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Abstract

Electronic health records (EHRs) have been successfully used in data science and machine learning projects. However, most of
these data are collected for clinical use rather than for retrospective analysis. This means that researchers typically face many
different issues when attempting to access and prepare the data for secondary use. We aimed to investigate how raw EHRs can
be accessed and prepared in retrospective data science projects in a disciplined, effective, and efficient way. We report our
experience and findings from a large-scale data science project analyzing routinely acquired retrospective data from the Kepler
University Hospital in Linz, Austria. The project involved data collection from more than 150,000 patients over a period of 10
years. It included diverse data modalities, such as static demographic data, irregularly acquired laboratory test results, regularly
sampled vital signs, and high-frequency physiological waveform signals. Raw medical data can be corrupted in many unexpected
ways that demand thorough manual inspection and highly individualized data cleaning solutions. We present a general data
preparation workflow, which was shaped in the course of our project and consists of the following 7 steps: obtain a rough overview
of the available EHR data, define clinically meaningful labels for supervised learning, extract relevant data from the hospital’s
data warehouses, match data extracted from different sources, deidentify them, detect errors and inconsistencies therein through
a careful exploratory analysis, and implement a suitable data processing pipeline in actual code. Only few of the data preparation
issues encountered in our project were addressed by generic medical data preprocessing tools that have been proposed recently.
Instead, highly individualized solutions for the specific data used in one’s own research seem inevitable. We believe that the
proposed workflow can serve as a guidance for practitioners, helping them to identify and address potential problems early and
avoid some common pitfalls.

(JMIR Med Inform 2022;10(10):e38557) doi: 10.2196/38557
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Introduction

Electronic health records (EHRs) contain a vast amount of
information about an individual’s health status, including
demographics, diagnoses, medication prescriptions, laboratory
test results, high-frequency physiologic waveform signals, and
others. Many prior studies have demonstrated how data science

and machine learning (ML) can be applied to large databases
of EHRs to successfully train models to predict many different
patient-related outcomes, including mortality risk [1-4], length
of hospital or intensive care unit (ICU) stays [1-3],
cardiovascular decompensation [3,5,6], postoperative
complications [7], and, recently, COVID-19 diagnosis and
pathogenesis [8-12]. Although data preparation requires
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considerable time and effort [13,14], it is seldom represented
in research outputs. One possible explanation could be that it
is considered a “standard” task that always proceeds more or
less the same and that can be automated to a large extent, thanks
to readily applicable general purpose software tools [15-17]. In
this paper, we illustrate through specific examples from a
large-scale research project that this is not the case. Conducting
a secondary (ML-based) analysis of raw EHRs from a hospital’s
data warehouse is challenging in many respects due to several
reasons. Above all, data were originally collected without any
specific use case besides clinical application, and relevant
information is usually distributed over multiple disparate

databases that often lack comprehensible documentation. If
clinical concepts (variables, categorical values, units of
measurement, etc) are represented differently across distinct
sources or if the coding of clinical concepts changes over time,
data harmonization can become a real issue. Moreover,
incomplete or invalid data, although a well-known problem in
principle, can occur in many (unexpected) forms and might only
be noticed after careful manual inspection. Figure 1 summarizes
the main challenges with EHR data that we encountered in our
work and are ubiquitous in retrospective medical data analysis
[18].

Figure 1. Primary challenges with retrospective medical data analysis (adapted from Johnson et al [18], which is published under Creative Commons
Attribution 4.0 International License CC-BY 4.0 [19]).

Unlike many other papers about data preparation in a medical
context, this work does not propose a novel generic data
processing tool. Instead, we report the challenges that we faced
and the lessons we have learned in a recent large-scale data
science project. We present specific examples of messy and
corrupted raw data to create awareness that (medical) data
preparation is a nontrivial, labor-intensive endeavor, despite an
ever-growing set of generic tools. Finally, we present a general
data preparation workflow for similar research projects to help
practitioners avoid the most common pitfalls.

The literature on medical data preparation for large-scale
secondary (ML-based) analysis is scarce. Most studies have

focused on model development and the final predictive
performance of the developed models and only mention a few
fundamental aspects of the data preparation pipeline. This is
particularly true for the work of Rajkomar et al [1], but for a
good reason: deep neural networks are used to learn “good”
representations of the data in an end-to-end fashion, relying on
the networks’ ability to automatically handle messy data
properly. The pipeline is based on Fast Healthcare
Interoperability Resources [20], meaning that all data available
in this format can be readily processed without further ado—no
feature selection, harmonization, or cleaning is necessary.
Although appealing at first glance, the proposed approach has
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some limitations, as noted by the authors. Most importantly,
deep neural networks often require massive amounts of data
and computing resources to learn good representations. Second,
the lack of data harmonization potentially impairs transferability
across research locations; for example, for validation. Moreover,
to train models in a supervised manner, one must provide labels,
and depending on the use case, these labels may be difficult to
extract, reintroducing the need for data preparation. It is also
unclear whether the models developed in the aforementioned
study [1] would have performed even better, had the data
undergone more thorough manual inspection and curation.

Other studies have proposed generic data processing pipelines
that can be applied off-the-shelf to well-known ICU benchmark
databases such as Medical Information Mart for Intensive Care
(MIMIC) [21-23] and the telehealth ICU collaborative research
database (eICU-CRD) [24]. The most prominent examples being
MIMIC-Extract [15], FIDDLE [16], cleaning and organization
pipeline for EHR computational and analytic tasks [17], and
Clairvoyance [25]. The authors of FIDDLE and Clairvoyance
claim that their systems are sufficiently general to accommodate
not only data extracted from MIMIC-III and eICU-CRD but
also any EHR data available in a particular form. This may be
true to a large extent, but we experienced that cleaning messy,
raw data and bringing them into the required standardized form
is at least as labor intensive (in terms of implementation effort)
as the subsequent “generic” preprocessing steps that FIDDLE
and Clairvoyance cover. Sculley et al [14] termed this
phenomenon glue code antipattern. In general, MIMIC and
eICU-CRD may be excellent benchmark databases, but we
found that “real-world” data exported directly from a hospital’s
IT infrastructure pose many challenges that are not present in
these databases.

Shi et al [26] presented a medical data cleaning pipeline that
explicitly addresses some of the issues that we also encountered
in our research. They considered laboratory tests and similar
measurements and proposed manually curated validation rules
for numerical variables and an automatic strategy for
harmonizing (misspelled) units of measurement through fuzzy
search and variable-dependent conversion rules. The focus of
Shi et al [26] is on improving the quality of data [27-29],
whereas Wang et al [15], Tang et al [16], and Mandyam et al
[17] are mainly concerned with transforming data into a form
suitable for ML. A more detailed evaluation of FIDDLE,
MIMIC-Extract, and cleaning and organization pipeline for
EHR computational and analytical tasks and the approach to
our data by Shi et al [26] can be found in Multimedia Appendix
1 [15-17,26].

The extensive survey article by Johnson et al [18] summarizes
the main issues of medical data analysis similar to that in this
work. The authors also established a high-level categorization
of these issues into compartmentalization, corruption, and
complexity (Figure 1) and argued that data acquisition and
preparation in the critical care context are particularly difficult
because data are collected for a different purpose.

Sendak et al [30] arrived at similar conclusions, noting in
particular that solutions developed for one site did not scale
well across multiple sites because of redundant data validation

and normalization. The authors provided estimates for the
expected cost of deploying a model to screen patients with
chronic kidney disease in other hospitals. We refrain from
extrapolating such estimates from our findings but agree that
the costs for preprocessing data from other sites into a form
suitable for existing prediction models will likely be significant.

Methods

Data Preparation
Raw EHRs stored in hospitals’ data warehouses cannot readily
be used for developing clinical prediction models but must first
be extracted, analyzed, and subjected to a series of preprocessing
steps. These steps may differ between data modalities and
sources but usually include some sort of validation (ensuring
data accurately reflect reality), harmonization (establishing
uniform representation of equivalent concepts), and
transformation (bringing data into a form suitable for model
development, eg, extracting useful information). Furthermore,
it must be ensured that a sufficient number of data points are
available in the first place and that clinically meaningful target
labels can be extracted from them in the case of supervised
learning. We demonstrate how this can be accomplished in a
disciplined, effective, and efficient manner by referring to a
specific data science project.

Underlying Data Science Project
All results presented in this paper originate from a large-scale
data science project for developing data-driven clinical
prediction models. Specifically, the following 5 use cases were
considered: (1) optimizing patient throughput in the ICU, (2)
increasing the accuracy of treatment priorities in emergency
medicine, (3) improving the selection of blood products, (4)
predicting patient deterioration in the ICU to enable preventive
interventions, and (5) predicting COVID-19 infections using
routinely acquired laboratory tests [11]. All use cases were based
on retrospective, routinely collected data from the Kepler
University Hospital, a large university hospital in Linz, Austria.
A wide variety of data modalities were used, including patient
demographics, laboratory tests, diagnoses, vital signs, and even
high-frequency physiological waveform signals. Information
represented by natural-language text was mostly ignored (except
for short free-text diagnoses), and imaging modalities were
excluded altogether.

The amount of data varies among the 5 use cases; for instance,
use cases 1 and 4 are naturally confined to patients admitted to
the ICU, whereas for use case 2, only patients who visited the
emergency department (ED) could be taken into account. The
period covered by the data also depends on the use case. Table
1 lists the particular period and the total number of patients for
each of the 5 use cases. Altogether, the order of magnitude of

the number of data items processed was 109 (excluding
high-frequency waveform data) of which vital signs and
laboratory tests constituted the vast majority.

The specific results of the 5 use cases were not the main focus
of this paper. Instead, the use cases serve merely as illustrative
examples throughout the remainder of this paper.
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Table 1. Use cases considered in the research projecta.

Patients, nPeriodShort descriptionUse case

14,2362010-2020Optimizing ICUb patient throughput1

77,9722015-2020Increasing the accuracy of treatment priorities in EDc2

58552016-2020Improving the selection of blood products3

30692018-2020Predicting patient deterioration in the ICU4

79,8842019-2020Predicting COVID-19 infections [11]5

aNote that patient cohorts partly overlap.
bICU: intensive care unit.
cED: emergency department.

Data Sources
Relevant data for the 5 mentioned use cases are contained in 3
central data management systems in the hospital’s IT
infrastructure: the hospital information system (HIS), patient
data management system (PDMS), and Bedmaster system. The
HIS is a hospital-wide data warehouse that contains information
on all patients admitted to the hospital. Among others, this
includes demographics (date of birth, sex, etc), detailed
information about in-hospital transfers, diagnoses, laboratory
test results, and intramural mortality. PDMS is deployed in 5
ICUs associated with critical care in the hospital. Hence, it only
contains information about patients admitted to the ICU during
their hospital stay but complements the basic information found
in the HIS with automatically recorded vital sign measurements
(heart rate, blood pressure, body temperature, etc; up to 30
measurements per vital sign per hour), precise information about

administered medications, and manually recorded scores (eg,
Glasgow Coma Scale). The Bedmaster system [31] can be
connected to bedside monitoring devices and automatically
stores the vital signs, physiological waveforms, and alarms
produced by these devices. The temporal resolution of the
acquired data far exceeds the resolution in PDMS, with vitals
being recorded every 2 seconds and waveforms sampled at rates
of 60 to 240 Hz. This system is only deployed in 2 of the 5 ICUs
and was installed in March 2018. Hence, the number of patients
covered by it is significantly smaller compared with HIS and
PDMS.

In addition, information about the extramural mortality of
patients after hospital discharge was obtained from the Austrian
Federal Statistics Agency (use case 1), and information about
blood products transfused in the hospital was obtained from a
local blood bank (use case 3). Figure 2 summarizes all data
sources and modalities used in the 5 cases.

Figure 2. Data sources and exported modalities in use cases 1 to 5. HIS, PDMS, and Bedmaster are data management systems deployed in the hospital,
whereas information about extramural mortality and blood products had to be obtained from external sources. HIS: hospital information system; PDMS:
patient data management system; ICU: intensive care unit.

Ethics Approval
For each use case mentioned in this work, approval was obtained
from the Ethics Committee of the Medical Faculty, Johannes

Kepler University, Linz, Austria. The corresponding study
numbers are 1015/2021, 1233/2020, 1232/2020, 1014/2021,
and 1104/2020.
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Results

Data Overview
Before beginning to export raw data from their hospital-internal
storage, it is imperative to obtain an overview of what kind and
how much data are available. This might sound obvious but can
be more intricate than it seems. For example, the number of
patients or cases at one’s disposal is not always indicative of
the amount of suitable data. Specifically, in the common setting
of supervised learning, only data points to which clinically
meaningful target labels can be assigned are useful. In the blood
transfusion use case 3, for instance, the types of
transfusion-related complications we could consider were
limited by the availability of sufficient pre- and posttransfusion
laboratory measurements to identify the respective
complications. Ultimately, sufficient labeled training samples
could only be generated for predicting acute kidney injury and
acute respiratory failure. Other organ systems, although
interesting in principle, had to be excluded from the analysis.
Acute respiratory failure also had to be excluded eventually
because the class imbalance was found to be too strong.

Given the richness of information stored in EHRs, there are
normally enough data that can be converted into features that
clinical prediction models may attend to. However, one must
be aware that information accumulates over time, meaning that
more data about a patient are available toward the end of the
hospital or ICU stay than toward the beginning. For us, this was
especially relevant in use case 2, where treatment priorities and
30-day mortality of patients visiting the ED had to be predicted
based on only a few pieces of information typically recorded
in the ED.

Defining Labels for Supervised Learning
Routinely collected retrospective EHR data do not always
contain information about the outcomes that one wants to
predict. Typical outcome parameters, apart from mortality or
length of hospital stay, are often composites of several
parameters that must be deduced from surrogate variables. Some
authors, for instance, resort to hypotension as an indicator of
cardiac instability [5,6], an approach we adopted in our use case
4 for predicting patient deterioration. Similarly, widely accepted
criteria for organ system failure exist; for example, Kidney
Disease: Improving Global Outcomes [32] for kidney disease
and the Berlin definition for acute respiratory distress syndrome
[33]. Both were used in use case 3.

Further problems can arise when trying to predict the effects of
interventions. First, it might not always be possible to connect
an observed outcome to a specific intervention, especially if
multiple interventions occur within a short time. In the blood
transfusion use case 3, in many cases, 2 or more blood products
are transferred simultaneously, rendering it impossible to
determine which of the administered transfusions are responsible
for a posttransfusion complication. In such a situation, framing
the prediction task as a multiple instance learning problem [34]
might be the only remedy. Second, if the goal is to assess or
improve existing clinical decision policies, one is confronted
with questions such as “What would have happened to the
patient if he/she had been treated differently?” Naturally, such

questions are difficult to answer based on retrospective data in
which interventions and treatments are fixed, and counterfactual
trajectories cannot be explored, although the literature on
estimating counterfactual treatment outcomes through statistical
analysis and ML exists [35]. In use case 1, where the primary
goal was to predict the optimal time for discharging ICU patients
back to a ward, we resorted to answering the proxy question of
whether transferred patients should have better stayed longer
in the ICU. We determined this by identifying patients who died
or returned unexpectedly shortly after ICU discharge.

Accessing and Extracting the Data
Hospital IT infrastructure is usually designed to provide easy
access to the data of individual patients to deliver optimal care.
Unfortunately, this does not imply that batches of data from
distinct patients can be accessed, let alone extracted, easily. In
particular, if the amount of manual interaction required for
exporting data is too high, individual retrospective studies might
be feasible, but the automatic real-time deployment of prediction
models on live data may not be feasible. Data access can be
challenging when there is only one source but even more so if
there are multiple disparate data sources one must incorporate.
In our project, we had to access 3 distinct databases: HIS,
PDMS, and Bedmaster (Figure 2). HIS is a SAP-based system
from which tables can be exported as CSV or Microsoft Excel
files, and PDMS is a PostgreSQL relational database that allows
exporting the results of queries in whatever table format is
desired. In contrast, exporting data from the Bedmaster system
turned out to be cumbersome because only XML and JSON
exports are supported by default. Representing the massive
amount of waveform and vital sign data in either of these
verbose formats resulted in huge files that could not be
processed efficiently; so, in the first step, we had to extract the
relevant numerical values from the JSON files and store them
in the more efficient HDF5 format. This process was
considerably more intricate than anticipated because of
inconsistencies in the exported data representation that are
detailed in Multimedia Appendix 2 [36-39].

Matching Data From Different Sources
Data exported from different sources must be matched to obtain
coherent records of the patients or cases under consideration.
Under normal circumstances, this is straightforward because of
common identifiers. However, according to our experience,
such identifiers do not always need to be present or change over
time. Specifically, data exported from the Bedmaster system
lack identifiers, such as patient or case IDs. Knowing only the
ICU bed they stem from, as well as the precise timestamp of
each single recorded value, we had to assign the corresponding
IDs manually based on the information about which patient
occupied which ICU bed at which time. This approach works
but is cumbersome and adds extra complexity and is another
potential source of mistakes. It is also more difficult to automate
than simply joining tables on common ID columns.

Mappings between identifiers and the entities they refer to may
change over time as experienced in our project with drug codes.
Every drug has a unique code that is used to reference it in
prescription tables, but for unknown reasons, the coding changes
at certain points in time. The precise information when this
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happens is stored in another table, so that drug names can be
recovered from the provided codes and timestamps of
prescriptions. Yet again, the whole process is not as
straightforward as we would have hoped.

Deidentification
Sensible personal information stored in EHRs can only be shared
in a deidentified form. There are no universal rules on how data
need to be deidentified, as long as identifying individual patients
afterward becomes practically impossible. In our project,
deidentification amounted to removing patient names and
replacing hospital identifiers, such as patient IDs or case IDs,
with project-internal identifiers that could be used to match
corresponding data items across different tables. Furthermore,
all timestamps were shifted by a random per-patient offset in
the future to avoid reidentification of patients from knowing
their exact admission or discharge times. Timestamps were
shifted after matching data from different sources because some
matching strategies depend on precise temporal information,
as described earlier. The timestamps were shifted such that the
time of day and day of week were preserved because both
constitute potentially valuable information for downstream data
analysis tasks. The same is true for seasonality, which was also
roughly preserved. This deidentification policy is analogous to
that used for MIMIC-III [21]. We remark that it is not as
thorough as the policy implemented for releasing the more
recent AmsterdamUMCdb [40]: there, theoretical concepts such
as k-anonymity and l-diversity are considered to render
reidentifying individual patients practically impossible under
advanced threat models assuming “rogue researchers” and
“rogue insurance companies” with access to the data. As, in our
case, all data (even in deidentified form) are kept private and
can only be accessed by project members, we did not deem such
a thorough deidentification policy necessary.

Deidentification removes or replaces information that can
otherwise be used to detect inconsistencies in the data, such as
the same patient ID being accidentally assigned to multiple
patients with different names. Therefore, it is crucial to ensure
that any problems of this kind are detected and corrected either
before or while deidentifying the data when the necessary
information is still available. Specifically, we implemented
extensive sanity checks that, for instance, ensure case and patient
IDs are in a 1:n relationship (every case ID corresponds to a
unique patient ID, but a patient ID can have multiple case IDs
associated with it). All instances violating this principle are
immediately reported to the human operator, allowing him or
her to either overwrite one of the identifiers or discard the
instances completely. Furthermore, missing patient IDs were
automatically reconstructed from known case IDs whenever
possible. The availability of patient IDs is essential because the
random temporal offsets used for deidentifying timestamps are
associated with patient IDs rather than case IDs. Finally, because
hospital-assigned case IDs follow a clearly defined pattern that
allows them to be distinguished from patient IDs, accidentally
swapped case IDs and patient IDs are automatically exchanged
before deidentification.

The kind of information that should be preserved by
deidentification depends very much on the prediction task one
wants to tackle. For example, in our approach, the temporal
order of the data is preserved only within a patient but not across
all patients. In particular, the total number of patients in the ICU
at a certain point in time, a potentially relevant input for use
case 1, can no longer be determined after deidentification. For
the same reason, it is impossible to detect domain shifts in the
deidentified data, which are systematic changes in the
distribution of the data over time (domain shifts can be caused
by many different factors such as new measurement equipment,
laboratory test procedures, or changes in the prevalence of
diseases in the patient population). Therefore, all relevant
temporal features that could not be computed after
deidentification had to be extracted and added to the data before
deidentification.

Inspection and Exploratory Analysis
Real-world data can be corrupted or otherwise ill-behaved in
many unforeseeable ways, in addition to well-known issues
related to missing values or invalid measurements, that a
thorough inspection and exploratory analysis is inevitable.
Indeed, in our experience, this is one of the most labor-intensive
tasks in the entire data preparation pipeline. Owing to the nature
of the problem, it is difficult to devise general rules for what
one should pay attention to. Instead, we report one particularly
subtle issue encountered in our work. It might be specific to our
hospital but is meant to serve as an illustrative example of what
can unexpectedly happen when working with EHRs. More
examples can be found in Multimedia Appendix 2.

In use case 4, we made heavy use of physiological waveform
signals, such as electrocardiogram, arterial pressure, and oxygen
saturation, to predict whether the condition of ICU patients will
deteriorate within the next 15 minutes. Waveform signals are
recorded by the Bedmaster system and can be exported as arrays
of numerical values. It should be clear that because of the way
in which these data are measured, there can be many types of
measurement artifacts in the signals; that is, highly unusual
waveform morphology caused by slipped sensors, or patient
movements. This must be expected and addressed either
explicitly by automatically detecting periods of invalid
waveform data [36] or implicitly by relying on the subsequent
ML algorithm’s ability to learn how to differentiate between
normal and abnormal signals. An entirely unexpected issue is
depicted in Figure 3: occasionally, the signals assume constant
low values for a short time. The natural guess of measurement
errors (eg, caused by slipped sensors) is likely wrong because
simply cutting out the constant low-value period leads to smooth
curves in all inspected cases. Such situations may thus indicate
data artifacts of unknown origin that must be removed to obtain
coherent signals, but strangely they do not always occur in all
simultaneously recorded waveforms at the same time. Therefore,
we opted to refrain from cutting out fragments of the raw signals
to avoid a possible temporal misalignment of different
waveforms.

JMIR Med Inform 2022 | vol. 10 | iss. 10 | e38557 | p. 6https://medinform.jmir.org/2022/10/e38557
(page number not for citation purposes)

Maletzky et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Short periods of constant low values in waveform signals might have to be cut out. Left: original signal with a 0.5-second period of constant
low values. Right: signal after cutting out the low value; as can be seen, the 2 ends of the signal fit perfectly.

Implementation
Eventually, the pipeline for extracting and preprocessing all
relevant EHR data must be implemented in the actual code.
This can be challenging in many respects. First, it is tempting
to make extensive use of technologies aimed at rapid prototyping
(eg, Jupyter notebooks) to quickly experiment with the data and
preprocess them for a particular use case in a particular
hard-coded way. This might work well in the short term;
however, in the long term, a structured modular codebase that
allows the exchange of individual components and adjustment
(and logging!) of configuration settings is the better approach.
In particular, the logging of configuration settings is of utmost
importance to know exactly how data were preprocessed and
how models were generated, thereby obtaining reproducible
results.

Second, pipelines implemented to process a specific data
modality for a particular use case should be reusable in other
use cases that depend on the same data modality, at least to a
certain extent. Even if the desired output format of the data after
preprocessing differs between the 2 use cases, there are almost
certainly some steps in the pipeline that are applicable to both.
Reusing existing functionality rather than reimplementing it
enables a consistent treatment of data across use cases and as a
side effect may even help to abstract from the peculiarities of
one use case and implement preprocessing functionality in a
more general way. For example, we used laboratory test results
in each of the 5 use cases either as features or for assigning
labels (or both). In use case 4, the last 3 measurements of a fixed
set of laboratory parameters relative to a given point in time are
used as features, whereas in use case 3, the last measured value
of a certain parameter before a blood transfusion is compared
with measurements after the transfusion to determine whether
it incurred a complication. Both are special cases of the more
general principle of finding the last or first n measured values
before or after a given point in time and could hence be
implemented in one common function.

Finally, the inclusion of general-purpose third-party tools in the
data preparation pipeline clearly has its benefits as well as
potential downsides. On the one hand, functionality implemented
therein does not have to be reimplemented (nor tested) from
scratch, but on the other hand, Sculley et al [14] point out that
it may lead to many glue code and pipeline jungles for bringing

data into the right shape. In our project, we restricted ourselves
to well-established libraries from the Python ecosystem,
including NumPy [41], Pandas [42], and scikit-learn [43] and
deliberately avoided tools such as FIDDLE [16]. The former 3
are libraries of useful classes and functions that can be easily
integrated into one’s own pipeline. The latter implements a full
medical data preparation pipeline itself, which, although being
generic and customizable in principle, did not offer the amount
of flexibility we would have required to accommodate our data.

More precisely, our data preparation pipeline consists of 3 main
steps: harmonization, validation, and transformation.
Harmonization, that is, ensuring that equivalent concepts are
represented consistently, is very specific to each data modality
and typically amounts to assigning unique names to equivalent
variables and converting measured values into a common unit
of measurement. Validation of recorded values happens with
respect to manually specified, threshold-based rules. Analogous
to Harutyunyan et al [3], we distinguished between invalid
numerical values and extreme outliers. Each validation rule is
characterized by 2 ranges r1⊆r2, where everything inside r1 is
deemed admissible and everything outside r2 is deemed an
extreme outlier. Extreme outliers x∉r2 are deleted entirely,
whereas the values x∈r2\r1 are set to the nearest admissible
value in r1. Finally, transformation also depends on the specific
data modality under consideration but is often concerned with
resampling EHR tables in an event-based entity-attribute-value
format into a more ML-friendly wide table format. This proceeds
by aggregating all observations within a given time window
with respect to a fixed set of rules, such as taking the mean,
sum, or temporally last of all the measured values. If a variable
has not been measured at all in a time window, the “missing”
recordings are imputed. As other authors have noted [44],
clinical measurements are not missing at random; therefore,
explicit missingness masks indicating whether a value has been
imputed are added as extra features. In general, one must also
be careful when imputing the mean or median of all observed
values, as this could introduce bias. For example, if a variable
is only measured if a patient has a certain condition, the
measured values are not representative of the entire population.
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Discussion

Principal Findings
The preceding sections illustrate that the preparation of EHRs
for secondary analysis and the development of prediction models
constitute a challenging endeavor. In addition to the well-known
ubiquitous data problems for which generic off-the-shelf
solutions exist (eg, imputation of missing values), we identified
many issues in our raw data that had to be addressed
individually. Even worse, none of these issues could be expected
or popped up during the first quick scan of the data but instead
were discovered only after a thorough exploratory analysis.
Different kinds of patient identifiers being accidentally swapped
is certainly something one would not expect at all, yet we found
a few such cases in our data. The use of multiple codes or names
for the same clinical concept is also not trivial to detect,
especially if it is a mere artifact of the internal data
representation that does not surface in clinical practice. If the
mapping between codes and concepts changes over time, data
harmonization becomes a true challenge. With regard to data
validation, blindly discarding all nonnumeric values of a
supposedly numeric variable fails to account for censored values
such as “>120.0” (Multimedia Appendix 2) that do carry useful
information. Finally, the subtle issues with waveform data
reported above not only demand a thorough systematic analysis
of timestamps and measured values but are also difficult to fix.
Altogether, these observations support our claim that although
generic tools such as FIDDLE [16] and Clairvoyance [25]
doubtlessly do have their merits, one must be careful not to
underestimate the additional effort of modality- and
source-specific data analysis and preparation. In general, we
believe that extensive libraries of well-documented, generic,
and cleanly implemented functionalities focusing on the
peculiarities of medical data preparation (harmonizing and
validating physiological variables, resampling event-based
entity-attribute-value tables into wide tables, etc) are more
valuable than full-fledged end-to-end pipelines, regardless of
how generic and configurable they are.

Extracting labels that indicate the outcome of interest from
retrospective data can be more intricate than one might expect.
Often, these outcomes (patient deterioration, organ system
failure, optimal treatment policy, etc) are not explicitly recorded
in EHRs and must therefore be approximated. The quality of
such an approximation might influence not only the performance
of the generated prediction models but also their applicability
to clinical practice. Furthermore, if the definition of some label
depends on scarcely recorded variables, only a few labeled
samples may remain. In such a situation, methods based on
self-supervised and semisupervised learning [45-47] might be
the only remedy.

EHRs contain highly sensitive patient information that, for good
reasons, must be deidentified before it can be shared with
scientific partners in research projects. How and to what extent
this needs to be carried out often not clearly defined, especially
regarding the treatment of temporal information. Temporal data
may contain highly relevant information depending on the
concrete use case. On the one hand, knowing the time of day

and day of week of a particular event is necessary if the
prediction task at hand has to take clinical routines into account;
on the other hand, knowing the (rough) order of events across
different patients enables detecting domain shifts in the
underlying data distribution. Finally, if the use of a particular
resource at any given point in time is of interest, this information
must be extracted before deidentifying the timestamps, or
timestamp deidentification must be avoided entirely. In our
experience, it is good to first determine the kind of information
one needs for a particular use case and then devise
deidentification strategies that preserve as much of the
previously determined information as possible while observing
legal regulations and hospital-internal restrictions.

Finally, if the ultimate goal of developing prediction models is
to deploy them in clinical practice, data access becomes a factor
that must be considered. The more manual steps involved in
exporting the data from the hospital IT infrastructure into the
desired format, the more difficult real-time deployment will be.
In our use case 4, automatically exporting the necessary data
of all current ICU patients after every n minutes and then
promptly processing them is challenging and currently work in
progress. This mainly owes to the fact that the entire data
warehousing system of the Kepler University Hospital was
designed for clinical use rather than real-time analysis. However,
alternatives exist; a sophisticated solution for efficient storage
of and access to medical data for data science projects is
presented in a study by McPadden et al [48].

Workflow
The data preparation workflow we followed in our project is
summarized in Figure 4, with rough estimates of the relative
time and effort taken by the individual steps. We think that it
generalizes to other data science projects with retrospective
EHR data and hope that it can serve as guidance for other
researchers to identify and address potential problems early and
avoid some common pitfalls.

The presentation of the (linear) workflow in Figure 4 is
simplified because in reality, there are many feedback loops.
For instance, inspecting the data may reveal issues that can only
be rectified if additional information is extracted from the
system, and some issues might only surface after developing
the first prediction models.

It is important to note that the results presented in this paper
only refer to data preparation for subsequent model development
but not to the development and validation of actual prediction
models. We think these are “standard” tasks in data science and
ML that are not specific to medical data. However, we do
acknowledge that selecting the appropriate class of prediction
models for a given task, optimizing hyperparameters, and
training models in the right way are by no means trivial and
require a lot of time and effort. This is also true for deploying
models in clinical practice, where topics such as handling
domain shifts, detecting out-of-distribution data, and explaining
model decisions in a manner comprehensible to patients must
be addressed. Things become even more difficult if existing
models are to be deployed in other hospitals because most of
the steps in the above workflow must be repeated. Only the
definition of labels and (possibly) deidentification can be
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skipped, and some parts of the existing pipeline implementation
can perhaps be reused. According to our rough estimate,
approximately 75% of the effort invested in the initial data
preparation for developing prediction models must be reinvested

for each hospital that these models are deployed. As noted in a
study by Sendak et al [30], this incurs significant additional
costs.

Figure 4. Data preparation workflow for retrospective EHR data analysis. EHR: electronic health record.

Conclusions
Preparing raw medical data from productive environments for
retrospective analysis and ML remains challenging and time
consuming. Our findings suggest that real-world EHR data can
be messy and corrupted in so many subtle ways that thorough

exploratory analysis and tailor-made preprocessing functionality
for the data at hand are inevitable. We want to create awareness
of this fact and hope that the sketched data preparation workflow
becomes a valuable guidance for future large-scale data science
projects involving routinely acquired medical data.
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