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Abstract

Background: Studies have shown that more than half of patients with heart failure (HF) with acute kidney injury (AKI) have
newonset AKI, and renal function evaluation markers such as estimated glomerular filtration rate are usually not repeatedly tested
during the hospitalization. As an independent risk factor, delayed AKI recognition has been shown to be associated with the
adverse events of patients with HF, such as chronic kidney disease and death.

Objective: The aim of this study is to develop and assess of an unsupervised machine learning model that identifies patients
with HF and normal renal function but who are susceptible to de novo AKI.

Methods: We analyzed an electronic health record data set that included 5075 patients admitted for HF with normal renal
function, from which 2 phenogroups were categorized using an unsupervised machine learning algorithm called K-means clustering.
We then determined whether the inferred phenogroup index had the potential to be an essential risk indicator by conducting
survival analysis, AKI prediction, and the hazard ratio test.

Results: The AKI incidence rate in the generated phenogroup 2 was significantly higher than that in phenogroup 1 (group 1:
106/2823, 3.75%; group 2: 259/2252, 11.50%; P<.001). The survival rate of phenogroup 2 was consistently lower than that of
phenogroup 1 (P<.005). According to logistic regression, the univariate model using the phenogroup index achieved promising
performance in AKI prediction (sensitivity 0.710). The generated phenogroup index was also significant in serving as a risk
indicator for AKI (hazard ratio 3.20, 95% CI 2.55-4.01). Consistent results were yielded by applying the proposed model on an
external validation data set extracted from Medical Information Mart for Intensive Care (MIMIC) III pertaining to 1006 patients
with HF and normal renal function.

Conclusions: According to a machine learning analysis on electronic health record data, patients with HF who had normal renal
function were clustered into separate phenogroups associated with different risk levels of de novo AKI. Our investigation suggests
that using machine learning can facilitate patient phengrouping and stratification in clinical settings where the identification of
high-risk patients has been challenging.

(JMIR Med Inform 2022;10(10):e37484) doi: 10.2196/37484
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Introduction

Acute kidney injury (AKI) is a common disorder in patients
with heart failure (HF), with the reported incidence rate varying
from 7% to 38% in cardiology departments [1-3]. A recently
conducted nationwide survey in China showed that about 85%
of AKI incidents that occurred during cardiac hospitalization
were ignored or were late to be identified [4,5]. As an
independent risk factor, the delayed recognition of AKI has
been proven to be associated with worse outcomes of patients
with HF (eg, chronic kidney diseaseand mortality) [4,6]. To this
end, the prompt identification of patients with HF at high-risk
of AKI has great potential to improve clinical outcomes.

Although a few specific clinical markers (eg, estimated
glomerular filtration rate [eGFR]) have been adopted to evaluate
the renal function of patients with HF such that those at high
risk of AKI can be identified, these markers lack the ability to
screen de novo AKI patients who had normal renal function at
admission [7,8]. Of note, several recently conducted population
studies have indicated that more than half of the AKI that
occurred in patients with HF were de novo [1-3]. To address
this challenge, we attempted to clarify the characteristics of
patients with HF who are susceptible to de novo AKI and
developed a machine learning model for identification of HF
patients with normal renal function but at high risk of de novo
AKI.

As recently conducted cardiovascular studies have demonstrated
that an unsupervised machine learning approach is able to model
correlations among variables that contain prognostic information
and cluster cohesive patients into 1 homogeneous phenogroup

[9-11], we hypothesized that it can also be applied to identify
patients with HF at high risk of de novo AKI. Recently, with
the rapid development of hospital information systems, a large
collection of electronic health records (EHRs) has become
available that documents various types of patient information
(eg, vital signs, laboratory test results) and treatments (eg,
medication, surgery) and thus offers the considerable potential
to implement a large-scale real-world analysis at a low
expenditure. Therefore, in this study, we aimed to develop an
EHR-based unsupervised machine learning analysis to group
patients with HF and identify those who are susceptible to de
novo AKI.

Methods

Study Population
The proposed retrospective study used a real-world data set
obtained from the EHR system of the Chinese PLA General
Hospital (PLAGH). The data set documented regular medical
information in 84,705 hospitalizations of 29,699 patients who
were diagnosed with HF in the PLAGH from 1998 to 2018.
Adult patients with HF and normal renal function (eGFR >60

mL/min/1.73m2 as calculated by the serum creatinine [SCr]
version of the Chronic Kidney Disease Epidemiology
Collaboration [CKD-EPI] equation [12] and without chronic
kidney disease diagnosis) were considered for inclusion.
Additionally, patients who did not have echocardiogram records
were excluded. For patients with multiple hospitalizations, only
the last hospitalization was reserved. The detailed preprocessing
procedure is illustrated in Figure 1.

Figure 1. Preprocessing procedure of the PLAGH data set. CKD: chronic kidney disease; eGFR: estimate glomerular filtration rate; HF: heart failure;
PLAGH: PLA General Hospital.
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Ethics Approval
The study protocol was approved, with a waiver of consent
granted on the basis of minimal harm and general
impracticability by the health institutional review board of
Zhejiang University (No. ZJU-2021-27).

Variable Selection and Machine Learning Model
In this study, 58 variables potentially associated with AKI,
including demographics, vital sign measurements, medications,
laboratories, operations, and echocardiogram exams, and
routinely documented in EHRs at the admission stage of
hospitalization were considered as candidates for analysis. To
ensure that the most informative variables were selected and
the correlation between variables could be diluted, we excluded
variables with a missing rate larger than 30% or with a Pearson
correlation coefficient >0.6 or that were documented fewer than
100 times in the raw EHR data set. As a result, 39 variables
were included in the cohort. All continuous variables were
transformed to standard normal distribution for the convenience
of the unsupervised machine learning model (Table S1,
Multimedia Appendix 1). Thereafter, we adopted multivariate
imputation by chained equations [13] to impute the missing
data.

We employed a simple yet effective unsupervised machine
learning model called K-means clustering to categorize patients
into different phenogroups [14]. The silhouette coefficient was
applied to determine the optimal number of phenogroups [15].
We also adopted the nonlinear dimensionality reduction
technique of t-distributed stochastic neighbor embedding [16]
to visualize and evaluate the clustering results in a qualitative
manner. The model was repeatedly run 1000 times to guarantee
the achieved results stable.

Outcomes of Interest
The primary outcome was the incidence of AKI, which was
defined according to the Kidney Disease: Improving Global
Outcomes (KDIGO) standard [17], with the occurrence of AKI
defined as the increase of SCr to ≥1.5 times the baseline in 7
days or the increase of SCr by ≥26.5 μmol/L within 48 hours.
The secondary outcome was in-hospital mortality.

Characterization of Phenogroups
Once patients with HF were categorized into separate
phenogroups, we measured the differences of variables in
different groups. Continuous variables are reported as median
and IQR (interquartile range). Categorical variables are reported
as the frequencies and counts. Differences between groups were
tested using the 1-way analysis of variance, Kruskal-Wallis test,
or the chi-square test where appropriate. A P value of <.01 was
considered statistically significant.

Discrimination of Phenogroups
We validated whether the phenogroup index generated by
K-means clustering correlated with outcomes of interests by
carrying out the following 3 experiments. First, Kaplan-Meier
estimators with log-rank tests were conducted to analyze the
time-to-event characteristics in different phenogroups. Second,
we compared the prediction performance on AKI and in-hospital
mortality to check whether the inferred phenogroup index was

an effective risk predictor for outcomes of interest. Specifically,
we selected the top-ranked 10 variables using a forward stepwise
strategy with the Akaike information criterion and then
developed 5 logistic regression (LR) models to predict the
outcomes of interest. Model 1 used the phenogroup index as
the univariate predictor. Model 2 used the top-ranked 10
variables as predictors. Model 3 used the top-ranked 10 variables
and the phenogroup index. Model 4 used all 39 variables. Model
5 used all 39 variables and the phenogroup index. All models
were trained by 70% of the data from the PLAGH data set and
tested with the remaining 30% of data. Third, to evaluate
whether the phenogroup index could achieve the competitive
discriminative performance compared to the original variables
with respect to the primary and secondary outcomes, we applied
unadjusted Cox proportional hazard regression to examine
hazard ratios (HRs), 95% CIs, and P values for all included
original variables as well as the phenogroup index on both the
whole PLAGH data set and the following subgroups: age (age
<65 vs ≥65 years), sex, type of HF (acute vs chronic), diabetes
mellitus, stroke, atrial fibrillation, coronary heart disease,
anemia, and left ventricular ejection fraction (<40%, 40%-49%,
and ≥50%). To assess continuous variables appropriately, we
categorized all continuous variables in validation, and the cutoff
points for these continuous variables are presented in online
supplementary Table S2, Multimedia Appendix 1.

External Validation
We externally validated our model on a well-known open-source
database, Medical Information Mart for Intensive Care
(MIMIC)-III [18]. After a requisite preprocessing procedure
(online supplementary, Figure S1), we prepared a MIMIC-III
data set that contained 1006 patients with HF who had normal
renal function. The model trained by the PLAGH data set was
directly transferred onto the MIMIC-III data set. In detail, we
compared the distance between the data of each patient in the
MIMIC-III data set and the centroids of the derived phenogroups
from the PLAGH data set and then assigned the patient into a
phenogroup with the minimum Euclidean distance. After that,
we assessed the survival rate and prediction performance of
AKI and in-hospital mortality of the generated phenogroups
from the MIMIC-III data set. As patients contained in the
PLAGH data set were mainly from general wards in the PLAGH
and patients included in the MIMIC-III data set were from
intensive care units in the United States, there inevitably were
statistical differences between the baseline characteristics of
patients in the 2 data sets (Table S3, Multimedia Appendix 1).
In this sense, the external validation was able to evaluate the
stability of the proposed model in diverse clinical settings.

In this study, statistical and machine learning analysis was based
on sklearn, lifelines, scipy package [19-21], and Python. We
also report the centroids of the generated phenogroups from the
PLAGH data set (Table S4, Multimedia Appendix 1), which
may be nontrivial knowledge to assist clinicians in identifying
their patients with HF at high risk of de novo AKI.
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Results

Phenogroup Results
After preprocessing, 5075 hospitalizations and 39 variables
(Table 1) were reserved for the PLAGH data set (median age
61 years, IQR 51-70 years; female 1723/5075, 32.39%; acute

HF 1723/5075, 33.95%). Using K-means clustering, we naturally
separated patients into 2 basically nonoverlapping phenogroups,
where the number of clusters was suggested by the silhouette
coefficient test (Figure S1, Multimedia Appendix 1). Similar
results were found using t-distributed stochastic neighbor
embedding visualization (Figure S2, Multimedia Appendix 1).

Table 1. Included variables for clustering.

FeaturesDomain

Age, sexDemographic

Acute/chronic HF, atrial fibrillation, cardiomyopathy, coronary heart disease, diabetes, stroke, valvular heart diseaseDisease

Angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, anticoagulant, antiplatelet, beta blocker, calcium
channel blocker, diuretic, positive inotropic drug, vasodilator

Medication

Left ventricular ejection functionEchocardiography

Alanine aminotransferase, aspartate transaminase, estimated glomerular filtration rate, gamma-glutamyl transferase, hemoglobin,
high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, N-terminal probrain natriuretic peptide, serum calcium,
serum potassium, serum sodium, serum urea, total bilirubin, total serum protein, triglyceride, troponin T

Laboratory result

Angiography percutaneous coronary interventionOperation

BMI, diastolic blood pressure, systolic blood pressureVital sign

aOnly drugs used in the first 48 hours after admission were included to ensure the drug usage could reflect the patient admission status.

Characteristics of Phenogroups
Table 2 illustrates the baseline characteristics of the PLAGH
data set and the 2 derived phenogroups. Compared to
phenogroup 1, phenogroup 2 had a higher rates of AKI (group
1: 106/2823, 3.75%; group 2: 259/2252, 11.50%; P<.001) and
in-hospital mortality (phenogroup 1: 21/2823, 0.74%;
phenogroup 2: 118/2252, 5.24%; P<.001). In addition, patients
in phenogroup 2 were generally older than those in phenogroup
1 (58 vs 65 years; P<.001).

As can be seen in Table 2, there are more patients diagnosed
with acute HF in phenogroup 2 than those in phenogroup 1
(phenogroup 1: 738/2823, 26.14%; phenogroup 2: 985/2252,
43.74%; P<.001). Moreover, cardiac function of patients in
phenogroup 2 was worse than that in phenogroup 1. Specifically,
there were statistical differences between patients in phenogroup
1 and phenogroup 2 in terms of left ventricular ejection fraction
(50% vs 41%; P<.001), diastolic blood pressure (77 mmHg vs
70 mmHg; P<.001), systolic blood pressure (130 mmHg vs 118
mmHg; P<.001), N-terminal pro-brain natriuretic peptide (572
pg/mL vs 2680 pg/mL; P<.001), hemoglobin (143 g/L vs 129
g/L; P<.001), atrial fibrillation (phenogroup 1: 526/2823,
18.63%; phenogroup 2: 595/2252, 26.42%; P<.001), diuretic
usage (phenogroup 1: 1608/2823, 56.96%; phenogroup 2:
1799/2252, 79.88%; P<.001), and positive inotropic drug usage
(phenogroup 1: 778/2823, 27.56%; phenogroup 2: 1089/2252,
48.36%; P<.001). Furthermore, phenogroup 2 had higher
troponin T levels (0.01 ng/mL vs 0.02 ng/mL; P<.001),
indicating that there were more patients in phenogroup 2 who

underwent myocardial damage. Patients in phenogroup 2 had
higher values of gamma-glutamyl transferase (31.70 IU/L vs
40.30 IU/L; P<.001), total bilirubin (12.79 μmol/L vs 15.85
μmol/L; P<.001), and aspartate aminotransferase (19.60 IU/L
vs 24.29 IU/L; P<.001), indicating that patients in phenogroup
2 might have worse liver function compared with phenogroup
1. Moreover, although we had excluded patients with renal
dysfunction in advance, patients in phenogroup 2 had worse

eGFR values (92.06 mL/min/1.73m2 vs 81.85 mL/min/1.73 m2;
P<.001) and urea (5.46 mmol/L vs mmol/L; P<.001). These
findings demonstrated that patients in phenogroup 2 had
relatively worse kidney function. Furthermore, patients in
phenogroup 2 used less angiotensin-converting enzyme
inhibitor/angiotensin receptor blocker (phenogroup 1:
1531/2823, 54.23%; phenogroup 2: 1016/2252, 45.11%;
P<.001), calcium channel blocker (phenogroup 1: 789/2823,
27.95%; phenogroup 2: 321/2252, 14.25%; P<.001), and
antiplatelets (phenogroup 1: 1914/2823, 67.80%; phenogroup
2: 1384/2823, 61.45%; P<.001). It was worth nothing that
patients in phenogroup 2 had higher lipid levels (low-density

lipoprotein cholesterol and triglyceride) and BMI (25.88 kg/m2

vs 23.05 kg/m2; P<.001). Compared to phenogroup 1,
phenogroup 2 also received less angiography (phenogroup 1:
1311/2823, 46.44%; phenogroup 2: 1311/2252, 30.95%; P<.001)
and percutaneous coronary intervention (phenogroup 1:
640/2823, 21.96%; phenogroup 2: 349/2252, 15.50%; P<.001).
Comprehensive baseline characteristics including all 58
candidate variables are listed in Table S5, Multimedia Appendix
1.
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Table 2. Baseline characteristics of the PLA General Hospital data set and the generated phenogroups.

P valuePhenogroup 2 (n=2252)Phenogroup 1 (n=2823)Population (N=5075)Feature

Feature of interest, n (%)

<.001259 (11.50)106 (3.75)365 (7.19)AKIa

<.001118 (5.24)21 (0.74)139 (2.74)In-hospital mortality,

Demographic

<.00165 (55-75)58 (48-67)61 (51-70)Age (years), median (IQR)

<.00123.05 (20.95-25.01)25.88 (23.87-28.08)24.60 (22.46-27.08)BMI (kg/m2), median (IQR)

<.00170 (64-78)77 (70-85)74 (67-81)DBPb (mmHg), median (IQR)

<.001118 (106-130)130 (119-143)125 (113-138)SBPc (mmHg), median (IQR)

<.0011488 (66.07)1943 (68.83)3431 (67.61)Male, n (%)

Disease, n (%)

HFd

<.001985 (43.73%)738 (26.14)1723 (33.95)Acute HF

<.0011267 (56.26%)2075 (73.86)3352 (66.05)Chronic HF

<.001595 (26.42)526 (18.63)1121 (22.09)AFe

<.001444 (19.71)497 (17.61)941 (18.54)Cardiomyopathy

.071268 (56.30)1660 (58.80)2928 (57.69)CHDf

<.001961 (42.67)1041 (36.88)2002 (39.44)Diabetes

.09233 (10.35)282 (9.99)485 (9.56)Stroke

.57280 (12.43)336 (11.90)616 (12.13)VHDg

Medication, n (%)

<.0011016 (45.11)1531 (54.23)2547 (50.18)ACEI/ARBh

<.001938 (41.65)989 (35.03)1927 (37.97)Anticoagulant

<.0011384 (61.45)1914 (67.80)3298 (64.99)Antiplatelet

<.0011447 (64.25)1981 (70.17)3428 (67.54)Beta blocker

<.001321 (14.25)789 (27.95)1110 (21.87)CCBi

<.0011799 (79.88)1608 (56.96)3407 (67.13)Diuretic

<.0011089 (48.36)778 (27.56)1867 (36.79)Positive inotropic drugs

.101405 (62.39)1698 (60.15)3103 (61.14)Vasodilator

Echocardiogram

<.00141 (31-54)50 (39-58)46 (35-56)LVEFj, median (IQR)

<.001997 (44.27)719 (25.47)1716 (33.81)<40%, n (%)

.05484 (21.49)690 (24.44)1174 (23.13)40%-50%, n (%)

<.001771 (34.24)1414 (50.09)2185 (42.86)≥50%, n (%)

Laboratory result, median (IQR)

<.00121.54 (13.80-36.49)20.80 (14.70-31.99)21.00 (14.39-33.79)ALTk, (IU/L)

<.00124.29 (18.09-38.80)19.60 (15.50-26.00)21.29 (16.29-30.50)ASTl, (IU/L)

<.0012.19 (2.10-2.27)2.28 (2.21-2.36)2.24 (2.16-2.33)Calcium (mmol/L)

<.00181.85 (70.90-92.91)92.06 (80.84-101.91)87.62 (75.65-98.80)eGFRm (mL/min/1.73 m2)

<.00140.30 (23.09-75.00)31.70 (21.30-54.89)34.80 (21.90-63.79)GGTn (IU/L)
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P valuePhenogroup 2 (n=2252)Phenogroup 1 (n=2823)Population (N=5075)Feature

<.0011.01 (0.82-1.22)1.04 (0.88-1.22)1.02 (0.85-1.22)HDL-Co (mmol/L)

<.001129 (116-142)143 (132-154)137 (124-150)Hemoglobin, g/L

<.0012.04 (1.62-2.48)2.46 (1.96-3.05)2.25 (1.79-2.81)LDL-Cp (mmol/L)

<.0012680 (1355-5188)572 (225-1319)1216 (422-2950)NT-pro-BNPq (pg/mL)

.0053.91 (3.61-4.20)3.87 (3.62-4.13)3.89 (3.62-4.17)Potassium (mmol/L)

<.001139.40 (136.30-142.00)141.30 (139.40-143.20)140.70 (138.10-142.70)Sodium (mmol/L)

<.00115.85 (10.39-24.60)12.79 (9.40-17.40)13.69 (9.80-19.90)Total bilirubin (μmol/L)

<.00165.1 (60.4-69.0)69.2 (65.8-73.3)67.5 (63.3-71.8)Total protein (g/L)

<.0010.92 (0.72-1.21)1.34 (0.98-1.87)1.11 (0.82-1.59)Triglyceride (mmol/L)

<.0010.02 (0.01-0.10)0.01 (0.00-0.02)0.01 (0.01-0.04)Troponin T (ng/mL)

<.0016.45 (5.11-8.12)5.46 (4.51-6.60)5.84 (4.73-7.25)Urea (mmol/L)

Operation, n (%)

<.001697 (30.95)1311 (46.44)2008 (29.57)Angiography

<.001349 (15.50)620 (21.96)969 (19.09)PCIr

aAKI: acuted kidney injury.
bDBP: diastolic blood pressure.
cSBP: systolic blood pressure.
dHF: heart failure.
eAF: atrial fibrillation.
fCHD: coronary artery disease.
gVHD: valvular heart disease.
hACEI/ARB: angiotensin-converting enzyme inhibitor/angiotensin receptor blocker.
iCCB: calcium channel blocker.
jLVEF: left ventricular ejection fraction.
kALT: alanine aminotransferase.
lAST: aspartate transaminase.
meGFR: estimated glomerular filtration rate.
nGGT: gamma-glutamyl transferase.
oHDL-C: high-density lipoprotein cholesterol.
pLDL-C: low-density lipoprotein cholesterol.
qNT-pro-BNP: N-terminal probrain natriuretic peptide.
rPCI: percutaneous coronary intervention.

Survival Analysis
As the prevalence of AKI and in-hospital mortality had a
significant difference between the generated phenogroups,
phenogroup 1 was intuitively labeled as “low-risk” and
phenogroup 2 as “high-risk.” We further investigated whether
the generated phenogroup index could serve as an essential risk
indicator for clinical outcomes of interest.

Figure 2 shows the survival difference with respect to AKI and
in-hospital mortality between the generated “high-risk” and
“low-risk” phenogroups from both the PLAGH data set and the
external validation MIMIC-III data set. For AKI, the curves of

phenogroup 2 were lower than the curves of phenogroup 1 in
both development and external validation data sets (PLAGH:
P=.004; MIMIC-III: P=.002). In addition, we found that most
AKI events often happened in the first few days of
hospitalization in both the PLAGH and MIMIC-III data sets.
This finding was in line with the literature [7,8]. For in-hospital
mortality, the curves of phenogroup 2 were consistently lower
than the curves of phenogroup 1 (PLAGH: P=.002; MIMIC-III:
P=.01). In consideration of the baseline difference between the
PLAGH data set and MIMIC-III data set, the results
demonstrated that our model was robust in discriminating
between high-risk and low-risk patients and easily transferable
to different clinical settings.
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Figure 2. Kaplan-Meier curves for AKI and in-hospital mortality in the development (PLAGH) and external validation (MIMIC-III) data sets. AKI:
acute kidney injury; MIMIC: Medical Information Mart for Intensive Care; PLAGH: PLA General Hospital.

Outcome Prediction
Table 3 compares the prediction performances of the 5 LR
models. Sensitivity, specificity, and concordance statistics are
reported for the prediction performance evaluation. As the
false-negative prediction (ie, neglecting AKI) may lead to
extremely negative consequences, we mainly compared the
sensitivity performance among the 5 models. The threshold of
sensitivity and specificity was 0.5 in all experiments, and the
selected top-10 variables are listed in Table S6, Multimedia

Appendix 1. The results showed that the phenogroup index was
an essential risk predictor of outcomes. For one, Model 1 used
1 variable (the phenogroup index) as the predictor and achieved
promising sensitivity in terms of AKI (0.710) and in-hospital
mortality (0.820) among the 5 prediction models with the
PLAGH data set. For another, the prediction performance of
Model 1 remained quite stable in the external validation (AKI
sensitivity 0.760; in-hospital mortality sensitivity 0.826), while
there existed significant degradation of performance in the other
prediction models.
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Table 3. Prediction performance comparison.

MIMIC-IIIb data set (validation)PLAGHa data set (development)Model by task

C-statisticsSpecificitySensitivityC-statisticcSpecificitySensitivity

AKId

0.5510.3420.7600.6430.5770.710Model 1

0.5320.6520.3740.6960.6380.647Model 2

0.5460.5620.4780.7560.7230.679Model 3

0.5700.5600.5440.8150.7530.737Model 4

0.5750.5400.5730.8160.7460.718Model 5

In-hospital mortality

0.5680.3090.8260.7080.5680.849Model 1

0.6220.6720.5300.8240.7360.791Model 2

0.6470.5990.6220.8560.7630.820Model 3

0.6460.7460.4900.8990.8090.835Model 4

0.6440.7200.6200.9000.8120.856Model 5

aPLAGH: PLA General Hospital.
bMIMIC-III: Medical Information Mart for Intensive Care III.
cC-statistic: concordance statistic.
dAKI: acute kidney injury.

HR Comparison
We used unadjusted Cox proportional hazard regression to
determine whether the phenogroup index can act as an essential
risk stratification indicator in comparison with the original 39
included variables. The top-ranked 10 variables with the highest
HR are listed in Figure 3 (full list is available from Figure S3,
Multimedia Appendix 1). The results showed that the HR of
the phenogroup index was ranked second in AKI analysis and
first in in-hospital mortality analysis, indicating that the
phenogroup index can be an effective risk stratification indicator

compared with the original variables. Of further note, although
troponin T was ranked first for AKI analysis, it was not
appropriate for univariate risk indicators since only 16.73%
(849/5075) of patients in the PLAGH data set had abnormal
records in troponin T. Using troponin T as the indicator only
achieved a sensitivity of 0.431, which was significantly lower
than the performance of the phenogroup index (0.710). The
association between the generated phenogroup index and risk
of AKI (in-hospital mortality) was consistent in all examined
subgroups (Figure 4).

Figure 3. Hazard ratios of of top-ranked 10 discriminative features for (a) acute kidney injury and (b) in-hospital mortality from the PLA General
Hospital data set. AST: aspartate aminotransferase; eGFR: estimated glomerular filtration rate; NT-pro-BNP: N-terminal probrain natriuretic peptide.
*Anemia was defined as hemoglobin <135 g/L for men and hemoglobin <120 g/L for women. All units of variables in this figure are same as the units
in Table 2.
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Figure 4. Subgroup analysis of the generated phenogroup index for (a) acute kidney injury and (b) in-hospital mortality. AF: atrial fibrillation; CHD:
chronic heart disease; HF: heart failure; LVEF: left ventricular ejection fraction. *Anemia was defined as hemoglobin <135 g/L for men and hemoglobin
<120 g/L for women. All units of variables in this figure are same as the units in Table 2.

Discussion

Principal Findings
We explored the potential of using a large volume of EHR data
to cluster patients with HF and identify those with normal renal
function but susceptible to de novo AKI via an unsupervised
machine learning model. The experimental results showed that
there was significant difference in AKI and in-hospital mortality
occurrence between the 2 phenogroups generated from EHR
data. As EHR is a real-world, readily available data source
containing rich medical information of thousands of patients,
our study demonstrated that it was possible for researchers to
answer important clinical and scientific questions effectively
by exploiting the huge potential of EHR data via machine
learning techniques at a fraction of the resource cost that would
have been required using traditional approaches [22,23].

We demonstrated that HF patients with normal renal function
can be naturally separated into a “high-risk phenogroup,” of
patients susceptible to de novo AKI and a “low-risk
phenogroup” who were not. Patients in high-risk phenogroup
were typically older, more susceptible to multi-organ
dysfunction and anemia, and had significantly higher in-hospital
mortality than did those in the low-risk phenogroup. These
findings were in line with recent studies [17,24] and warrant
further assessment. We found that patients in the high-risk
phenogroup had lower levels of lipid and BMI than did those
in the low-risk group. These findings are consistent with
previous studies reporting that worse cardiac function may cause
malnutrition [25] and a decrease of lipid level [26]. Of note,

worse cardiac function was also associated with hemodynamic
instability, which influences the choice of oral medication
strategies [27]. We observed that patients in the high-risk
phenogroup received less medication (angiotensin-converting
enzyme inhibitor, angiotensin receptor blocker, calcium channel
blocker, and beta blockers) than did those in the low-risk
phenogroup. On the contrary, we found that patients in low-risk
phenogroup were likely to receive percutaneous coronary
intervention (PCI) during their stay at the emergency care unit
or in hospitalization to revascularize the stable hemodynamic
level such that the perfusion of the kidney could be improved
and the risk of AKI significantly alleviated. This finding is
consistent with previous findings, emphasizing the benefit of
timely revascularization [28].

Identification of patients with HF with normal renal function
but at high-risk of de novo AKI is a major challenge in HF
treatment management. Clinicians have highlighted the need
for more effective methods to perform this important clinical
task [29]. In this study, we illustrated that machine learning
analysis can tackle this challenge by providing deep integration
of the comprehensive clinical variables routinely documented
in EHR data. As observed in the present study, the phenogroup
index generated by an unsupervised machine learning approach,
as a latent representation of 39 original variables and their
interactions, exhibited a sensitivity of 0.710 and 0.760 on the
development data set (PLAGH) and the external validation data
set (MIMIC-III). In this sense, the generated phenogroups from
raw EHR data are meaningful and can be translated into
actionable information for clinical decision-making. On the
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contrary, all other LR models met a serious overfitting problem
due to the fact that the included variables had different
distributions between the development (PLAGH) and external
validation (MIMIC-III) data sets (as can be seen in Table S3,
Multimedia Appendix 1). Inevitably, this issue caused a
significant performance degeneration in the external validation.
In consideration of the baseline difference between the PLAGH
data set and the MIMIC-III data set, the results suggested that
the generated phenogroup index was able to act as an essential
de novo AKI risk indicator for patients with HF and normal
renal function and be smoothly applied in different clinical
settings and in different patient populations. In fact, machine
learning algorithms can handle a large volume of variables and
a vast number of variable-variable interactions in each patient.
This merit effectively individualizes risk assessment and
remedies many of the limitations of standard statistical models
[22].

Our study has potentially important clinical ramifications. For
one, as AKI risk is often underestimated or neglected in patient
with HF, especially those with normal renal function [5], our
study provided a new perspective for identifying patients with
HF and normal renal function but who are at high risk of AKI.
For another, in comparison with recent studies that focused on
finding new biomarkers for AKI prediction or detection [30],
we adopted an improved alternative strategy that used machine
learning techniques to explore readily available clinical data to
identify patients with HF at high risk of de novo AKI. Such
meaningful use of EHR data may provide the best available
evidence to assist clinical decision-making. It should be noted
that these improvements may be enhanced by mining a large
volume of readily available EHR data, which in turn may
provide a new avenue for improving any given machine learning
algorithm.

Limitations
Several limitations of this study should be acknowledged. First,
this is a single-institution study. Although we have evaluated
our model on an external validation data set extracted from
MIMIC-III, the methods may perform less well in other
situations due to the lack of sufficient external validation
samples collected from different medical facilities and in
different clinical settings. Second, our study was limited by its
retrospective design, and all analyses were purely observational.
Although we found that there were distinct variables associated
with increased risks of de novo AKI and in-hospital mortality,
these nonrandomized comparisons should be interpreted
cautiously in this context, and the prognostic ability of our model
needs to be supported by validation in prospective studies. Third,
considering the sensitivity and the specificity for AKI
forecasting, our model was relatively sensitive but not very
specific. Despite the influence of false-positive classification
being limited in this study, further study will be required to
enable machine learning–based analysis to capture the salient
features distinguishing high- from low-risk cases, such that the
prediction performance of our model can be improved.

Conclusions
This study demonstrated that unsupervised machine
learning–based EHR analysis is able to separate patients with
HF and normal renal function into mutually exclusive
phenogroups that correspond to saliently distinct AKI risk levels.
Our investigation paves the way for developing an easy-to-use,
broadly available model that allows the identification of patients
with HF at high-risk of de novo AKI and may help improve
outcomes in HF, offering a crucial advantage over traditional
techniques for patient phenogrouping and clinical risk
stratification.
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