conducted during the first lockdown found that a higher
perceived impact of the pandemic on individuals’ self-reported
psychological well-being was linked to a higher impact of MS
symptoms on individuals’ daily lives. Further, by conducting
interviews, a recent study found that persons reporting no or
even a positive impact of the pandemic on their lives tended to
cope with the pandemic situation with active problem-focused
strategies [11-13]. In terms of personal values, however, another
study examining young persons with MS also reported perceived
positive effects of the pandemic situation in the form of personal,
relational, and existential growth [36]. Accordingly, participants
allocated to the “contacts and communication” topic group made
the highest number of negative text entries and reported the
lowest quality of life (median). Taken together, these findings
are foreground to the burdensome effects of the pandemic in
terms of isolation, and reduction or even loss of social
contact/activities and personal exchange in vulnerable
individuals such as persons with MS. Based on the
sociodemographic and disease characteristics of topic group 1,
feelings of isolation appeared exacerbated in persons with MS
who were comparatively less impaired or living alone. This
finding might be related to the fact that persons with high disease
burden are more accustomed to daily life restrictions compared
to those with less impairments.

Limitations
Despite its notable strengths, the present research has some
limitations, which merit consideration. First, there is a dearth
of well-established guidelines for NLP that consider the
specificities of health research. Consequently, the
implementation of different text classification modeling
approaches might have resulted in slightly divergent clusters
and overarching topics. As such, to examine the robustness of
our findings, we reanalyzed our data using the well-established
Latent Dirichlet Allocation approach, which yielded similar
patterns compared to those reported (not shown in this article)
and thus corroborates the robustness of the presented results.
Topic modeling further groups frequently co-occurring words
into clusters (ie, “topics”). This method is suitable for identifying
topics underlying large-scale text data in a data-driven fashion
to thereby generate novel insights that might have been missed
by standardized quantitative assessments. Our study does,
however, not provide information to specifically tailor MS
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treatment to the needs of an individual person. The emotional
tone indicates a general trend of the overall valence of a topic,
while there may be variations at the individual level. Our
findings have revealed experiences and burdens of persons with
MS during the COVID-19 pandemic that may be relevant to
future treatments or may provide insights for future research.
Further limitations pertain to the generalizability of the findings
of the sample population to the total population of persons with
MS in Switzerland. Participants of this study constitute a
subsample of the Swiss MS Registry’s participants. The registry
itself covers the diversity of the Swiss population of persons
with MS in terms of a broad range of characteristics [37]. The
participants of the MS Registry subsample who completed the
“COVID-19 survey” were comparatively younger, less disabled,
and residing more often in the German-speaking region of
Switzerland than the nonparticipants of the registry. However,
we did not find any indications for systematic differences
between the linguistic regions. The translation of non-German
text entries into German through an automated translation
software is afflicted with the risk of potential mistranslations,
misinterpretations, and biases. However, it is important to
mention that both exploratory count comparison of the most
frequent keywords and manual spot-checking were not
suggestive of any systematic differences across languages.

Conclusion
We demonstrated the potential of a preprocessing and NLP
analysis pipeline for large-scale text data and applied it to
COVID-19–related data collected by the Swiss MS Registry,
which constitutes an optimal use case for the pipeline. Above
and beyond providing practical guidance for applied researchers,
our study has implications for efficiently leveraging large-scale
textual data in health care settings. Electronic health records
and clinical notes have received increasing attention as rich
sources of information, which are accessible through the
application of NLP techniques [38-40].

Our study further demonstrates an approach that complements
structured and standardized assessments through individual
participant perspectives and hence provides ecologically valid
information. We provide practical guidance for applied health
researchers who wish to follow a similar approach by (1)
demonstrating the processing and analysis process using
large-scale real-world data and (2) providing a detailed
description of the pipeline, which is based (apart from LIWC)
on freely available open-source software. Interested researchers
can follow both the entire process and the software we use.
Given the novelty of the emerging NLP field, we are, in this
way, contributing to the establishment of good practice standards
and the dissemination of knowledge around NLP methodology
among applied researchers, especially those from the health
sciences.
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Graph showing topic coherence scores (blue dots) for topic models on the experience of the first COVID-19 lockdown in persons
with multiple sclerosis, with 1 to 30 distinct topics. The number of modeled topics is plotted along the x-axis. Coherence scores
are plotted along the y-axis. Topic coherence refers to the semantic similarity of words allocated to a distinct topic and constitutes
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Word clouds visualizing the most frequent keywords related to the impact of COVID-19 on volunteers’ personal lives presented
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Abstract

Background: Clinical decision support (CDS) can improve health care with respect to the quality of care, patient safety,
efficiency, and effectiveness. Establishing a CDS system in a health care setting remains a challenge. A few hospitals have used
self-developed in-house CDS systems or commercial CDS solutions. Since these in-house CDS systems tend to be tightly coupled
with a specific electronic health record system, the functionality and knowledge base are not easily shareable. A shared interoperable
CDS system facilitates the sharing of the knowledge base and extension of CDS services.

Objective: The study focuses on developing and deploying the national CDS service for the drug-allergy interaction (DAI)
check for health care providers in Korea that need to introduce the service but lack the budget and expertise.

Methods: To provide the shared interoperable CDS service, we designed and implemented the system based on the CDS Hooks
specification and Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The study describes
the CDS development process. The system development went through requirement analysis, design, implementation, and
deployment. In particular, the concept architecture was designed based on the CDS Hooks structure. The MedicationRequest and
AllergyIntolerance resources were profiled to exchange data using the FHIR standard. The discovery and DAI check application
programming interfaces and rule engine were developed.

Results: The CDS service was deployed on G-Cloud, a government cloud service. In March 2021, the CDS service was launched,
and 67 health care providers participated in the CDS service. The health care providers participated in the service with 1,008,357
DAI checks for 114,694 patients, of which 33,054 (3.32%) cases resulted in a “warning.”

Conclusions: Korea’s Ministry of Health and Welfare has been trying to build an HL7 FHIR-based ecosystem in Korea. As
one of these efforts, the CDS service initiative has been conducted. To promote the rapid adoption of the HL7 FHIR standard, it
is necessary to accelerate practical service development and to appeal to policy makers regarding the benefits of FHIR
standardization. With the development of various case-specific implementation guides using the Korea Core implementation
guide, the FHIR standards will be distributed nationwide, and more shared interoperable health care services will be introduced
in Korea.

(JMIR Med Inform 2022;10(11):e40338)   doi:10.2196/40338

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e40338 | p.177https://medinform.jmir.org/2022/11/e40338
(page number not for citation purposes)

Jung et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:byoungkeeyi@gmail.com
http://dx.doi.org/10.2196/40338
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

clinical decision support; drug-allergy interaction; Health Level 7; Fast Healthcare Interoperability Resources; interoperability;
CDS Hooks

Introduction

Clinical decision support (CDS) can improve health care with
respect to the quality of care, patient safety, efficiency, and
effectiveness [1,2]. In addition, it can reduce the cognitive
burden of the physicians upon using the order sets such as
procedures and prescriptions [3]. In combination with electronic
health records (EHRs), the CDS system influences the behavior
of physicians and increases adherence to clinical guidelines
[1,4].

However, adopting a CDS system in a health care setting
remains a challenge [4,5]. Some hospitals have used in-house
developed CDS systems or commercial CDS solutions [6]. Since
an in-house CDS system tends to be tightly coupled with a
specific EHR system, the functionalities and knowledge base
are not easily sharable. On the other hand, a commercial CDS
requires costly integration with existing EHR systems both in
terms of time and effort. The situations are worse with small-
to medium-sized hospitals, including clinics. Lack of budget
and expertise prevents them from implementing CDS services
[7,8].

Shared interoperable CDS services that enable sharing the
knowledge base and expansion of the CDS service can mitigate
the previous problems. The services can be implemented using
the CDS Hooks, that is, Health Level Seven (HL7)
International–published specifications for CDS [9]. The CDS
Hooks provides a way to call external CDS services remotely
within a provider’s workflow [10]. It also uses the HL7 Fast
Healthcare Interoperability Resources (FHIR) as a data model.
By using the FHIR, the CDS services can provide
interoperability to health care providers: tertiary hospitals, small-
to medium-sized hospitals, and clinics operating on
heterogeneous EHR systems. The result of the decision support
is to return the cards displaying text, suggestions, or links to
launch a Substitutable Medical Applications, Reusable
Technologies (SMART) application [11-14].

Since 2011, the Health Insurance Review and Assessment
Service (HIRA) in Korea has provided the drug utilization
review (DUR) program as a CDS system containing real-time
drug safety data for doctors and pharmacists. The DUR program
presents 11 review items, including drug-drug interactions,
duplicate prescriptions, and drug regimen dose and duration.
The DUR system has been distributed among over 99.8% of
health care providers as of 2019 [15-18]. Nonetheless, the
adoption of other available CDS services remains a challenge.

Korea’s Ministry of Health and Welfare (MoHW) oversees
several national initiatives to apply and distribute interoperable
health IT standards. As one of several national initiatives,
feasibility studies are ongoing to embrace the HL7 FHIR
standards [19], widely adopted in the global health care industry
[20].

In this study, we focus on developing and deploying the sharable
and interoperable CDS service for the drug-allergy interaction
(DAI) check based on the CDS Hooks specification at the
national level. The main objective of CDS service in the initial
stage is technical feasibility and service availability. The DUR
program in Korea does not cover the DAI check due to low
awareness of the social burden and its prevention for the DAI
when setting the review items in 2011 [21]. Global concerns
regarding DAI are increasing, and inappropriate medication
prescriptions frequently occur in all health care settings [22,23].
Implementation of CDS service for the DAI check is relatively
more accessible than other CDS services [12]. The HL7 FHIR
standard and CDS Hooks specification allow the CDS service
to be sharable, interoperable, and scalable. The study is expected
to be a starting point for the national adoption of the HL7 FHIR
standards.

Methods

Overview
We developed a shared interoperable CDS system based on
CDS Hooks for a DAI check to provide a service to health care
providers. The system is triggered by medication orders in the
EHR system. When it is evoked, the system checks the DAI
and returns recommendations back to the provider. We
developed the system in the following steps: (1) requirement
analysis, (2) design, (3) implementation, and (4) deployment.
In the first step, we identified data elements used for DAI check
and classified them into mandatory and optional. We also
selected the FHIR resources for contextual information available
within an EHR system. Second, we designed concept
architecture and web service end points, representational state
transfer (RESTful) application programming interfaces (APIs),
based on the CDS Hooks structure. We profiled FHIR resources
according to data elements and specified the card, a form that
represented a result of decision support. We designed a rule
engine including a four-step drug-allergy screening logic and
knowledge base. Lastly, we implemented components and
functions, and deployed the CDS system on a
government-managed cloud service called G-Cloud.

The CDS service can simultaneously be used by multiple health
care providers, such as tertiary hospitals, small- to medium-sized
hospitals, and clinics with their own EHR systems. Health care
providers can DAI check using a remote CDS service call when
ordering medications. An EHR system creates a request payload
with patients’ prescriptions and allergy data, and transmits it to
the CDS service. The CDS service executes the DAI check logic
using the request payload and then returns the result to the EHR
system.

Concept Architecture
We designed a concept architecture according to the CDS Hooks
structure, which consists of CDS services, CDS clients, and
cards, as shown in Figure 1. The CDS clients that are EHR
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systems in health care providers invoke the CDS service through
a hook that is an event trigger, and the CDS service provides
recommendations using a card to the CDS clients. The CDS
system was implemented in version 1.0 of the CDS Hooks
specification.

The CDS service was designed as a cloud service and consisted
of an interface engine, rule engine, authentication and
authorization server, and audit trail. The interface engine has
three components: the service gateway, the FHIR resource
parser, and the CDS Hooks card generator. The service gateway
provides a discovery end point and DAI check end point, and
the FHIR resource parser parses request payload data to relay
to the rule engine. The CDS Hooks card generator creates
decision support results as a card to return to the CDS client.
The rule engine checks the DAI using the prescription and
patients’ allergy information and then returns a result of allergy
screening to the CDS Hooks card generator. The authenticate
and authorization server authenticates the EHR system using
an issued token, and the audit trail monitors which health care
providers invoke the service and when and how often they use
it.

We applied the CDS Hooks security model with some variations
to the CDS service. The CDS Hooks specification provides a
security model, such as mutual identification, transport layer
security protocol, and JSON web token. We developed the
authentication and authorization server to provide a token to
CDS clients. The token issued by the CDS service authenticates
the CDS client. It reduces the burden on the health care
provider’s authentication server development and helps a wider
adoption of the CDS service. In addition, a whitelist of health
care providers is managed based on our risk management
strategy.

The CDS client creates an HTTP request to the CDS Hooks
service with parameters that include required fields (hook,
hookInstance, and context) and optional fields (fhirServer,
fhirAuthorization, and prefetch). The context and prefetch fields
have the FHIR resources, which are translated by the FHIR
adapter. The FHIR adapter was considered instead of an FHIR
server since the adoption of the FHIR standard is in its infancy
in Korea.

Figure 1. The concept architecture for the shared interoperable CDS system is based on CDS Hooks anatomy. Multiple health care providers
simultaneously invoke the shared interoperable CDS service deployed on G-Cloud using a hook and receive a card as a response. CDS: clinical decision
support; EHR: electronic health record; FHIR: Fast Healthcare Interoperability Resources.

FHIR Resources Profile
We identified data elements for the DAI check and profiled two
FHIR resources, MedicationRequest and AllergyIntolerance,
based on the FHIR R4 (v4.0.1) [24] and Korea (KR) Core
implementation guide (IG) v1.0.0-STU 1 [25]. The

MedicationRequest resource represents a supply of the
medication and administration instructions, as shown in Figure
2A [24]. There are two options for representing medication
information in the MedicationRequest resource: referencing the
Medication resource to the medicationReference element and
assigning the medication code directly to the
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medicationCodeableConcept element. In this profile, we applied
the latter because health care providers do not manage the
Medication resource. The medicationCodeableConcept element
is bound to the Korea Drug (KD) code, the national code system
to identify and manage drug products [26]. The cardinality and
must support constraints of the MedicationRequest resource are
inherited by the KR Core MedicationRequest Profile. The CDS
service uses the medication element but not the identifier nor
the dosageInstruction elements, although they are marked as
must support. Elements designated as a must support are
necessary conditions for the FHIR resource to be exchanged,
but consumers of the resource do not necessarily have to use
all must support elements in principle.

The AllergyIntolerance resource represents a record of a clinical
assessment of an allergy or intolerance, as shown in Figure 2B
[24]. The category element with the AllergyIntoleranceCategory
value set is assigned the fixed value of “medication.” The code

element is bound to a proprietary value set developed by the
vendor that provides the rule engine of the CDS service, since
there is no national code system that identifies the allergy or
intolerance.

The cardinality constraints of the AllergyIntolerance resource
are inherited by the KR Core IG. The identifier, category, and
code elements are marked as “must support.” The profiled
resources are published to SIMPLIFIER.NET, one of the FHIR
registries.

Two profiled resources are conformant to the KR Core IG in
Figure 3. The KR Core IG, a national-level FHIR IG, such as
the US Core [27], UK Core [28], Australian Base [29], and
Canadian Baseline [30], is essential in the nationwide adoption
of the FHIR standards and in building an ecosystem based on
the standards. We expect that specific use case FHIR IG based
on the resource profiles proposed in this study will be adopted
as a national standard in Korea.

Figure 2. The MedicationRequest and AllergyIntolerance resource profile. The resources profiled for the clinical decision support service are inherited
from the Korea Core Implementation Guide 1.0.0. Elements with "must support" are marked with an "S" in the red square.
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Figure 3. The MedicationRequest and AllergyIntolerance resources profiled through the shared interoperable clinical decision support system are
conformed with the KR Core MedicationRequest profile and KR Core AllergyIntolerance profile. FHIR: Fast Healthcare Interoperability; HL7: Health
Level Seven; KR: Korea.

CDS Service Interfaces and Cards
Two end points were designed and implemented: the discovery
and DAI check APIs. The discovery API provides the list of
CDS services, including a description of the CDS service and
any requested data to be prefetched [9]. The DAI check API is
the CDS service using the “order-sign” hook, as shown in Figure
4A. The order-sign hook occurs when the provider is ready to
sign one or more orders for a patient, and it has the userId,
patientId, and draftOrders as required fields and encounterId as
optional. The userId field is included since it is required for the
order-sign hook and not used for any other purposes. The CDS
service does not distinguish individual providers invoking the
service since it does not require a physician ID for DAI checks.

The draftOrders field has a Bundle resource that lists
MedicationRequest resources. The AllergyIntolerance resources
are attached in the prefetch field that describes the relevant data
required in the CDS service.

The CDS service responds to the CDS client with cards
containing information, suggested actions, and links to launch
an application. The DAI check API returns a card with a
“warning” indicator, as shown in Figure 4B. The cards are JSON
documents and have several fields, such as summary, indicator,
and source field. The summary field is a summary message for
display to the provider, and the importance of the card is
represented by the following indicators: “info,” “warning,” and
“critical.” The source field is a source of information displayed
on this card.
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Figure 4. Examples of order-sign hook and warning card. The order-sign hook has userId, patientId, and draftOrders as required fields, but userId is
not used in the clinical decision support (CDS) service for the drug-allergy interaction (DAI) check. The card, the response of the CDS service, includes
the results of the DAI check, suggested actions, and links to the launch app.

Rule Engine
We designed and developed the rule engine to check an
interaction between a patient’s medication allergens and
prescribed medications transmitted from a health care provider,
as shown in Figure 5. The allergen data from the
AllergyIntolerance resource can be a brand name, substance,
or drug class. The medication data from the MedicationRequest
resource is a brand name coded by the KD code managed by
the HIRA. The DAI check is performed in a three-step screening
process: (1) check whether allergens and prescribed medications
have the same product or ingredient, (2) check whether they
belong to the ingredient class, and (3) check whether they have
a cross-reactive allergen.

The Drug Allergy database consists of master and relation tables.
The master tables are the Drug, Drug Class, Ingredient, and
Cross-Reactive Allergen. The Drug and Drug Class tables
uniquely identify regulated medicinal products using the KD
code as the primary key. The Ingredient table models substances
that constitute a medicinal product and includes columns such
as ingredient code, name, and synonym. These tables are
designed based on the Identification of Medicinal Products, a
suite of five International Organization for Standardization
standards to facilitate the reliable exchange of medicinal product
information. The Ingredient table is related to the
Cross-Reactive, Drug, and Drug Class tables by each primary
key. In addition to these tables, the drug allergy database has
several relation tables used to perform DAI checks.
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Figure 5. The three-step drug-allergy interaction check screening process: (1) check whether allergens and prescribed medications have the same
product or ingredient, (2) check whether they belong to the same drug or ingredient class, and (3) check whether they have cross-reactive allergens.
KD: Korea Drug.

Ethical Considerations
This study did not require ethics approval as no personal data
was collected, and no interventions were implemented.

Results

In this study, the national CDS service for the DAI check was
developed to ensure the safe use of medicine and was deployed
on G-Cloud, a government cloud service established and run
by National Computing and Information Service in Korea [31].
The CDS service was launched in March 2021 and has been
operated by the Korea Health Information Service. As shown
in Table 1, a total of 67 providers participated in the service
with 1,008,357 DAI checks for 114,694 patients, of which
33,054 (3.32%) resulted in a “warning” [32]. The results were

obtained by analyzing the log data accumulated in the audit trail
system.

Physicians use the national CDS service for the DAI checks
when prescribing medications. The physicians should search
the allergen codes provided by the CDS service before calling
the CDS service. Since Korea does not yet have a national
standard allergy code system, most health care providers store
allergy data for the patient as text. To use the CDS service,
physicians are also expected to search for an allergy code in the
proprietary value set. For this extra step, the CDS service IG
provides a reference implementation to inquire about the
allergen, allergic reaction, and severity codes, as shown in
Figure 6. The health care providers or EHR vendors are expected
to develop the component and integrate it with their EHR
systems.
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Table 1. Results of the shared interoperable CDS service for drug-allergy interaction check in December 2021.

AmountResult category

Participants, n

67Health care providers

114,694Patients

CDSa service requests, n

1,008,357Drug-allergy interaction checks

CDS service responses, n (%)

33,504 (3.32)Warning cards

974,853 (96.68)No responses

aCDS: clinical decision support.

Figure 6. Screenshot of the reference implementation for a patient’s allergen inquiry. To drug-allergy interaction check, physicians should retrieve a
patient's allergen code through reference implementation provided by the clincal decision support service.

Discussion

Principal Results
The study applied the CDS Hooks specification to provide the
nationwide shared interoperable CDS service for the DAI check.
The CDS service has been deployed on G-Cloud, and all
authorized health care providers can use the service
simultaneously through RESTful APIs. As of December 2021,

67 health care providers have participated in the initiative. Since
the service developed in this study conforms with the CDS
Hooks specification, clinical knowledge bases can be shared,
and the services can be scalable.

According to the CDS service results report, the rate of warnings
that occurred among the CDS service was 7.74% from 29 of
the 67 participating hospitals for 1610 patients from May to
August 2021. Among the warnings, the most frequent was the
cross-reactive allergen check (43.55%), followed by the same
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drug or ingredient class check (28.77%) and the same product
or ingredient check (27.68%). After warning responses from
the CDS service, 9.07% of prescriptions were changed, and
90.93% were not changed [33]. Although warning responses
occurred from the CDS service, physicians did not change their
prescriptions, which had a rate of 90.93%. This proportion is
similar to the range of average override alerts, 46.2% to 96.2%
[34-36]. To induce physicians to change their prescriptions,
additional information and services such as statistical data,
research papers, or the SMART application could be provided
as evidence.

We designed the CDS system based on serverless FHIR
architecture. A CDS service can request additional data
regarding the clinical workflow context to the FHIR server at
providers via the hook parameters in the CDS Hooks
specification. In Korea, the adoption of FHIR standards is in
its infancy, and few health care providers have FHIR servers
for requesting any additional data. Thus, we applied serverless
FHIR architecture, identified the required data in advance, and
assigned it in the prefetch field.

As awareness of national allergy codes increases, the MoHW
of Korea is developing a national allergy code system. The KR
Core AllergyIntolerance profile binds the KR Core
AllergyIntolerance Code value set, a renamed version of the
AllergyIntolerance Substance value set defined in the FHIR R4.

The binding strength of the two value sets is preferred. It is
meant to encourage drawing from the specified codes, but it is
not required. Currently, there is no national allergy code system
available in Korea, and the KR Core AllergyIntolerance Code
value set is basically a placeholder for future value set
development. Due to the lack of a national allergy code system,
we chose to use a proprietary value set. When the national
allergy code system is developed, it will replace the value set
to draw from the national allergy code system with binding
strength required, as well as the KR Core AllergyIntolerance
Code value set.

Conclusions
The shared interoperable CDS service for the DAI check based
on the CDS Hooks was developed and deployed. The CDS
service is currently provided to 67 health care providers. The
MoHW has been making efforts to build the HL7 FHIR-based
ecosystem in Korea. As one of these efforts, the CDS service
initiative was conducted. To promote the rapid adoption of the
HL7 FHIR standards, it is necessary to accelerate the practical
service development and appeal the benefits of FHIR-based
standardization to policy makers; this is the primary purpose of
guiding the CDS service. Lastly, with the development of
various case-specific IGs based on the KR Core IG, the FHIR
standards will be distributed to the health IT industry, and more
shared interoperable health care services will be introduced in
Korea.
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CDS: clinical decision support
DAI: drug-allergy interaction
DUR: drug utilization review
EHR: electronic health record
FHIR: Fast Healthcare Interoperability Resources
HIRA: Health Insurance Review and Assessment Service
HL7: Health Level Seven
IG: implementation guide
KD: Korea Drug
KR: Korea
MoHW: Ministry of Health and Welfare
RESTful: representational state transfer
SMART: Substitutable Medical Applications, Reusable Technologies
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Abstract

Background: Living kidney donation currently constitutes approximately a quarter of all kidney donations. There exist barriers
that preclude prospective donors from donating, such as medical ineligibility and costs associated with donation. A better
understanding of perceptions of and barriers to living donation could facilitate the development of effective policies, education
opportunities, and outreach strategies and may lead to an increased number of living kidney donations. Prior research focused
predominantly on perceptions and barriers among a small subset of individuals who had prior exposure to the donation process.
The viewpoints of the general public have rarely been represented in prior research.

Objective: The current study designed a web-scraping method and machine learning algorithms for collecting and classifying
comments from a variety of online sources. The resultant data set was made available in the public domain to facilitate further
investigation of this topic.

Methods: We collected comments using Python-based web-scraping tools from the New York Times, YouTube, Twitter, and
Reddit. We developed a set of guidelines for the creation of training data and manual classification of comments as either related
to living organ donation or not. We then classified the remaining comments using deep learning.

Results: A total of 203,219 unique comments were collected from the above sources. The deep neural network model had 84%
accuracy in testing data. Further validation of predictions found an actual accuracy of 63%. The final database contained 11,027
comments classified as being related to living kidney donation.

Conclusions: The current study lays the groundwork for more comprehensive analyses of perceptions, myths, and feelings
about living kidney donation. Web-scraping and machine learning classifiers are effective methods to collect and examine opinions
held by the general public on living kidney donation.

(JMIR Med Inform 2022;10(11):e37884)   doi:10.2196/37884

KEYWORDS

living kidney donation; kidney donation; kidney transplantation; text mining; web scraping; NLP; deep learning; neural network;
barriers to kidney donation; barriers; awareness; perception; machine learning; online source; online comments

Introduction

Kidney transplantation is the gold standard treatment for patients
with end-stage renal disease (ESRD) [1] and can be much more

cost-effective than dialysis [2]. Record numbers of transplants
have taken place in recent years, but a shortage of donors
persists despite recent increases [3]. Currently, the median wait
time for a transplant is about 4 years in the United States, and
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close to 5000 patients die every year on the transplant wait list
[4]. Living-donor kidney transplants generally provide better
outcomes than deceased donor transplants but are inaccessible
to many patients with ESRD, especially among certain racial
and ethnic minorities [5,6], because of the potential burdens on
donors. Such burdens can include financial costs related to
donation and the risk of future kidney failure and death [7,8].
Over the last 2 decades, the US government has implemented
programs that reimburse living donors for donation-related
expenditures, such as the cost of traveling, medical costs for
recovery and possible complications, and time away from the
workplace. These programs are, however, known to have had
little to no effect on the number of living kidney donors thus
far [9].

Several studies have used qualitative approaches to identify
possible barriers to kidney donation. These studies have
identified several factors that can contribute to decision-making
for both living and deceased donation, including the social
influence of health care professionals (HCPs) [10], family
members [11], and recipients and potential donors [12,13], as
well as medical [14] and financial [15,16] barriers. Other factors
are related to beliefs and concepts, such as unknown future
needs [17] (ie, “What if my family member needs a donation
someday?”), a desire for bodily integrity and choice, trust or
mistrust of the health care system, religious and cultural beliefs,
and a lack of information about donation [10]. Many of these
studies, however, focus on identifying factors associated with
deceased donation.

Additionally, the data have generally been derived from small
samples of interviewees who have already participated in the
donation process or from analyses of data from a single
transplant center. As such, the extracted data are primarily
representative only of those who have had direct experience in
living donation. The viewpoints of the general public, who may
be curious or have misconceptions about donation but have no
direct experience in donation, are thus rarely represented. By
leveraging the large volume of opinions and comments available
online, this study represents a step toward better understanding
of the public’s perception of living donation. At least one other
research effort has taken advantage of comments on social media
to investigate attitudes about organ donation. Jiang et al [18]
found and analyzed 1507 reposts of 141 unique posts related to
organ donation on the Chinese microblogging site Weibo; they
were able to identify 5 major themes. The authors report that

posts on “statistical descriptions” and the “meaningfulness” of
organ donation prompted 3 and 2 users, respectively, to express
the intention to become an organ donor. Henderson [19]
performed a similar analysis.

The specific contribution of this study is the exploration of a
machine learning classifier for the collection and analysis of a
large database of labeled comments that were written by internet
users and collected from multiple public sources. These
comments reflect the users’ thoughts, feelings, and concerns
regarding living kidney donation (LKD). The authors have made
this database available upon request so that researchers on this
topic can use the information for further analyses. The current
study also examines and discusses the quality of predictions,
highlighting particular areas of difficulty with regard to machine
classification for further improvement.

Methods

The comments were first collected and processed (the data
processing phase). A small portion were then manually classified
(annotated and labeled) for use as training data (the annotation
phase). The training data were then used to develop a machine
learning model that automated the classification process for
large volumes of data (the modeling phase).

Data Processing Overview
We created our data set through a process of gathering, filtering,
and cleaning data [20]. Data were collected from different
sources, including comments on newspaper articles published
in the New York Times (NYT) and comments on the social
media sites Twitter, YouTube, and Reddit. We manually
annotated a small percentage of the data (1174 of 203,219
comments) and designed a neural network to classify the
remaining comments. We separated the data set with 2 labels:
related or unrelated to LKD. The characteristics of the training
and testing data are shown in Table 1.

Figures 1 and 2 illustrate the frequency and distribution of the
words in the training and testing data, respectively. The training
and testing data were compiled before all the comments were
collected, so transfer learning was utilized for the final
classification of the Reddit and YouTube comments [21]. The
transfer learning model was validated to work sufficiently well
on Reddit and YouTube comments by manually inspecting
predictions.

Table 1. Characteristics of training and testing data.

Testing data (N=240)Training data (N=934)Source

83 (34.5)312 (33.5)New York Times comments, n (%)

157 (65.4)622 (66.5)Tweets, n (%)

64.463.2Average words per comment, n

381380Maximum words per comment, n

32Minimum words per comment, n
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Figure 1. Word frequency and distribution for training data.

Figure 2. Word frequency and distribution for testing data.

Data Collection
To automate the process of downloading comments from the
web, we used the Pushshift.io service for Reddit, Selenium for
YouTube, and the application programming interfaces (APIs)
from Twitter and the NYT. For each web source, we used search
terms aimed at capturing content associated with LKD, while
also excluding undesired content (such as political fundraising,
which would otherwise appear in searches for terms like

“donation”). More details on this exclusion process can be found
in Multimedia Appendix 1. Tweets were captured via a live
stream over time, but comments from the other 3 sources were
captured from any date range allowed by the respective APIs.
As YouTube had no API that suited our purposes, we manually
searched YouTube for the term “living kidney donation” and
identified 17 relevant videos with at least 30 comments each.
Table 2 shows how many comments were collected, and over
what time period, from each source.

Table 2. Summary of date ranges and numbers of comments (N=203,219).

Unique comments, nDate rangeSource

148,662Oct 2020-Apr 2021Twitter

43,382Jan 2010-Apr 2021Reddit

6559Jan 2008-Apr 2021New York Times

4616Feb 2005-Apr 2021YouTube

Class Label Definition
The manual labeling of training data was one of the most
important tasks in this study. The purpose of this classification
labeling was to determine if a given comment was related to

living organ donation. The annotation team worked through
1174 randomly selected comments and determined how each
comment should be classified. We assumed at this stage that
every comment from every source had equal weight. The process
began with 3 annotators collaborating to classify a set of 403
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comments, aiming to reach agreement on how the comments
should be classified. The remaining 771 comments were
classified after the decision criteria were more thoroughly
established (the final criteria are described in the following
section).

Handling Ambiguity and Other Complexities
Annotations began with a simple idea: capture the comments
that mention LKD. But the convoluted reality of human
language is rarely simple enough for easy classification, and
nuances abound. For example, can we assume a person’s
sentiments on deceased donation carry over to their opinions
on living donation? How should we classify comments in which
people express their thoughts on a policy related to LKD even
if they do not say whether they personally would donate? To
overcome this obstacle, each annotator was given a set of
classification criteria to determine whether a comment should
be classified as “related.”

Even with the explicitly defined classification criteria, the
annotation team still encountered significant difficulty in
reaching a consensus on many of the comments. During the
first stage of annotation, of 403 comments to be annotated, 124

were not classified unanimously. A few guiding principles
emerged as the team discussed the dissenting comments. First,
while comments explicitly mentioning organ sales and
conversations about the illicit organ trade were excluded, the
criteria were expanded to allow most other comments that
involved cost or finance-related policies about organ donation.

The second principle was to reverse an initial position about
encouraging annotators to select “yes” in cases of uncertainty
and ambiguity and to instead select “yes” only when they were
confident doing so. This last criterion was to clarify that each
comment must be viewed as independent from all the other data
and that the human annotators should not consider the larger
context (ie, other comments in the discussion) or make
inferences. This last adjustment represents an important
distinction in the way that humans learn compared to the way
that machines learn. It is important to note that these criteria
forced us to exclude data that could ultimately have been
meaningful in order to obtain better performance for the overall
model. A flowchart illustrating the decision criteria process is
shown in Figure 3. We note that the comments determined to
be “not related” were not quantified by the exclusion criteria
during the annotation process, so numbers are not available.
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Figure 3. Classification criteria for manual labeling of training data. LKD: living kidney donation.

Modeling
We developed a deep neural network to perform automated
classification of the remaining comments (Multimedia Appendix
2) using PyTorch 1.11 in Python (version 3.8; Python Software

Foundation). The network architecture is shown in Figure 4,
with the hyperparameters illustrated by shaded boxes. Table 3
shows possible values for these parameters, each of which was
evaluated to determine the best model.
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Figure 4. Neural network architecture. NYT: New York Times; RNN: recurrent neural network.
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Table 3. Neural network parameters and corresponding experimental values.

RangeParameter

Word, characterTokenization level

500, 600, 700, 1204, 2048Embedding layer size

20, 30, 50, 100, 150, 200, 400, 500, 600Hidden layer size

0.01, 0.001, 0.0001, 0.00001, 0.000001Learning rate

8, 16, 32, 64, 128Batch size

Text Preprocessing
Prior to analyzing the text, documents were cleaned and
normalized. The purpose of this text processing was to separate
meaningful words from noise. This involved removing strange
characters (eg, ¬ and ±), HTML tags, URLs, unnecessary
repeated characters (“pleeeease” to “please”), number-character
combinations (“401k”), adjusting contractions (“I’ve” to “I
have”), and emojis. Words were also stemmed, so that words
with the same root but different suffixes (such as “donate,”
“donating,” and “donated”) would be treated as the same word
(becoming “donat”).

Tokenization was also performed at this stage. Tokenization is
the process of separating sentences into smaller parts, such as
words and characters. Word level tokenization is a split
determined by a space between words, and character level
tokenization is the process of dividing a word into different
sections based on the length of characters. For example, we
created 8 additional tokens from the word “Medicare,” as
illustrated in Figure 5.

As the neural network cannot process text, we needed a layer
to transform the vocabulary layer to numbers, a process called
embedding. There are several techniques for this transformation,
such as Google’s Word2Vec [22] and Stanford’s GloVe [23].
We experimented with these tools, but the specific domain of
the text topics led to poor performance. To remedy this, we fed
our vocabulary (as illustrated in Figure 5) to the Pytorch
embedding tool [24], which allows users to train their own
embedding layer.

We defined our neural network architecture with 2 layers: a
hidden layer (where transformations take place) and an output
layer (which determines the final classification). The hidden
layer consisted of recurrent neural network nodes that were
constructed with a long short-term memory cell [25]. We
generated the probability for the output layer such that if the
output layer generated a number greater than zero and less than
0.5 for a given comment, it was classified as not related; if it
was between 0.5 and 1, it was classified as related. We used
CrossEntropy [26] to define the loss function for the training
process [27] and used the Adam optimizer [28] to optimize the
neural network.

Figure 5. Illustration of word and character tokenization.

Training and Evaluation Phase
We used a nested K-fold validation procedure to guarantee the
necessary model generality [29-31]. In the first iteration, we
randomly separated 20% of the data to build the validation data
set. The rest of the data (80%) were split into 10 separate folds
to be iteratively used as training and testing data. Figure 6 shows

the structure of the experiment. We selected K=10 so that we
had 10 models to check against our test data set. The purpose
of using K-fold cross-validation was to test how well the model
could perform on unseen data by training it on small, separate
chunks. K-fold validation was also considered useful in
comparing the efficacy of word tokenization and character
tokenization.
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Figure 6. Structure of data training experimentation.

The metrics used to evaluate the performance of the
classification model were precision (P), recall (R) and F1 score.
The calculation of these metrics is explained in equations 1, 2,
and 3, where related comments were treated as positive, and
not related comments were treated as negative. The following
notation was used: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN).

The precision metric measures how many related comments
were correctly classified out of all comments that had been
classified as related by the model. On the other hand, the recall
metric indicates how many comments were correctly classified
out of all the comments that were labeled as related by the
annotation process. To select a winning model, the value of

both precision and recall should be near 1. The F1 score is the
harmonic mean of precision and recall; this measure provides
a sense of model generalization. Accuracy (equation 4) is the
number of correct classifications out of all classifications made.

Assessment of Machine-Classified Comments
After identifying satisfactory hyperparameters for the model,
the model was used to automatically classify the complete data
set. To verify the quality of the automated results, a random
assortment of 912 comments (219 for the NYT, 222 for Reddit,
187 for Twitter, and 284 for YouTube) for each prediction
outcome (ie, “related” and “unrelated”) were read and given an
indicator to determine if the classification was correct according
to the classification criteria described in the section “Handling
Ambiguity and Other Complexities.” False positives (ie,
comments incorrectly predicted to be related) were further
labeled to identify the error made by the classifier using the
categories described in Table 4.
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Table 4. Description of false-positive error types.

DescriptionClassifier error type

Comment was centered on deceased rather than living kidney donationDeceased donation

Comment used phrases such as “I’d give a kidney” as a figure of speech or in a joking mannerFigure of speech

Comment had language that was too ambiguous to clearly determine its association with living kidney do-
nation

Insufficient information

Comment was entirely unrelated to living kidney donation (see discussion section for more information)Irrelevant

Comment mentioned kidney stones with no reference to living kidney donationKidney stones

Comment expressed opinions on policies related to kidney donation, such as opt-out versus opt-in or legal-
ization of kidney sales, with no information about how such policies might affect the commenter’s personal
decision regarding donation

Non–living kidney donation policies

Comment discussed challenges specifically for (or from the perspective of) a potential kidney recipient,
such as kidney failure and dialysis; no information about living kidney donation

Recipient, dialysis, or kidney failure

Comment discussed the monetary value of a kidney (specifically not used as a figure of speech or joke)Selling or money

Ethical Approval
The University of Louisville Institutional Review Board
provided approval exemption for this study (22.0458).

Results

In this section, we show the quantitative outcomes of our
analysis. A testing accuracy of 84% was achieved using the
following model hyperparameters: 10-character-gram
tokenization, 700 embedding layers, a batch size of 8, 50 hidden
layers, and a learning rate of 0.00001. Additionally, precision,
recall, and F1 score each achieved 84% in the test data. Once
the neural network was trained to achieve the above results, it

was used to automatically classify the remaining comments.
This yielded 11,027 related comments and 192,192 unrelated
comments. Results from further evaluation of the predicted
values, as discussed in the section “Assessment of
Machine-Classified Comments,” are shown in Tables 5 and 6,
sorted by comment source. Additional details on the further
evaluation can be found in Table S7 in Multimedia Appendix
3.

Table 7 shows the distribution of false positive errors by social
media source. We note that many of the irrelevant YouTube
comments can be attributed to a single popular video showing
an interview with a celebrity whose friend donated a kidney to
her.

Table 5. Summary results for sensitivity and specificity of postclassification data.

True negatives (N=812)False negatives (N=100)True positives (N=336)False positives (N=576)Sources

200 (24.6)19 (19)112 (33.3)107 (18.6)New York Times, n (%)

195 (24)27 (27)76 (22.6)146 (25.3)Reddit, n (%)

180 (22.2)7 (7)28 (8.3)159 (27.6)Twitter, n (%)

237 (29.2)47 (47)120 (35.7)164 (28.5)YouTube, n (%)

Table 6. Summary results for F1 macro, precision, recall, and accuracy of postclassification data.

Accuracy (total score of
comments was 62.9%), %

Recall (total score of com-
ments was 77.1%), %

Precision (total score of
comments was 36.8%), %

F1 macro (total score of
comments was 60.2%), %

Sources

60.785.551.170New York Times

47.173.834.258Reddit

46.81546.846.8Twitter

46.242.361.261.2YouTube
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Table 7. Count of error types by source.

Total (N=576)YouTube (N=164)Twitter (N=159)Reddit (N=146)New York Times (N=107)False positives

271001016Deceased donation, n

4834320Figure of speech, n

69156399Insufficient information, n

293114608039Irrelevant, n

1501500Kidney stones, n

3120425Non–living kidney donation policies, n

762723917Recipient, dialysis, or kidney failure, n

1721221Selling or money, n

Figure 7 shows the confusion matrices for predictions made
based on comments from the NYT, Reddit, Twitter, and
YouTube, respectively, followed by the confusion matrix for
the comments from all sources (in aggregate). We observe that
for each source—and overall—the model had greater numbers
of false positives than false negatives, illustrating a tendency
to overpredict comments as being related.

We observed that 107 of 336 (32.3%) of comments in the related
categories were on the topic of personal relationships (Table

S7 in Multimedia Appendix 3), which can reasonably be
expected, as these are currently the most common type of living
donations that take place. We also observed that 293 of 576
(50.1%) of false positives (ie, comments incorrectly predicted
to be related) were in the irrelevant category. This category
produced the greatest number of false positives from each
source. Table 8 shows the other top 2 categories that were most
prevalent in misclassifications, along with an example comment
to illustrate each.
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Figure 7. Confusion matrices for New York Times, Reddit, YouTube, Twitter, and aggregated comments. Clockwise from the top left corner, each
quadrant of the confusion matrix shows the true negatives, false positives, true positives, and false negatives. An ideal model will produce quadrants
in the top left and bottom right whose color is associated with high values (bright yellow colors), and quadrants in the top right and bottom left whose
color is associated with low values (very dark purple colors). NYT: New York Times.
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Table 8. Top 2 categories that were most prevalent in their misclassifications, with example comments. Comments are shown “as-is“ after undergoing
preprocessing.

Example commentsSources/categories

New York Times

“how about making organ donations an opt out process instead of opt in
everyone is automatically an organ donator unless they opt out several
european countries do this with much success”

Non–living kidney donation policies (25/107 misclassified comments)

“my mom was on dialysis for years and died at the age of i was seeing
what she went through i would never use dialysis i would get my affairs
in order make my peace with god and simply fade away”

Recipient, dialysis, or kidney failure (17/107 misclassified comments)

Reddit

“it really sucks but at that age i wouldn’t even give my grandma one it
probably wouldn’t even be recommended”

Insufficient information (39/146 misclassified comments)

“the point is that when you re dead you re dead being on the donor list is
the right thing to do no matter what and there is nothing that anyone can
say to change that there is no excuse for not being a donor in my eyes”

Deceased donation (10/146 misclassified comments)

Twitter

“i m going to this even if i have to sell my kidney”Figure of speech (43/159 misclassified comments)

“when good things happen to good people my friend s husband finally got
a kidney”

Recipient, dialysis, or kidney failure (23/159 misclassified comments)

"i don t know if it is a kidney stone all i know is it s been days and isn t
letting up i thought i maybe pulled a muscle but this isn t muscle pain for
sure"

Kidney stones (15/159 misclassified comments; this category was
unique to Twitter)

YouTube

“i ve been on dialysis for almost a year I am i m going next week for my
evaluation the while process scares me so bad it s so hard but i want it so
bad i ll do anything to be normal again”

Recipient, dialysis, or kidney failure (27/164 misclassified comments)

“mad respect for this man i would like the courage to do something like
this one day”

Insufficient information (15/164 misclassified comments)

Discussion

Principal Findings
This study confirmed that the comments available from the
internet can provide data on the general perception of living
donation. Our trained model identified 11,027 comments related
to LKD and 192,192 comments unrelated to LKD. Above, we
present a sample distribution of comments that were incorrectly
classified and their associated error types. There was a great
deal of nuance and subtlety in the comments that could cause
confusion for human classifiers, further increasing the difficulty
for the machine classifier.

Many users wrote comments expressing their opinions regarding
current policies. Though there was disagreement regarding how,
nearly all users were supportive of making organs and
transplants more accessible. There was notable support for a
policy that would give preference or priority to designated or
past organ donors when they face the need for organs. In the
context of compensation for donation costs, it was also common
to observe conversations regarding the legalization of organ
sales. The two sides of this were primarily concerns about taking
advantage of vulnerable populations and confidence in ethical
market self-regulation. The various sources from which the
comments were retrieved provided different kinds of comments.
Comments that contained opinions about policy were most

likely to be retrieved from the NYT, though they were also
common on Reddit. There were also several self-reported
accounts in the NYT and YouTube comments of someone or
their spouse having previously been a living donor.

The character-restricted nature of Twitter meant that
comprehensive ideas were less likely to be captured. Twitter
was also more likely to produce comments in which people
asked for donations or advocated for a loved one in need of an
organ. Meaningful comments from YouTube were more often
from people who had previous experience with transplants,
either as patients or donors. While many of the Reddit comments
were of little use, the “ask me anything” (AMA) subreddit
provided a veritable treasure trove of information. There were
threads written by people who had donated altruistically and
invited people to “AMA.” This format, more than any other we
encountered, seemed to yield the most thoughtful questions,
concerns, and even resolutions to those concerns (to paraphrase
one such person upon learning about a voucher system for the
donor’s loved ones: “I’ve considered doing this before and never
actually [done] anything. This has inspired me to sign up. Thank
you!”).

Though there were positive responses from many users, some
users were more cynical. One such user expressed the following:
“the risk to living donors is also downplayed...people are guilted
into acting as living donors only to find themselves at greater
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risk down the line.” Others wrote about frustrating experiences
with the medical system or other worries, but we did not observe
any blatantly false ideas in the comments. Lack of information
was much more common than possession of misinformation.

To efficiently compile relevant information from comments
and opinions found on the web, we used deep neural networks
trained with specific criteria-driven classification labels. With
this approach, we were able to develop a model that could
identify comments related to LKD with an expected accuracy
of 84%. Though further work remains to refine these results
and classify these related comments according to the relevant
factors, this first stage of classification indicates that the method
could potentially be a valuable tool to extract themes related to
barriers to and motivations for living donation. Because the
topic is so nuanced, well-defined classification criteria for
training data will be a vital part of developing a successful
model. It is vital to have multiple people collaborating on
training data annotation to ensure uniformity. Without these
measures, the viability of this approach becomes less certain.

We note that the sizeable number of comments classified as
irrelevant was to be expected to some extent. We suggest the
following reasons to explain why our model incorrectly
classified irrelevant comments as related to LKD: First, the size
of the training data was relatively small compared to the total
number of comments classified (1174/203,219). We project that
with more (and more correctly labeled) training data, the model
would yield better predictions. Second, models based on neural
networks tend to have generalization errors that are sometimes
identified as gaps [32]. Third, as mentioned above, there exists
a great deal of nuance in this topic, and certain words that have
no real significance may appear to the model as being important.
For example, “parts” could be seen as a word that indicates
“parts” of a body (ie, an organ), but it is simply a common word
used in many settings.

For deceased kidney donation, there are a handful of studies
that have utilized modern computer-science methods to analyze
motivations and challenges associated with kidney donation. A
recent study [33] discussed the use of natural language
processing to glean information about deceased donors and the
prospective utility of their kidneys. This information was
retrieved from the United Network for Organ Sharing’s
DonorNet program, in which organ procurement organizations
enter raw text about the donors’ medical and social history, the
history of their admissions, and other noteworthy information.
A similar study [34] gathered 342 Spanish articles that contained
the text “donacion de organos.” The authors found that a positive
perception of kidney donation may be a contributing factor to
the high rate of kidney donation in Spain. In another study [35],
social media posts were collected to study the limitations of
social messaging campaigns for deceased kidney donation.

Through the process of manual classification of training data,
we observed nearly all barriers noted in the prior literature listed
above, as well as early indicators of patterns. For example, the
data suggested that the most frequent factors seen in the
comments were directly related to the potential impact on
prospective donors: considerations of immediate costs and risks
of donating and the consequences of such a decision on those

close to a donor. Broader influences, such as culture and belief
systems, the influence of family members, and perceptions of
the medical system, were less relevant to decisions related to
living donation and more relevant to decisions related to
deceased donation. In our manually labeled data, we did not
observe the influence of HCPs as a factor that influenced a
prospective donor’s decision to donate. Prior research indicates
that barriers to donation attributable to HCPs include, for
instance, lack of communication between transplant and dialysis
teams, lack of training and information among HCPs, and
negative attitudes held by some HCPs toward LKD [10].

Our study also recognized that the content and the quality of
comments varied rather significantly depending on where they
were retrieved. The AMAs of Reddit invited people to ask
whatever questions they had, to be answered by someone who
had been through the process personally. The downside of this
particular resource is that there were only a few AMAs from
living kidney donors. Comments from the NYT were more
dependent on the content of the article to which they were
attached, had no dialogue with the author, and were more
conducive to debates on policy than to answering questions
from curious prospective donors. Further analysis may provide
greater insights into what kinds of internet sources yield the
most meaningful information.

Limitations and Future Work
These collected data provide several opportunities for research
on LKD. The data can be used for more complicated analysis,
such as topic modeling and clustering, with the purpose of
detecting barriers and motivations in multisource data sets.
Future work may consider the following: instead of a first-stage
binary classification, it may be beneficial to consider 4
classifications, such as “irrelevant,” “recipient-related,”
“deceased donation,” and “LKD-related.” As deceased donation
and recipient-related issues are commonly intertwined with
conversation about policies, such identification may also help
mitigate the misclassification of those topics and reduce the
number of entirely irrelevant comments that are erroneously
classified as related. Other methods, such as multi-task learning
models, could make predictions for comments based on their
media source without requiring an independent model for each
source.

Additionally, we assumed that each comment should be read
independently to aid the model classification. However, it is
sometimes possible to maintain an association between
comments. For example, in Reddit, each comment has an ID,
and if it is a reply, there is a parent ID connecting it to the
original comment to which the user is replying. By using this
association, the assumption of independence may not be
necessary, because it can be better understood that the comment
is being written (or not written) in the context of LKD. This
would likely help reduce the number of comments
which—alone—do not contain enough information to determine
their relevance to LKD (“insufficient information”).

We observed that there was very little propagation of myths or
blatantly false ideas. Among comments that discussed deceased
donation (ie, that were unrelated to LKD), there were cynical
comments that doctors might reduce life-saving efforts for a
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dying patient so that an organ could be harvested quickly. While
cynicism or frustration with personal experiences appeared in
some related comments, misconceptions about LKD were
usually nested in expressions of fear or concern (the “risk of
donation” category, for example). We suggest that users are
more likely to have no (or very little) information about LKD
than to have incorrect information. The comments generally
indicated that people were curious and prone to ask questions
about LKD and wanted to make suggestions about how to
increase the number of living donors.

We also acknowledge that more comments could be added to
the training data, as the given number of labeled comments was
a result of the time-consuming nature of the annotation process.
In this exploratory study, we focused on estimating the necessary
sample size through a human-annotation process and defining
possible labels for the first time. The labeled comments are
available upon request from the authors. Finally, we
acknowledge that this data is not necessarily representative of
all populations. Though internet access continues to expand
globally, the distribution of users is not uniform, and each source
will have different user bases. For example, according to the
2022 Global Digital Overview Report [36], Reddit users are
twice as likely to be men than women, and other studies,
discussed in Amaya et al [37], have estimated that between 80%

and 90% of global Reddit users are aged 18 to 34 years. Each
other source is likely to have its own unique demographic
features that should be considered when making inferences from
the data.

There is a significant need to understand why people do or do
not choose to be living kidney donors. Although prior literature
has made contributions toward understanding the context
surrounding donation, there is no publicly available data set
with information about the thoughts of the broader population
on the matter. This project has taken one step toward filling this
gap by scraping 203,219 unique internet user comments and
tweets and developing a machine-learning classification model
to identify comments related to LKD. The documents classified
as relevant to LKD were compiled into a single database and
are available upon request from the authors. With this database,
the groundwork has been laid for more comprehensive analysis
of the feelings and ideas that people have surrounding LKD.
The data could also be used to identify common misconceptions
about donation or information that could lead to changing minds.
While rigorous classification of decision-making factors remains
to be performed, the findings from this study show that machine
learning is a promising tool for the capture and classification
of internet comments related to LKD.
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Abstract

Background: Patient activation is defined as a patient’s confidence and perceived ability to manage their own health. Patient
activation has been a consistent predictor of long-term health and care costs, particularly for people with multiple long-term health
conditions. However, there is currently no means of measuring patient activation from what is said in health care consultations.
This may be particularly important for psychological therapy because most current methods for evaluating therapy content cannot
be used routinely due to time and cost restraints. Natural language processing (NLP) has been used increasingly to classify and
evaluate the contents of psychological therapy. This aims to make the routine, systematic evaluation of psychological therapy
contents more accessible in terms of time and cost restraints. However, comparatively little attention has been paid to algorithmic
trust and interpretability, with few studies in the field involving end users or stakeholders in algorithm development.

Objective: This study applied a responsible design to use NLP in the development of an artificial intelligence model to automate
the ratings assigned by a psychological therapy process measure: the consultation interactions coding scheme (CICS). The CICS
assesses the level of patient activation observable from turn-by-turn psychological therapy interactions.

Methods: With consent, 128 sessions of remotely delivered cognitive behavioral therapy from 53 participants experiencing
multiple physical and mental health problems were anonymously transcribed and rated by trained human CICS coders. Using
participatory methodology, a multidisciplinary team proposed candidate language features that they thought would discriminate
between high and low patient activation. The team included service-user researchers, psychological therapists, applied linguists,
digital research experts, artificial intelligence ethics researchers, and NLP researchers. Identified language features were extracted
from the transcripts alongside demographic features, and machine learning was applied using k-nearest neighbors and bagged
trees algorithms to assess whether in-session patient activation and interaction types could be accurately classified.

Results: The k-nearest neighbors classifier obtained 73% accuracy (82% precision and 80% recall) in a test data set. The bagged
trees classifier obtained 81% accuracy for test data (87% precision and 75% recall) in differentiating between interactions rated
high in patient activation and those rated low or neutral.
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Conclusions: Coproduced language features identified through a multidisciplinary collaboration can be used to discriminate
among psychological therapy session contents based on patient activation among patients experiencing multiple long-term physical
and mental health conditions.

(JMIR Med Inform 2022;10(11):e38168)   doi:10.2196/38168

KEYWORDS

responsible artificial intelligence; machine learning; cognitive behavioral therapy; multimorbidity; natural language processing;
mental health

Introduction

Background
One psychological therapist can vary significantly from another
in how effective they are for their patients [1,2]. Furthermore,
individual psychological therapists do not necessarily, on
average, improve their effectiveness with time or experience
[3]. In addition, the beneficial effects of psychological therapies
have not grown in many areas, and in some cases, effectiveness
has declined over time [4,5]. Given that time and experience
alone do not seem to improve effectiveness, there are currently
few evidence-based means of helping psychological therapists
improve their efficacy. This situation is unhelpful for patients,
with significant differences in effectiveness among the
psychological therapists they may see. It is also unhelpful for
psychological therapists and psychological therapy services
with few scalable, cost-effective means of supporting
practitioners to improve their effectiveness. There have been
calls for systematic, objective, and routine means of measuring
the quality of psychological therapy content [6,7], and the
application of artificial intelligence (AI) may offer part of the
solution, especially in combination with text classification and
other natural language processing (NLP) techniques.

AI is defined as a form of technology that (1) is to some degree
able to perceive the environment and real-world complexity;
(2) collects and interprets information inputs; (3) can perform
decision-making, including the ability to learn and reason; and
(4) can achieve predetermined goals [8]. Increasingly, AI has
been used to categorize and evaluate the contents of
psychological therapy sessions in research. In face-to-face
psychological therapy, supervised learning models have
achieved reliable automation of psychological therapy
competency assessments, with particular advances in
motivational interviewing and more recently cognitive
behavioral therapy [9,10]. In messaging- and internet-based
psychological therapy, a bottom-up, unsupervised learning
approach has been used to identify the types of language used
where clinical improvement is significantly more likely and,
conversely, where it is less likely [11,12].

There are several potential benefits to these approaches. First,
automated evaluation of psychological therapy could offer
scalable, routine assessment of psychological therapy
interactions where human coding can be too time consuming
and costly [13,14]. Second, AI offers the potential to improve
identification and verification of prognostic markers in
psychological therapy contents, with associated trainable skills
for therapists, which may either be difficult to identify from
human coding or where important markers are hard to discover

because research of sufficient scale is impractical with human
raters. Overall, this approach could offer psychological therapists
ongoing feedback on their practice, as routinely recommended
[15]. This would allow continual improvements in effectiveness
when coupled with, for example, deliberate practice techniques
to enhance therapeutic microskills [16,17].

However, none of the current uses of AI in psychological
therapy contents have focused on patients experiencing multiple
comorbidities (or multimorbidity). This is significant, given
that differences among therapists are more pronounced among
patients with more complex problems, and patients experiencing
multimorbidity generally have poorer prognoses [18]. In
addition, more active participation and engagement during health
care consultations can have an especially positive effect on
long-term physical health, mental health, and service use among
patients experiencing multimorbidity [19]. This is particularly
important because the majority of treatment and care for
multimorbid conditions is undertaken by the patients themselves
[20]. Furthermore, the ability of patients in this group to
self-manage their care is highly affected by clinician
responsiveness and interaction style [21,22]. This suggests that
specific in-session process markers may be suitable for
automated identification and classification in a patient group
where psychological therapy is at greater risk of failure, and
interaction style can have an important impact on engagement
and prognosis. Current evidence has also been largely restricted
to either face-to-face psychological therapy or messaging-based
treatment. Less attention has been paid to the large and growing
use of videoconferencing psychological therapy since the onset
of the COVID-19 pandemic [23].

The important issues of algorithmic trust and participatory
approaches to development have also not been sufficiently
addressed in current applications of AI to psychological therapy.
In recent years, significant concerns have arisen regarding the
increasing pervasiveness of algorithms and the impact of
automated decision-making in health care, alongside the poverty
of research into applying AI systems in practice [24]. This means
that AI systems are being developed without sufficient
involvement or consideration of stakeholders affected by AI
decisions. Particularly problematic is the lack of transparency
surrounding the development of these algorithmic systems and
their use [25].

Within the field of mental health, the engagement and
involvement of key stakeholders, including service users, have
been identified and recommended as part of the process of
developing trustworthy AI applications [26,27]. Stakeholder
engagement is one of the pillars of responsible research and
innovation [28] and is central to this study to increase the
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trustworthiness and relevance of emerging AI applications in
psychological therapy. As well as increasing trust in AI, the
involvement of stakeholders (including service users) can help
address systematic biases in AI systems that can replicate human
prejudices in the decisions made [29,30]. At this stage in the
nascent use of AI for analyzing psychological therapy content,
it may be important to establish methods for using AI
responsibly in this particular context [31].

A recently developed psychological therapy rating tool may
provide an opportunity to address some of the current gaps in
the evidence around the use of AI for psychological therapy
evaluation. The consultation interactions coding scheme (CICS)
[32] was developed to rate individual psychological therapy
interactions, turn by turn, based on patient activation. Patient
activation has become a significant, well-used, and
well-researched concept in health care, particularly for people
experiencing multimorbidity [33,34]. Patient activation is the
degree to which a person feels confident and able to be actively
involved in managing their own health [35]. Patient activation
is distinct from other related motivation and engagement
constructs because it more specifically focuses on how
engagement and motivation are expressed in consultation
interactions between health care users and health care
professionals [36]. The patient activation measure (PAM) is the
established means of assessing patient activation in research
and clinical practice [37]. However, as a retrospective
questionnaire, the PAM may not be able to fully inform
interventions designed to increase patient activation, which
often involve adjusting interaction style during health care
consultations [38,39]. Therefore, an assessment of patient
activation focused on interactions within consultations could
be instructive to health care professionals.

The CICS classifies interactions into themes or interaction types
(eg, action planning) and assigns a rating to each interaction
type based on the level of patient activation. Higher scores
denote greater patient activation. Ratings on the CICS have
been shown to be associated with working alliance, therapist
competence, multiple physical and mental health outcomes, and
important clinical changes within therapy among patients with
multimorbidity receiving psychological therapy over
videoconferencing [32,40,41]. The CICS could address some
of the key gaps in AI use for psychological therapy, particularly
among patients with multimorbidity and in applications of
remote psychological therapy. It may, therefore, offer a basis
for an explainable, automated psychological therapy rating tool.

Aims
This study’s aims were as follows:

1. Involve end users and stakeholders in applying participatory
elements of an explainable AI methodology to coproduce
an initial, automated version of the CICS (autoCICS).

2. Assess the performance of the autoCICS ratings compared
with human rating reliability.

3. Identify key language features associated with high and
low patient activation as well as different interaction types.

Overall, a participatory methodology, which helps to build trust
among stakeholders, was applied to the responsible design and

development of an autonomous psychological therapy rating
system.

Methods

Data Source
Source data included 128 hours of audio data from remotely
delivered cognitive behavioral therapy (rCBT) from 53
participants in a randomized controlled trial of rCBT versus
usual care for people with severe health anxiety using urgent
care at a high rate [42]. Participants were randomly allocated
to rCBT plus usual care (n=79) or usual care alone (n=77). There
were 78 participants randomized to rCBT, and 1 participant was
randomized to usual care but offered rCBT in error. Their data
are included in the analysis. Therefore, the total sample is 79.
Participants randomized to rCBT were offered up to 15 sessions
of rCBT delivered via videoconferencing software (54/79, 68%)
or the telephone (14/79, 18%; the remaining participants—11/79,
14%—did not attend any sessions). Most of the participants
were not seeking psychological therapy when recruited (69/79,
87%), and most reported multimorbidity (75/79, 95%).

The randomized controlled trial recruited 156 participants from
UK primary and secondary health care settings. Participants
were adults (aged ≥18 years) who had received ≥2 unscheduled
or urgent consultations with any health care provider in the
previous 12 months and were identified as highly anxious about
their health. Participants were excluded if they were
experiencing an acute medical condition requiring ongoing
assessment, but those with comorbid common mental health
problems or chronic physical conditions such as depression or
chronic pain were intentionally included.

Of the 79 possible participants, 53 (67%) were included, having
(1) attended ≥1 rCBT sessions and (2) consented to treatment
sessions being recorded and extracts anonymously reported.
The structured clinical interview for the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition [43],
was completed with participants at baseline, assessing for criteria
of mental disorders. Long-term physical health conditions were
also recorded from baseline patient interviews.

Four psychological therapists delivered rCBT using an
established treatment protocol [42]. Of the 4 therapists, 2 were
women, and 2 were men; 2 had doctoral-level clinical
psychology training, and 2 had master’s-level psychological
therapy training.

Of the 128 included sessions, 98 (76.5%) were first and second
sessions, and 30 (23.4%) were identified as sessions of potential
clinical importance: occurring directly before a sudden sustained
improvement, sudden deterioration, or dropout or were the
center session in a series where little or no outcome change
occurred. The group of 98 sessions (total 42,064 turns of speech)
was used to develop and train the initial model, and the other
30 sessions (total 9,239 turns of speech) were used as a holdout
sample to test the model once developed. This split fitted with
the separation of early sessions and clinically relevant later
sessions available. It also approximated to the established 80:20
percentage split for training and test data sets.
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Ethics Approval
Ethics approval was obtained from the National Research Ethics
Service, London-Riverside Committee (14/LO/1102).

CICS Categories
The CICS categorizes each in-session turn of speech and rates
the level of patient activation. A turn of speech is defined as
the words spoken by one party until the other party speaks;
when the other speaker begins speaking, the first speaker’s turn
of speech is deemed to have ended. First, a topic is assigned for
the turn of speech from ≥1 of the CICS themes using observable
criteria (Textbox 1).

Once an interaction theme is allocated, the level of patient
activation present in this interaction is rated. Scores range from
+2 for interactions showing observable, high levels of patient
activation and engagement to −2 for interactions showing
observable indications of low patient activation and
disengagement. The CICS rating level allocated is linked to
established levels of patient activation (Table 1 presents overall
level descriptors for CICS themes and comparator patient
activation levels; Table 2 presents an example of level
descriptors for the evaluations of self or therapy theme). The 2
higher levels of patient activation (3 and 4, equivalent to CICS
+1 and +2) are linked with positive health outcomes, and the 2
lower levels (1 and 2, equivalent to CICS −2 and −1) are
associated with poorer health outcomes across a range of

domains [44]. The CICS coders were trained using a published
manual [45].

CICS ratings are defined on the basis of a therapist-patient
interaction combined. This aims to address the key issue of
responsiveness in psychological therapy. Therapist
responsiveness is defined as behavior that is influenced by
emerging context, such as a therapist changing their verbal
response in line with changes in patient presentation [46]. This
kind of responsiveness is an important contributor to therapists’
effectiveness [47]. Accounting for this type of responsiveness
aims to give therapists feedback on their behavior within specific
patient contexts; for example, previous machine learning studies
of text-based psychological therapy have identified therapeutic
praise (eg, “Well done”) from therapists as predictive of better
outcomes [11]. However, these therapist utterances must occur
in the context of specific patient interactions, which is not
accounted for when only the therapist response is considered.

All CICS themes have achieved good-to-excellent interrater
reliability (intraclass correlation coefficients=0.60-0.80), and
most achieved convergent validity with cognitive behavioral
therapy competence and working alliance (rss=0.72-0.91). The
problem or context description interaction theme (rated present
or absent) has shown moderate-to-substantial interrater
reliability (κ=0.54-0.61) and negative associations with working
alliance and therapist competence (rs=−0.71 and −0.47) [32].

Textbox 1. Description of consultation interactions coding scheme themes.

Interaction theme and description

• Action planning and idea generation: discussion of specific plans or potential plans for activities outside the session

• Evaluations of self or therapy: offering a personal assessment of therapy or of one of the parties in therapy

• Information discussion: giving, receiving, or requesting specific information

• Noticing change or otherwise: where changes are reported that relate to therapeutic work, or a lack of change is described despite efforts to bring
it about

• Other: where interactions were not related to therapy; most commonly, these interactions involved resolving technical issues associated with
videoconferencing

• Problem analysis and understanding: an analysis or understanding of a problem is given or received

• Problem or context description: description of problems or contexts surrounding problems

• Structuring and task focus: where verbal efforts to structure, plan, or progress the session are offered or sought; conversely, where sessions deviate
from any relevant topic without intervention from either party
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Table 1. Consultation interactions coding scheme (CICS) scores and equivalent, mapped patient activation levels (adapted from the study by Deeny
et al [20]).

PAM-level descriptor and percentage of patients at each levelbMapped

PAMa level

CICS-level descriptorCICS level

Level descriptor: “I’m my own advocate.” Patients who are confident
in developing and adopting behaviors and practices to manage their
health, such as care planning or self-monitoring. Such individuals
may be connecting with supportive others (13% of respondents)

4A high level of patient activation and focus is ob-
servable; an interaction usually led by the patient.
This would include patient-initiated therapeutic
activity not cued or primed by the previous thera-
pist interaction

+2

Level descriptor: “I’m part of my health care team.” Patients who
seem to be taking action, for example, setting goals for their health
(such as adhering to a medically advised diet) or collaborating in
development of a care plan with health care providers, but may still
lack the confidence and skill to maintain these (46% of respondents)

3Significant patient activation is observable but
with less leadership. Typically, this would be a
therapeutically active interaction, led or guided
by the therapist, which the patient endorses and
develops with their contributions

+1

N/AN/AcThese are interactions where few or no observable
positive or negative interaction features are appar-
ent with regard to patient activation. These inter-
actions are deemed to be neutral—neither benefi-
cial nor detrimental to the outcome. The same
code is applied if a theme is absent. This includes
interactions where therapists make suggestions or
comments with little or no observable sense of
how the patient receives them

0 or neutral

Level descriptor: “I could be doing more.” Patients who may manage
some low-level aspects of their health but struggle in many aspects
of their care, such as engaging with care planning (19% of respon-
dents)

2Hypothesized to be therapeutically unhelpful in-
teractions in a minor way. This includes interac-
tions that show the start of unaddressed disagree-
ments or reluctance to engage with therapeutic
activities. Low levels of patient activation and
involvement are observed

−1

Level descriptor: “My clinician is in charge of my health.” Patients
tend to feel overwhelmed by managing their own health and may
not feel able to take an active role in their own care. They may not
understand what they can do to manage their health better and may
not see the link between healthy behaviors and good management
of their condition (22% of respondents)

1Hypothesized to be interactions that would be
contradictory to most therapeutic guidance. This
would include argumentative or obstructive inter-
actions where the patient and potentially the ther-
apist appear disengaged, unfocused, and opposi-
tional to therapeutic activity

−2

aPAM: patient activation measure.
bData taken from a UK sample of 9348 primary care patients [20].
cN/A: not applicable.
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Table 2. Level descriptors and exemplar quotes for the evaluations of self or therapy consultation interactions coding scheme theme.

Exemplar quoteLevel descriptoraLevel

Patient-initiated statements of self-efficacy, patient acknowl-
edgment or pride at therapeutic achievement, or positive
evaluations of therapy or the therapist that are initiated by
the patient

+2 • Patient: “Like I had a panic attack on Friday so randomly...and I was so
good, like I dealt with it so well...I was so good at sort of, like, joking
around with myself and I was like yeah, just stay here, just like breathe,
like, and I remember thinking, like, I know that, like, no one, these people
sitting next to me, literally have no idea because part of me was just like
right just carry on because it’s going to pass, it’s going to pass.”

• Therapist: “Yeah.” [P01078]

Therapist-initiated positive evaluation; as in the previous
row, patient agrees with development and summary orcor-
rections

+1 • Therapist: “It sounds like you did exactly the right thing...how you ad-
dressed your worry; you know reflecting on it and actually, you know,
taking action...rather than just sitting ruminating and going deeper into
worry. Sounds like you did the right thing.”

• Patient: “Yeah. I think reflecting is the best thing I ever did because I was
so scared, I was so worried about the outcome...but when I looked at it,
it’s not my responsibility.” [P01108]

Therapist-initiated positive evaluation; patient acknowl-
edges with no development or very low–level acknowledg-
ment by the patient

0 • Therapist: “You handled those thoughts well by, you know, not letting
them become more catastrophizing by recognizing for what they were
and managing to handle them pretty well.”

• Patient: “Mmm.” [P01096]

Therapist’s positive evaluations, as in the previous row,
are undermined to some degree by the patient or somewhat
negatively focused self-evaluations or statements about
therapy or therapist

−1 • Therapist: “Yeah, that’s huge. How do you feel about yourself, given that
you’ve done all this stuff this week?”

• Patient: “Well, I’m really pleased with this week, but I’m still cross about
the things that I didn’t do, as opposed to being pleased about the things
that I did do.” [P03014]

Self-denigrating or self-critical statements or a self-critical
focus on therapeutic tasks that have not been completed to
the exclusion of those that have been completed by the
patient

−2 • Patient: “I wouldn’t say that I have that much control over my way of
dealing with things.”

• Therapist: “Really?”
• Patient: “Yes.” [P01007]

aItalics add emphasis to the key component of the level descriptor.

Focusing on Problem or Context Description
The most reliable finding from predictive modeling with the
CICS so far is that the greater the proportion of sessions taken
up with problem or context description interactions, the poorer
the outcome. In this way, problem or contextdescription
interactions were predictive of poorer generalized anxiety, health
anxiety, depression, quality of life, and general health across a
12-month follow-up [41]; they also negatively predicted
well-being rated across therapy sessions and significantly
reduced in frequency directly before sudden sustained outcome
improvements [40]. Despite being associated with poorer
outcomes, problem or context description interactions are
conceptualized as neutral, not negative, interactions—describing
problems is a necessary and normal part of psychological
therapy; however, excessive focus on problem description alone
may crowd out space for other types of interactions, particularly
those where higher patient activation is indicated and greater
active engagement may be stimulated. Therefore, problem or
contextdescription interactions are scored present or absent as
opposed to higher or lower patient activation as in the case of
other interaction themes, with the aggregate score being the
percentage of the session rated for the theme.

Given the central importance of problem or context description
interactions to the prognostic validity of the CICS, we first
focused autoCICS classification modeling on identifying

problem or context description interactions versus other
interactions. Second, given the importance of higher patient
activation across the other CICS interaction themes, autoCICS
classification modeling also focused on identifying interactions
categorized as higher versus lower levels of patient activation.

Data Preprocessing
Each session was transcribed verbatim, with any identifying
information removed during transcription, and transcripts were
then checked for anonymity by the raters. Each transcribed turn
of speech was coded in NVivo software (version 12.0; QSR
International) by three trained raters using the CICS (SM, CM,
and NM). A third pass was carried out in preprocessing to assign
a master code to each turn of speech accounting for the previous
raters’ decisions. Overlapping codes were also removed in the
master code because they would not be processed effectively
when generating classification models in the autoCICS
approach. The two possible positive ratings on the CICS (+1
and +2) were collapsed into a single positive category (1), and
the possible neutral and negative ratings (0, −1, and −2) were
collapsed into a single negative category (0), sacrificing some
granularity in the data to increase data subgroup sizes used to
train the predictive models. General demographic features were
added as predictor variables alongside language features,
including participant age and sex, alongside therapist sex.
Features were also added to represent the natural grouping of
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transcribed speech: speech from the same patient, as well as
interactions occurring at the beginning, middle, or end of a
session (dividing the total turns of speech into three). Minimal
demographic features were used with the aim of both addressing
common end-user concerns about data security, particularly
with such sensitive data being used, and minimizing potential
to propagate biases in AI systems [48,49]. Language features
were excluded where all values were zero. For models
classifying interaction themes, original CICS codes were
converted to problem or context description interactions versus
other interaction themes combined.

Coproduced Linguistic Feature Extraction
The autoCICS development team was deliberately assembled
to ensure that it comprised key research and clinical stakeholders
with regard to the characteristics of an automated psychological
therapy rating tool. The team comprised 2 psychological
therapists and a psychological therapy assistant (SM, NM, and
CM, respectively), who offered clinical expertise; 3 service-user
researchers (MR, FH, and DW), who offered patient-related
knowledge and experience; an applied linguist (DH), who
contributed expertise on linguistic functions and patterns; an
AI ethics researcher (EPV); and an explainable AI researcher
(JC), who added an understanding of how participatory

methodology could be meaningfully translated into NLP
features. The team members were separately surveyed about
what language markers in patient-therapist interactions they
thought might be indicative of greater patient activation—that
is, active engagement, involvement, and ownership of the
therapeutic process. The team members were also asked what
language markers they felt might indicate a patient’s
disengagement and withdrawal from therapeutic processes. The
features identified were then collaboratively translated into NLP
features by three other team members: an NLP researcher (YL)
and two digital research experts (TJ and GF). Table 3 presents
examples of the language features suggested by different
disciplinary groups within the team (refer to Multimedia
Appendix 1 for the final language features used in validation
with nonsignificant features removed). This process aimed to
generate understandable language features from different
relevant perspectives for the future product’s end users. This
methodology aimed to enhance transparency and involve domain
experts in selecting input features rather than unsupervised
learning from the data, which would likely be less interpretable.
Language features were extracted using the Python Natural
Language Toolkit (NLTK Project) and the Python library,
TextBlob.

Table 3. Examples of suggested language features deemed indicative of greater patient activation.

Related studySuggestion source and language feature

Service users

Coppersmith et al [50]Less profanity (swear words and curses)

Al Mosaiwi and Johnstone [51]Fewer absolutes (always, never, and everything)

Strohm and Klinger [52]Fewer maximizers (worst and most)

Psychological therapists

Calvo et al [53]Positive sentiment (happy, glad, and good)

Calvo et al [53]Intensity of positive sentiment (polarity and frequency)

Arseniev et al [54]Lower ratio of illness: wellness terminology

Applied linguist

Van der Zanden [55]Fewer deontics (eg, must, should, and ought)

Jeong [56]Fewer qualifier words (eg, but and though)

Rude et al [57]Ratio of plural: singular first-person pronouns

Explainable artificial intelligence researcher

Hirschberg et al [58]Longer sentences (number of words)

Pestian et al [59]Longer words (number of characters)

Pestian et al [59]Lower Flesch-Kincaid readability score (more complex sentences)

Machine Learning
A bagged trees algorithm was used to classify patient activation
level, that is, differentiating between interactions rated positively
(+1 or +2) and those rated negatively or neutral (−1, −2, or 0).
The model used a constant weight of 3 for misclassified
instances at level 1 to penalize misclassifications in the less
frequent class. The constant of 3 was reached through algorithm
optimization during training. A k-nearest neighbor algorithm
was used to classify interaction types; specifically,

differentiating between problem and context description
interactions and other interaction types, given the prognostic
importance of these interactions. Both models were developed
using MATLAB (version 2021a; MathWorks, Inc). The standard
implementation from MATLAB uses hyperparameter tuning
intrinsically. Exploratory modeling also evaluated the
classification of other, less frequent interaction types rated on
the CICS (eg, evaluations of self or therapy). The synthetic
minority oversampling technique [60] was initially applied to
augment the data, but it did not significantly improve the results;
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therefore, it was removed, particularly given that highly
unbalanced data set and potential clinical use.

Results

Sample Characteristics
The included participants were predominantly White British
(40/53, 75%), and three-quarters (40/53, 75%) were female. All
participants had been assessed as experiencing severe health

anxiety using the short health anxiety inventory, but all
participants reported additional comorbidities. On average,
participants met criteria for 7 (SD 3.7) mental disorders from
the structured clinical interview for the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition, assessment, most
commonly generalized anxiety disorder. Participants also
reported a mean 1 (SD 1.15) additional chronic physical health
condition, most commonly chronic pain (refer to Table 4 for
participant demographics and clinical characteristics).

Table 4. Demographics and clinical characteristics of participants (N=53).

ValuesVariable

Demographics

40 (75)Sex, female, n (%)

36 (15)Age (years), mean (SD)

Ethnicity, n (%)

40 (75)White British

13 (24)Other

6 (11)Unemployed, n (%)

Clinical characteristics

7 (3.7; 0-16)SCIDa diagnoses, mean (SD; range)

35 (66)Generalized anxiety disorder, n (%)

34 (64)Hypochondriasis, n (%)

33 (62)Somatoform disorders, n (%)

32 (60)Current depressive episode, n (%)

32 (60)Panic disorder, n (%)

1 (1.15; 0-6)Long-term physical health problems, mean (SD; range)

13 (25)Chronic pain, n (%)

5 (9)Chronic fatigue, n (%)

5 (9)Functional neurological disorders, n (%)

4 (8)Irritable bowel syndrome, n (%)

4 (8)Arthritis, n (%)

4 (8)Diabetes, n (%)

aSCID: structured clinical interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition.

Data Characteristics
Problem or context description interactions were the most
commonly coded CICS theme, accounting for 54.6%
(22,967/42,064) of the interactions in the training data set and
46.8% (4324/9239) of the interactions in the test data set.
Conversely, interactions involving patients’ evaluations of self
or therapy were the least coded interaction type, accounting for
2.4% (1010/42,064) and 3% (277/9239) of the training data set
and test data set, respectively.

Interaction Classification
Given that the data set was imbalanced, F-scores are reported
alongside accuracy scores because they are less sensitive to
class imbalance. For the model based on a k-nearest neighbor
algorithm used to identify CICS-rated interaction themes

(correctly identifying problem or context description interactions
versus other interactions), an overall accuracy of 73%
(precision=82%, recall=80%, and F-score=73%) was observed
in the test data set. The model used to classify the CICS-rated
patient activation level (positive versus negative or neutral)
obtained an 81% accuracy (precision=87%, recall=75%, and
F-score=87%) in the test data set.

Exploratory models aiming to classify less frequent interaction
themes (action planning and idea generation, evaluations of
self or therapy, information discussion, noticing change or
otherwise, problem analysis or understanding, and structuring
and task focus) obtained lower-than-average F-scores of 20%
because of very high class imbalance.
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Discussion

Principal Findings
This study indicates that collaboratively and transparently
developed AI can be used to discriminate between high and low
patient activation from turns of speech in psychological therapy
sessions. The language features used also discriminated between
problem or context description interactions and other interaction
types. However, the model could not discriminate among other
interaction types on the CICS (eg, action planning versus
problem analysis or understanding). The codevelopment
approach applied may help to improve trust in the decisions
made by an autoCICS psychological therapy rating tool among
end users, including patients, psychological therapists, and
service managers [31]. The model was also enhanced by
including key stakeholders in the selection of language features
that formed the basis of the prediction models, rather than using
an exclusively data-driven approach likely to end in more
opaque and potentially spurious processes that have reduced
trust in AI generally [48]. The involvement of stakeholders in
this way also helps to develop a fit-for-purpose system within
health care when AI applications often lack adequate end-user
involvement [61]. Overall, the findings suggest that reasonable
predictive accuracy was achieved with the participatory
methodology applied (involving key stakeholders in the AI
model development).

Comparison With Prior Work
By including participatory approaches to enhance trust and
interpretability, this study builds on existing research where AI
has been used to automate psychological therapy rating tools
[10,62]. Similar levels of agreement with human rating
reliability were achieved in this study compared with previous
attempts to automate psychological therapy turn-by-turn ratings
[9,63]. This suggests that the simplifications made to the
modeling for greater interpretability have not been excessively
detrimental to model performance. An automated assessment
that takes account of both therapist and patient utterances in
this study may also help build a clearer understanding of
language features associated with therapeutic responsiveness
in future [47]. This is particularly relevant because many current
machine learning models focus on either therapist or patient
utterances alone [9,11]. Whereas most previous supervised
learning models have focused on in-session behaviors related
to a specific therapeutic model (eg, motivational interviewing
[10]), the autoCICS in this study assesses patient activation—a
construct that may have relevance across psychological therapy
models and treatments in other domains [64]. Furthermore, this
study expands the range of patients included in this type of
modeling with a patient sample experiencing multimorbidity at
baseline. Given the importance of health care professionals’
interaction style and responsiveness to enhance patient activation
during consultations with people experiencing multimorbidity,
an automated interaction assessment has potential for broad
application in improving care [21]. By including the now often
used modality of remote psychological therapy, this study also
expands the range of psychological therapy delivery modalities
where NLP has been applied.

Limitations
This study used a relatively small sample size for machine
learning studies. This means that the breadth of interaction types
and language features used may be restricted, making the results
less generalizable. However, the sample size is typical compared
with previous studies of NLP in psychological therapy [65].
The smaller sample size also limited use of more complex
modeling methods that could have improved classification
precision and sensitivity, especially when considering more
levels of granularity with regard to the interaction types and
patient activation levels. Relatedly, a limited number of
therapists were included in the data set; a more representative
sample of therapists may have helped identify and define
important differences among therapists who could be included
in models to improve accuracy. A larger number of therapists
could also help to discriminate among different clustered
therapist phenotypes, where different interaction styles could
be attributed to specific therapist groups.

In exploratory modeling, the classifier accuracy in less frequent
classes of interaction was much lower. This suggests that either
there was insufficient data to train the model, or the language
features applied in the models did not discriminate among these
interaction themes very well. The result is that the current
classifier could not offer refined, granular feedback to
practitioners on more detailed aspects of their session contents.
Another possible explanation for the classifier’s poor
performance in discriminating among different interaction types
(eg, structuring interactions versus information giving) is that
the same language features were used to classify both patient
activation level and interaction type. Different language features
may have given clearer differentiation on interaction types.

Although the CICS-labeled data used to train the model in this
study aimed to address therapist responsiveness by combined
ratings of therapist and patient data, this prevents an
understanding of individual contributions to patient activation
from either therapist or patient; for example, where a patient’s
interaction indicates movement toward greater engagement, but
the therapist’s response undermines this. The current
classification process would struggle to identify these occasions,
which could be important for therapist feedback.

Although this study indicates that the autoCICS achieved good
discriminative validity, it is unclear whether this would be
sufficiently accurate for reliable use in clinical settings.
Furthermore, the practical, clinical value of the classifier would
need to be evaluated in practice before significance could be
assessed. Therefore, further model validation is required, and
the feasibility and acceptability of the tool in clinical practice
should be assessed, given the catalog of implementation failures
for AI tools in health care more broadly [24].

Future Research
The automated ratings presented in this paper require external
validation to clarify whether interactions rated as high in patient
activation associate with assessments of patient activation used
in clinical practice, such as the PAM, conducted at the same
time point. The clinical utility of the automated assessment
cannot be assured until such validation has been carried out.
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Larger-scale validation could use a varied, more representative
patient and therapist sample to help improve the generalizability
of the model and address potential biases in model decisions.
Future research may also benefit from use of routine care data
sets (in contrast to research trial data, as in this study). This may
give a closer representation of therapeutic processes experienced
in real-world therapy and, therefore, increase wider applicability.
Validation across different psychological therapy models and
presenting problems would also help to establish transferable
aspects of the model’s utility. Future research should also clarify
the prognostic value of the autoCICS not only to establish
whether sufficient reliability has been achieved to retain the
CICS predictive validity but also to assess whether predictive
validity can be improved using a codevelopment approach.

This study, alongside most previous research, has focused on
lexical elements of psychological therapy content (transcribed
words), but it does not address the nonlexical, phonological
features of talk (such as intonation and prosody) that can be an
important predictor of health [66]. Therefore, future research
should address the integration of lexical and phonological
analyses of psychological therapy content for more accurate
representations of in-session events. Finally, future research
should identify means of building and maintaining
codevelopment, interpretability, and transparency within more
complex AI analyses of psychological therapy content.
Collaboratively developed models may not identify the same
features as either expert-designed models or unsupervised
learning models, but they may be more trustworthy and fit for
purpose for end users [29]. In future, contrasting results from
participatory approaches, such as the one used in this study,
with more black box approaches to developing an automated
classifier would give an informed view on the trade-off between

model accuracy and algorithmic trust. This will be particularly
important if greater accuracy is to be achieved in classifying
more detailed interaction types, which could not be achieved
with the current methodology. Importantly, the participatory
methods used do not preclude the use of more complex
algorithms to develop models in future research.

Clinical Implications
This study presents the initial development of an automated
assessment of patient activation that can be rated turn by turn
routinely in psychological therapy. Alongside other advances,
this methodology may help enhance deliberate practice
techniques in psychological therapy. Deliberate practice aims
to identify therapeutic microskills requiring improvement and
then improve these skills through corrective practice [16]. In
conjunction with a further developed autoCICS, alongside
associated training and supervision, therapists could learn to
recognize problematic patterns more easily and practice different
responses.

Conclusions
A participatory methodology was applied to develop a novel
approach for the assessment of in-session patient activation
during psychological therapy. This approach can support the
responsible design and development of autonomous and
intelligent systems in psychological therapy by building trust
among stakeholders from initial development.

Language features identified by a multiperspective stakeholder
collaboration can be used to discriminate between high and low
patient activation in psychological therapy session contents but
were limited in their ability to discriminate among different
psychological therapy interaction types. However, larger-scale
replication is required before clinical utility can be assessed.
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Abstract

Background: Clinical prediction models suffer from performance drift as the patient population shifts over time. There is a
great need for model updating approaches or modeling frameworks that can effectively use the old and new data.

Objective: Based on the paradigm of transfer learning, we aimed to develop a novel modeling framework that transfers old
knowledge to the new environment for prediction tasks, and contributes to performance drift correction.

Methods: The proposed predictive modeling framework maintains a logistic regression–based stacking ensemble of 2 gradient
boosting machine (GBM) models representing old and new knowledge learned from old and new data, respectively (referred to
as transfer learning gradient boosting machine [TransferGBM]). The ensemble learning procedure can dynamically balance the
old and new knowledge. Using 2010-2017 electronic health record data on a retrospective cohort of 141,696 patients, we validated
TransferGBM for hospital-acquired acute kidney injury prediction.

Results: The baseline models (ie, transported models) that were trained on 2010 and 2011 data showed significant performance
drift in the temporal validation with 2012-2017 data. Refitting these models using updated samples resulted in performance gains
in nearly all cases. The proposed TransferGBM model succeeded in achieving uniformly better performance than the refitted
models.

Conclusions: Under the scenario of population shift, incorporating new knowledge while preserving old knowledge is essential
for maintaining stable performance. Transfer learning combined with stacking ensemble learning can help achieve a balance of
old and new knowledge in a flexible and adaptive way, even in the case of insufficient new data.

(JMIR Med Inform 2022;10(11):e38053)   doi:10.2196/38053

KEYWORDS

transfer learning; clinical prediction model; performance drift; concept drift; acute kidney injury

Introduction

Clinical risk prediction models can provide decision-making
support on therapeutic interventions and resource allocation,

and thus can improve patient outcomes and reduce medical
costs [1]. Along with the increasing availability and volume of
electronic health record (EHR) data, these models are evolving
from rule-based to data-driven probability-based tools, for
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example, machine learning–based patient outcome prediction
models [2]. One of the critical challenges is performance drift
over time, which results from either gradual or quick data shifts
in the patient population, such as changing patient outcome rate,
evolving clinical practices, and improving measurement
accuracy [3].

To correct temporal performance drift, a range of model
updating approaches are available, including recalibration,
model-specific adaptation (eg, reweighting the leaf nodes of
each tree in a random forest [RF] model and an incremental
learning method for a neural network model), model extension
(eg, incorporating new predictors), and full model refitting [1].
These updating approaches vary in analytical complexity, old
data and updated sample requirements, and computational
demands. Usually, full model refitting is not the leading choice,
especially in clinical use, owing to the risk of overfitting when
new (and often smaller) data are used alone, while old data are
completely discarded [1]. The essence of model updating is to
create models that are constantly updated and adapted to the
new incoming data, while balancing between both new and old
knowledge [4-7].

Acute kidney injury (AKI) is a potentially life-threatening
clinical syndrome, for which the only effective treatments are
supportive care and dialysis, and it affects 10%-15% of all
inpatients and more than 50% of critical care patients, and results
in high mortality [8,9]. For AKI prediction, Davis et al [2]
developed 7 common regression and machine learning models,
and found that discrimination performance declines were
statistically significant but small for all models. Since they
collected data solely from US Department of Veterans Affairs
hospitals, it is not a typical scenario of population drift. Using
data collected from Royal London Hospital, which hosts
Europe’s largest kidney treatment facility, Haines et al [10]
developed risk prediction models for AKI after trauma, with
the area under the receiver operating characteristic curve
(AUROC) declining from 0.77 (0.72-0.81) in the development
set (February 2012 to October 2014) to 0.70 (0.64-0.77) in the
validation set (November 2014 to May 2016), and significant
temporal performance drift.

In this study, we developed a clinical risk prediction model for
hospital-acquired AKI. The model has been named transfer
learning gradient boosting machine (TransferGBM), which is
based on a transfer learning paradigm and maintains a stacking
ensemble of 2 base gradient boosting machine (GBM) learners.
Transfer learning has been proven to be one of the most effective
ways to deal with data scarcity (eg, in the scenario where new
data are not sufficient or available at a low cost) and data
distribution discrepancies in many areas [11-17]. Transfer
learning aims to selectively reuse data or knowledge from the
source domain to assist the modeling process on the target
domain, and it can be used to tackle the performance drift
problem by regarding the old data as the source domain and the
new data as the target domain. Since existing transfer learning

approaches focus on optimizing performance only in the target
domain, we still need a well-designed mechanism to incorporate
and balance the old and new knowledge learned from the source
and target domains.

Methods

Definition of AKI
According to the Kidney Disease Improving Global Outcomes
(KDIGO) clinical practice guidelines for AKI, we adopted serum
creatinine (SCr)-based criteria to stage the severity of AKI [18].
We did not use urine output to define AKI because it is less
likely to be accurate outside the critical care environment
[19,20]. Mild AKI (“AKI stage 1”) is defined as an increase in
SCr of 1.5 to 1.9 times the baseline value within 7 days or an
increase in SCr to 0.3 mg/dL (26.5 μmol/L) or more within 48
hours. The baseline creatinine value is defined as the most recent
SCr if available; otherwise, it is the admission SCr. Moderate
AKI (“AKI stage 2”) is defined as an increase in SCr of 2.0 to
2.9 times the baseline value within 7 days. The most severe
AKI (“AKI stage 3”) is defined as an increase in SCr of 3.0 or
more times the baseline value within 7 days or an increase in
SCr to 4 mg/dL (353.5 μmol/L) after an acute increase of at
least 0.3 mg/dL within 48 h or initiation of renal replacement
therapy.

Study Cohort
The study constructed a retrospective cohort using deidentified
EHR data from 2010 to 2017 in the University of Kansas
Medical Center. The data have been used in a previous study
[20] including a total of 141,696 adult patients (121,537
non-AKI patients; 20,159 any AKI patients; 3150 AKI stage
≥2 patients; and 1491 AKI stage 3 patients). To reflect the
inpatient population shift, patients enrolled in different years
were regarded as distinct individuals (ie, we handled the data
at the patient-encounter level).

As shown in Table 1, the proportion of elderly patients (ie, age
≥65) generally increased every year, from 31.7% in 2010 to
36.5% in 2017. The proportion of patients between the ages of
46 and 55 years decreased every year, while the proportion of
patients in other age groups remained the same. The ratio of
male to female patients did not change much over time, and
was basically maintained at 1:1. The proportion of White
patients always ranked first, accounting for more than 70% of
the total number of samples in each year, while the proportion
of Native Hawaiians was the least (only 0.1%). Only the
proportion of patients from different ethnicities remained stable
over time, without obvious changes. The proportion of African
Americans was more in 2010 than in all other years, and the
proportion of White patients was slightly less in 2010 than in
all other years. In addition, the incidence of AKI (any AKI)
showed a clear downward trend, from 16.9% in 2010 to 12.8%
in 2017.
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Table 1. Demographic information.

YearFeature

2017
(N=18,002)

2016
(N=20,399)

2015
(N=20,094)

2014
(N=18,701)

2013
(N=17,450)

2012
(N=16,682)

2011
(N=15,422)

2010
(N=14,946)

Age group (years), n (%)

1001 (5.6)1086 (5.3)1082 (5.4)1077 (5.8)918 (5.3)923 (5.5)886 (5.7)869 (5.8)18-25

1664 (9.2)1823 (8.9)1814 (9.0)1717 (9.7)1567 (9.0)1468 (8.7)1275 (8.3)1290 (8.6)26-35

1919 (10.7)2196 (10.8)2136 (10.6)1819 (9.7)1861 (10.7)1696 (10.2)1727 (11.2)1640 (11.0)36-45

2762 (15.3)3259 (16.0)3482 (17.3)3150 (16.8)3133 (19.0)3203 (19.2)2998 (19.4)3025 (20.2)46-55

4088 (22.7)4840 (23.7)4897 (24.4)4558 (24.4)4161 (23.8)3951 (23.7)3659 (23.7)3383 (22.6)56-65

6568 (36.5)7195 (35.3)6683 (33.3)6380 (34.1)5810 (33.3)5441 (32.6)4877 (31.6)4739 (31.7)>65

Sex, n (%)

9045 (50.2)10,250
(50.2)

10,114
(50.3)

9307 (49.8)8640 (49.5)8432 (50.5)7635 (49.5)7547 (50.5)Male

8957 (49.8)10,149
(49.8)

9980 (49.7)9394 (50.2)8810 (50.5)8250 (49.5)7787 (50.5)7399 (49.5)Female

Race, n (%)

63 (0.3)80 (0.4)87 (0.4)68 (0.4)79 (0.5)46 (0.3)52 (0.3)53 (0.4)American Indian

149 (0.8)254 (1.2)184 (0.9)210 (1.1)167 (1.0)153 (0.9)128 (0.8)125 (0.8)Asian

2614 (14.5)2896 (14.2)2883 (14.3)2685 (14.4)2510 (13.4)2255 (13.5)2240 (14.5)2286 (15.3)African American

14 (0.1)18 (0.1)10 (0.1)15 (0.1)9 (0.1)9 (0.1)20 (0.1)11 (0.1)Native Hawaiian

13,689
(76.0)

15,522
(76.1)

15,378
(76.5)

14,322
(76.6)

13,331
(76.4)

12,691
(76.1)

11,485
(74.5)

10,915 (72.9)White

28 (0.2)41 (0.2)38 (0.2)53 (0.3)46 (0.3)51 (0.3)24 (0.2)22 (0.1)Multiple races

1445 (8.0)1588 (7.8)1514 (7.5)1348 (7.2)1308 (7.5)1477 (8.9)1473 (9.6)1534 (10.3)Others

Label, n (%)

15,705
(87.2)

17,660
(86.6)

17,435
(86.8)

16,165
(86.4)

15,124
(86.7)

14,097
(84.5)

12,937
(83.9)

12,414 (83.1)Non-AKIa

2297 (12.8)2739 (13.4)2659 (13.2)2536 (13.6)2326 (13.3)2585 (15.5)2485 (16.1)2532 (16.9)Any AKI

377 (2.1)444 (2.2)471 (2.3)419 (2.2)371 (2.1)359 (2.1)356 (2.3)353 (2.4)AKI stage ≥2

194 (1.1)219 (1.1)241 (1.2)187 (1.0)184 (1.1)171 (1.0)149 (1.0)146 (1.0)AKI stage 3

aAKI: acute kidney injury.

Data Preprocessing
For each patient, we collected all currently populated variables
in the PCORNet common data model (CDM) schema, including
demographic details (ie, age, gender, and race); structured
clinical variables, including comorbidities (International
Classification of Diseases-9 and International Classification of
Diseases-10 codes), procedures (International Classification of
Diseases and Current Procedural Terminology codes), laboratory
tests (Logical Observation Identifiers Names and Codes), and
medications (RxNorm and National Drug Code); and several
vital signs (eg, blood pressure, height, weight, and BMI) [21].
All variables are time stamped, and each sample in the data set
is represented by a series of clinical observation vectors
aggregated on a daily basis. Therefore, the feature set formed
by the data before or on day t can be used to predict AKI within
days [t, t+1] for 24-h prediction (or within days [t+1, t+2] for
48-h prediction).

We preprocessed the data set as follows. First, for numerical
features, such as laboratory measurement values and vital signs,
we systematically removed the extreme values exceeding 1%
and 99%. Second, we performed one-hot coding on categorical
variables, such as diagnosis and procedure, to convert them into
binary representations. Third, for medication codes, we
converted data to cumulative exposure days before the prediction
time rather than binary representations. Fourth, the most recent
measurement value was chosen when repeated records were
available within a certain time interval. Fifth, we used the
“sample-and-hold” method to retrieve earlier available
measurement values, when measurements were missing for a
certain time span. Sixth, we introduced additional features, such
as daily blood pressure trend or length of hospital stay, which
have been shown to be useful for predicting AKI [22]. Seventh,
we excluded all forms of SCr and blood urea nitrogen as they
have a high correlation with AKI diagnosis and are not suitable
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for continuous prediction. Finally, a total of 28,306 features
were obtained for model development.

We adopted the discrete-time survival framework [23] to
preprocess the time-stamped EHR data, as shown in Figure 1.
We divided the patient’s entire stay period into L nonoverlapping
daily windows (ie, L=Δt, 2Δt, ..., T), where T is the length of
hospital stay or a specific censor point. Based on expert
knowledge, we chose a censor point T=7, which represents 7
days since admission. The interval value Δt is the prediction
window selected according to clinical needs. For example, Δt=1
means 1-day (24-h) prediction and Δt=2 means 2-day (48-h)
prediction. We would use all available data up to time t-Δt to
predict AKI risk in time t. We treated the data corresponding

to the AKI-onset day as positive samples based on the criteria
of different prediction tasks, while the data after the first positive
sample day and between different AKI-stage days were
discarded since we could not judge the true AKI stages within
these periods because physicians might have intervened and the
patient’s condition might have improved. All remaining data
were regarded as negative samples. For patients who never
developed AKI during hospitalization, all available data within
7 days since admission were used to construct negative samples,
and other data after 7 days since admission were discarded for
the sake of alleviating data imbalance. Under the discrete-time
survival framework, we can train a model more in line with
real-world clinical practice, where the rolling prediction of AKI
risk for a patient on a daily basis is essential [24].

Figure 1. Data processing strategy based on the discrete-time survival framework. The red triangle represents the actual stage of acute kidney injury
(AKI). "Δt" indicates the prediction time in advance, “−“ indicates negative sample, “+” indicates positive sample, and “*” indicates excluded sample.

TransferGBM Modeling Framework
To correct temporal performance drift, we propose a transfer
learning–based modeling framework named TransferGBM, as
shown in Figure 2.

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e38053 | p.222https://medinform.jmir.org/2022/11/e38053
(page number not for citation purposes)

Zhang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Illustration of the TransferGBM modeling framework. AdaptedGBM: adapted gradient boosting machine; AKI: acute kidney injury;
RefittedGBM: refitted gradient boosting machine; SourceGBM: source gradient boosting machine; TransferGBM: transfer learning gradient boosting
machine.

From the perspective of the transfer learning paradigm, we
regard the old data as the source domain or source data, and the
new data as the target domain or target data. We designed
TransferGBM based on several fundamental ideas. First, the
base learner is GBM, which has been applied in a wide range
of clinical prediction modeling studies [25,26]. GBM has been
chosen because (1) it is robust to high-dimensional and
collinearity data, (2) it can automatically process missing values,
and (3) it embeds a unique feature selection scheme in the model
training process, making its output more interpretable [20,27].
Second, we treated the new and old data in different ways, with
2 independent GBM models representing the new and old
knowledge, respectively. Third, we transferred old knowledge
to the target domain while balancing new and old knowledge
in the prediction through an ensemble of the above 2 GBM
models. Fourth, we periodically updated the 2 GBM models
and their relative weights in the prediction function using target
data, in order to adapt to the changing data distribution.

The TransferGBM modeling framework included 5 steps. First,
we constructed the source model (ie, source gradient boosting

machine [SourceGBM]) using all source data, with a
cross-validation–based procedure searching the optimal feature
engineering scheme and hyperparameters of GBM (eg, depth
of trees, learning rate, minimal child weight, and early stopping).
Second, we applied the above optimal feature engineering
scheme to the target data and then adapted SourceGBM to the
processed target data using the built-in incremental learning
mechanism and obtained the adapted model (ie, adapted gradient
boosting machine [AdaptedGBM]). Third, we constructed the
target model (ie, refitted gradient boosting machine
[RefittedGBM]) using the original development set of the target
domain while reusing the optimal feature engineering scheme
and hyperparameters of GBM from SourceGBM. Fourth, we
constructed the predicted probability value matrix for stacking
ensemble learning [28], by combining the predicted probability
values of AdaptedGBM and RefittedGBM for each sample from
the target domain’s development set and the true label of the
sample into a vector, and pooling all vectors into a matrix H.
Fifth, we applied the stacking ensemble learning method with
the logistic regression (LR) learner to the matrix H to obtain
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the final prediction model, which integrated the old and new
knowledge from the AdaptedGBM and RefittedGBM models,
respectively.

From the viewpoint of the target domain, the modeling
procedure involved 3 distinct sets of features, including (1) the
common features that indicate the intersection of the source and
target domain features, (2) the unique features that indicate the
features belonging to the target domain but not the source
domain, and (3) the important features selected by the GBM
learner from the target data. When we adapted SourceGBM,

we used the common features extracted from the target data
combined with missing values of source domain–specific
features, so that we could transfer the old knowledge of
SourceGBM to the target domain. Considering the value of the
target domain–specific knowledge (ie, the new knowledge), we
allowed the GBM learner to select the most important features
from both the common and unique features of the target data,
so that we could obtain the new knowledge of the target domain
without constrains on the feature space. The pseudocode of the
TransferGBM modeling framework is shown in Figure 3.

Figure 3. Pseudocode of the TransferGBM modeling framework. AdaptedGBM: adapted gradient boosting machine; GBM: gradient boosting machine;
RefittedGBM: refitted gradient boosting machine; TransferGBM: transfer learning gradient boosting machine.

Experimental Design
We designed the following 3 prediction tasks: any AKI
prediction (ie, AKI stage ≥1), moderate-to-severe AKI prediction
(ie, AKI stage ≥2), and severe AKI prediction (AKI stage 3).
For any AKI prediction, the prediction window was set to 48

hours, while it was 24 hours for the other 2 tasks, according to
general clinical needs.

We pooled the 2010 and 2011 data, and used them as old data
(ie, a fixed source domain). The data from 2012 to 2017 were
used as new data independently, yielding 6 target domains. We
applied stratified random sampling to the source and target

JMIR Med Inform 2022 | vol. 10 | iss. 11 | e38053 | p.224https://medinform.jmir.org/2022/11/e38053
(page number not for citation purposes)

Zhang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


domain independently, with division into a development set
(80%) and a validation set (20%). We tuned the hyperparameters
of GBM, including depth of trees (2-10), learning rate (0.01-0.1),
minimal child weight (1-10), and number of trees determined
by early stopping, on the training set using 10-fold
cross-validation. We measured model performance in terms of
the AUROC [29], with a mean value from the 95% CI.

It should be noted that the performance of SourceGBM on the
target domain’s validation set indicated temporal validation and
the performance of RefittedGBM (trained using the target
domain’s development set) on the target domain’s validation
set indicated internal validation. To validate TransferGBM, we
first explored whether there was performance drift over time
and then whether TransferGBM could maintain performance.

Ethical Considerations
The study did not require approval from an institutional review
board because the data used met the de-identification criteria
specified in the Health Insurance Portability and Accountability

Act Privacy Rule [30]. The HERON Data Request Oversight
Committee approved the data request.

Results

Base Model Selection
We examined 5 common machine learning models based on
5-fold cross-validation on each year’s data for any AKI
prediction. These models included LR, decision tree (DT), RF,
K-nearest neighbor (KNN), and GBM. The model parameters
were customized as shown in Table 2, in addition to the default
parameters provided in the scikit-learn package [31]. The
AUROC performances of the 5 models’ internal validations in
different years are shown in Figure 4. The AUROCs of both
GBM and RF reached 0.7 or above, indicating that these models
had a certain predictive ability for AKI, while the performances
of the other 3 models (DT, LR, and KNN) were generally poor.
Given that GBM performed the best, we chose it as a base
learner in the subsequent experiments.

Table 2. Model parameter setting.

Parameter setting (except defaults)Model

Tune the hyperparameters (depth of trees: 2-10; learning rate: 0.01-0.1; minimal child weight: 1-10) within
the development set based on 10-fold cross-validation

Gradient boosting machine (XG-
Boost)

penalty=“L2;” max_iter=300; C=3.0Logistic regression

n_estimators=400; bootstrap=TrueRandom forest

n_neighbors=40K-nearest neighbor

criterion=“entropy”Decision tree

Figure 4. Internal validation of different machine learning models. AUROC: area under the receiver operating characteristic curve; DT: decision tree;
GBM: gradient boosting machine; KNN: K-nearest neighbor; LR: logistic regression; RF: random forest.

Performance Shift Over Time
Figure 5 depicts the AUROC gain (ie, ΔAUROC) between the
internal validation of RefittedGBM relative to the temporal
validation of SourceGBM across 3 prediction tasks. The
ΔAUROC shows a linear growth trend over time, implying that

the transported model (ie, direct transport of SourceGBM to the
target domain without any adaptation) was not the best choice
for new data due to the change in data distribution over time.
From another point of view, the performance gain was within
0.051, implying that the transported model still contained some
general knowledge that can be reused in the new data.
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Figure 5. Performance gain by refitting the model. AKI: acute kidney injury; AUROC: area under the receiver operating characteristic curve.

Performance Validation of TransferGBM
TransferGBM maintained a stacking ensemble of 2 GBM
models representing new and old knowledge learned from new
and old data, respectively, with the former trained using data
from 2010 and 2011, and the latter trained using the updated
data of each year from 2012 to 2017. Using the validation set
of the target domain from 2012 to 2017, we compared model
performance between TransferGBM, transported gradient
boosting machine (TransportedGBM, ie, direct transport of
SourceGBM to the target domain without any adaptation), and
RefittedGBM (ie, refitting SourceGBM using the target domain
data). To better simulate the process of EHR accumulation in
clinical applications, we further investigated different sizes of
the available training set (ie, updated data) ranging from 25%
to 100% of the target domain’s development set via stratified
random sampling without replacement. Multimedia Appendix
1 shows the performance in terms of AUROC (95% CI) of
TransportedGBM, RefittedGBM, and TransferGBM across
different target years and different training set sizes for 3
prediction tasks.

We assessed the impact of different sizes of available training
sets on model performance from the perspective of modeling
framework selection. Figure 6 illustrates the case of the target
year 2012 as an example. The performance of TransportedGBM
was better than that of RefittedGBM when the training set size
was small. As the amount of training data increased,
RefittedGBM gradually improved and finally outperformed
TransportedGBM. Overall, regardless of the size of the available
training set, the performance of TransferGBM was always better
than that of TransportedGBM and RefittedGBM.

Next, we investigated the joint impact of training set size and
data distribution shift on model performance regarding the
modeling framework selection, as shown in Figure 7.

For any AKI prediction, when the training set size was 25%,
TransportedGBM outperformed RefittedGBM in the first 3
years (from 2012 to 2014). However, in the subsequent 3 years
(from 2015 to 2017), the prediction of TransportedGBM rapidly

declined, and it underperformed RefittedGBM. During the whole
6 years, TransferGBM consistently outperformed
TransportedGBM and RefittedGBM, with the AUROC ranging
from 0.759 (95% CI 0.732-0.766) to 0.804 (95% CI
0.778-0.812), and an average AUROC gain of 0.03 compared
to RefittedGBM and 0.02 compared to TransportedGBM. When
the training set size was 100%, RefittedGBM significantly
outperformed TransportedGBM over all 6 years, but still
underperformed TransferGBM. The AUROC of TransferGBM
ranged from 0.783 (95% CI 0.757-0.792) to 0.828 (95% CI
0.802-0.834), with an average AUROC gain of 0.04 compared
to RefittedGBM and 0.02 compared to TransportedGBM.

For AKI stage ≥2 prediction, even though the training set size
was only 25%, RefittedGBM outperformed TransportedGBM
(except for target year 2012), and a larger training set was
associated with better prediction. This means that the data
distribution of the target domain was significantly different
from that of the source domain, and directly transporting an
external model into the target domain was not a wise choice.
Again, TransferGBM was the best model among the 3 models,
regardless of the training set size and target year. The AUROC
of TransferGBM ranged from 0.830 (95% CI 0.795-0.851) to
0.921 (95% CI 0.893-0.932) when the training set size was 25%,
and ranged from 0.866 (95% CI 0.835-0.877) to 0.946 (95% CI
0.920-0.959) when the training set size was 100%.

For AKI stage 3 prediction, when the training set size was 25%
or 50%, RefittedGBM significantly underperformed
TransportedGBM in the first 3 years (from 2012 to 2014), but
the prediction became close in the subsequent 3 years (from
2015 to 2017). When the training set size was 50% or 100%,
RefittedGBM and TransportedGBM performed very close to
each other. This result implies that direct transportation of an
external model was a good choice (ie, there is no need to refit
the model, especially when training data on the target domain
is not sufficient). TransferGBM was still the best model, and
the AUROC ranged from 0.920 (95% CI 0.890-0.936) to 0.948
(95% CI 0.921-0.962) when the training set size was 25%, and
ranged from 0.866 (95% CI 0.854-0.911) to 0.959 (95% CI
0.932-0.973) when the training set size was 100%.
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Figure 6. Impact of training set size on performance (target year 2012). AKI: acute kidney injury; AUROC: area under the receiver operating characteristic
curve; RefittedGBM: refitted gradient boosting machine; TransferGBM: transfer learning gradient boosting machine; TransportedGBM: transported
gradient boosting machine.

Figure 7. Joint impact of training set size and data distribution shift on performance. AKI: acute kidney injury; AUROC: area under the receiver
operating characteristic curve; RefittedGBM: refitted gradient boosting machine; TransferGBM: transfer learning gradient boosting machine;
TransportedGBM: transported gradient boosting machine.
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Discussion

Principal Findings
Experimental results showed that TransferGBM can consistently
outperform TransportedGBM and RefittedGBM, regardless of
the amount of available training data from the target domain.
We also confirmed that old data are important, and should not
be discarded, especially in the case of insufficient new data.
There exist differences between old and new knowledge, and
thus, there is a need to achieve balance.

With regard to the candidate base learners for the proposed
transfer learning–based modeling framework, we considered
several commonly used linear and nonlinear machine learning
algorithms, and among them, RF has good robustness to
overfitting and high-dimensional feature variables [32,33].
XGBoost can consider multiple potentially relevant predictors
simultaneously and can handle potentially nonlinear correlations
[34-36]. DT is a nonparametric learning algorithm with fast
computation and accuracy, can handle continuous and type
fields, and is very suitable for high-dimensional data [32]. LR
is a linear algorithm that is very suitable for sparse data sets,
and the model performance remains stable when only a few
variables in the model are valuable predictors. KNN is simple
to implement, does not require a data training process, and is
very suitable for high-dimensional data. According to the
experiment results, the XGBoost algorithm had superior
performance. The performance of RF was very close to that of
XGBoost, and both were tree-based ensemble approaches. DT
may ignore the correlation between variables and experience
some large noise, resulting in very poor model performance
[33]. The poor performance of LR might be due to the nonlinear
correlation between AKI risk factors. KNN may be affected by
a large amount of noise in the EHR data, resulting in very poor
performance.

The choice of TransportedGBM, RefittedGBM, or TransferGBM
depends on or is affected by the actual situation regarding data
distribution, modeling cost, available training data from the
target domain, etc. TransportedGBM is trained on source data
and then is directly applied to the target data without any
adaptation and additional cost, which is appropriate for clinical
scenarios where the distribution between the source and target
domains is very similar. When the distribution is not similar,
RefittedGBM would be a better choice than TransportedGBM,
and it only requires refitting of the model on the target data,
except for the requirement of sufficient training data from the
target domain. TransferGBM is no doubt a more complicated
solution, which needs to adapt an existing model, refit a new
model, and construct an ensemble of these 2 models. This makes
TransferGBM more suitable for clinical scenarios where the
distribution of the source domain is partially similar to that of
the target domain or where the degree of similarity changes
significantly.

With regard to the adaptiveness of TransferGBM, it is clear that
TransferGBM is a flexible and adaptive extension to the
combination of AdaptedGBM and RefittedGBM (AdaptedGBM
is obtained by updating TransportedGBM/SourceGBM to the
target domain). This also means that TransferGBM might

degrade to AdaptedGBM or RefittedGBM due to the stacking
ensemble learning mechanism under certain situations. Taking
some extreme cases as examples, when the target domain is
under the same distribution as the source domain, TransferGBM
would degrade to AdaptedGBM and even TransportedGBM
since there is little change after updating the model with new
data from the target domain. On the contrary, when the target
domain is under a distribution completely different from the
source domain, TransferGBM would degrade to RefittedGBM,
since in this case, AdaptedGBM would be almost useless, and
even negative and suppressed under the stacking ensemble
learning process. In most cases that TransferGBM is designed
for, that is, when the distributions of the source and target
domains are more or less similar but not completely different,
TransferGBM would adaptively achieve a balance between
AdaptedGBM and RefittedGBM.

Motivations
Conventionally, transfer learning is applied to the scenario of
data scarcity and distribution disparity, with the underlying idea
of selectively reusing data or knowledge from the source domain
to assist the modeling process on the target domain. As for the
scenario of temporal performance drift, we proposed to regard
the old data as the source domain and the new data as the target
domain, which might make transfer learning suitable, and we
attempted to confirm its effectiveness.

We believe that transfer learning can provide insights from
another perspective for correcting temporal performance drift,
compared to common approaches such as recalibration and
incremental training. For example, when the data distribution
significantly changes, transfer learning can immediately discard
the old knowledge/model and reselect a new suitable training
sample from the source domain to learn, while incremental
training suffers from slow progressive adaptation.

Since the primary objective of our study was not to build a
high-performance AKI prediction model under the common
modeling scenario, we divided the data into different years and
adopted a simple and clear modeling process without
comprehensive feature engineering, class balancing,
hyperparameter searching, etc.

Limitations
There are several limitations associated with our study. First,
we used retrospective data in model training and validations,
and had not validated our model externally. Thus, our results
do not indicate the performance in actual clinical practice.
Second, we have not adopted state-of-the-art transfer learning
algorithms, such as gapBoost, distant domain transfer learning,
selective learning algorithm, multilinear relationship networks,
and transitive transfer learning, that have been discussed in
systematic reviews [37,38]. These algorithms might yield better
prediction performance. Third, we have not compared our
method with other correction approaches for temporal
performance drift and detection mechanisms of temporal
performance drift, such as those proposed by Davis et al
[1,2,39]. Fourth, we have not considered prevalent time-series
models, such as recurrent neural networks and long short-term
memory [40,41], as well as adding historical aggregate feature
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representations (eg, average laboratory test results and vital
signs for the past 48 h) [42]. These methods may yield effects
equivalent to those of the transfer learning approach.

Conclusions
This study addressed the problem of performance drift in clinical
prediction models. We proposed a novel transfer learning–based

modeling framework and validated it using real EHR data from
the University of Kansas Medical Center for AKI prediction.
The proposed TransferGBM model overcomes the problems of
insufficient target data and drifting data distribution through
transferring old knowledge and integrating old and new
knowledge models. The results showed that TransferGBM is
superior to both transported and refitted models.
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Abstract

Background: In most cases, the abstracts of articles in the medical domain are publicly available. Although these are accessible
by everyone, they are hard to comprehend for a wider audience due to the complex medical vocabulary. Thus, simplifying these
complex abstracts is essential to make medical research accessible to the general public.

Objective: This study aims to develop a deep learning–based text simplification (TS) approach that converts complex medical
text into a simpler version while maintaining the quality of the generated text.

Methods: A TS approach using reinforcement learning and transformer–based language models was developed. Relevance
reward, Flesch-Kincaid reward, and lexical simplicity reward were optimized to help simplify jargon-dense complex medical
paragraphs to their simpler versions while retaining the quality of the text. The model was trained using 3568 complex-simple
medical paragraphs and evaluated on 480 paragraphs via the help of automated metrics and human annotation.

Results: The proposed method outperformed previous baselines on Flesch-Kincaid scores (11.84) and achieved comparable
performance with other baselines when measured using ROUGE-1 (0.39), ROUGE-2 (0.11), and SARI scores (0.40). Manual
evaluation showed that percentage agreement between human annotators was more than 70% when factors such as fluency,
coherence, and adequacy were considered.

Conclusions: A unique medical TS approach is successfully developed that leverages reinforcement learning and accurately
simplifies complex medical paragraphs, thereby increasing their readability. The proposed TS approach can be applied to
automatically generate simplified text for complex medical text data, which would enhance the accessibility of biomedical research
to a wider audience.

(JMIR Med Inform 2022;10(11):e38095)   doi:10.2196/38095

KEYWORDS

medical text simplification; reinforcement learning; natural language processing; manual evaluation

Introduction

Background
Research from the field of biomedicine contains essential
information about new clinical trials on topics related to new
drugs and treatments for a variety of diseases. Although this

information is publicly available, it often has complex medical
terminology, making it difficult for the general public to
understand. One way to address this problem is by converting
the complex medical text into a simpler language that can be
understood by a wider audience. Although manual text
simplification (TS) is one way to address the problem, it cannot
be scaled to the rapidly expanding body of biomedical literature.
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Therefore, there is a need for the development of natural
language processing approaches that can automatically perform
TS.

Related Studies

TS Approaches
Initial research in the field of TS focused on lexical
simplification (LS) [1,2]. An LS system typically involves
replacing complex words with their simpler alternatives using
lexical databases, such as the Paraphrase Database [3],
WordNet [4], or using language models, such as bidirectional
encoder representations from transformers (BERT) [5]. Recent
research defines TS as a sequence-to-sequence (seq2seq) task
and has approached it by leveraging model architectures from
other seq2seq tasks such as machine translation and text
summarization [6-8]. Nisioi et al [9] proposed a neural seq2seq
model, which used long short-term memories (LSTMs) for
automatic TS. It was trained on simple-complex sentence pairs
and showed through human evaluations that the TS
system–generated outputs ultimately preserved meaning and
were grammatically correct [9]. Afzal et al [10] incorporated
LSTMs to create a quality-aware text summarization system
for medical data. Zhang and Lapata [11] developed an
LSTM-based neural encoder-decoder TS model and trained it
using reinforcement learning (RL) to directly optimize SARI
[12] scores along with a few other rewards. SARI is a widely
used metric for automatic evaluation of TS.

With the recent progress in natural language processing research,
LSTM-based models were outperformed by transformer
[13]-based language models [13-16]. Transformers follow an
encoder-decoder structure with both the encoder and decoder
made up of L identical layers. Each layer consists of 2 sublayers,
one being a feed-forward layer and the other a multihead
attention layer. Transformer-based language models, such as
BART [14], generative pretraining transformer (GPT) [15], and
text-to-text-transfer-transformer [16], have achieved strong
performance on natural language generation tasks such as text
summarization and machine translation.

Building on the success of transformer-based language models,
recently Martin et al [17] introduced multilingual unsupervised
sentence simplification (MUSS) [17], a BART [14]-based
language model, which achieved state-of-the-art performance
on TS benchmarks by training on paraphrases mined from
CCNet [18] corpus. Zhao et al [19] proposed a semisupervised
approach that incorporated the back-translation architecture
along with denoising autoencoders for the purpose of automatic
TS. Unsupervised TS is also an active area of research but has

been primarily limited to LS. However, in a recent study, Surya
et al [20] proposed an unsupervised approach to perform TS at
both the lexical and syntactic levels. In general, research in the
field of TS has been focused mostly on sentence-level
simplification. However, Sun et al [21] proposed a
document-level data set (D-wikipedia) and baseline models to
perform document-level simplification. Similarly, Devaraj et
al [8] proposed a BART [14]-based model that was trained using
unlikelihood loss for the purpose of paragraph-level medical
TS. Although their training regime penalizes the terms
considered “jargon” and increases the readability, the generated
text has lower quality and diversity [8]. Thus, the lack of
document- or paragraph-level simplification makes this an
important work in the advancement of the field.

TS Data Sets
The majority of TS research uses data extracted from Wikipedia
and news articles [11,22,23]. These data sets are paired
sentence-level data sets (ie, for each complex sentence, there is
a corresponding simple sentence). TS systems have heavily
relied on sentence-level data sets, extracted from regular and
simple English Wikipedia, such as WikiLarge [11], because
they are publicly available. It was later shown by Xu [24] that
there are issues with data quality for the data sets extracted from
Wikipedia. They proposed the Newsela corpus, which was
created by educators who rewrote news articles for different
school-grade levels. Automatic sentence alignment methods
[25] were used on the Newsela corpus to create a sentence-level
TS data set. Despite the advancements in research on
sentence-level simplification, there is a need for TS systems
that can simplify text at a paragraph level.

Recent work has focused on the construction of document-level
simplification data sets [17,21,26]. Sun et al [21] constructed a
document-level data set, called D-Wikipedia, by aligning the
English Wikipedia and Simple English Wikipedia spanning
143,546 article pairs. Although there are many data sets
available for sentence-level TS, data sets for domain-specific
paragraph-level TS are lacking. In the field of medical TS, Van
den Bercken et al [27] constructed a sentence-level
simplification data set using sentence alignment methods.
Recently, Devaraj et al [8] proposed the first paragraph-level
medical simplification data set, containing 4459 simple-complex
pairs of text, and this is the data set used for the analysis and
baseline training in this study. A snippet of a complex paragraph
and its simplified version from the data set proposed by Devaraj
et al [8] is shown in Figure 1. The data set is open sourced and
publicly available [28].
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Figure 1. Complex medical paragraph and the corresponding simple medical paragraph from the dataset.

TS Evaluation
The evaluation of TS usually falls into 2 categories: automatic
evaluations and manual (ie, human) evaluations. Because of the
subjective nature of TS, it has been suggested that the best
approach is to perform manual evaluations, based on criteria
such as fluency, meaning preservation, and simplicity [20].
Automatic evaluation metrics most commonly used include
readability indices such as Flesch-Kincaid Reading Ease [29],
Flesch-Kincaid Grade Level (FKGL) [29], Automated
Readability Index (ARI), Coleman-Liau index, and metrics for
natural language generation tasks such as SARI [12] and BLEU
[30].

Readability indices are used to assign a grade level to text
signifying its simplicity. All the readability indices are calculated
using some combination of word weighting, syllable, letter, or
word counts, and are shown to measure some level of simplicity.
Automatic evaluation metrics, such as BLEU [30] and SARI
[12], are widely used in TS research, with SARI [12] having
specifically been developed for TS tasks. SARI is computed by
comparing the generated simplifications with both the source
and target references. It computes an average of F1-score for 3
n-gram overlap operations: additions, keeps, and deletions. Both
BLEU [30] and SARI [12] are n-gram–based metrics, which
may fail to capture the semantics of the generated text.

Objective
The aim of this study is to develop an automatic TS approach
that is capable of simplifying medical text data at a paragraph
level, with the goal of providing greater accessibility of
biomedical research. This paper uses RL-based training to
directly optimize 2 properties of simplified text: relevance and
simplicity. Relevance is defined as simplified text that retains
salient and semantic information from the original article.
Simplicity is defined as simplified text that is easy to understand
and lexically simple. These 2 properties are optimized using
TS-specific rewards, resulting in a system that outperforms
previous baselines on Flesch-Kincaid scores. Extensive human
evaluations are conducted with the help of domain experts to
judge the quality of the generated text.

The remainder of the paper is organized as follows: The
“Methods” section provides details on the data set, the training
procedure, and the proposed model, and describes how
automatic and human evaluations were conducted to analyze
the outputs generated by the proposed model (TESLEA). The
“Results” section provides a brief description of the baseline
models and the results obtained by conducting automatic and
manual evaluation of the generated text. Finally under the
“Discussion” section, we highlight the limitations, future work,
and draw conclusions.
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Methods

Model Objective
Given a complex medical paragraph, the goal of this work is to
generate a simplified paragraph that is concise and captures the
salient information expressed in the complex text. To accomplish
this, an RL-based simplification model is proposed, which
optimizes multiple rewards during training, and is tuned using
a paragraph-level medical TS data set.

Data Set
The Cochrane Database of Scientific Reviews is a health care
database with information on a wide range of clinical topics.
Each review includes a plain language summary (PLS) written
by the authors who follow guidelines to structure the summaries.
PLSs are supposed to be clear, understandable, and accessible,
especially for a general audience not familiar with the field of
medicine. PLSs are highly heterogeneous in nature, and are not
paired (ie, for every complex sentence there may not be a
corresponding simpler version). However, Devaraj et al [8] used
the Cochrane Database of Scientific Reviews data to produce
a paired data set, which has 4459 pairs of complex-simple text,
with each text containing less than 1024 tokens so that it can
be fed into the BART [14] model for the purpose of TS. The
pioneering data set developed by Devaraj et al [8] is used in
this study for training the models and is publicly available [28].

TESLEA: TS Using RL

Model and Rewards
The TS solution proposed for the task of simplifying complex
medical text uses an RL-based simplification model, which
optimizes multiple rewards (relevance reward, Flesch-Kincaid
Grade rewards, and lexical simplicity rewards) to achieve a
more complete and concise simplification. The following
subsections introduce the computation of these rewards, along
with the training procedure.

Relevance Reward
Relevance reward measures how well the semantics of the target
text is captured in its simplified version. This is calculated by
computing the cosine similarity between the target text
embedding (ET) and the generated text embedding (EG).
BioSentVec [31], a text embedding model trained on medical
documents, is used to generate the text embeddings. The steps
to calculate the relevance score are depicted in Algorithm 1.

The RelevanceReward function takes 3 arguments as input,
namely, target text (T), generated text (G), and the embedding
model (M). The function ComputeEmbedding takes the input
text and embedding model (M) as input and generates the
relevant text embedding. Finally, cosine similarity between
generated text embedding (EG) and target text embedding (ET)
is calculated to get the reward (Algorithm 1, line 4).

Flesch-Kincaid Grade Reward
FKGL refers to the grade level that must be attained to
comprehend the presented information. A higher FKGL score
indicates that the text is more complex, and a lower score
indicates that the text is simpler. The FKGL for a text (S) is
calculated using equation 1 [29]:

FKGL(S) = 0.38 × (total words/total sentences) + 1.8
× (total syllables/total words) – (15.59) (1)

The FKGL reward (RFlesch) is designed to reduce the complexity
of generated text and is calculated as presented in Algorithm 2.

In Algorithm 2, the function FleschKincaidReward takes 2
arguments as inputs, namely, generated text (G) and target text
(T). The FKGLScore function calculates the FKGL for the given
text. Once the FKGL for T and G is calculated, the
Flesch-Kincaid reward (RFlesch) is calculated as the relative
difference between r(T) and r(G) (Algorithm 2, line 4), where
r(T) and r(G) denote the FKGL of the target and generated text.

Lexical Simplicity Reward
Lexical simplicity is used to measure whether the words in the
generated text (G) are simpler than the words in the source text
(S). Laban et al [26] proposed a lexical simplicity reward that
uses the correlation between word difficulty and word frequency
[32]. As word frequency follows zipf law, Laban et al [26] used
it to design the reward function, which involves calculating zipf
frequency of newly inserted words, that is, Z(G – S), and deleted
words, that is, Z(S – G). The lexical simplicity reward is defined
in the same way as proposed by Laban et al [26] and is described
in Algorithm 3. The analysis of the data set proposed by Devaraj
et al [8] revealed that 87% of simple and complex pairs have a
value of ΔZ(S, G) ≈ 0.4, where ΔZ(S, G) = Z(G – S) – Z(S – G)
is the difference between the zipf frequency of inserted words
and deleted words, with the value of lexical reward (Rlexical)
scaled between 0 and 1.

In Algorithm 3, LexicalSimplicityReward requires the source
text (S) and the generated text (G) as the inputs. Functions
ZIPFInserted [25] and ZIPFDeleted [25] calculate the zipf
frequency of newly inserted words and the deleted words.
Finally, the lexical reward (Rlexical) is calculated and normalized,
as described in line 5.

Training Procedure and Baseline Model

Pretrained BART
The baseline language model used in this study for performing
simplification was BART [14], which is a transformer based
encoder-decoder model that was pretrained using a denoising
objective function. The decoder part of the model is
autoregressive in nature, making it more suitable for
sentence-generation tasks. Furthermore, the BART model
achieves strong performance on natural language generation
tasks such as summarization, which was demonstrated on XSum
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[33] and CNN/Daily Mail [34] data sets. In this case, a version
of BART fine-tuned on XSUM [33] data set is being used.

Language Model Fine-tuning
Transformer-based language models are pretrained on a large
corpus of text and later fine-tuned on a downstream task by
minimizing the maximum likelihood loss (Lml) function [3].
Consider a paired data set C, where each instance consists of a
source sentence containing n tokens x = {x1,…,xn} and target
sequence containing m tokens y = {y1,…,yn}, then the Lml
function is given in equation 2 with the computation described
in Algorithm 4.

where θ represents the model parameters and y<t denotes
preceding tokens before the position t [35].

However, the results obtained by minimizing Lml are not always
optimal. There are 2 main reasons for the degradation of results.
The first is called “exposure bias” [36], which occurs when the
model expects gold-standard data at each step of training, but
does not receive appropriate supervision during testing, resulting
in an accumulation of errors during prediction. The second is
called “representation collapse” [37], which is a degradation of
the pretrained language model representations during
fine-tuning. Ranzato et al [36] avoided the problem of exposure
bias by directly optimizing the specific discrete metric instead
of minimizing the Lml with the help of an RL-based algorithm
called REINFORCE [38]. A variant of REINFORCE [38] called
Self-Critical Sequence Training [39] was used in this study to
directly optimize certain rewards specifically designed for TS;
more information on this is provided in the following subsection.

Self-critical Sequence Training
TS can be formulated as an RL problem, where the “agent”
(language model) interacts with the environment to take “action”
(next word prediction) based on a learned “policy” (pθ) defined
by model parameters θwhile observing some rewards (R). In
this work, BART [14] was used as the language model, and the
REINFORCE [38] algorithm was used to learn an optimal policy
that maximizes rewards. Specifically, REINFORCE was used
with a baseline to stabilize the training procedure using an
objective function (Lpg) with a baseline reward b (equation 3):

where pθ(yi
s|...) denotes the probability of the ith word

conditioned on a previously generated sampled sequence by the

model; r(ys) denotes the reward computed for a sentence
generated using sampling; denotes the source sentence, and n
is the length of the generated sentence. Rewards are computed
as a weighted sum of the relevance reward (Rcosine), RFlesch, and
lexical simplicity reward (Rlexical; Figure 2) and are given by:

where α, β, and d are the weights associated with the rewards,
respectively.

To approximate the baseline reward, Self-Critical Sequence
Training [39] was used. The baseline was calculated by
computing reward values for a sentence that has been generated
using greedy decoding r(y*) by the current model and its
computation is described in Algorithm 5. The loss function is
defined in equation 5:

where y* denotes the sentence generated using greedy decoding.
More details on greedy decoding are described in Multimedia
Appendix 1 (see also [8,14,17,25,26,39-42]).

Figure 2. Compute Rewards function calculates a weighted sum of three rewards: Fkgl Reward, Lexical Simplicity Reward, Relevance Reward.
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Intuitively, by minimizing the loss described in equation 5, the

likelihood of choosing the samples sequence (ys) is promoted

if the reward obtained for sampled sequence, r(ys), is greater
than the reward obtained for the baseline rewards, that is, the
samples that return higher reward than r(y*). The samples that
obtain a lower reward are subsequently suppressed. The model
is trained using a combination of Lml and policy gradient loss
similar to [43]. The overall loss is given as follows:

L = γLpg + (1 – γ)Lml (6)

where γ is a scaling factor that can be tuned.

Summary of the Training Process
Overall, the training procedure follows a 2-step approach. As
the pretrained BART [14] was not trained on the medical
domain–related text, it was first fine-tuned on the
document-level paired data set [8] by minimizing the Lml

(maximum likelihood estimation [MLE]; equation 2). In the
second part, the fine-tuned BART model was trained further
using RL. The RL procedure of TESLEA involves 2 steps: (1)
the RL step and (2) the MLE optimization step, which are both
shown in Figure 3 and further described in Algorithm 6. The
given simple-complex text pairs are converted to tokens as
required by the BART model. In the MLE step, these tokens
are used to compute logits from the model, and then finally
MLE loss is computed. In the RL step, the model generates
simplified text using 2 decoding strategies: (1) greedy decoding
and (2) multinomial sampling. Rewards are computed as
weighted sums (Figure 3) for sentences generated using both
the decoding strategies. These rewards are then used to calculate
the loss for the RL step. Finally, a weighted sum of losses is
computed that is used to estimate the gradients and update model
parameters. All the hyperparameter settings used are included
in Multimedia Appendix 2 (see also [8,12,29,33,34,44-47]).

Figure 3. Reinforcement learning–based training procedure for TESLEA. MLE: maximum likelihood estimation; RL: reinforcement learning.
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Automatic Metrics
Two readability indices were used to perform automatic
evaluations of the generated text, namely, FKGL and Automatic
Readability Indices (ARIs). The SARI score is a standard metric
for TS. The F-1 versions of ROUGE-1 and ROUGE-2 [44]
scores were also reported. Readers can find more details about
these metrics in Multimedia Appendix 2. To measure the quality
of the generated text, the criteria proposed by Yuan et al [45]
were used, which are mentioned in the “Automatic Evaluation
Metrics” section in Multimedia Appendix 2. The criteria
proposed by Yuan et al [45] can be automatically computed
using a language model–based metric called “BARTScore.”
Further details on how to use BARTScore to measure the quality
of the generated text are also mentioned in Multimedia Appendix
2.

Human Evaluations
In this study, 3-domain experts judge the quality of the generated
text based on the factors mentioned in the previous section. The
evaluators rate the text on a Likert scale from 1 to 5. First,
simplified test data were generated using TESLEA, and then
51 generated paragraphs were randomly selected, creating 3
subsets containing 17 paragraphs each. Every evaluator was
presented with 2 subsets, that is, a total of 34 complex-simple
TESLEA-generated paragraphs. The evaluations were conducted
via Google Forms, and the human annotators were asked to
measure the quality of simplification for informativeness
(INFO), fluency (FLU), coherence (COH), factuality (FAC),
and adequacy (ADE) (Figure 4). All the data collected were
stored in CSV files for statistical analysis.
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Figure 4. A sample question seen by the human annotator.

Results

Overview
This section consists of 3 subsections, namely, (1) Baseline
Models, (2) Automatic Evaluations, and (3) Human Evaluations.
The first section highlights the baseline models used for
comparison and analysis. The second section discusses the
results obtained by performing automatic evaluations of the

model. The third and final section discusses the results obtained
from human assessments and analyzes the relationship between
human annotations and automatic metrics.

Baseline Models
TESLEA is compared with other strong baseline models and
their details are discussed below:

• BART-Fine-tuned: BART-Fine-tuned is a BART-large
model fine-tuned using an Lml on the data set proposed by
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Devaraj et al [8]. Studies have shown that large pretrained
models often perform competitively when fine-tuned for
downstream tasks, thus making this a strong competitor.

• BART-UL: Devaraj et al [8] also proposed BART-UL for
paragraph-level medical TS. It is the first model to perform
paragraph-level medical TS and has achieved strong results
on automated metrics. BART-UL was trained using an
unlikelihood objective function that penalizes the model
for generating technical words (ie, complex words). Further
details on the training procedure of BART-UL are described
in Multimedia Appendix 1.

• MUSS: MUSS [17] is a BART-based language model that
was trained by mining paraphrases from the CCNet corpus
[18]. MUSS was trained on a data set consisting of 1 million
paraphrases, helping it achieve a strong SARI score.
Although MUSS is trained on a sentence-level data set, it
still serves as a strong baseline for comparison. Further
details on the training procedure for MUSS are discussed
in Multimedia Appendix 1
.

• Keep it Simple (KIS): Laban et al [26] proposed an
unsupervised approach for paragraph-level TS. KIS is
trained using RL and uses the GPT-2 model as a backbone.
KIS has shown strong performance on SARI scores beating
many supervised and unsupervised TS approaches.

Additional details on the training procedure for KIS are
described in Multimedia Appendix 1.

• PEGASUS models: PEGASUS is a transformer-based
encoder-decoder model that has achieved state-of-the-art
results on many text-summarization data sets. It was
specifically designed for the task of text summarization. In
our analysis, we used 2 variants of PEGASUS models,
namely, (1) PEGASUS-large, the large variant of Pegasus
model, and (2) PEGASUS-pubmed-large, the large variant
of the PEGASUS model that was pretrained on a PubMed
data set. Both the PEGASUS models were fine-tuned using
Lml on the data set proposed by Devaraj et al [8]. For more
information regarding the PEGASUS model, the readers
are suggested to refer to [46].

The models described above are the only ones available for
medical TS as of June 2022.

Results of Automatic Metrics
The metrics used for automatic evaluation are FKGL, ARI,
ROUGE-1, ROUGE-2, SARI, and BARTScore. The mean
readability indices scores (ie, FKGL and ARI) obtained by
various models are reported in Table 1. ROUGE-1, ROUGE-2,
and SARI scores are reported in Table 2 and BARTScore is
reported in Table 3.

Table 1. Flesch-Kincaid Grade Level and Automatic Readability Index for the generated text.a

Automatic Readability IndexFlesch-Kincaid Grade LevelText

Baseline

15.5814.42Technical abstracts

15.0813.11Gold-standard references

Model generated

15.3213.45BART-Fine-tuned

13.73b11.97BART-UL

13.8211.84bTESLEA

17.2914.29MUSSc

17.0514.15Keep it Simple

17.5514.53PEGASUS-large

19.816.35PEGASUS-pubmed-large

aTESLEA significantly reduces FKGL and ARI scores when compared with plain language summaries.
bBest score.
cMUSS: multilingual unsupervised sentence simplification.
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Table 2. ROUGE-1, ROUGE-2, and SARI scores for the generated text.a

SARIROUGE-2ROUGE-1Model

0.390.110.40BART-Fine-tuned

0.40b0.140.38BART-UL

0.40b0.110.39TESLEA

0.340.030.23MUSSc

0.320.030.23Keep it Simple

0.40b0.18b0.44bPEGASUS-large

0.40b0.160.42PEGASUS-pubmed-large

aTESLEA achieves similar performance to other models. Higher scores of ROUGE-1, ROUGE-2, and SARI are desirable.
bBest performance.
cMUSS: multilingual unsupervised sentence simplification.

Table 3. Faithfulness Score and F-score for the generated text by the models.a

F-scoreFaithfulness ScoreModels

0.0780.137BART-Fine-tuned

0.0610.242BART-UL

0.097b0.366bTESLEA

0.0290.031MUSSc

0.0280.030Keep it Simple

0.0730.197PEGASUS-large

0.0630.29PEGASUS-pubmed-large

aHigher scores of Faithfulness and F-score are desirable.
bHighest score.
cMUSS: multilingual unsupervised sentence simplification.

Readability Indices, ROUGE, and SARI Scores
The readability indices scores reported in Table 1 suggest that
the FKGL scores obtained by TESLEA are better (ie, a lower
score) when compared with the FKGL scores obtained by
comparing technical abstracts (ie, complex medical paragraphs
available in the data set) with the gold-standard references (ie,
simple medical paragraphs corresponding to the complex
medical paragraphs). Moreover, TESLEA achieves the lowest
FKGL score (11.84) when compared with baseline models,
indicating significant improvement in the TS. The results suggest
that (1) BART-based transformer models are capable of
performing simplification at the paragraph level such that the
outputs are at a reduced reading level (FKGL) when compared
with technical abstracts, gold-standard references, and baseline
models. (2) The proposed method to optimize TS-specific
rewards allows the generation of text with greater readability
than even the gold-standard references, as indicated by the
FKGL scores in Table 1. The reduction in FKGL scores can be
explained by the fact that FKGL was a part of a reward (RFlesch)
that was directly being optimized.

In addition, we report the SARI [12] and ROUGE scores [44]
as shown in Table 2. SARI is a standard automatic metric used
in sentence-level TS tasks. The ROUGE score is another

standard metric in text summarization tasks. The results show
that TESLEA matches the performance of baseline models on
both ROUGE and SARI scores. Although there are no clear
patterns when ROUGE and SARI scores are considered, there
are differences in the quality of text generated by these models
and these are explained in the “Text Quality Measure”
subsection.

Text Quality Measure
There has been significant progress in designing automatic
metrics that are able to capture linguistic quality of the text
generated by language models. One such metric that is able to
measure the quality of generated text is BARTScore [45].
BARTScore has shown strong correlation with human
assessments on various tasks ranging from machine translation
to text summarization. BARTScore has 4 different metrics (ie,
Faithfulness Score, Precision, Recall, F-score), which can be
used to measure different qualities of generated text. Further
details on how to use BARTScore are mentioned in Multimedia
Appendix 2.

According to the analysis conducted by Yuan et al [45],
Faithfulness Score measures 3 aspects of generated text via
COH, FLU, and FAC. The F-score measures 2 aspects of
generated text (INFO and ADE). In our analysis, we use these
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2 variants of BARTScore to measure COH, FLU, FAC, INFO,
and ADE. TESLEA achieves the highest values (Table 3) of
Faithfulness Score (0.366) and F-score (0.097), indicating that
the rewards designed for the purpose of TS not only help the
model in generating simplified text but also on some level
preserve the quality of generated text. The F-scores of all the
models are relatively poor (ie, scores closer to 1 are desirable).
One of the reasons for low F-scores could be the introduction
of misinformation or hallucinations in the generated text, a
common problem for language models, which could be
addressed by adapting training strategies that focus on INFO
via the help of rewards or objective functions.

For qualitative analysis we randomly selected 50 sentences from
the test data and calculated the average number of tokens based
on BART model vocabulary. For the readability measure, we
calculated the FKGL scores of these generated texts and noted
any textual inconsistencies such as misinformation. The analysis
revealed that the text generated by most models was significantly
smaller than the gold-standard references (Table 4).
Furthermore, TESLEA- and BART-UL–generated texts were
significantly shorter compared with other baseline models and
TESLEA had the lowest FKGL score among all the models as
depicted in Table 4.

From a qualitative point of view, the sentences generated by
most baseline models involve significant duplication of text
from the original complex medical paragraph. The outputs
generated by the KIS model were incomplete and appear “noisy”

in nature. One of the reasons for the noise generation could be
because of unstable training due to lack of a huge corpus of
domain-specific data. BART-UL–generated paragraphs are
simplified as indicated by the FKGL and ARI scores, but they
are extractive in nature (ie, the model learns to select simplified
sentences from the original medical paragraph and combines
them to form a simplification). PEGASUS-pubmed-
large–generated paragraphs are also extractive in nature and
similar to BART-UL–generated paragraphs, but it was observed
that they were grammatically inconsistent. In contrast to baseline
models, the text generated by TESLEA was concise,
semantically relevant, and simple, without involving any medical
domain–related complex vocabulary. Figure 5 shows an example
of text generated by all the models, with blue text indicating
the copied text.

In addition to the duplicated text, the models also induced
misinformation in the generated text. The most common form
of induced misinformation observed was “The evidence is
current up to [date],” as shown in Figure 6. This text error
occurred due to the structure of the data (ie, PLS contains
statements related to this research, but these statements were
not in the original text; thus, the model attempted to add these
statements to the generated text although it is not factually
correct). Thus considerable attention should be paid to including
FAC measures in the training regime of these models. For a
more complete assessment of the quality of simplification,
human evaluation was conducted using domain experts for the
text generated by TESLEA.

Table 4. Average number of tokens and average Flesch-Kincaid Grade Level scores for selected samples.

Flesch-Kincaid Grade LevelNumber of tokensModel

14.37498.11Technical abstracts

12.77269.74Gold-standard references

12.34131.37TESLEA

12.66145.08BART-UL

13.78187.59Keep it Simple

13.86193.07Multilingual unsupervised sentence simplification

13.93272.04PEGASUS-large

15.09150.00PEGASUS-pubmed-large
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Figure 5. Comparison of Text Generated by all the models. The highlighted blue text indicates copying. CI: Confidence Interval; FEV: Force Expiratory
Volume; N: Population size; PEV: Peak Expiratory Flow; RR: Respiratory Rate.
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Figure 6. Example of misinformation found in Generated text. CIDSL: Cornelia de Lange syndrome; IVIg: Intravenous immune globulin; MS: Multiple
Sclerosis; PE: plasma exchange.

Human Evaluations
For this research, 3 domain experts assessed the quality of
generated text, based on factors of INFO, FLU, COH, FAC,
and ADE, as proposed by Yuan et al [45], which are discussed
in Multimedia Appendix 2. To measure interrater reliability,
the percentage agreement between the annotators is calculated,
and the results are shown in Table 5. The average percentage
agreement for the factors of FLU, COH, FAC, and ADE is the
highest, indicating that annotators agree among their evaluations.

The average Likert score for each factor is also reported by each
rater (Table 6). From the data mentioned in Table 6, the raters

think that the COH and FLU have the highest quality, with the
ADE, FAC, and INFO also rated reasonably high.

To further assess whether results obtained by automated metrics
truly signify an improvement in the quality of generated text
by TESLEA, the Spearman rank correlation coefficient was
calculated between human ratings and the automatic metrics
for all 51 generated paragraphs (text), with the results shown
in Table 7. The BARTScore has the highest correlation with
human ratings for FLU, FAC, COH, and ADE compared with
other metrics. A few text samples along with their human
annotations and automated metric scores are shown in
Multimedia Appendix 3 and Figure 7.

Table 5. Average percentage interrater agreement.

Adequacy, %Coherence, %Factuality, %Fluency, %Informativeness, %Interrater agreement

82.3570.5982.3582.3582.35A1a and A2b

70.5970.5970.5958.8270.59A1 and A3c

64.7174.5174.5170.5952.94A3 and A2

72.5574.5174.5170.5968.63Average (% agreement)

aA1: annotator 1.
bA2: annotator 2.
cA3: annotator 3.

Table 6. Average Likert score by each rater for informativeness, fluency, factuality, coherence, and adequacy.

AdequacyCoherenceFactualityFluencyInformativenessRater

3.763.973.914.123.82A1

3.684.823.594.973.50A2

3.853.943.853.944.06A3

3.764.243.784.343.79Average Likert score

Table 7. Spearman rank correlation coefficient between automatic metrics and human ratings for the text generated by TESLEA.

AdequacyCoherenceFactualityFluencyInformativenessMetric

0.06–0.05–0.01–0.040.18aROUGE-1

0.05–0.04–0.05–0.010.08ROUGE-2

0.01–0.01–0.13–0.660.09SARI

0.07a0.22a0.38a0.32a0.08BARTScore

aBest result.
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Figure 7. Samples of Complex, Simple (Gold) and generated medical paragraphs along with automated metrics and Human annotations.

Discussion

Principal Findings
The most up-to-date research about biomedicine is often
inaccessible to the general public due to the domain-specific
medical terminology. A way to address this problem is by
creating a system that converts complex medical information
into a simpler form, thus making it accessible to everyone. In

this study, a TS approach was developed that can automatically
simplify complex medical paragraphs while maintaining the
quality of the generated text. The proposed approach trains the
transformer-based BART model to optimize rewards specific
for TS, resulting in increased simplicity. The BART model is
trained using the proposed RL method to optimize certain
rewards that help generate simpler text while maintaining the
quality of generated text. As a result, the trained model generates
simplified text that reduces the complexity of the original text
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by 2-grade points, when measured using the FKGL [29]. From
the results obtained, it can be concluded that TESLEA is
effective in generating simpler text compared with technical
abstracts, the gold-standard references (ie, simple medical
paragraphs corresponding to complex medical paragraphs), and
the baseline models. Although previous work [8] developed
baseline models for this task, to the best of our knowledge, this
is the first time RL is being applied to the field of medical TS.
Moreover, previous studies failed to analyze the quality of the
generated text, which this study measures via the factors of
FLU, FAC, COH, ADE, and INFO. Manual evaluations of
TESLEA-generated text were conducted with the help of domain
experts using the aforesaid factors and further research was
conducted to analyze which automatic metrics agree with
manual annotations using the Spearman rank correlation
coefficient. The analysis revealed that BARTScore [45] best
correlates with the human annotations when evaluated for a text
generated by TESLEA, indicating that TESLEA learns to
generate semantically relevant and fluent text, which conveys
the essential information mentioned in the complex medical
paragraph. These results suggest that (1) TESLEA can perform
TS of medical paragraphs such that outputs are simple and
maintain the quality, (2) the rewards optimized by TESLEA
help the model capture syntactic and semantic information,
increasing the FLU and COH of outputs, as witnessed when the
outputs are evaluated by BARTScore and human annotators.

Limitations and Future Work
Although this research is a significant contribution to the
literature on medical TS, the proposed approach does have a

few limitations, addressing which can result in even better
outputs. TESLEA can generate simpler versions of the text, but
in some instances, it induces misinformation, resulting in
reduced FAC and INFO of the generated text. Therefore, there
is a need to design rewards that consider the FAC and INFO of
the generated text. We also plan to conduct extensive human
evaluations on a large scale for the text generated by various
models (eg, KIS, BART-UL) using domain experts (ie,
physicians and medical students).

Transformer-based language models are sensitive to the
pretraining regime, so a possible next step is to pretrain a
language model on domain-specific raw data sets such as
PubMed [40], which will help develop domain-specific
vocabulary for the model. Including these strategies may help
in increasing the simplicity of the generated text.

Conclusion
The interest in and need for TS in the medical domain are of
growing interest as the quantity of data is continuously
increasing. Automated systems, such as the one proposed in
this paper, can dramatically increase accessibility to information
for the general public. This work not only provides a technical
solution for automated TS, but also lays out and addresses the
challenges of evaluating the outputs of such systems, which can
be highly subjective. It is the authors’ sincere hope that this
work allows other researchers to build on and improve the
quality of similar effort.
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