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Abstract

Electronic health records (EHRs) have been successfully used in data science and machine learning projects. However, most of
these data are collected for clinical use rather than for retrospective analysis. This means that researchers typically face many
different issues when attempting to access and prepare the data for secondary use. We aimed to investigate how raw EHRs can
be accessed and prepared in retrospective data science projects in a disciplined, effective, and efficient way. We report our
experience and findings from a large-scale data science project analyzing routinely acquired retrospective data from the Kepler
University Hospital in Linz, Austria. The project involved data collection from more than 150,000 patients over a period of 10
years. It included diverse data modalities, such as static demographic data, irregularly acquired laboratory test results, regularly
sampled vital signs, and high-frequency physiological waveform signals. Raw medical data can be corrupted in many unexpected
ways that demand thorough manual inspection and highly individualized data cleaning solutions. We present a general data
preparation workflow, which was shaped in the course of our project and consists of the following 7 steps: obtain a rough overview
of the available EHR data, define clinically meaningful labels for supervised learning, extract relevant data from the hospital’s
data warehouses, match data extracted from different sources, deidentify them, detect errors and inconsistencies therein through
a careful exploratory analysis, and implement a suitable data processing pipeline in actual code. Only few of the data preparation
issues encountered in our project were addressed by generic medical data preprocessing tools that have been proposed recently.
Instead, highly individualized solutions for the specific data used in one’s own research seem inevitable. We believe that the
proposed workflow can serve as a guidance for practitioners, helping them to identify and address potential problems early and
avoid some common pitfalls.

(JMIR Med Inform 2022;10(10):e38557)   doi:10.2196/38557
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Introduction

Electronic health records (EHRs) contain a vast amount of
information about an individual’s health status, including
demographics, diagnoses, medication prescriptions, laboratory
test results, high-frequency physiologic waveform signals, and
others. Many prior studies have demonstrated how data science

and machine learning (ML) can be applied to large databases
of EHRs to successfully train models to predict many different
patient-related outcomes, including mortality risk [1-4], length
of hospital or intensive care unit (ICU) stays [1-3],
cardiovascular decompensation [3,5,6], postoperative
complications [7], and, recently, COVID-19 diagnosis and
pathogenesis [8-12]. Although data preparation requires
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considerable time and effort [13,14], it is seldom represented
in research outputs. One possible explanation could be that it
is considered a “standard” task that always proceeds more or
less the same and that can be automated to a large extent, thanks
to readily applicable general purpose software tools [15-17]. In
this paper, we illustrate through specific examples from a
large-scale research project that this is not the case. Conducting
a secondary (ML-based) analysis of raw EHRs from a hospital’s
data warehouse is challenging in many respects due to several
reasons. Above all, data were originally collected without any
specific use case besides clinical application, and relevant
information is usually distributed over multiple disparate

databases that often lack comprehensible documentation. If
clinical concepts (variables, categorical values, units of
measurement, etc) are represented differently across distinct
sources or if the coding of clinical concepts changes over time,
data harmonization can become a real issue. Moreover,
incomplete or invalid data, although a well-known problem in
principle, can occur in many (unexpected) forms and might only
be noticed after careful manual inspection. Figure 1 summarizes
the main challenges with EHR data that we encountered in our
work and are ubiquitous in retrospective medical data analysis
[18].

Figure 1. Primary challenges with retrospective medical data analysis (adapted from Johnson et al [18], which is published under Creative Commons
Attribution 4.0 International License CC-BY 4.0 [19]).

Unlike many other papers about data preparation in a medical
context, this work does not propose a novel generic data
processing tool. Instead, we report the challenges that we faced
and the lessons we have learned in a recent large-scale data
science project. We present specific examples of messy and
corrupted raw data to create awareness that (medical) data
preparation is a nontrivial, labor-intensive endeavor, despite an
ever-growing set of generic tools. Finally, we present a general
data preparation workflow for similar research projects to help
practitioners avoid the most common pitfalls.

The literature on medical data preparation for large-scale
secondary (ML-based) analysis is scarce. Most studies have

focused on model development and the final predictive
performance of the developed models and only mention a few
fundamental aspects of the data preparation pipeline. This is
particularly true for the work of Rajkomar et al [1], but for a
good reason: deep neural networks are used to learn “good”
representations of the data in an end-to-end fashion, relying on
the networks’ ability to automatically handle messy data
properly. The pipeline is based on Fast Healthcare
Interoperability Resources [20], meaning that all data available
in this format can be readily processed without further ado—no
feature selection, harmonization, or cleaning is necessary.
Although appealing at first glance, the proposed approach has
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some limitations, as noted by the authors. Most importantly,
deep neural networks often require massive amounts of data
and computing resources to learn good representations. Second,
the lack of data harmonization potentially impairs transferability
across research locations; for example, for validation. Moreover,
to train models in a supervised manner, one must provide labels,
and depending on the use case, these labels may be difficult to
extract, reintroducing the need for data preparation. It is also
unclear whether the models developed in the aforementioned
study [1] would have performed even better, had the data
undergone more thorough manual inspection and curation.

Other studies have proposed generic data processing pipelines
that can be applied off-the-shelf to well-known ICU benchmark
databases such as Medical Information Mart for Intensive Care
(MIMIC) [21-23] and the telehealth ICU collaborative research
database (eICU-CRD) [24]. The most prominent examples being
MIMIC-Extract [15], FIDDLE [16], cleaning and organization
pipeline for EHR computational and analytic tasks [17], and
Clairvoyance [25]. The authors of FIDDLE and Clairvoyance
claim that their systems are sufficiently general to accommodate
not only data extracted from MIMIC-III and eICU-CRD but
also any EHR data available in a particular form. This may be
true to a large extent, but we experienced that cleaning messy,
raw data and bringing them into the required standardized form
is at least as labor intensive (in terms of implementation effort)
as the subsequent “generic” preprocessing steps that FIDDLE
and Clairvoyance cover. Sculley et al [14] termed this
phenomenon glue code antipattern. In general, MIMIC and
eICU-CRD may be excellent benchmark databases, but we
found that “real-world” data exported directly from a hospital’s
IT infrastructure pose many challenges that are not present in
these databases.

Shi et al [26] presented a medical data cleaning pipeline that
explicitly addresses some of the issues that we also encountered
in our research. They considered laboratory tests and similar
measurements and proposed manually curated validation rules
for numerical variables and an automatic strategy for
harmonizing (misspelled) units of measurement through fuzzy
search and variable-dependent conversion rules. The focus of
Shi et al [26] is on improving the quality of data [27-29],
whereas Wang et al [15], Tang et al [16], and Mandyam et al
[17] are mainly concerned with transforming data into a form
suitable for ML. A more detailed evaluation of FIDDLE,
MIMIC-Extract, and cleaning and organization pipeline for
EHR computational and analytical tasks and the approach to
our data by Shi et al [26] can be found in Multimedia Appendix
1 [15-17,26].

The extensive survey article by Johnson et al [18] summarizes
the main issues of medical data analysis similar to that in this
work. The authors also established a high-level categorization
of these issues into compartmentalization, corruption, and
complexity (Figure 1) and argued that data acquisition and
preparation in the critical care context are particularly difficult
because data are collected for a different purpose.

Sendak et al [30] arrived at similar conclusions, noting in
particular that solutions developed for one site did not scale
well across multiple sites because of redundant data validation

and normalization. The authors provided estimates for the
expected cost of deploying a model to screen patients with
chronic kidney disease in other hospitals. We refrain from
extrapolating such estimates from our findings but agree that
the costs for preprocessing data from other sites into a form
suitable for existing prediction models will likely be significant.

Methods

Data Preparation
Raw EHRs stored in hospitals’ data warehouses cannot readily
be used for developing clinical prediction models but must first
be extracted, analyzed, and subjected to a series of preprocessing
steps. These steps may differ between data modalities and
sources but usually include some sort of validation (ensuring
data accurately reflect reality), harmonization (establishing
uniform representation of equivalent concepts), and
transformation (bringing data into a form suitable for model
development, eg, extracting useful information). Furthermore,
it must be ensured that a sufficient number of data points are
available in the first place and that clinically meaningful target
labels can be extracted from them in the case of supervised
learning. We demonstrate how this can be accomplished in a
disciplined, effective, and efficient manner by referring to a
specific data science project.

Underlying Data Science Project
All results presented in this paper originate from a large-scale
data science project for developing data-driven clinical
prediction models. Specifically, the following 5 use cases were
considered: (1) optimizing patient throughput in the ICU, (2)
increasing the accuracy of treatment priorities in emergency
medicine, (3) improving the selection of blood products, (4)
predicting patient deterioration in the ICU to enable preventive
interventions, and (5) predicting COVID-19 infections using
routinely acquired laboratory tests [11]. All use cases were based
on retrospective, routinely collected data from the Kepler
University Hospital, a large university hospital in Linz, Austria.
A wide variety of data modalities were used, including patient
demographics, laboratory tests, diagnoses, vital signs, and even
high-frequency physiological waveform signals. Information
represented by natural-language text was mostly ignored (except
for short free-text diagnoses), and imaging modalities were
excluded altogether.

The amount of data varies among the 5 use cases; for instance,
use cases 1 and 4 are naturally confined to patients admitted to
the ICU, whereas for use case 2, only patients who visited the
emergency department (ED) could be taken into account. The
period covered by the data also depends on the use case. Table
1 lists the particular period and the total number of patients for
each of the 5 use cases. Altogether, the order of magnitude of

the number of data items processed was 109 (excluding
high-frequency waveform data) of which vital signs and
laboratory tests constituted the vast majority.

The specific results of the 5 use cases were not the main focus
of this paper. Instead, the use cases serve merely as illustrative
examples throughout the remainder of this paper.
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Table 1. Use cases considered in the research projecta.

Patients, nPeriodShort descriptionUse case

14,2362010-2020Optimizing ICUb patient throughput1

77,9722015-2020Increasing the accuracy of treatment priorities in EDc2

58552016-2020Improving the selection of blood products3

30692018-2020Predicting patient deterioration in the ICU4

79,8842019-2020Predicting COVID-19 infections [11]5

aNote that patient cohorts partly overlap.
bICU: intensive care unit.
cED: emergency department.

Data Sources
Relevant data for the 5 mentioned use cases are contained in 3
central data management systems in the hospital’s IT
infrastructure: the hospital information system (HIS), patient
data management system (PDMS), and Bedmaster system. The
HIS is a hospital-wide data warehouse that contains information
on all patients admitted to the hospital. Among others, this
includes demographics (date of birth, sex, etc), detailed
information about in-hospital transfers, diagnoses, laboratory
test results, and intramural mortality. PDMS is deployed in 5
ICUs associated with critical care in the hospital. Hence, it only
contains information about patients admitted to the ICU during
their hospital stay but complements the basic information found
in the HIS with automatically recorded vital sign measurements
(heart rate, blood pressure, body temperature, etc; up to 30
measurements per vital sign per hour), precise information about

administered medications, and manually recorded scores (eg,
Glasgow Coma Scale). The Bedmaster system [31] can be
connected to bedside monitoring devices and automatically
stores the vital signs, physiological waveforms, and alarms
produced by these devices. The temporal resolution of the
acquired data far exceeds the resolution in PDMS, with vitals
being recorded every 2 seconds and waveforms sampled at rates
of 60 to 240 Hz. This system is only deployed in 2 of the 5 ICUs
and was installed in March 2018. Hence, the number of patients
covered by it is significantly smaller compared with HIS and
PDMS.

In addition, information about the extramural mortality of
patients after hospital discharge was obtained from the Austrian
Federal Statistics Agency (use case 1), and information about
blood products transfused in the hospital was obtained from a
local blood bank (use case 3). Figure 2 summarizes all data
sources and modalities used in the 5 cases.

Figure 2. Data sources and exported modalities in use cases 1 to 5. HIS, PDMS, and Bedmaster are data management systems deployed in the hospital,
whereas information about extramural mortality and blood products had to be obtained from external sources. HIS: hospital information system; PDMS:
patient data management system; ICU: intensive care unit.

Ethics Approval
For each use case mentioned in this work, approval was obtained
from the Ethics Committee of the Medical Faculty, Johannes

Kepler University, Linz, Austria. The corresponding study
numbers are 1015/2021, 1233/2020, 1232/2020, 1014/2021,
and 1104/2020.
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Results

Data Overview
Before beginning to export raw data from their hospital-internal
storage, it is imperative to obtain an overview of what kind and
how much data are available. This might sound obvious but can
be more intricate than it seems. For example, the number of
patients or cases at one’s disposal is not always indicative of
the amount of suitable data. Specifically, in the common setting
of supervised learning, only data points to which clinically
meaningful target labels can be assigned are useful. In the blood
transfusion use case 3, for instance, the types of
transfusion-related complications we could consider were
limited by the availability of sufficient pre- and posttransfusion
laboratory measurements to identify the respective
complications. Ultimately, sufficient labeled training samples
could only be generated for predicting acute kidney injury and
acute respiratory failure. Other organ systems, although
interesting in principle, had to be excluded from the analysis.
Acute respiratory failure also had to be excluded eventually
because the class imbalance was found to be too strong.

Given the richness of information stored in EHRs, there are
normally enough data that can be converted into features that
clinical prediction models may attend to. However, one must
be aware that information accumulates over time, meaning that
more data about a patient are available toward the end of the
hospital or ICU stay than toward the beginning. For us, this was
especially relevant in use case 2, where treatment priorities and
30-day mortality of patients visiting the ED had to be predicted
based on only a few pieces of information typically recorded
in the ED.

Defining Labels for Supervised Learning
Routinely collected retrospective EHR data do not always
contain information about the outcomes that one wants to
predict. Typical outcome parameters, apart from mortality or
length of hospital stay, are often composites of several
parameters that must be deduced from surrogate variables. Some
authors, for instance, resort to hypotension as an indicator of
cardiac instability [5,6], an approach we adopted in our use case
4 for predicting patient deterioration. Similarly, widely accepted
criteria for organ system failure exist; for example, Kidney
Disease: Improving Global Outcomes [32] for kidney disease
and the Berlin definition for acute respiratory distress syndrome
[33]. Both were used in use case 3.

Further problems can arise when trying to predict the effects of
interventions. First, it might not always be possible to connect
an observed outcome to a specific intervention, especially if
multiple interventions occur within a short time. In the blood
transfusion use case 3, in many cases, 2 or more blood products
are transferred simultaneously, rendering it impossible to
determine which of the administered transfusions are responsible
for a posttransfusion complication. In such a situation, framing
the prediction task as a multiple instance learning problem [34]
might be the only remedy. Second, if the goal is to assess or
improve existing clinical decision policies, one is confronted
with questions such as “What would have happened to the
patient if he/she had been treated differently?” Naturally, such

questions are difficult to answer based on retrospective data in
which interventions and treatments are fixed, and counterfactual
trajectories cannot be explored, although the literature on
estimating counterfactual treatment outcomes through statistical
analysis and ML exists [35]. In use case 1, where the primary
goal was to predict the optimal time for discharging ICU patients
back to a ward, we resorted to answering the proxy question of
whether transferred patients should have better stayed longer
in the ICU. We determined this by identifying patients who died
or returned unexpectedly shortly after ICU discharge.

Accessing and Extracting the Data
Hospital IT infrastructure is usually designed to provide easy
access to the data of individual patients to deliver optimal care.
Unfortunately, this does not imply that batches of data from
distinct patients can be accessed, let alone extracted, easily. In
particular, if the amount of manual interaction required for
exporting data is too high, individual retrospective studies might
be feasible, but the automatic real-time deployment of prediction
models on live data may not be feasible. Data access can be
challenging when there is only one source but even more so if
there are multiple disparate data sources one must incorporate.
In our project, we had to access 3 distinct databases: HIS,
PDMS, and Bedmaster (Figure 2). HIS is a SAP-based system
from which tables can be exported as CSV or Microsoft Excel
files, and PDMS is a PostgreSQL relational database that allows
exporting the results of queries in whatever table format is
desired. In contrast, exporting data from the Bedmaster system
turned out to be cumbersome because only XML and JSON
exports are supported by default. Representing the massive
amount of waveform and vital sign data in either of these
verbose formats resulted in huge files that could not be
processed efficiently; so, in the first step, we had to extract the
relevant numerical values from the JSON files and store them
in the more efficient HDF5 format. This process was
considerably more intricate than anticipated because of
inconsistencies in the exported data representation that are
detailed in Multimedia Appendix 2 [36-39].

Matching Data From Different Sources
Data exported from different sources must be matched to obtain
coherent records of the patients or cases under consideration.
Under normal circumstances, this is straightforward because of
common identifiers. However, according to our experience,
such identifiers do not always need to be present or change over
time. Specifically, data exported from the Bedmaster system
lack identifiers, such as patient or case IDs. Knowing only the
ICU bed they stem from, as well as the precise timestamp of
each single recorded value, we had to assign the corresponding
IDs manually based on the information about which patient
occupied which ICU bed at which time. This approach works
but is cumbersome and adds extra complexity and is another
potential source of mistakes. It is also more difficult to automate
than simply joining tables on common ID columns.

Mappings between identifiers and the entities they refer to may
change over time as experienced in our project with drug codes.
Every drug has a unique code that is used to reference it in
prescription tables, but for unknown reasons, the coding changes
at certain points in time. The precise information when this
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happens is stored in another table, so that drug names can be
recovered from the provided codes and timestamps of
prescriptions. Yet again, the whole process is not as
straightforward as we would have hoped.

Deidentification
Sensible personal information stored in EHRs can only be shared
in a deidentified form. There are no universal rules on how data
need to be deidentified, as long as identifying individual patients
afterward becomes practically impossible. In our project,
deidentification amounted to removing patient names and
replacing hospital identifiers, such as patient IDs or case IDs,
with project-internal identifiers that could be used to match
corresponding data items across different tables. Furthermore,
all timestamps were shifted by a random per-patient offset in
the future to avoid reidentification of patients from knowing
their exact admission or discharge times. Timestamps were
shifted after matching data from different sources because some
matching strategies depend on precise temporal information,
as described earlier. The timestamps were shifted such that the
time of day and day of week were preserved because both
constitute potentially valuable information for downstream data
analysis tasks. The same is true for seasonality, which was also
roughly preserved. This deidentification policy is analogous to
that used for MIMIC-III [21]. We remark that it is not as
thorough as the policy implemented for releasing the more
recent AmsterdamUMCdb [40]: there, theoretical concepts such
as k-anonymity and l-diversity are considered to render
reidentifying individual patients practically impossible under
advanced threat models assuming “rogue researchers” and
“rogue insurance companies” with access to the data. As, in our
case, all data (even in deidentified form) are kept private and
can only be accessed by project members, we did not deem such
a thorough deidentification policy necessary.

Deidentification removes or replaces information that can
otherwise be used to detect inconsistencies in the data, such as
the same patient ID being accidentally assigned to multiple
patients with different names. Therefore, it is crucial to ensure
that any problems of this kind are detected and corrected either
before or while deidentifying the data when the necessary
information is still available. Specifically, we implemented
extensive sanity checks that, for instance, ensure case and patient
IDs are in a 1:n relationship (every case ID corresponds to a
unique patient ID, but a patient ID can have multiple case IDs
associated with it). All instances violating this principle are
immediately reported to the human operator, allowing him or
her to either overwrite one of the identifiers or discard the
instances completely. Furthermore, missing patient IDs were
automatically reconstructed from known case IDs whenever
possible. The availability of patient IDs is essential because the
random temporal offsets used for deidentifying timestamps are
associated with patient IDs rather than case IDs. Finally, because
hospital-assigned case IDs follow a clearly defined pattern that
allows them to be distinguished from patient IDs, accidentally
swapped case IDs and patient IDs are automatically exchanged
before deidentification.

The kind of information that should be preserved by
deidentification depends very much on the prediction task one
wants to tackle. For example, in our approach, the temporal
order of the data is preserved only within a patient but not across
all patients. In particular, the total number of patients in the ICU
at a certain point in time, a potentially relevant input for use
case 1, can no longer be determined after deidentification. For
the same reason, it is impossible to detect domain shifts in the
deidentified data, which are systematic changes in the
distribution of the data over time (domain shifts can be caused
by many different factors such as new measurement equipment,
laboratory test procedures, or changes in the prevalence of
diseases in the patient population). Therefore, all relevant
temporal features that could not be computed after
deidentification had to be extracted and added to the data before
deidentification.

Inspection and Exploratory Analysis
Real-world data can be corrupted or otherwise ill-behaved in
many unforeseeable ways, in addition to well-known issues
related to missing values or invalid measurements, that a
thorough inspection and exploratory analysis is inevitable.
Indeed, in our experience, this is one of the most labor-intensive
tasks in the entire data preparation pipeline. Owing to the nature
of the problem, it is difficult to devise general rules for what
one should pay attention to. Instead, we report one particularly
subtle issue encountered in our work. It might be specific to our
hospital but is meant to serve as an illustrative example of what
can unexpectedly happen when working with EHRs. More
examples can be found in Multimedia Appendix 2.

In use case 4, we made heavy use of physiological waveform
signals, such as electrocardiogram, arterial pressure, and oxygen
saturation, to predict whether the condition of ICU patients will
deteriorate within the next 15 minutes. Waveform signals are
recorded by the Bedmaster system and can be exported as arrays
of numerical values. It should be clear that because of the way
in which these data are measured, there can be many types of
measurement artifacts in the signals; that is, highly unusual
waveform morphology caused by slipped sensors, or patient
movements. This must be expected and addressed either
explicitly by automatically detecting periods of invalid
waveform data [36] or implicitly by relying on the subsequent
ML algorithm’s ability to learn how to differentiate between
normal and abnormal signals. An entirely unexpected issue is
depicted in Figure 3: occasionally, the signals assume constant
low values for a short time. The natural guess of measurement
errors (eg, caused by slipped sensors) is likely wrong because
simply cutting out the constant low-value period leads to smooth
curves in all inspected cases. Such situations may thus indicate
data artifacts of unknown origin that must be removed to obtain
coherent signals, but strangely they do not always occur in all
simultaneously recorded waveforms at the same time. Therefore,
we opted to refrain from cutting out fragments of the raw signals
to avoid a possible temporal misalignment of different
waveforms.
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Figure 3. Short periods of constant low values in waveform signals might have to be cut out. Left: original signal with a 0.5-second period of constant
low values. Right: signal after cutting out the low value; as can be seen, the 2 ends of the signal fit perfectly.

Implementation
Eventually, the pipeline for extracting and preprocessing all
relevant EHR data must be implemented in the actual code.
This can be challenging in many respects. First, it is tempting
to make extensive use of technologies aimed at rapid prototyping
(eg, Jupyter notebooks) to quickly experiment with the data and
preprocess them for a particular use case in a particular
hard-coded way. This might work well in the short term;
however, in the long term, a structured modular codebase that
allows the exchange of individual components and adjustment
(and logging!) of configuration settings is the better approach.
In particular, the logging of configuration settings is of utmost
importance to know exactly how data were preprocessed and
how models were generated, thereby obtaining reproducible
results.

Second, pipelines implemented to process a specific data
modality for a particular use case should be reusable in other
use cases that depend on the same data modality, at least to a
certain extent. Even if the desired output format of the data after
preprocessing differs between the 2 use cases, there are almost
certainly some steps in the pipeline that are applicable to both.
Reusing existing functionality rather than reimplementing it
enables a consistent treatment of data across use cases and as a
side effect may even help to abstract from the peculiarities of
one use case and implement preprocessing functionality in a
more general way. For example, we used laboratory test results
in each of the 5 use cases either as features or for assigning
labels (or both). In use case 4, the last 3 measurements of a fixed
set of laboratory parameters relative to a given point in time are
used as features, whereas in use case 3, the last measured value
of a certain parameter before a blood transfusion is compared
with measurements after the transfusion to determine whether
it incurred a complication. Both are special cases of the more
general principle of finding the last or first n measured values
before or after a given point in time and could hence be
implemented in one common function.

Finally, the inclusion of general-purpose third-party tools in the
data preparation pipeline clearly has its benefits as well as
potential downsides. On the one hand, functionality implemented
therein does not have to be reimplemented (nor tested) from
scratch, but on the other hand, Sculley et al [14] point out that
it may lead to many glue code and pipeline jungles for bringing

data into the right shape. In our project, we restricted ourselves
to well-established libraries from the Python ecosystem,
including NumPy [41], Pandas [42], and scikit-learn [43] and
deliberately avoided tools such as FIDDLE [16]. The former 3
are libraries of useful classes and functions that can be easily
integrated into one’s own pipeline. The latter implements a full
medical data preparation pipeline itself, which, although being
generic and customizable in principle, did not offer the amount
of flexibility we would have required to accommodate our data.

More precisely, our data preparation pipeline consists of 3 main
steps: harmonization, validation, and transformation.
Harmonization, that is, ensuring that equivalent concepts are
represented consistently, is very specific to each data modality
and typically amounts to assigning unique names to equivalent
variables and converting measured values into a common unit
of measurement. Validation of recorded values happens with
respect to manually specified, threshold-based rules. Analogous
to Harutyunyan et al [3], we distinguished between invalid
numerical values and extreme outliers. Each validation rule is
characterized by 2 ranges r1⊆r2, where everything inside r1 is
deemed admissible and everything outside r2 is deemed an
extreme outlier. Extreme outliers x∉r2 are deleted entirely,
whereas the values x∈r2\r1 are set to the nearest admissible
value in r1. Finally, transformation also depends on the specific
data modality under consideration but is often concerned with
resampling EHR tables in an event-based entity-attribute-value
format into a more ML-friendly wide table format. This proceeds
by aggregating all observations within a given time window
with respect to a fixed set of rules, such as taking the mean,
sum, or temporally last of all the measured values. If a variable
has not been measured at all in a time window, the “missing”
recordings are imputed. As other authors have noted [44],
clinical measurements are not missing at random; therefore,
explicit missingness masks indicating whether a value has been
imputed are added as extra features. In general, one must also
be careful when imputing the mean or median of all observed
values, as this could introduce bias. For example, if a variable
is only measured if a patient has a certain condition, the
measured values are not representative of the entire population.
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Discussion

Principal Findings
The preceding sections illustrate that the preparation of EHRs
for secondary analysis and the development of prediction models
constitute a challenging endeavor. In addition to the well-known
ubiquitous data problems for which generic off-the-shelf
solutions exist (eg, imputation of missing values), we identified
many issues in our raw data that had to be addressed
individually. Even worse, none of these issues could be expected
or popped up during the first quick scan of the data but instead
were discovered only after a thorough exploratory analysis.
Different kinds of patient identifiers being accidentally swapped
is certainly something one would not expect at all, yet we found
a few such cases in our data. The use of multiple codes or names
for the same clinical concept is also not trivial to detect,
especially if it is a mere artifact of the internal data
representation that does not surface in clinical practice. If the
mapping between codes and concepts changes over time, data
harmonization becomes a true challenge. With regard to data
validation, blindly discarding all nonnumeric values of a
supposedly numeric variable fails to account for censored values
such as “>120.0” (Multimedia Appendix 2) that do carry useful
information. Finally, the subtle issues with waveform data
reported above not only demand a thorough systematic analysis
of timestamps and measured values but are also difficult to fix.
Altogether, these observations support our claim that although
generic tools such as FIDDLE [16] and Clairvoyance [25]
doubtlessly do have their merits, one must be careful not to
underestimate the additional effort of modality- and
source-specific data analysis and preparation. In general, we
believe that extensive libraries of well-documented, generic,
and cleanly implemented functionalities focusing on the
peculiarities of medical data preparation (harmonizing and
validating physiological variables, resampling event-based
entity-attribute-value tables into wide tables, etc) are more
valuable than full-fledged end-to-end pipelines, regardless of
how generic and configurable they are.

Extracting labels that indicate the outcome of interest from
retrospective data can be more intricate than one might expect.
Often, these outcomes (patient deterioration, organ system
failure, optimal treatment policy, etc) are not explicitly recorded
in EHRs and must therefore be approximated. The quality of
such an approximation might influence not only the performance
of the generated prediction models but also their applicability
to clinical practice. Furthermore, if the definition of some label
depends on scarcely recorded variables, only a few labeled
samples may remain. In such a situation, methods based on
self-supervised and semisupervised learning [45-47] might be
the only remedy.

EHRs contain highly sensitive patient information that, for good
reasons, must be deidentified before it can be shared with
scientific partners in research projects. How and to what extent
this needs to be carried out often not clearly defined, especially
regarding the treatment of temporal information. Temporal data
may contain highly relevant information depending on the
concrete use case. On the one hand, knowing the time of day

and day of week of a particular event is necessary if the
prediction task at hand has to take clinical routines into account;
on the other hand, knowing the (rough) order of events across
different patients enables detecting domain shifts in the
underlying data distribution. Finally, if the use of a particular
resource at any given point in time is of interest, this information
must be extracted before deidentifying the timestamps, or
timestamp deidentification must be avoided entirely. In our
experience, it is good to first determine the kind of information
one needs for a particular use case and then devise
deidentification strategies that preserve as much of the
previously determined information as possible while observing
legal regulations and hospital-internal restrictions.

Finally, if the ultimate goal of developing prediction models is
to deploy them in clinical practice, data access becomes a factor
that must be considered. The more manual steps involved in
exporting the data from the hospital IT infrastructure into the
desired format, the more difficult real-time deployment will be.
In our use case 4, automatically exporting the necessary data
of all current ICU patients after every n minutes and then
promptly processing them is challenging and currently work in
progress. This mainly owes to the fact that the entire data
warehousing system of the Kepler University Hospital was
designed for clinical use rather than real-time analysis. However,
alternatives exist; a sophisticated solution for efficient storage
of and access to medical data for data science projects is
presented in a study by McPadden et al [48].

Workflow
The data preparation workflow we followed in our project is
summarized in Figure 4, with rough estimates of the relative
time and effort taken by the individual steps. We think that it
generalizes to other data science projects with retrospective
EHR data and hope that it can serve as guidance for other
researchers to identify and address potential problems early and
avoid some common pitfalls.

The presentation of the (linear) workflow in Figure 4 is
simplified because in reality, there are many feedback loops.
For instance, inspecting the data may reveal issues that can only
be rectified if additional information is extracted from the
system, and some issues might only surface after developing
the first prediction models.

It is important to note that the results presented in this paper
only refer to data preparation for subsequent model development
but not to the development and validation of actual prediction
models. We think these are “standard” tasks in data science and
ML that are not specific to medical data. However, we do
acknowledge that selecting the appropriate class of prediction
models for a given task, optimizing hyperparameters, and
training models in the right way are by no means trivial and
require a lot of time and effort. This is also true for deploying
models in clinical practice, where topics such as handling
domain shifts, detecting out-of-distribution data, and explaining
model decisions in a manner comprehensible to patients must
be addressed. Things become even more difficult if existing
models are to be deployed in other hospitals because most of
the steps in the above workflow must be repeated. Only the
definition of labels and (possibly) deidentification can be
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skipped, and some parts of the existing pipeline implementation
can perhaps be reused. According to our rough estimate,
approximately 75% of the effort invested in the initial data
preparation for developing prediction models must be reinvested

for each hospital that these models are deployed. As noted in a
study by Sendak et al [30], this incurs significant additional
costs.

Figure 4. Data preparation workflow for retrospective EHR data analysis. EHR: electronic health record.

Conclusions
Preparing raw medical data from productive environments for
retrospective analysis and ML remains challenging and time
consuming. Our findings suggest that real-world EHR data can
be messy and corrupted in so many subtle ways that thorough

exploratory analysis and tailor-made preprocessing functionality
for the data at hand are inevitable. We want to create awareness
of this fact and hope that the sketched data preparation workflow
becomes a valuable guidance for future large-scale data science
projects involving routinely acquired medical data.
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Abstract

Background: Alert fatigue is unavoidable when many irrelevant alerts are generated in response to a small number of useful
alerts. It is necessary to increase the effectiveness of the clinical decision support system (CDSS) by understanding physicians’
responses.

Objective: This study aimed to understand the CDSS and physicians’ behavior by evaluating the clinical appropriateness of
alerts and the corresponding physicians’ responses in a medication-related passive alert system.

Methods: Data on medication-related orders, alerts, and patients’ electronic medical records were analyzed. The analyzed data
were generated between August 2019 and June 2020 while the patient was in the emergency department. We evaluated the
appropriateness of alerts and physicians’ responses for a subset of 382 alert cases and classified them.

Results: Of the 382 alert cases, only 7.3% (n=28) of the alerts were clinically appropriate. Regarding the appropriateness of
the physicians’ responses about the alerts, 92.4% (n=353) were deemed appropriate. In the classification of alerts, only 3.4%
(n=13) of alerts were successfully triggered, and 2.1% (n=8) were inappropriate in both alert clinical relevance and physician’s
response. In this study, the override rate was 92.9% (n=355).

Conclusions: We evaluated the appropriateness of alerts and physicians’ responses through a detailed medical record review
of the medication-related passive alert system. An excessive number of unnecessary alerts are generated, because the algorithm
operates as a rule base without reflecting the individual condition of the patient. It is important to maximize the value of the CDSS
by comprehending physicians’ responses.

(JMIR Med Inform 2022;10(10):e40511)   doi:10.2196/40511

KEYWORDS

clinical decision support system; computerized physician order entry; alert fatigue; health personnel; decision-making support;
physician behavior; physician response; alert system
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Introduction

Background
Computerized physician order entry (CPOE), linked to a clinical
decision support system (CDSS), has become essential in the
health care system. The main purpose of a CDSS is to improve
patient safety and quality of care, and a medication-related
CDSS is especially valuable [1,2]. In a medication-related
CDSS, the alerting system provides dosing guidance or
drug-drug, drug-allergy, and drug-age warnings that help
clinicians prescribe correct orders. Early studies on CDSSs
prompted substantial anticipation that medication-related
CDSSs, such as alerting systems, may prevent adverse events
and enhance patient safety [3,4].

Despite the increasing implementation of CDSS alerts, a
substantial number of alerts are overridden [5-7]. The alert
override rate is high, sometimes up to 96% [5]. Override is often
invoked for reasons such as low alert specificity (ie, a lack of
clinical relevance) and inadequate alert content [8,9]. Low alert
acceptance was associated with repeated alerts that are
inappropriate [6,10]. Excessive alerts that are not clinically
relevant could lead to alert fatigue and contribute to alert
overrides [11,12].

A common issue connected with the implementation of clinical
decision support tools in electronic medical records (EMRs) is
alert fatigue [13]. Alert fatigue is the issue in which users of a
CDSS that generates an excessive amount of warning messages
tend to overlook the majority of these alerts, including those
that warn them of potentially clinically relevant errors [2]. A
CDSS can fail to enhance patient safety due to alert fatigue.
Alert fatigue arises when an excessive number of irrelevant
alerts drives users to routinely override them [14].

In the CDSS, 2 types of alerts are usually used. One type of
alerts is active or “pop-up” warnings. These alerts require an
action from the user for the clinical process to continue, such
as clicking a button or stating the overriding reason. The other
type of alerts is passive warnings, such as flagging potentially
abnormal values. Passive alerts, unlike active alerts, do not
interrupt the provider’s workflow; hence, these alerts do not
require a response from the user to override the clinical process.
Numerous studies have established the issue of alert fatigue
with active alerts [10,12,15,16]. Passive alerts may also be a
substantial cause of alert fatigue. The true burden of these alerts
has rarely been assessed [17].

There is limited research evaluating the appropriateness of
overrides with no override reasons in the passive alert system
and the alert itself for clinical appropriateness for a patient’s
specific condition. To understand the behavior of physicians,
previous studies have only evaluated the appropriateness of
overrides based on their reasoning [1,18]. In this study, we
evaluated the appropriateness of alerts and physicians’ responses
in a passive alert system through a patient EMR. We also
categorized the alerts assessed by clinical relevance and
physicians’ responses. This study may provide insights into the
clinical use of medication alerts, whether physicians override

them, and what reactions physicians offer when responding to
them.

Objective
This study aimed to evaluate the clinical appropriateness of
alerts and the corresponding physicians’ responses in a
medication-related passive alert system.

Methods

Study Design
This study was a retrospective observational study with stratified
sampling according to medication. The analyzed alerts were
generated from medication orders between August 2019 and
June 2020 in the emergency department (ED). We obtained
medication orders, alerts, and patient EMR data from a clinical
data warehouse (CDW). In Korea, it is stipulated by law that
only physicians can prescribe orders, except in a limited number
of cases.

Ethics Approval
This study was approved by the Institutional Review Board of
the Samsung Medical Center (IRB 2021-09-115).

Study Setting
This study was conducted in the ED of a tertiary academic
medical center in Seoul, Korea. It serves 2 million outpatient
visits annually and provides in-hospital service for 1975 beds.
The ED has 69 beds and approximately 35 doctors. The annual
number of patients visiting the ED ranges from 75,000 to 80,000.
The workflow of the ED is uncontrolled and unpredictable [19].
Adverse events following an ED visit were reported less
frequently but were more preventable than in other hospital
settings [20]. Since the ED has various medication prescription
patterns, diverse alerts can be analyzed by checking the patients
in the ED.

EMR System and Medication Order (Prescription)
System
Our EMR system is a self-developed system implemented in
2016. Data Analytics and Research Window for Integrated
Knowledge (DARWIN) is an extensive system that includes
CPOE as well as nursing, pharmacy, billing, and research
support and even patient portal and web services.

CDSS Design: Passive Alert System
A passive alert system in the medication CDSS was applied to
the DARWIN. Although passive alerts with in-line text do not
interfere with physicians’ workflow, they may also result in
decreased effectiveness of the CDSS alerts [21]. The alert
appears before the order is confirmed. A response is not required
to allow the prescription. The rule-based database for the CDSS
was supplied by the KIMS POC knowledge base (KIMS Co)
with weekly updates. The types of alerts were age, allergy, dose,
drug-drug interaction (DDI), and renal.

CDW Use
This study was performed using data extracted from the CDW
at the study site. The CDW is an integrated storage for clinical
data that are updated daily, such as deidentified patient
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demographic information, diagnosis, prescription, and laboratory
results. In the past, researchers had to check the variables
required for research individually and process the data
accordingly. However, using the CDW, researchers can easily
obtain the data automatically, sorted according to the various
variables assumed by the researcher. CDW supports the
automatic conversion of unstructured data, such as text to
standardized data, to make it possible to conduct prospective
cohort studies conveniently.

Selection of Alerts
In all, 20 frequently overridden medication alerts were selected.
We thought that alerts that are frequently overridden would be
less clinically relevant; therefore, we prioritized alerts that are
frequently overridden as evaluation targets. DDI types and alerts
that are difficult to evaluate for clinical appropriateness were
excluded as follows: when there was no specific dose setting
information for reduction and when the range of dose adjustment
according to the indication and severity was wide. Overridden
cases and nonoverridden cases were randomly extracted from
20 frequently overridden medication alerts. The number of cases
for each medication alert are shown below.

Definition of Alert Overrides and Appropriateness
Alert overrides occur when physicians do not change orders as
suggested by the alert. Our previous study defined an alert
override as no change in order when an alert occurred on the
log data [22]. In this study, however, alert override means no
change in order when an alert occurred or a re-order of the same
prescription later. In nonoverridden cases, many physicians
prescribed the nonoverridden order again, and we considered

this case to be an override. If the identical prescription that
generated the alert was given to the same patient within 48
hours, it was deemed an override. Alert clinical relevance means
that the alert is suitable for each patient’s condition and that the
alert actually helped the physician order the prescription. The
physicians’ response appropriateness indicates whether the
physicians’override or nonoverride was appropriate considering
the patient’s clinical condition.

Detailed Medical Record Review
Through advanced medical record reviews of alert overridden
cases and literature research, a group of 3 clinicians (a physician,
a pharmacist, and a nurse) determined the criteria for the
appropriateness of each alert. In a detailed medical record
review, information such as the patient’s age, gender, weight,
laboratory results (potassium, sodium, serum creatinine, or
glomerular filtration rate, etc), and computed tomography status
was confirmed through the patient’s EMR. Each group member
independently reviewed random samples of the 382 alert cases
for the evaluation of the appropriateness of alert clinical
relevance and physicians’ responses. When panel members
disagreed, consensus was reached via group discussion.

Classification of Alerts
The alerts were classified based on the results of the
appropriateness evaluation. We referred to the evaluation
framework developed by McCoy et al [23]. Since the passive
alert system does not collect the overriding reason, it may be
difficult to judge the appropriateness. Therefore, we included
a nondecidable category in the alert classification table (Figure
1).

Figure 1. Classification table for alerts. The alert classification table included the nondecidable category—since the passive alert system does not
include an override reason, some cases might be difficult to evaluated.

Korean Triage and Acuity Scale (KTAS)
The KTAS is an evaluation tool used to categorize the severity
and urgency of ED patients. It is a 5-level triage scale based on
the severity of the patient’s chief complaint and symptoms. The
KTAS was established in 2012 in Korea in an effort to enhance
patient safety and minimize ED congestion at the hospital level.
Patients who enter the ED are evaluated by KTAS using the
following procedure: impression evaluation, infection

confirmation, primary symptom selection, and
primary/secondary considerations [24,25].

Data Analysis
Commonly overridden medications were subgrouped according
to alert type, and alert patterns were examined. Samples for the
medical record review were extracted using stratified random
sampling. In our samples, we analyzed the appropriateness of
alerts, physicians’ responses, and patient demographics.
Interrater reliability for the evaluation of alert and physicians’
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response appropriateness was calculated by using a κ index.
The results are presented as counts and percentages. The rate
of false positive alerts, physicians’ response inappropriateness,
and override were expressed as percentages of total alerts. All
statistical tests were performed using R statistical software
(version 4.0.3; R Foundation for Statistical Computing).

Results

Figure 2 shows the detailed selection process for medication
alert data. A total of 39,286 (10.5% alert rate) CDSS alerts
occurred for 374,133 medication orders between August 2019
and June 2020. We selected 20 frequently overridden medication
alerts stratified by the medication alert type (Table 1). The
number of alert cases analyzed for medical record reviews was
382 (200 overridden and 182 nonoverridden cases).

The medical record review included 356 patients. Table 2 shows
the demographic information of the patients in the medical
record review cases. Overall, the patients’ basic characteristics
showed that the majority were men (204/356, 57.3%), aged
more than 60 years (205/356, 57.6%), and had KTAS scores of
3 (197/356, 55.3%).

A total of 728 medications triggered an alarm; however, we
chose 20 frequently overridden medication alerts, because we
thought that alerts that are frequently overridden would be less
clinically relevant. Table 1 shows the 20 analyzed medications.
In the overridden case, all medication alerts included 10 cases;
however, in the nonoverridden case, methylprednisolone (n=6),
epinephrine (n=9), cefditoren (n=2), cefazolin (n=6), and
ampicillin/sulbactam (n=9) had fewer than 10 cases.

Table 3 shows the results of the appropriateness evaluation for
alert clinical relevance and physicians’ responses. Interestingly,
of the 382 alert cases, the only 7.3% (n=28) were clinically
relevant alerts. In the physicians’ response assessment, 92.4%
(n=353) were appropriate and 1.6% (n=6) were nondecidable.
The interrater reliability for alert clinical relevance
appropriateness and physicians’ response appropriateness were
moderate (κ=0.47) and fair (κ=0.28), respectively. In our study,
there was no difference in the appropriateness of clinical
relevance between overridden and nonoverridden alerts. When
an overridden alert and a nonoverridden alert were classified
using a data log rather than a medical record review, the alert
appropriateness was 7% (14/200) for overridden alerts and 7.7%
(14/182) for nonoverridden alerts, which did not show clinical
relevance. Contrary to the expectation that there were more
inappropriate alerts in nonoverridden alerts, there was no
difference in alert appropriateness between the 2 types of alerts
(Multimedia Appendix 1).

In the classification of the 382 alerts, only 3.4% (n=13) were
successfully triggered, and 2.1% (n=8) were inappropriate for
both the alert and physicians’ response (Table 4). Only 3.9%
(n=15) of alerts represented physicians’ nonadherence, where
the alert was appropriate but the corresponding physicians’
response was inappropriate. The override rate was 92.9%
(n=355): (Physicians’ nonadherence [n=15] + justifiable
overrides [n=340]) / total alerts [n=382] (Table 4). There were
6 (1.6%) cases in which the physicians’ response could not be
determined.

Figure 2. Study flow chart. DDI: drug-drug interaction.
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Table 1. The 20 analyzed medication alerts.

Nonoverridden alerts for medical
record reviews (N=182), n

Overridden alerts for medical
record reviews (N=200), n

Alert
counts, n

Alert typeOrder (medication type)

10102125DoseSodium bicarbonate, 8.4%, 20 mL (other)

10101885DoseEsomeprazole, 40 mg (proton pump inhibitor)

10101379RenalCeftriaxone sodium, 2 g (antibiotic)

10101494DoseKalimate powder, 5 g (other)

10101108RenalTazoferan, 2.25 g (antibiotic)

10101230DoseCalcium gluconate, 2 g/20 mL (calcium)

10101527DoseAcetaminophen, 1 g/100 mL (analgesic)

10101059DosePantoprazole, 40 mg (proton pump inhibitor)

1010701DoseLactulose syrup (other)

10101205AgePropacetamol, 1 g (analgesic)

610378DoseMethylprednisolone, 4 mg (steroid)

1010611DoseIbuprofen, 20 mg/mL (NSAIDsa)

1010421RenalLevofloxacin, 750 mg (antibiotic)

1010386DoseTerlipressin acetate, 1 mg (vasoconstrictor)

910340DoseEpinephrine, 1 mg (other)

1010329DoseAmiodarone, 150 mg (antiarrhythmic)

1010301RenalMeropenem, 500 mg (antibiotic)

910271DoseAmpicillin/sulbactam, 1.5 g (antibiotic)

610275DoseCefazolin, 1 g (antibiotic)

210301DoseCefditoren pivoxil, 100 mg (antibiotic)

aNSAID: nonsteroidal anti-inflammatory drug.
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Table 2. Patient demographic.

Patient (N=356), n (%)Demographic

Sex, n (%)

152 (42.7)Female

204 (57.3)Male

Age (years), n (%)

58 (16.3)0 to 20

18 (5.1)20 to <40

75 (21.1)40 to <60

205 (57.6)≥60

KTASa score, n (%)

13 (3.7)1 (most critical)

51 (14.3)2

197 (55.3)3

94 (26.4)4

1 (0.3)5 (least critical)

Injury, n (%)

68 (19.1)Noninjury

288 (80.9)Injury

Disposition, n (%)

121 (34)Discharge

193 (54.2)Admission

165 (85.5)General ward (n=193)

28 (14.5)Intensive care unit (n=193)

22 (6.2)Transfer

20 (5.6)Death

aKTAS: Korean Triage Acuity Scale.

Table 3. Appropriateness of alert clinical relevance and physicians’ response.

Case (N=382), n (%)Appropriateness evaluation

NondecidableInappropriateAppropriate

0 (0)354 (92.7)28 (7.3)Alert clinical relevance

6 (1.6)23 (6)353 (92.4)Physicians’ response

Table 4. Evaluation of alerts.

Physicians’ response (N=382), n (%)Alert clinical relevance

NondecidableInappropriateAppropriate

0 (0)15 (3.9)b, c13 (3.4)aAppropriate

6 (1.6)8 (2.1)d340 (89)cInappropriate

0 (0)0 (0)0 (0)Nondecidable

aSuccessful alerts.
bPhysician’s nonadherence.
cThe override rate (355/382, 92.9%) was determined by the sum of these 2 values divided by the total number of alerts.
dUnintended adverse consequences.
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Discussion

Principal Findings
In this study, we evaluated the appropriateness of the alerts and
physicians’ responses to the medication-related passive alert
system through a detailed medical record review. We found that
only 7.3% of alerts were clinically appropriate, and 6% of alerts
resulted in inappropriate responses from physicians. Alert
fatigue is inevitable when a large number of irrelevant alerts
are generated for a small number of appropriate alerts. There
were a few successful alerts where the alert was appropriate
and the physician accepted the alert. Physicians’ nonadherence
of alerts could be a result of the ambiguous contents of alerts
that did not provide helpful information [26]. Additionally, a
high number of inappropriate alerts could be a reason for
physicians’ nonadherence [27]. Physicians were less likely to
accept alerts as the number of alerts increased, especially for
repeated alerts [6]. When considering the cases where the
response of the physician was inappropriate, the alerts where
the alert was appropriate were almost twice as common as the
alerts where the alert was inappropriate. This finding can be
explained by habitual override due to numerous inappropriate
alerts [28]. A small number of alerts were classified as resulting
in unintended adverse consequences. In a few cases, the
physicians’ response appropriateness could not be determined,
because the passive alert system did not collect the override
reasons. There were no cases where the appropriateness of the
alert could not be determined.

Many studies have identified the appropriateness of override
according to the appropriateness of the alert [1,5,15,29,30], but
only a few studies have evaluated the response of physicians
[31-33]. Duke et al [31] conducted a randomized controlled trial
on DDI alert targets to identify medical staff’s adherence
according to context-enhanced alerting. Strom et al [32]
analyzed the unintended effects of a nearly hard-stop CPOE
prescribing alert. Understanding the physicians’ response to the
CDSS is of importance; however, due to the difficulty in
analyzing the response, many researchers simply evaluate the
appropriateness of the override. Therefore, it is necessary to
increase the utility of the CDSS by understanding physicians’
responses.

In our previous study, we reported an override rate of 61.9%
[22]. However, in this study, we found that the override rate
was 92.9%. There are several reasons for this difference. First,
in this study, through medical record reviews, it was confirmed
that some cases that were previously evaluated as nonoverridden
by log data were clinically overridden. The difference between
the override rate when simply using log data and the override
rate through a medical record review is large, even within the
same system. In this study, the patients’ overall prescriptions
were analyzed through a detailed patient medical record review,
and the definition of “override” was expanded. In the previous
study, the classification of overridden and nonoverridden alerts
was based only on log data [22]. In this study, however, more
override was detected by the medical record review than in the
previous study. It was confirmed that a substantial number of
cases classified as nonoverridden by log data were actually

overridden. We found that many physicians prescribed the same
prescription that was considered deleted because of an alert.
The prescription was considered an override if it was reissued
to the same patient within 48 hours of the alert being issued.
Therefore, the override rate might be higher in studies that did
not identify the nonoverridden alerts [15,29,34,35]. To calculate
the override rate properly, it is necessary to establish a
mechanism for systematically determining overrides. A
standardized definition of override is needed for a detailed
analysis and comparison of CDSSs. Furthermore, in this study,
we chose the target alerts as alerts that are frequently overridden,
so it could be a reason for the high override rate. Additionally,
the change of the knowledge base of the CDSS from Medi-Span
(Wolters Kluwer Health) to KIMS POC (KIMS Co) may have
affected the override rate.

Further research should investigate techniques for improving
alert accuracy by using machine learning (ML) and artificial
intelligence (AI), analyze the passive CDSS that has not been
extensively studied, and explore the causal relationship between
the number of alerts and the physicians’ responses. Multiple
alerts with low clinical relevance reduce physicians’ reliance
of alerts. Additionally, many unnecessary alerts can lead to alert
fatigue and increase the probability of ignoring truly important
alerts [2]. It is necessary to improve the clinical relevance of
the alert to increase the physician’s alert reliance and optimize
the alert. ML and AI could be potential solutions. By introducing
ML, the rule-based alert system can be improved, and by
introducing AI, alerts can be generated according to the
individual condition of the patient [36,37]. Despite the promise
of technological approaches to drug safety, the risk of mistake
will persist if these systems are not carefully applied and heavy
attention is not made to building safer systems of care [2]. These
considerations are required to reduce needless alerts, improve
their clinical relevance, and increase physicians’ alert reliance
by assessing CDSS consistently.

Limitations
Our study had several limitations. First, it was performed at a
single center with ED practices. Second, the evaluation of
physicians’response appropriateness may be subjective, because
passive alert systems do not collect the override reasons. In
addition, we did not confirm the clinical consequences of alerts
for unintended adverse consequences. Only the clinical
consequences related to the prescription stage were checked,
and the dispensing/administration stage was not analyzed.

Conclusions
We evaluated the appropriateness of the alerts and physicians’
responses through a detailed medical record review of the
medication-related passive alert system. Only by gaining better
knowledge of the physicians’ overall behavior is it possible to
improve the effectiveness of the CDSS. In our study, most alerts
did not reflect the clinical situation of each patient; however,
the physicians’ responses were mostly appropriate. Alert fatigue
is unavoidable when a large number of irrelevant alerts are
generated in response to a small number of useful alerts. It is
necessary to decrease unnecessary alerts, improve their clinical
relevance, increase alert reliability, and optimize alerts.
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Abstract

Background: Information retrieval (IR) from the free text within electronic health records (EHRs) is time consuming and
complex. We hypothesize that natural language processing (NLP)–enhanced search functionality for EHRs can make clinical
workflows more efficient and reduce cognitive load for clinicians.

Objective: This study aimed to evaluate the efficacy of 3 levels of search functionality (no search, string search, and NLP-enhanced
search) in supporting IR for clinical users from the free text of EHR documents in a simulated clinical environment.

Methods: A clinical environment was simulated by uploading 3 sets of patient notes into an EHR research software application
and presenting these alongside 3 corresponding IR tasks. Tasks contained a mixture of multiple-choice and free-text questions.
A prospective crossover study design was used, for which 3 groups of evaluators were recruited, which comprised doctors (n=19)
and medical students (n=16). Evaluators performed the 3 tasks using each of the search functionalities in an order in accordance
with their randomly assigned group. The speed and accuracy of task completion were measured and analyzed, and user perceptions
of NLP-enhanced search were reviewed in a feedback survey.

Results: NLP-enhanced search facilitated more accurate task completion than both string search (5.14%; P=.02) and no search
(5.13%; P=.08). NLP-enhanced search and string search facilitated similar task speeds, both showing an increase in speed compared
to the no search function, by 11.5% (P=.008) and 16.0% (P=.007) respectively. Overall, 93% of evaluators agreed that
NLP-enhanced search would make clinical workflows more efficient than string search, with qualitative feedback reporting that
NLP-enhanced search reduced cognitive load.

Conclusions: To the best of our knowledge, this study is the largest evaluation to date of different search functionalities for
supporting target clinical users in realistic clinical workflows, with a 3-way prospective crossover study design. NLP-enhanced
search improved both accuracy and speed of clinical EHR IR tasks compared to browsing clinical notes without search.
NLP-enhanced search improved accuracy and reduced the number of searches required for clinical EHR IR tasks compared to
direct search term matching.
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Introduction

Background
The benefits of the transition from storing patient information
in paper notes to electronic health records (EHRs) have been a
topic of debate among health care professionals [1-4]. Many
clinicians have expressed dissatisfaction with their current
hospital systems, and EHR use is consistently cited as a
contributor to clinician burnout [5-7]. Approximately 40% of
doctors’ time is spent documenting patient information, with
evidence showing that this work burden has increased following
EHR implementation [8,9]. However, difficulties in quickly
and accurately retrieving relevant information from these
documents indicate that this wealth of collected information is
often not fully used [10,11]. Navigating EHR documents is
challenging owing to the complexity of medical text, which
tends to include frequent misspellings, abbreviations,
specialty-specific acronyms, and clinical shorthand [12-15].
Time-consuming and inaccurate information gathering from
EHRs limits the efficiency of wider clinical workflows [16],
with some doctors believing that difficulties in retrieving patient
information significantly impact face-to-face patient care [17].

Despite the increasing sophistication of general search engines,
there remain relatively limited search options within medical
record software. One barrier is the need for patient data to be
held securely; therefore, access to computing power and shared
resources may be limited. To have clinical utility, search
facilities must be fast and intuitive for use by time-pressured
clinicians, including relatively junior members of staff to whom
the task of searching through complex notes is frequently
delegated. In addition, the search must handle high variability
of text expression as mentioned above. Clinical text is error
prone; unlike journals and other publications, there is no
editorial control to check for errors. Medical terminology,
acronyms, and abbreviations vary between regions and hospitals
and even across different specialties; for instance, “CHD” may
be related to chronic heart disease (cardiology), congenital heart
disease (pediatrics), or congenital hip dislocation (orthopedics).
Since clinical care is a high-stakes environment, failure to find
relevant information potentially has great implications; to
effectively save the time of clinicians, search tools should ideally
go beyond document-level results to locate and highlight all
relevant sentences or even words within a document. Efforts to
achieve easier information retrieval (IR) have included the
integration of string search in some EHRs, similar to the “Ctrl-F”
or “Find” function that is now frequently available on everyday
platforms [18]. However, the effectiveness of string search is
limited for heterogeneous clinical text; therefore, studies have
also considered semantic search algorithms [19-22]. A
large-scale retrospective analysis of searches performed in an
EHR found that the use of search varied considerably across
and within user roles, with physicians and pharmacists being
the most active user groups [19]. A review of the use of search

within EHRs found that few articles focused on the impact of
search within clinical workflows [23]; one study with 7 diabetes
experts found that content-based search was both faster and
more accurate than conventional search for finding relevant
information [20], another study with 10 family and internal
medicine physicians found that semantic search allowed for
faster medical notes navigation for IR tasks [21], and a final
study with 4 students found that a semantic search tool enabled
faster clinical note summarization [22]. Only one of the
described studies [20] used a crossover study design. In this
paper, a larger study is reported (n=35 valid task completions,
n=42 qualitative responses), in which a 3-way prospective
crossover study was conducted, comparing a standard string
search with no search and with a natural language processing
(NLP)–enhanced search. The custom NLP-enhanced search tool
combines ontologies with fuzzy matching to offer search
functionality, which captures not only semantically related terms
(eg, synonyms and hyponyms) but also linguistic alternative
spellings and misspellings and word forms of the search term.
A simulated clinical environment was used alongside target
user feedback to determine whether search tools could make
clinical workflows more efficient and reduce clinicians’
cognitive burdens when attempting to find information.

Aims and Hypotheses
This study aimed to quantitatively and qualitatively compare
the efficacy of 3 search functionalities for IR from medical
free-text documents, in terms of their accuracy, speed, and ease
of search.

We hypothesized that search tools will allow clinical users to
perform simulated clinical IR tasks faster and more accurately
than when using no search, with the use of NLP techniques
enabling NLP-enhanced search to perform more effectively
than string search.

Methods

Search Tools
The string search function is an open source JavaScript library
implementation [24]. NLP-enhanced search is a proprietary
rule-based algorithm (developed at Canon Medical Research
Europe) that leverages NLP techniques such as edit distance
and stemming in conjunction with medical knowledge bases,
notably the Unified Medical Language System semantic
network, Metathesaurus [25], and medical abbreviation lists on
Wikipedia [26] and OpenMD [27]. These sources are used to
expand the original search term into a list of equivalent terms,
which are then located in the text. The tool was designed to
locate linguistic variants such as misspellings and alternative
spellings, word forms, and abbreviations, as well as additional
semantic synonyms.

Search tools were integrated into a patient-centric viewer (EHR
research software), which allowed the user to type in a search
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term and view the highlighted findings within the retrieved
subset of documents, which the user could scroll through. In
the case of no search, the user was expected to scroll through

the patient’s EHR to find the relevant information. Figure 1
illustrates the difference between the two search tools in the
patient-centric viewer.

Figure 1. Example results for (A) string search and (B) NLP-enhanced search for the search term “heart.” String search returned only direct matches
to “heart” (green highlights) whereas NLP-enhanced search also returns semantically related terms (yellow highlights) such as the following: “coronary,”
the misspelling of atrial (fibrillation) as “atriall,” and the appearance of “heart” within the abbreviation of heart failure, “HF.” NLP: natural language
processing.
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Simulating a Clinical Workflow

Overview
Free-text medical documents were synthesized for 3 fictional
patients. These materials were paired with corresponding sets
of 10 IR questions for each patient, grounded in relevant and
realistic clinical scenarios. Patient documents were uploaded
into the patient-centric viewer. Questions were uploaded onto
a custom evaluation platform built using Vue.js, which also
displayed the clinical scenarios and task-specific instructions
for the evaluator. Below, we describe the document synthesis
and question generation in more detail.

Patient Document Synthesis
Three patient profiles were created with varying age, sex, ethnic
background, social history, and medical history. The 3 patients
were assigned primary medical specialties of respiratory,
neurology, and oncology. For each patient, 20 documents were
created by selecting and augmenting publicly available
anonymized medical documents [28], as well as manually
synthesizing additional documents to provide a patient EHR
with a coherent chronological sequence of clinical events.
Documents were varied and included discharge letters,

outpatient clinic letters, operation notes, and general practice
referral letters. To imitate real-world medical text, common
misspellings, abbreviations, and acronyms were included in the
text, using investigator clinical experience (author HW) and
reference papers [13].

Clinical Scenarios and Question Generation
For each task, clinical scenarios were designed to focus on
real-world situations where information can be extracted from
patient notes. To ensure that the tasks were comparable across
patients (and therefore interventions), a master template of 10
questions prompting IR was created, which was then tailored
to fit each patient scenario. Questions were inspired by those
in past medical examinations [29] and investigators’ (HW and
FM) clinical experience. Requested information resembled that
required in typical clinical workflows to support clinical
decision-making. Care was taken to ensure that task questions
tested the search function and not clinical knowledge or
judgement; therefore, all answers could be found by searching
the respective patient’s notes. Questions required a mixture of
multiple-choice and free-text responses. Examples of scenarios
and corresponding questions for each patient can be seen in
Table 1.

Table 1. Examples of clinical scenarios for each patient and their corresponding question-answer options. Scenarios aimed to simulate a standard
clinical workflow, providing context for the questions.

Answer typeExample questionExample clinical scenarioPatient

Does this patient have a history of respiratory
infection during the months December 2020-
February 2021?

You’re worried this may be an exacerbation
of a previously present infection. After send-
ing the patient for a chest X-ray and taking
bloods, you continue to search for more infor-
mation.

1 • Select one of the following:
• Yes
• No
• Information not available

Why was the patient’s nitrofurantoin stopped? • Free text

Does the patient have a history of head trau-
ma or stroke between November 2020 and
February 2021 (inclusive)?

Patient presents to the Emergency Depart-
ment with confusion and acute stroke-like
symptoms. His son reports 2 previous “mini-
strokes”. You are an ED registrar and send
him for a CT head, as per protocol. While
waiting for the results you search his history
for other contraindications to thrombolysis
treatment.

2 • Select one of the following:
• Yes
• No
• Information not available

Search the notes to find the dates of the
aforementioned “mini-strokes” (e.g. transient
ischaemic attacks).

• Free text

What is the patient’s cancer diagnosis?You are the new oncologist at the clinic see-
ing this patient for review. Prior to the ap-
pointment you want to check her history by
accessing her notes so you can adequately
prepare yourself for the consultation.

3 • Free text

Does this patient have a history of any of the
following conditions?

• Select all that apply:
• Metastases
• Hypertension
• Epilepsy
• Asthma
• None of the above
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Study Design
The clinical evaluation pipeline was structured as having a
prospective crossover trial design; we have illustrated this in
Figure 2. Evaluators were banded on the basis of their level of
clinical experience before being assigned pseudonymized
evaluator IDs that were used for the remainder of the study and

analysis. Evaluators in each band were then randomly allocated
across the 3 study groups using a random number generator.
This yielded 3 groups stratified for level of clinical experience.
Each group had a predetermined order of search functionality;
once the 3 tasks were completed using the allocated search
order, evaluators were asked to fill out a feedback survey that
focused on their user experience.

Figure 2. Study design. The 3 tasks were performed using a prospective crossover design, in which each group undertook the tasks in the same order
with a predetermined order of the search intervention; the order was different for different groups. Finally, all evaluators were asked to fill in a review
questionnaire. NLP: natural language processing.

Evaluator Recruitment and Training
Recruitment for the study was accomplished via professional
contacts and advertising on social media channels to reach
evaluators from a variety of clinical specialties and years of
clinical experience.

A training video was provided to evaluators, which comprised
a brief introduction to the study, demonstrations of the 3 search
interventions within the patient-centric viewer, and detailed
instructions on how to complete the evaluation. An example
patient with a small set of curated medical documents was also
provided for training, on which evaluators could familiarize
themselves with the capabilities of the different search
functionalities.

Data Collection
Evaluators were provided with secure remote access to the
evaluation environment (Figure 3), allowing the evaluation to
be performed remotely from personal devices. Using this setup,
evaluators could view the patient-centric viewer and the
evaluation platform. Answers had to be inputted sequentially
on the evaluation platform, which did not allow evaluators to
return to a question once they had submitted an answer.

During each task, the evaluators submitted answers to the task
questions through the evaluation platform. To ensure accurate
recording of task times, evaluators were asked to perform each
task in one go and to take breaks between tasks rather than
during tasks. Evaluators were free to spend as long as they
needed on each task. In addition, a search log was maintained,
which recorded the search terms entered by the evaluator along
with the search functionality used along with the time spent on
each question.
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Figure 3. Screenshot of the evaluation environment during a task. Evaluators only had permission to view the two relevant sites: the patient-centric
viewer (left) and the evaluation platform (right). The patient-centric viewer contains the synthetic patient documents for a given patient (in this case
“Joseph Williams”) with “hba1c” as the search term. The evaluation platform detailed the clinical scenarios, task-specific instructions, and
question-and-answer sections.

Data Analysis

Exclusion Criteria
Data were excluded where search logs showed that evaluators
had used an incorrect search functionality for a given task.

Question Marking
Two clinical investigators (EP and HW) reached a consensus
on the correct answers for each question. Answers were then
clustered depending on the document in which they were
located, and marks were awarded for finding each relevant area
of correct documents. For example, if 3 pieces of clinical
information across 2 unique documents were required to
correctly answer a question, then 2 marks were awarded if the
correct answer was inputted as the evaluator had successfully
found both documents. Questions were weighted equally.

Statistical Analysis
Data analysis was performed using custom Python code. For
all metrics, samples were weighted to compensate for
imbalances in group size (see Evaluator Demographics and
Group Stratification). Paired 2-tailed t tests were performed to
determine if there was a significant difference in timing and
accuracy between (1) string search and no search, (2)
NLP-enhanced search and no search, and (3) NLP-enhanced
search and string search. A significance level of P=.10 was
applied.

Search Term Analysis
Following the study, search term logs were analyzed to extract
the number and pattern of search terms for each type of search.

User Perceptions
User perceptions were assessed via a feedback survey (see
Multimedia Appendix 1) which included a mix of Likert scale
ratings, from “strongly disagree” to “strongly agree,” and
free-text responses. We clustered free-text responses by topic;
we have summarized our overall findings in the User
Perceptions of NLP-Enhanced Search section as they relate to
4 underlying questions of interest: “How was NLP-enhanced
search perceived?”; “Is NLP-enhanced search better than string
search?”; “Would NLP-enhanced search make clinical
workflows more efficient?”; and “Would NLP-enhanced search
reduce cognitive load?”

Results

Evaluator Demographics and Group Stratification
In total, 60 evaluators were recruited with multiple levels of
clinical experience from medical students to doctors and from
9 specialties ranging from vascular surgery to general practice.
Of 60 recruited evaluators, 44 completed the tasks; 35 were
included in the final analysis (Table 2), while 9 were excluded.
Evaluators were excluded from the quantitative analysis if their
data were corrupted (n=2) or they completed the tasks
incorrectly (n=7); for example, by using the wrong search
functionality for a given task. From the original 20 evaluators
per group, we observed 7 (group 1), 13 (group 2), and 15 (group
3) successful completions. There were 42 responses to the
feedback survey. Table 2 shows the final distribution of clinical
experience across the groups.
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Table 2. Summary of allocation across clinical bands and study groups.

TotalGroup 3Group 2Group 1Clinical band

Medical students, n

10334Preclinical (years 1-3)

6240Clinical (years 4-6)

Doctors, n

63301-5 years of clinical experience

64116-10 years of clinical experience

732211+ years of clinical experience

3515137Total, n

Effect of Search Functionality on the Speed and
Accuracy of Task Completion
The results are shown in Tables 3 and 4. Overall, NLP-enhanced
search facilitated significantly more accurate task completion

than both string search (5.14%) and no search (5.13%). In terms
of speed, NLP-enhanced search and string search facilitated
significantly faster task completion than no search (11.5% and
16.0%, respectively); there was no significant time difference
between string search and NLP-enhanced search.

Table 3. Accuracy and time for different search functionalities, showing mean (SD) values across evaluators.

Time per task (minutes), mean (SD)Accuracy (%), mean (SD)Search functionality

20.2 (10.8)83.8 (9.94)None

17.0 (5.9)a83.7 (10.8)String

17.9 (7.20)88.1 (9.07)aNatural language processing–enhanced

aBest outcomes.

Table 4. Pairwise comparisons among different search functionalities, showing mean (SD) values in the difference across evaluators.

Time difference (minutes)Accuracy increase (%)Search functionality comparison pairs

P valueDifference, mean (%; SD)P valueDifference, mean (%; SD)

.006–3.22 (–16.0; 9.78).93–0.01 (0.01; 14.5)None vs string

.008–2.32 (–11.5; 7.64).084.30 (5.13; 13.1)None vs NLP-enhanced

.180.91 (5.34; 5.05).024.30 (5.14; 10.5)String vs NLP-enhanced

Analysis of Search Terms Used by Evaluators
Analysis of the logged search terms (Table 5) revealed that
evaluators tried almost twice as many search terms when using
string search compared to NLP-enhanced search, and uptake of
string search was slightly lower than that of NLP-enhanced
search; that is, the percentage of questions for which no searches
were performed was higher for string search.

The higher number of search terms required for string search
might intuitively be explained by the user needing to attempt
multiple synonyms to find relevant information. For instance,
for the question, “Does the patient have a history of stroke?” in
the text, there were 4 negative mentions scattered through the
documents: “does not look like she has a stroke,” “No TIA or
CVA” (ie, no transient ischemic attack or cerebrovascular
accident), “No CVA,” and “No CVA.” NLP-enhanced search
found all mentions with the search term “stroke” (which was
the only term that evaluators attempted), but string search
evaluators also attempted “TIA,” “CVA,” “neurological,”

“history,” and “infarction” in their efforts to find all relevant
information. Interestingly, we see that evaluators were
sometimes searching for neighboring words (“history” or
“neurological”) most likely as a method to bypass the possible
variation in textual mentions. Further, string search does not
match spelling variants (or misspellings); therefore, evaluators
sometimes tried different spellings; for example, for the
question, “Is the patient currently on full-dose anticoagulant
treatment?” both “anti-coagulant” and “anticoagulant” were
used as successive search terms by evaluators using string
search.

This analysis also highlighted that the strict parameter settings
for string search meant that search terms matched only to whole
words, not to substrings; thus, evaluators could not search with
a prefix. We observed some evidence of evaluators adjusting
to this—for example, searching first for “anticoag” and then
“anticoagulant” or searching for both “smoke” and
“smoker”—and this also increases the number of search terms
attempted.
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Table 5. Analysis of used search terms showing the percentage of answers that used search and the mean (SD) values of the number of search terms
for each of these answers.

Search terms per answer, mean (SD)Answers using the search functionality, %Search functionality

3.51 (2.91)83.7String

2.05 (1.49)a95.1aNatural language processing–enhanced

aBest outcomes.

User Perceptions of NLP-Enhanced Search
We used the survey shown in Multimedia Appendix 1 to gather
information about user perceptions of NLP-enhanced search.
Below we summarize responses under 4 headings.

How Was NLP-Enhanced Search Perceived?
Most respondents positively described the capabilities of
NLP-enhanced search, noting its identification of misspellings,
word forms, and synonyms, though some reported that
NLP-enhanced search returned too many findings
(“[NLP-enhanced] search was very clever and thorough but
could return 100 results”). However, when rating the efficacy
of NLP-enhanced search, 76% of respondents thought that any
unrelated findings—that is, false positives—did not significantly
impact the usefulness of the search algorithm.

Is NLP-Enhanced Search Better Than String Search?
Overall, 81% of respondents agreed that NLP-enhanced search
facilitated more relevant IR than string search. However, many
commented that the string search capabilities within the
patient-centric viewer were more limited than they were
accustomed to on everyday devices, stating that “string search
was too discriminatory” (the parameter settings meant that only
whole word matches were returned, not substrings, as discussed
in the Analysis of Search Terms Used by Evaluators section).

Would NLP-Enhanced Search Make Clinical Workflows
More Efficient?
Overall, 93% (39/42) respondents agreed that NLP-enhanced
search would make clinical workflows more efficient than string
search, in particular during clinics and clerking of patients.
Free-text feedback reflected this, with respondents reporting
that NLP-enhanced search was useful and less time consuming
than string search or no search when retrieving specific
information. One evaluator commented, “the [NLP-enhanced]
search tool made it significantly easier for me to find the
information I was looking for and also quicker.” On the other
hand, respondents further reported that NLP-enhanced search
would not always be the best method for situations where a
comprehensive overview of a patient is needed. In this case,
assimilating information using manual review (no search) would
be more effective. One evaluator said, “I felt that using the
[NLP-enhanced] search tool meant I wasn't focussing on the
case as much but just looking for words.” A common opinion
was that NLP-enhanced search would be a useful addition to
manual review for clinical tasks.

Would NLP-Enhanced Search Reduce the Cognitive
Load?
Respondents frequently mentioned that NLP-enhanced search
made it easier to retrieve the information they were looking for,
with one evaluator stating that “[NLP-enhanced] search is an
excellent tool for a quick way to filter through relevant
information.” While a few mentioned that too many results were
returned, respondents also reported that going through the
relevant findings was easier and preferable to a full manual
review of the notes, with manual review being described as
“tedious,” “painstaking,” and “very easy to miss vital
information.” One evaluator commented that NLP-enhanced
search could “improve the workload of an already overworked
profession.”

Discussion

Principal Findings
Our results showed a significant increase in accuracy when
NLP-enhanced search was used compared to when string search
and no search were used, while both NLP-enhanced search and
string search offered time savings. There was a perception of
easier navigation from evaluators and a measured decrease in
required interactivity in the case of NLP-enhanced search (lower
number of search terms than those obtained with string search).
We caveat this conclusion with the observation that the strict
parameter settings of string search meant that search terms
matched only with whole words, not substrings; this increased
the number of terms that evaluators used and potentially reduced
the search accuracy, compared to a string search version that
matches also to substrings.

There is limited literature on the potential impact of EHR search
tools on day-to-day clinical care [30]. Our results support those
of previous studies [20-22], which have reported that semantic
search tools allow faster and more accurate EHR task completion
in simulated clinical workflows. A related study [31] reported
that artificial intelligence–optimized patient records improve
speed in answering clinical questions while maintaining the
same accuracy. Interestingly, the impact of the patient record
search engine MorphoSaurus has been measured in a real-world
clinical setting [32], albeit with user surveys only. This method
would have had the benefit of involving real-world stresses such
as task interruptions and time pressure, as well as the key
element of patient interaction. Importantly, however, our method
of using a controlled simulated clinical environment enabled
us to control for variables such as distractions or interruptions,
as well as variation in the complexity and length of medical
records. Additionally, our crossover design controlled for
individual participants’ ability, experience, and diligence. This
enabled robust comparison of quantitative and qualitative data
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for each search type while minimizing the impact of
confounding factors.

Overall, evaluator feedback suggested that the optimum
approach to navigating clinical notes is a hybrid of manual
browsing and search, depending on the context. In the real
world, NLP-enhanced search is likely best employed as a
complementary tool to aid clinical users in navigating clinical
notes, with the ability to manually parse and ingest relevant
facts from a complex medical history remaining important.

Conclusions
In conclusion, this study suggests that search tools have a
positive effect on both the measured and perceived accuracy
and ease of clinical IR. Search tools that can leverage NLP
techniques are more effective for retrieving all relevant terms
from heterogeneous medical free text. There is potential to
reduce clinicians’cognitive burden and make clinical workflows
more efficient. A critical direction for future research is to assess
the use of search tools in real-world clinical practice.
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Abstract

Background: Electronic health record (EHR) has emerged as a backbone health care organization that aims to integrate health
care records and automate clinical workflow. With the adoption of the eHealth care system, health information communication
technologies and EHRs are offering significant health care advantages in the form of error reduction, improved communication,
and patient satisfaction.

Objective: This study aimed to (1) investigate factors associated with physicians’ EHR adoption status and prevalence of EHRs
in Kuwait and (2) identify factors predicting physician satisfaction with EHRs in public hospitals in Kuwait.

Methods: This study was conducted at Kuwait’s public Al-Jahra hospital from May to September 2019, using quantitative
research methods. Primary data were gathered via questionnaires distributed among 295 physicians recruited using convenience
sampling. Data were analyzed in SPSS using descriptive, bivariate, and multivariate linear regression, adjusted for demographics.

Results: Results of the study revealed that the controlled variable of gender (β=–.197; P=.02) along with explanatory variables,
such as training quality (β=.068; P=.005), perception of barriers (β=–.107; P=.04), and effect on physician (β=.521; P<.001)
have a significant statistical relationship with physicians’EHR adoption status. Furthermore, findings also suggested that controlled
variables of gender (β=–.193; P=.02), education (β=–.164; P=.03), effect on physician (β=.417; P<.001), and level of ease of
use (β=.254; P<.001) are significant predictors of the degree of physician satisfaction with the EHR system.

Conclusions: The findings of this study had significant managerial and practical implications for creating an inductive environment
for the acceptance of EHR systems across a broad spectrum of health care system in Kuwait.

(JMIR Med Inform 2022;10(10):e36313)   doi:10.2196/36313
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Introduction

Electronic health record (EHR) systems can provide physicians
with accurate information to serve patients more efficiently as
compared with paper-based systems [1]. A recent literature
review indicated that many health care organizations worldwide,
especially in low-income countries, still rely on paper-based
systems for maintaining patient records [2]. Research suggests
that primary issues faced by traditional systems (ie, paper-based
systems) are inaccuracy of information, loss of data, and
difficulty in sharing information [3]. In Kuwait, many attempts
were made to automate clinical workflows in public hospitals.
However, lack of organizational readiness and technical
knowledge of the user are primary reasons for EHR
implementation failure in Kuwait [4].

Evidence of EHR implementation in public and private health
care systems suggests that EHRs are more efficient than
paper-based electronic record systems [5]. EHRs significantly
improve safety, efficiency, and quality of care provided to
patients [6,7].

Furthermore, EHR has a significant impact on the performance
of health care workers [6]. An EHR system is an integral part
of the clinical decision support system, which provides data to
a wide range of health care workers and promptly assists in
decisions related to diagnosis and treatment, test results, and
the cost of health care [7]. Physicians’ efficient use of EHR can
decrease medical errors and provide every health care
professional with accurate and timely information [8]. Health
care workers can access information quickly and efficiently
through the EHR system, which aids in diagnoses and follow-up
treatments [9,10]. EHR covers various types of information,
from patient medical history to assimilated information from
laboratories, specialists, pharmacists, and insurance companies.
The EHR system is not only confined to inpatient care but also
extends to aftercare with local general practitioners [11].

In contrast, electronic medical record (EMR) refers to the
electronic chart of a patient’s medical history assessed by the
concerned medical staff. Integration of new technologies, such
as Internet of Things, machine learning, artificial intelligence,
and decision support, into the electronic health care system
module and their implementation has transformed health care.
Transformation of traditional data center–based solutions into
cloud systems have opened new horizons for applying big data,
machine learning, and artificial intelligence [12].

Acceptance of EHR use among physicians in public health care
institutes requires considerable investment in training and
development. Implementing an EHR system is an issue of
change management due to its impact on holistic health care
[8]. Thus, the issue of EHR adoption status among physicians
has become a significant concern for many public health care
institutes, as lack of tech savviness, workflow design, and
training are substantial barriers to achieving EHR adoption and
satisfaction among physicians [13]

Kuwait provides high-standard health care coverage to its
residents. In governmental facilities, free medical treatment is

offered to all Kuwaiti nationals. In contrast, foreign residents
must pay an annual fee and nominal charges at every visit to
access public health care facilities. Kuwait’s government spends
4.6% of its gross domestic product on public health
expenditures. Kuwait’s health care sectors accounted for 11%
of the public spending of Kuwait in 2018. There are currently
97 primary health care centers in Kuwait overseen by the
Ministry of Health [14].

The history of EMR in Kuwait dates back to 2000, when the
Ministry of Health introduced a national EMR system across
the entire primary care facilities and hospitals. Moreover, in
2013, a national eHealth strategy was launched that attempted
to consolidate all patient health records into a single health
record file managed by Kuwait’s Ministry of Health and the
department of Information Systems [11].

Evidence from a study by Alnashmi et al [15] in Kuwait has
shown that most physicians in primary health care settings favor
from using the EHR system; however, they suggested additional
functionality improvements through digital signatures,
integration with artificial intelligence, data warehousing, and
big data analytics to enhance the quality of care offered by health
care institutes across the country.

Therefore, this research aimed to identify the EHR system
adoption status at Al-Jahra hospital in Kuwait, a public hospital
operated by the Ministry of Health offering 1234 beds aided by
a surgical suite, emergency services, diagnostic center, and
outpatient service. It also aimed to measure physicians’
satisfaction with the EHR system by using the factors
influencing their satisfaction. The study’s findings posed
significant implications for the public health care system in
Kuwait to promote greater use of EHR, which can lead to a
decrease in medical errors, better health care services, and
overall health care cost reduction [8]. Furthermore, digital
transformation is the foremost influential agenda for Kuwait
Vision 2035 to strengthen investment in high-quality health
care and increase the efficiency of the existing health care
system [15].

Recent studies [6,7,9] have focused on the theoretical elements
predicting EHR adoption among physicians and satisfaction
with the existing EHR system. However, there is limited
literature on the theoretical aspects that empirically explain the
phenomenon of satisfaction with the use of the EHR system
[7]. Therefore, this study mainly aimed to fill the research gap
by answering critical questions associated with EHR adoption
and the degree of physician satisfaction with the existing EHR
system used at Al-Jahra hospital. The study aimed to achieve
the following research objectives:

• To investigate the prevalence of EHR and EHR adoption
status among physicians at Al-Jahra public hospital.

• To investigate the level of satisfaction with EHR use among
physicians working at Al-Jahra hospital.

• To investigate factors predicting physician satisfaction with
the EHR system at Al-Jahra hospital.
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Figure 1. Perception of training received by physicians at Al-Jahra hospital. EHR: electronic health record.

Methods

Setting
This cross-sectional study occurred at Al-Jahra hospital, a
general public hospital in Kuwait. Data were collected from
May 2019 to September 2019. The sample size was selected
using the Raosoft calculator, which suggests that the sample
size for the population of staff members working at Al-Jahra
hospital requires 295 responses [16]. The researcher
incorporated convenience sampling methods to recruit
participants from various stratified groups (ie, gynecology,
general physicians, urologists, orthopedics, ENTs, psychiatry,
radiology, pathology, cardiology, and gastroenterology).

Theoretical Framework
The Technology Acceptance Model (TAM), an information
system theory based on the acceptance and use of technology
by people, was used to develop the conceptual framework. TAM
provides information on a technology-based framework for
understanding the user’s adoption of technology and preference
for using the advanced technologies, particularly in the
workplace environment [6]. The theory is based on the following
two primary factors: perceived ease of use and perceived
usefulness of technology.

The TAM and the Unified Theory of Acceptance and Use of
Technology (UTAUT) are two popular theories used in
explaining the use of EHRs; UTAUT helps gauge the degree
of physician satisfaction with EHR, as satisfaction is an
antecedent of repeated behavioral intention [17].

Survey Assessment Tool
The survey tool was designed and refined, followed by the pilot
testing procedure. The questions included in the survey were
based on the information extracted from the literature review.
The survey was pilot tested among 33 physicians who had
experience using the EHR for clarity, readability, and feedback.
The instrument questionnaire reported overall reliability of all
items, with α=.886, which suggests that the instrument exhibits
high internal consistency.

The final version of the survey consisted of 9 sections and 46
items or questions. They were scored on a 5-point Likert
response scale ranging from strongly agree to strongly disagree.

The survey was translated into Arabic and then back-translated
into English. An expert (DA) also reviewed the survey in Health

Information Systems in Kuwait to ensure cultural and contextual
fit.

The survey’s psychometric properties were established using
the Confirmatory Factor Analysis (CFA) [18]. The results of
the CFA showed that all items in each construct were retained,
with the exception of 2 items in the scale ‘Perception of Barriers
to Using EHR.’ The final instrument consisted of 8 main
variables and 35 items. All scales were reliable, with the lowest
reliability score of 0.717 (for ‘Perception of Barriers to Using
EHR’) and the highest score of 0.897 (for ‘Level of Ease of
EHR Function’). There were 2 dependent variables. The first
was the physician EHR adoption status, and the second was the
degree of physician satisfaction with EHR. The independent
variables, as directed by the TAM model, include satisfaction
with technical support, preference for using a new EHR system,
preference to go back to a paper-based system, perception of
barriers to using EHR, the effect of the use of EHR on physician,
and level of ease of EHR. The demographics measured in the
survey were gender, nationality, age group, education, years of
experience, work department, and job title. The quality of the
related training was also added as an independent variable based
on the theocratical insight of the TAM model, which suggests
that training paradigms significantly influence behavioral
intentions [19].

Inclusion and Exclusion Criteria
The target population consisted of physicians working at
Al-Jahra hospital in Kuwait. Inclusion criteria involved (1)
employees of Al-Jahra hospital, (2) physicians, and (3)
experience using the EHR system in the hospital, whereas
exclusion criteria included (1) former employees of Al-Jahra
hospital, (2) administrative staff, (3) nurses, (4) technicians,
and (5) physicians working with Al-Jahra on a contractual
agreement.

Population and Sampling
According to a previous study, 55% of the physicians in Kuwait
are already using an existing adopt EHR system [20].
Considering this adoption rate, a finite population size of 503,
a 5% error rate, and a design effect of 1, the required sample
consisted of 217 research participants. Assuming a nonresponse
rate of 20%, a target sample size of 277 physicians was required
for the quantitative study.
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Ethics Approval
Ethical approval (2019/1093) was obtained from the Kuwait
Ministry of Health Ethical Committee. All research participants
signed the informed consent form, which clearly stated the
study’s purposes, data use, and participants’ safety (ie,
confidentiality and anonymity).

Statistical Analysis
The paper survey was self-administered. The response rate was
95%. Missing values were treated in SPSS using missing values
analysis, which suggested that missing values were completely
at random, and there was no pattern that resulted in the pairwise
deletion of data.

The data were analyzed using the IBM Statistical Package for
Social Sciences (version 23; IBM Corp) [21]. Descriptive
statistics analysis was also conducted, followed by bivariate
analysis. The most common test used in the bivariate analysis
was the Pearson correlation analysis. The final statistical analysis
used was multiple regression analysis to test the contribution
of the independent variables to the dependent variables (ie,
current use of EHR and satisfaction with EHRs), adjusted for
the demographics. This was done in two steps; first, in model
1, only demographic variables were added to the analysis; then,
in model 2, both demographics and the independent variables
were added. The alpha level set for this study was .05.

Results

Descriptive Statistics
Of 295 participants, the majority of the participants were male
(n=242, 82%) and non-Kuwaitis, (n=259, 88%) from India,
Egypt, Asia, Africa, and other parts of the Middle East and
North Africa (or MENA) region. Most of the respondents were
generally young (n=120, 40.7%), between 30 and 39 years of
age, and were experienced physicians (n=100, 33.9% had 5-10
years of work experience). Most of them were registrars (n=88,
29.8%) and gynecologists (n=114, 38.2%), as shown in Table
S1 in Multimedia Appendix 1.

In terms of behavioral characteristics, almost 2 of 5 of the
respondents (n=124, 42%) reported using the EHR system for
more than 5 years. There was a lack of consensus among
respondents regarding the quality of related training received;
for example, 89 (30.2%) reported receiving low-quality training,
whereas another 89 (30.2%) reported receiving high-quality
training on EHR system use.

Bivariate Correlation
Regarding bivariate analysis, the degree of physician satisfaction
with the EHR system is strongly correlated with the preference
for using the new EHR system (r=0.797) and its effect on
physician (r=0.744); it was moderately correlated with
satisfaction with technical support (r=0.632) and level of ease
of EHR system use (r=0.698), as shown in Tables S2 and S3 in
Multimedia Appendix 1.

Multiple Regression Analysis
The first series of multiple regression analyses that included all
independent variables in the prediction of the EHR adoption

status and adjusted for demographic variables showed that the
perception of barriers (β=–.0107; P=.04), the effect of the use
of EHR on physician (β=.521; P<.001), and training quality
(β=.068; P=.005) are significant predictors of physician EHR

adoption status (R2=0.56), as shown in Table S4 in Multimedia
Appendix 1.

In the second series of multiple regression analyses that included
all independent variables in the prediction of the degree of
satisfaction with EHR use and adjusted for demographic
variables, findings showed that gender (β=–.1931; P=.02),
education (β=–.164; P=.03), effect on physician (β=.417;
P<.001), and level of ease of EHR use (β=.254; P<.001) are
significant predictors of the degree of physician satisfaction

with the EHR system (R2=0.62), as shown in Table S5 in
Multimedia Appendix 1.

Discussion

Principal Findings
The study’s primary purpose was to examine the psychosocial
factors associated with physicians’ use of EHR and satisfaction
with the EHR system at Al-Jahra public hospital in Kuwait.
Findings of the study show that the level of EHR adaption status
can be predicted with the controlled variable of gender along
with explanatory variables, that is, training quality, perception
of barriers to using EHR, and effect on the physician.
Furthermore, findings also suggested that controlled variables
(ie, gender and education) along with explanatory variables (ie,
effect on physicians and level of ease of EHR system)
significantly influence physician EHR adoption status. The
gender of the physician can also play an important role in the
use of EHR. In our study, females were more likely than males
to use the EHR system and were more satisfied with it, as
supported by the literature [22].

The study’s findings validate previous studies [12], which
highlight the role of risk and trust relationship in predicting
EHR adoption status, as findings revealed that the performance
and trust relationship implied by the UTAUT model had no
impact on physician intention to use an EHR system. This
implies that developers, marketers, and medical professionals
should improve and optimize patient communication in the EHR
system. Our findings validate previous evidence [21] and also
suggest that social factors have a negligible effect on physician
intention to adopt EHR system, as physicians are driven by their
attitudes, ability to control innovation offered by the EHR
system, and holistic benefits offered by the system. Findings
also validate the role of training in influencing EHR system
adoption status among physicians, as evidence from a study by
Dunton [23] suggests that training influences perceived
usefulness and perceived ease of use as well as external factors,
which significantly enhance physician EHR system adoption
status.

In terms of the prediction of EHR use, the most important factor
was the effect that the use of EHR had on physicians’ work.
This implies that physicians will be more inclined toward using
the EHR system if they perceive a beneficial effect of the use
of EHR on their work. In addition, the length of use of EHR
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also had a positive contribution to the prediction of EHR use.
This is not surprising, since using the EHR system for an
extended period will lead to adopting the EHR system, according
to a study by Liang et al [20].

Regarding the prediction of physicians’ satisfaction with the
use of EHR, the most significant contributor was the effect of
EHR use on physicians’ work, as supported by the findings of
a previous study [24]. Specifically, it was found that the higher
the perceptions of the positive effects of EHR on physicians’
work, the more likely it will be for the physicians to be satisfied
with the use of the EHR system. The second most important
contributor was the degree of ease of EHR use. Consistent with
the findings of other studies, as physicians start to experience
the ease of using the EHR system, they will start adopting the
EHR system [3]. Moreover, another study [25] found that
perceived usefulness and perceived ease of use increase the
acceptance of using the EHR system and hence the satisfaction
with it. As it was explained, accepting the use of the EHR
system was an indication of the level of satisfaction of the
physicians. Therefore, it was not surprising that this study found
the degree of ease of using EHR as an important factor in
satisfaction with it. In other words, as physicians perceived the
EHR system to be easy to use, they were more likely to use it
and experience higher satisfaction levels.

Another unique finding concerning the satisfaction with EHR
was related to the academic background of participants.
According to the results, this characteristic was a significant
factor. This implies that the knowledge and academic experience
of the physicians might have an impact on their satisfaction
level. Those physicians with higher qualifications will tend to
be more satisfied with the EHR system compared with others
because they might believe that using the EHR system would
allow them to serve the patients better. Evidence from a study
[26] demonstrated that physicians with higher levels of
education had higher levels of satisfaction with EHR use.

Finally, age was also significant in the prediction of EHR use
but in a negative way. Older physicians were more reluctant to
use the EHR system, as supported by a previous study [17]. In
our study, the demographics were treated as controlled variables.
Therefore, their effect on the regression model and other
variables was neglected.

From a programmatic perspective, the following are some
recommendations for public health professionals in their effort
to promote the use of EHR and increase satisfaction with EHR
among those who are already using it in governmental hospitals
of Kuwait:

• Professionals should first conduct a needs assessment,
identify perceived barriers among physicians, and try to
address those barriers.

• Public health professionals should focus on improving the
functionality of the EHR system and make it as easy as
possible to operate; this will encourage physicians to use
it more often and rely on the EHR system when seeing
patients.

• Public health professionals are advised to emphasize
promoting the EHR system’s positive effects on physicians’

work, which could be done through health communication
campaigns.

Limitations
There were some limitations to the study. The results of this
study were only limited to Al-Jahra hospital, where the study
took place. However, this study can be generalized, and the
outcomes can be easily applied to other public sector hospitals
in Kuwait, as the research examined satisfaction with EHR and
adoption of the EHR system. Second, the TAM was used to
assess the adoption of EHR and satisfaction with it. However,
the TAM and UTUAT models were not fully applied to this
study, as the attitude was not examined. Due to the questionnaire
being long, the decision was made to shorten it, so more
physicians were interested in filling out the questionnaire and
participating in the study. The study did not use purposive
sampling as convenience sampling for data collection. The use
of a random sample might have produced a different result. The
findings of the study are not generalizable to all hospitals in
Kuwait. Thus, more studies need to be conducted to validate
whether other public hospitals exhibit the same phenomenon.

Future Research
Since this study could not cover all aspects that might be useful
in examining the satisfaction with EHR system and current use
of it, the following future studies must be carried out. First, the
theoretical framework should be expanded to include physicians’
attitudes toward using EHR. Research should be conducted that
fully uses the TAM by including physicians’ attitudes. It might
prove important to examine physicians’ attitudes, since some
physicians might have a positive predisposition toward using
EHR but still not use it. It would be interesting from a theoretical
and programmatic perspective to examine how attitude relates
to intention by itself. Second, a follow-up qualitative study
through several interviews with senior physicians and hospital
officials should be conducted. Such a study will help identify
more in-depth information behind using or not using the EHR
system. For instance, qualitative research can complement
quantitative research results and help us discover the perceived
barriers to adopting the EHR system. In addition, qualitative
research can help us find answers to surprising results, such as
the fact that women are more likely to adopt an EHR system.
This study can be replicated in other governmental hospitals in
Kuwait to reach a better understanding of how prevalent the
use of EHR is and the degree of satisfaction with its use.

Conclusions
There are important takeaways from the results of this study.
First, there is still a need to further expand the EHR system
adoption at Al-Jahra hospital, since almost 1 in 5 physicians
has never used EHR or has used EHR for less than a year. This
could be justified as they may have joined the hospital recently.
Second, to increase the adoption rate and satisfaction with the
current use of EHR among physicians, public health
professionals can make the benefits of EHR adoption more
visible to the physicians, remove perceived barriers, make the
use of the EHR system as easy as possible, and incorporate a
high-quality related training, while providing continuous
technical support. Results from this study can be helpful to other
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governmental hospitals in Kuwait in their efforts to enhance
the levels of adoption and satisfaction with the EHR system.
The EHR system has many benefits, and it can be fully realized

only when all physicians in governmental hospitals in Kuwait
fully adopt it.
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Abstract

Background: There is an increasing need to integrate patient-generated health data (PGHD) into health information systems
(HISs). The use of health information standards based on the dual model allows the achievement of semantic interoperability
among systems. Although there is evidence in the use of the Substitutable Medical Applications and Reusable Technologies on
Fast Healthcare Interoperability Resources (SMART on FHIR) framework for standardized communication between mobile apps
and electronic health records (EHRs), the use of European Norm/International Organization for Standardization (EN/ISO) 13606
has not been explored yet, despite some advantages over FHIR in terms of modeling and formalization of clinical knowledge, as
well as flexibility in the creation of new concepts.

Objective: This study aims to design and implement a methodology based on the dual-model paradigm to communicate clinical
information between a patient mobile app (Xemio Research) and an institutional ontology-based clinical repository (OntoCR)
without loss of meaning.

Methods: This paper is framed within Artificial intelligence Supporting CAncer Patients across Europe (ASCAPE), a project
that aims to use artificial intelligence (AI)/machine learning (ML) mechanisms to support cancer patients’health status and quality
of life (QoL). First, the variables “side effect” and “daily steps” were defined and represented with EN/ISO 13606 archetypes.
Next, ontologies that model archetyped concepts and map them to the standard were created and uploaded to OntoCR, where
they were ready to receive instantiated patient data. Xemio Research used a conversion module in the ASCAPE Local Edge to
transform data entered into the app to create EN/ISO 13606 extracts, which were sent to an Application Programming Interface
(API) in OntoCR that maps each element in the normalized XML files to its corresponding location in the ontology. This way,
instantiated data of patients are stored in the clinical repository.

Results: Between December 22, 2020, and April 4, 2022, 1100 extracts of 47 patients were successfully communicated (234/1100,
21.3%, extracts of side effects and 866/1100, 78.7%, extracts of daily activity). Furthermore, the creation of EN/ISO
13606–standardized archetypes allows the reuse of clinical information regarding daily activity and side effects, while with the
creation of ontologies, we extended the knowledge representation of our clinical repository.
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Conclusions: Health information interoperability is one of the requirements for continuity of health care. The dual model allows
the separation of knowledge and information in HISs. EN/ISO 13606 was chosen for this project because of the operational
mechanisms it offers for data exchange, as well as its flexibility for modeling knowledge and creating new concepts. To the best
of our knowledge, this is the first experience reported in the literature of effective communication of EN/ISO 13606 EHR extracts
between a patient mobile app and an institutional clinical repository using a scalable standard-agnostic methodology that can be
applied to other projects, data sources, and institutions.

(JMIR Med Inform 2022;10(10):e40344)   doi:10.2196/40344

KEYWORDS

health information interoperability; mobile app; health information standards; artificial intelligence; electronic health records;
machine learning

Introduction

Importance of Patient-Generated Health Data
Traditionally, physicians were the only actor who registered
patient data in health information systems (HISs). In recent
years, the focus has shifted toward more active participation by
patients in their own health care, particularly by means of
patient-generated health data (PGHD) [1].

One relevant source of PGHD are wearables, electronic devices
that connect to the body surface of patients and can transmit
data regarding many biological variables. The number of such
devices that generate valuable data is growing considerably.

Furthermore, patient experience has been progressively
incorporated into health care processes with the objective to
optimize them. One of the most relevant measures of outcomes
is the patient-reported outcome measures (PROMs), which
record patients’ perception of disease, including relevant
symptoms and emotional distress [2]. In the context of the
increasingly adopted value-based health care model, Michael
Porter developed a formula: value = (results that matter to the
patient)/costs [3,4]. In this model, it is key that patients report
the results that matter most to them using indicators provided
by PROMs [5].

Increasingly, all of these data come from patient mobile apps,
and they need to be integrated into HISs for their use in the
caregiving process (primary use) or for research purposes
(secondary use). However, given the large number of HISs that
coexist even within a single health organization, this proves to
be highly challenging.

Interoperability in Health Information Systems
To share clinical information in such a way that it can be
unequivocally interpreted, both syntactically and semantically,
by 2 or more systems, a common health information standard
must be used.

European Norm/International Organization for Standardization
(EN/ISO) 13606 is a health information standard that seeks to
define a rigorous and stable architecture for communicating
health records of a single patient, preserving the original clinical
meaning. It is based on a dual model proposed by OpenEHR
[6] that includes a reference model (with the necessary
components, and their constraints, to represent electronic health
record [EHR] extracts) and an archetype model (for the
formalization of the clinical domain concepts according to the

reference model) [7,8]. Thus, EN/ISO 13606 was designed for
the exchange of EHR extracts with full meaning and a high
compatibility with OpenEHR [9].

The Fast Healthcare Interoperability Resources (FHIR) standard
was developed by Health Level 7 (HL7) with the intention to
use modern communication standards for the agile creation of
health data communication infrastructures [10]. FHIR’s 80/20
rule (focus on 20% of the requirements that satisfy 80% of the
interoperability needs) centers on simplicity rather than
completeness. FHIR also provides a health information standard
to Substitutable Medical Applications and Reusable
Technologies (SMART), a framework that enables medical apps
to be written once and run unmodified across different health
care information technology (IT) systems [11].

EN/ISO 13606’s advantages over FHIR in terms of modeling
and formalization of clinical knowledge, as well as flexibility
in the creation of new concepts, suggest it could play a role in
the communication of EHR extracts with mobile apps, despite
the limited existing evidence. This could be particularly useful
in complex scenarios of health data exchange between nodes
[12].

The ASCAPE Project
This paper is framed within the Artificial intelligence Supporting
CAncer Patients across Europe (ASCAPE) project, where breast
and prostate cancer, 2 of the most prevalent types of cancer, are
considered [13]. One of the main purposes of the project is to
use powerful artificial intelligence (AI)/machine learning (ML)
mechanisms to support cancer patients’health status and quality
of life (QoL) in 4 different pilots [14,15].

Within the ASCAPE project, clinical partners identified
previously validated questionnaires used to capture different
QoL issues for both types of cancer. AI-based models ingest
data from such questionnaires, as well as data regarding daily
activity, side effects, and physicians’ interventions, to predict
and suggest improvements in patient QoL issues. Hence,
ASCAPE prospectively investigates an AI-based approach
toward a personalized follow-up strategy for cancer patients
focusing on their QoL issues.

The approach chosen in the project to properly process sensitive
medical data is federated learning (FL), a decentralized ML
technique where local data are used to train shared global models
with a central server, keeping the sensitive data locally.
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Objectives
The aim of this study was to design and implement a
methodology based on the dual model paradigm in order to
communicate clinical information between a patient mobile app
and an institutional clinical repository, without loss of meaning.
This implies a series of specific objectives:

• To conceptually represent information regarding daily
activity and side effects by means of ontologies

• To define a set of archetypes based on EN/ISO 13606 for
the standardization and consolidation of patient data in
clinical repositories

• To create a scalable conversion module for mobile apps,
within the Hospital Clínic de Barcelona’s (HCB)
environment, to transform local data and generate EN/ISO
13606–compliant EHR extracts

• To validate the methodology through the successful
generation and integration of EHR extracts sent from Xemio
Research, a patient mobile app, into the institutional
ontology-based clinical repository, OntoCR.

Methods

Ethical Considerations
This study was approved by the Hospital Clínic de Barcelona
Ethics Committee for Investigation with Drugs
(HCB/2020/0971).

Systems and Servers

OntoCR
Traditionally, HISs were developed with a focus on financial
and administrative activities, whereas clinical data have been
merely translated from paper records to electronic databases.
Clinical concepts and the relationships between them have been
poorly developed.

OntoCR is an ontology-driven clinical repository conforming
to the EN/ISO 13606 standard that uses ontologies for different
purposes [16,17]. On the one hand, they define a conceptual
architecture centered on the representation of the clinical process
and clinical knowledge. By representing a metamodel of health
information standards, classifications, and terminologies,
OntoCR can also achieve syntactic and semantic interoperability
between different HISs. On the other hand, OntoCR uses an
ontology that defines the available elements that can be used to
build an app. These elements are used by portlets to create a

graphical user interface (GUI) deployed in Liferay [18], thus
allowing users to access, visualize, enter, and modify structured
data through a web-based clinical workstation. OntoCR is linked
to the HCB’s EHRs (SAP) using the patient ID, and it can be
accessed via SAP or its own website.

Xemio Research
Xemio Research was developed for breast cancer patients,
providing them with proper information, allowing the tracking
of symptoms, and collecting physical activity data from its users
on a daily basis (steps, time of activity, and calories). The
deployment of Xemio Research’s backend takes place within
the gated area of the HCB, with a dedicated server (CentOS
Linux) whose database is modeled object-oriented in
PostgresDB without normalized codes for secondary effect or
activity references, just literals names in Spanish.

Xemio Research is published in Apple App Store and Google
Play Store, with access restricted to study participants. The app
was installed on the patient’s phone by the field researcher
during the first visit, where the patient provided signed informed
consent. This generated a Xemio Research ID, which was then
registered and linked to the ASCAPE ID in OntoCR by the field
researcher.

ASCAPE Local Edge
Due to the sensitive nature of real patient data and the security
and data treatment requirements of the project, the ASCAPE
architecture was implemented in a dedicated server (ASCAPE
Local Edge) within the HCB’s environment, supervised by the
local IT department (Figure 1).

This architecture was deployed using Kubernetes (k8s) [19], an
open source software that accelerates the implementation and
administration of containers on a large scale. These containers
maintain the microservices needed for the functioning of the
project; the processes of data extraction, transformation, and
load (ETL); the normalization of retrospective data provided
by the HCB; patient anonymization; and predictions offered by
AI models. The aforementioned normalization of local data is
performed by identifying variables of interest and transforming
them to the ASCAPE Common Data Model and HL7 FHIR
[15], thus generating a uniform ASCAPE-standardized database
for training data sets to feed the AI engines. Furthermore, Local
Edge generates and updates ASCAPE’s AI predictive models
[14], which are shared and evaluated in its accuracy in the
federated node.
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Figure 1. Information systems within the ASCAPE project. Patients register side effects in Xemio Research, which also tracks patients’ daily steps.
These data are standardized using a conversion module within the HCB environment (see the Methodology section, step 3), and it is both stored in the
OntoCR and sent to ASCAPE Local Edge, which generates and updates ASCAPE’s AI predictive models, which are shared and evaluated in its accuracy
in the federated node. AI: artificial intelligence; ASCAPE: Artificial intelligence Supporting CAncer Patients across Europe; HCB: Hospital Clínic de
Barcelona.

Methodology
The methodology comprises a series of steps to achieve
successful sharing of standardized clinical information between
a patient mobile app and an institutional clinical repository.

Step 1: Definition of Variables to Communicate and
Creation of EN/ISO 13606 Archetypes
The first step in the methodology is to define clinical variables
that need to be communicated through EHR extracts. Since this
study was framed within the ASCAPE project, we identified
variables that needed to be registered and could be recorded
with Xemio Research:

• Daily activity: date, steps, calories, and duration
• Side effects: date, finding, value, and severity

To share information standardized with EN/ISO 13606,
archetypes that define the chosen variables must be created.
EN/ISO 13606’s reference model has multiple components,
including the entry (“a result of one clinical action, one
observation, one clinical interpretation, or one intention”) and
its elements (“The leaf node of the EHR hierarchy, containing
a single data value”).

Figure 2 shows a mindmap created with the LinkEHR tool [20]
of the “side effect” entry archetype. Data types used are those
established by the reference model.
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Figure 2. Mindmap of the “side effect” archetype (in Spanish), edited with LinkEHR. The “side effect” entry has 4 elements: date, finding, value, and
severity.

Step 2: Creation of Ontologies
Once the archetypes are generated, the clinical concepts defined
by them must be represented in both systems (mobile app and
clinical repository). The functionalities needed to record these
variables had already been developed in Xemio Research. For
OntoCR, the Medical Informatics Unit at the HCB created the
corresponding ontologies to represent these concepts.

A locally developed ontology named Ontoclinic already had a
representation of most of the clinical findings that would be
used for this project. Hence, the remaining concepts were
modeled and added to Ontoclinic, which was later imported
into the ASCAPE ontologies. Ontoclinic also includes
metaclasses that represent standard classifications and
terminologies. Thus, by indicating that a given class is an
instance of the Systematized Nomenclature of Medicine –
Clinical Terms (SNOMED CT) metaclass, it allows the
normalization of concepts (see Figure 3). Both finding and
severity were coded with the international edition of SNOMED
CT using this approach.

Afterward, both Xemio Research and OntoCR had to model
local concepts following the standard. In the first case, this was
performed by a conversion module in Local Edge, independent
from the app. This component is configured by a text document
in JSON format that contains the SNOMED CT codes for each

side effect and its severity. The procedure was developed in
Python, and it transforms, conceptualizes, and generates daily
EN/ISO 13606 EHR extracts with the data of Xemio Research
users.

In OntoCR, the modeling was performed by means of
ontologies. The HCB Medical Informatics Unit created an
ontology that incorporates both EN/ISO 13606 reference and
archetype models, enabling the capability of representing clinical
data that conform to the standard. Therefore, new ontologies of
each entry were created, where the concepts defined in the
archetypes were mapped to the EN/ISO 13606 structure.

Figure 3 shows the ontological modeling of concepts described
in steps 1 and 2. The upper-left image displays the
Secondary_effect class of the Ontoclinic ontology, with its
properties date, severity, finding, and value. The lower-left
image shows the modeling of the Ontoclinic Severe class with
SNOMED CT, which was performed by making the concept
an instance of the SCT metaclass, thus allowing its binding to
a code Uniform Resource Identifier (URI) and a concept ID.
Finally, the right image displays the Secondary_effect class
modeled with EN/ISO 13606 as a subclass of EN/ISO 13606
ENTRY, therefore inheriting properties of its superclass. Once
the ontologies that represent the clinical concepts are created,
they are uploaded to OntoCR (Figure 4), where they will be
ready to receive instantiated patient data.

Figure 3. Ontologies of “side effect” modeled locally (upper left) and with EN/ISO 13606 (right) and modeling of the concept “severe” using the
international edition of SNOMED CT (lower left), all of them in Spanish and edited with Protégé. EN/ISO: European Norm/International Organization
for Standardization; SNOMED CT: Systematized Nomenclature of Medicine – Clinical Terms.
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Figure 4. OntoCR GUI for physicians. The ontology modeling the clinical variables is visualized as a web-based structured form. The side effects
menu item is selected in the hierarchical menu on the left side of the image. The right side of the image shows the properties regarding patient information,
ASCAPE recruitment date, and side effects. ASCAPE: Artificial intelligence Supporting CAncer Patients across Europe; GUI: graphical user interface.

Step 3: Communication of Standardized Extracts
After the variables were defined, represented, and standardized
in both systems, extracts were ready to be communicated. Xemio
Research has integrated services that transmit extracts with
pseudo-anonymized data of either side effects or daily activity
collected by the app to an Application Programming Interface
(API) in OntoCR, which allows the insertion of extracts into
the ontology. This way, instantiated data of patients are stored
in OntoCR.

Regarding data security and privacy, Xemio Research generated
extracts with anonymous identifiers that were assigned to the
patients during recruitment. OntoCR stores the information of
both Xemio Research IDs and ASCAPE IDs, so it can integrate
the data from the extracts with the rest of the clinical records.
Therefore, there is no need for the app to receive data from the
hospital’s HIS, which is why communication between Xemio

Research and OntoCR is unidirectional. This ensures the
confidentiality of the real patient data that are managed.

An example of an EN/ISO 13606 EHR extract of side effects
is displayed in Figure 5, where the “Wakefulness” finding
(coded with the SNOMED CT concept ID 365930002) is
recorded.

Figure 6 shows an overview of the process of knowledge
modeling and extract communication between Xemio Research
and OntoCR. Archetypes created with LinkEHR based on
clinical concepts are used as templates to model knowledge in
ontologies using Protégé. The addition of ontological layers
that contain the metamodels of terminologies, such as SNOMED
CT, and health information standards, such as EN/ISO 13606,
allow for semantic interoperability of the information. These
ontologies, without instantiated data yet, are uploaded to
OntoCR.

Figure 5. Example of a deidentified EHR extract of side effects. EHR: electronic health record.
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Patients enter information on Xemio Research, which normalizes
it through a conversion module, thus creating EN/ISO 13606
EHR extracts. These extracts are sent to the API of OntoCR,
which inserts patient data into the ontology. The lower image
displays a list of instances of side effects, with the corresponding
values of the properties date, value, severity, and finding entered
in Xemio Research by the patient. Furthermore, an instance of
the rc_id EN/ISO 13606 property was inserted, indicating the

unique identifier by which this instance is referenced in the
EHR system.

The process for developing the communication of extracts
started in November 2020 and finished in March 2022, with
effective deployment in a production environment. On March
14, 2022, all EHR extracts corresponding to retrospective data
were sent, and thereafter, extracts were sent daily.

Figure 6. Overview of the process of knowledge modeling and extract communication and integration into OntoCR. Blue arrows indicate
knowledge-related processes, while red arrows indicate data-related processes. API: Application Programming Interface; EHR: electronic health record;
ISO: International Organization for Standardization; SNOMED CT: Systematized Nomenclature of Medicine – Clinical Terms.
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Results

EN/ISO 13606 EHR Extracts
We achieved effective communication of EN/ISO
13606–standardized EHR extracts between a mobile app for
patients, Xemio Research, and an institutional clinical
repository, OntoCR.

In our study pilot, 62 patients were allocated to use Xemio
Research. There were 12 (19.4%) dropouts: 7 (58%) due to a

lack of response to questionnaires, 2 (17%) due to medical
issues, 2 (17%) lost to follow-up, and 1 (8%) for personal
reasons. Furthermore, 3 (4.8%) patients never used the app,
leading to a total of 47 (75.8%) users.

Table 1 shows the number of each type of extracts exchanged
between December 22, 2020, and April 4, 2022, and the number
of patients they pertain to.

When comparing the extracts to the data registered in both
Xemio Research and OntoCR databases, no missing or unclear
data were detected in the process for the study cohort.

Table 1. Number of extracts communicated throughout the study.

Patients (N=47), n (%)Extracts (N=1100), n (%)EHRa archetype

34 (72.3)234 (21.3)Side effects

38 (80.9)866 (78.7)Daily activity

aEHR: electronic health record.

Archetypes and Ontologies
Furthermore, the methodology created for this project resulted
in a series of deliverables within each step of the process. First,
the creation of EN/ISO 13606–standardized archetypes allows
the reuse of clinical information for the variables considered in
this study: daily activity (date, steps, calories, and duration) and
side effects (date, finding, value, and severity).

In addition, by creating ontologies that represent the
aforementioned clinical variables and integrating them into
OntoCR, we continue to extend the knowledge representation
of our ontology-based clinical repository.

Discussion

Principal Findings
We describe a methodology for communicating EN/ISO 13606
EHR extracts between a patient mobile app and an
ontology-based clinical repository. Standardized information
regarding side effects or daily activity of patients enrolled into
Xemio Research in the study was effectively communicated.

EN/ISO 13606 was chosen for this project because of the
operational mechanisms it offers for data exchange and its
advantages regarding modeling of clinical knowledge and
flexibility in the creation of new concepts, which is also why it
was used in the first place to extend OntoCR’s metamodel with
the incorporation of the reference and archetype models of the
standard. However, due to the flexibility and standard-agnostic
nature of our methodology, there is complete independence
regarding any specific standard. Thus, we are able to carry out
transformations between health information standards with
minimum use of resources and without the need for changes in
the database structure.

LinkEHR offers the possibility to create clinical information
models using multiple health information standards (EN/ISO
13606, OpenEHR, FHIR) as well as terminologies and
classifications (SNOMED CT, International Classification of
Diseases 10th Revision [ICD-10], Logical Observation

Identifiers Names and Codes [LOINC]), all of which can also
be incorporated into OntoCR by creating corresponding
metamodel ontologies. The API that inserts instantiated patient
data into the repository is prepared to receive any EN/ISO 13606
EHR extract, and it can be extended to incorporate other
standards as well. All this facilitates the application of our
methodology to other projects and institutions.

Single vs Dual Models and Semantic Interoperability
in Health Care
Health information interoperability is one of the requirements
for the continuity of health care [21]. The dual model allows
the separation of knowledge and information in EHR systems,
with the consequent possibility of extending the concept model
without the need for specific developments and introducing new
concepts when the system is already implemented [22]. With
the use of formal information models built from common
components and linked to standard terminologies [23], 2 systems
can achieve semantic interoperability without prior agreement
[24,25].

Single, nonstandardized models require the development of
specific interfaces to communicate information with other
systems. In a context where there is a growing number of
information systems within each health organization, many of
which come from mobile devices of both patients and
physicians, the scalability of this approach is considerably
reduced. These difficulties are even greater when considering
the communication of health information between different
organizations.

The benefits of standardizing EHR data are not limited to
primary use. The reuse of clinical data for secondary purposes,
such as investigation in both single- and multicenter studies,
requires formal information models in order to make data
unequivocally understandable and reproducible [26].

Comparison With Prior Work
There are reports in the literature of standard-agnostic
approaches similar to ours, which enable a semantically
interoperable clinical data landscape. Gaudet-Blavignac et al
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[27] propose a 3-pillar strategy based on a multidimensional
encoding of concepts, a resource description framework
(RDF)–based storage and transport of the instances of these
concepts, and a conversion of the RDF to any target data model.
Likewise, the INFOBANCO project of the Madrid Region in
Spain [28] aims to create a platform for the management,
persistence, exchange, and reuse of health data, contemplating
2 types of outputs: interoperability (HL7 FHIR, EN/ISO 13606,
Clinical Data Interchange Standards Consortium [CDISC] [29])
and persistence (OpenEHR, i2b2, Observational Medical
Outcomes Partnership Common Data Model [OMOP CDM]).
It uses a standard-agnostic design that seeks to apply each health
information standard for the purpose it was intended to, offering
multiple interoperability and exploitation services suited for
specific use cases [12]. However, these projects focus on the
creation of interoperable platforms for different purposes, but
they do not include a strategy for integrating information coming
from mobile apps.

Other groups have reported the use of the SMART on FHIR
framework to integrate PGHD from mobile apps into EHRs
[30-33]. This framework enables medical apps to be written
once and run unmodified across different health care IT systems
and has proven to be an effective approach for interoperability.
FHIR offers operational mechanisms for data exchange, but
unlike EN/ISO 13606, it lacks the capacity to build new concepts
based on specific requirements [12], which limits its flexibility
to adapt to new scenarios.

Strengths and Limitations
There are strengths to this study that are worth mentioning.
First, the 3 main software programs used (LinkEHR, Protégé,
and Liferay) are open source, which makes our methodology
accessible to low-income areas as well as institutions with
limited funding for such projects. Moreover, the aforementioned
flexibility and standard-agnostic nature of our methodology
define a considerable scalability. The knowledge representation
can be adjusted to different contexts with little resources, just
by creating new archetypes, modeling the clinical concepts, and
mapping them to the corresponding structure of EN/ISO 13606.
If a different health information standard is to be used, its
metamodel must be represented with ontologies, and both the
conversion module and the API need to be adjusted.

With a few exceptions, such as the experience reported by
Zenteno et al [34], there is limited evidence in the literature
regarding the effective communication and integration of

EN/ISO 13606–standardized extracts from a mobile app into
an EHR. In addition, to the best of our knowledge, ours is the
first experience that does so with data coming from a patient
mobile app. Given EN/ISO 13606’s advantages over FHIR in
terms of modeling and formalization of clinical knowledge and
flexibility in the creation of new concepts, our approach proves
to be quite innovative in the communication of EHR extracts
with mobile apps.

This study also has some limitations. First, even though there
is a log file in the server that registers the extracts that are sent,
there is no alarm that notifies us when the process is not
working. Therefore, this maintenance and update of the system
still depends on manual processes. Furthermore, the
ontology-based approach requires trained staff and an initial
development that involves the allocation of resources in terms
of personnel, funds, and time, which can limit the extensibility
of the methodology to other contexts.

Next Steps
Regarding next steps of the project, we are in the process of
integrating a dashboard into OntoCR, which will display the
AI-based predicted variation in the QoL issues according to the
interventions carried out by physicians. This will help physicians
with their clinical decision-making when evaluating treatment
alternatives for breast cancer patients.

Furthermore, we are working on extending the integration of
extracts to other functionalities in Xemio Research, and later,
we plan to do so with other mobile apps used within the HCB
ecosystem.

Conclusion
This study describes a novel methodology for the successful
communication of standardized EHR extracts from a patient
mobile app with an ontology-based clinical repository linked
to an EHR. Its flexibility and standard-agnostic nature provide
significant scalability to adapt to different contexts, situations,
and information systems, while the use of open source software
facilitates its transferability to other institutions. Our approach
allows the integration of data coming from different sources
into HISs for them to be used in the caregiving process (primary
use) or for investigation purposes (secondary use). To the best
of our knowledge, this is the first study to achieve effective
communication and integration of EN/ISO 13606–standardized
extracts from a patient mobile app into an EHR.
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Abstract

Background: Vital signs have been widely adopted in in-hospital cardiac arrest (IHCA) assessment, which plays an important
role in inpatient deterioration detection. As the number of early warning systems and artificial intelligence applications increases,
health care information exchange and interoperability are becoming more complex and difficult. Although Health Level 7 Fast
Healthcare Interoperability Resources (FHIR) have already developed a vital signs profile, it is not sufficient to support IHCA
applications or machine learning–based models.

Objective: In this paper, for IHCA instances with vital signs, we define a new implementation guide that includes data mapping,
a system architecture, a workflow, and FHIR applications.

Methods: We interviewed 10 experts regarding health care system integration and defined an implementation guide. We then
developed the FHIR Extract Transform Load to map data to FHIR resources. We also integrated an early warning system and
machine learning pipeline.

Results: The study data set includes electronic health records of adult inpatients who visited the En-Chu-Kong hospital. Medical
staff regularly measured these vital signs at least 2 to 3 times per day during the day, night, and early morning. We used
pseudonymization to protect patient privacy. Then, we converted the vital signs to FHIR observations in the JSON format using
the FHIR Extract Transform Load application. The measured vital signs include systolic blood pressure, diastolic blood pressure,
heart rate, respiratory rate, and body temperature. According to clinical requirements, we also extracted the electronic health
record information to the FHIR server. Finally, we integrated an early warning system and machine learning pipeline using the
FHIR RESTful application programming interface.

Conclusions: We successfully demonstrated a process that standardizes health care information for inpatient deterioration
detection using vital signs. Based on the FHIR definition, we also provided an implementation guide that includes data mapping,
an integration process, and IHCA assessment using vital signs. We also proposed a clarifying system architecture and possible
workflows. Based on FHIR, we integrated the 3 different systems in 1 dashboard system, which can effectively solve the complexity
of the system in the medical staff workflow.

(JMIR Med Inform 2022;10(10):e42429)   doi:10.2196/42429
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Introduction

Background
Vital signs have been an important indicator in many studies
[1-3]. In recent years, researchers have used these data in studies
of predictive models for in-hospital cardiac arrest (IHCA) [1,4].
In a real-world medical workflow, complete data may be
obtained once every 4 to 8 hours. In the machine learning
research related to vital signs [5], the features include heart rate,
temperature, respiratory rate, systolic blood pressure, and
diastolic blood pressure. In addition to IHCA risk assessment,
data analysis systems [6] and early warning systems [7] are still
indispensable applications.

Although IHCA risk indicators have facilitated breakthroughs
in machine learning [8,9], it has been difficult to integrate them
into the workflow of medical staff. In hospitals, there are dozens
of systems that must exchange information with each other.
Without a standard exchange interface [10], the integration
process is costly and time-consuming when a new application
is imported. In addition, if medical researchers are allowed to
access patient data directly through the health care information
system database, security risks [11] become a concern.

To begin initiating a human-readable and user-friendly interface
for medical staff, Health Level 7 [12] developed Fast Healthcare
Interoperability Resources (FHIR) [13]. FHIR is a platform
specification that defines a set of capabilities used across the
health care processes, and it defines a generic health care
business entity model that uses resources as the basic blocks.
Each resource in FHIR has a defined relationship resource with
data elements and constraints. In addition, the FHIR profile
standardizes the data format and structure constraints. During
data transportation, it uses the HTTP RESTful application
programming interface (API) in the exchange interface and
provides the flexibility to choose between JSON or XML format
in the data payload.

Aim
Although FHIR have developed some of the resources, a vital
signs profile [14] has not yet matured. The current
implementation guide provided by FHIR is insufficient to
encompass the full range of medical system applications;
therefore, hospitals still need to define the customized
implementation guide to develop their system and workflow.
The implementation guide is a collection of rules applied by
FHIR resources [15] that requires a clear explanation of how
to solve a particular problem. In the relevant studies on FHIR
[16-18], each paper develops and discusses a single customized
resource profile on a mobile device. Although FHIR can
effectively and rapidly improve health care information system
interoperability, it still has not proposed an implementation
guide for the machine learning application in FHIR
implementation guide registry. To accelerate the development
of smart health care, we propose a system architecture process
based on FHIR that can integrate the machine learning models.
Besides, the vital signs applications are distributed in many
different systems. This study can effectively solve the
complexity of the system in the medical staff workflow.

To standardize the format among medical systems, we developed
a complete IHCA implementation guide based on FHIR that
defines the vital signs–related data for both the early warning
system and the machine learning pipeline. In addition, we also
developed FHIR Extract Transform Load (ETL) and other
FHIR-related applications, including data management, an early
warning system, and a machine learning pipeline.

Methods

Ethics Approval
This study was approved by the Institutional Review Board of
the En-Chu-Kong Hospital (ECKIRB1071001). We confirm
that all experiments were performed in accordance with relevant
guidelines and regulations. The data retrieved from electronic
health records (EHRs) were deidentified by an IT specialist and
could not be linked to the patients’ identity by the research team.
The need for written informed consent was waived and
confirmed by the En-Chu-Kong Hospital Institutional Review
Board, because this was a retrospective cohort study with
deidentified data.

Overview
Our study provides a design and implementation process for
IHCA-based interoperability of health care information systems,
and our design steps include use cases as well as the IHCA
implementation guide.

In the use cases section, we describe the integration issues faced
by health care institutions. Then, in the IHCA implementation
guide section, we introduce the method used to migrate data
from the healthcare information system (HIS) database to the
FHIR server as well as a method for mapping the data to the
FHIR resources. We also develop the 3 application systems,
which include data management, early warning systems, and a
machine learning pipeline. If used according to our
implementation guide, the applications can easily obtain patient
information and vital signs data.

Use Case Survey
In health care institutions, the database is centrally managed,
but the applications are developed by many different teams. In
addition, medical staff usually access all of the required
information about a workflow through a single system.
Therefore, the interoperability of health care systems is very
important.

To achieve system information interoperability [19], the HTTP
RESTful API was defined to exchange data with other systems.
However, many medical systems are legacy systems, and in
many cases, it is impossible to change the system architecture.
We therefore created a table view for the HIS database to allow
other systems to obtain particular data. To avoid affecting the
original system architecture, we developed FHIR ETL to convert
data from the HIS database to the FHIR server, and FHIR ETL
was implemented according to the rules defined by the IHCA
implementation guide.

We interviewed 10 experts regarding health care system
integration and information exchange. As shown in Table 1,
FHIR, which has a good medical standard interface, is very
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suitable for solving the interoperability problems faced by
medical information systems. In addition, it supports a variety
of systems that can be used to develop extended applications.

Therefore, we have 2 use cases. The first use case is related to
data migration for the FHIR server, as shown in Figure 1 (Part
A). The second use case is related to FHIR applications, as
shown in Figure 1 (Part B).

Table 1. Requirement list from health care specialists in health care institutions.

How to do it?Issue (requirement)

Build the FHIRa server as a new middleware or gateway so that
researchers can access data.

The new system integration process shall not affect the health care information
system or the vital signs system.

Develop the FHIR ETLc.Converting the EHRsb with vital signs into FHIR resources.

Use FHIR resources and the RESTful APId.To reduce the time cost and compatibility, we need to use a health care information
interoperability standard.

Use FHIR to develop the early warning system.The field needs an early warning system that can continuously monitor the patient’s
vital signs.

Use FHIR to develop the machine learning pipeline.How can an organization integrate the prediction model into the medical workflow?

Define an FHIR implementation guide.The field needs a complete implementation procedure and use case.

aFHIR: Fast Healthcare Interoperability Resources.
bEHRs: electronic health records.
cETL: Extract Transform Load.
dAPI: application programming interface.

Figure 1. Use cases for IHCA research and application. (A) Extract the data and transfer them to the FHIR server. (B) Data management for data
processing, early warning system for notification and model trigger, and machine learning pipeline for model prediction and model training. API:
application programming interface; ETL: Extract Transform Load; FHIR: Fast Healthcare Interoperability Resources; HAPI: Health Level 7 application
programming interface; HIS: healthcare information system; IHCA: in-hospital cardiac arrest.

IHCA Implementation Guide
In this phase, we need to consider the data format so that raw
data can be transferred into FHIR resources as well as how the
HTTP RESTful API can be used to easily obtain data. Therefore,
we designed a system architecture (Figure 1). We divided the
system steps into the following: (1) the FHIR ETL performs
data conversion and comparisons between the HIS database and
the FHIR server, and (2) the application system accesses data
directly through the FHIR API interface at the HTTP layer.

Data Mapping—FHIR ETL
We proposed the data mapping table to develop the FHIR ETL,
as shown in Table 2. We defined the data mapping and resource
relations. Based on the FHIR vital signs profile, we used the
observation resource to store systolic blood pressure, diastolic
blood pressure, heart rate, respiratory rate, and body
temperature. According to Table 2, FHIR ETL can extract the
data from the HIS database and transfer them to resource
content.
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Table 2. The data mapping table of the FHIRa ETLb in this study.

DescriptionFHIR resource attributeFHIR resource nameData model of HISc database

An identifier for the patient in the hospitalidentifierPatientPatient_ID

Patient’s name that is human-readablenamePatientPatient_name

Patient’s gendergenderPatientGender

Patient’s birth datebirthDatePatientBirthDate

An identifier for the physician in the hospitalidentifierPractitionerPractitioner_ID

Physician’s name that is human-readablenamePractitionerPractitioner_name

An identifier for the department in the hospitalidentifierOrganizationOrganization_ID

Department’s name that is human-readablenameOrganizationOrganization_name

An identifier for the location in the hospitalidentifierLocationLocation_ID

Location’s name that is human-readablenameLocationLocation_name

Heart ratevalueQuantity.valueObservationHeart rate

TemperaturevalueQuantity.valueObservationTemperature

Respiratory ratevalueQuantity.valueObservationRespiratory rate

Systolic blood pressurevalueQuantity.valueObservationSystolic blood pressure

Diastolic blood pressurevalueQuantity.valueObservationDiastolic blood pressure

The created time of the valueeffectiveDateTimeObservationTimestamp

aFHIR: Fast Healthcare Interoperability Resources.
bETL: Extract Transform Load.
cHIS: healthcare information system.

In Figure 2, in terms of data acquisition, if an FHIR client wants
to obtain a patient’s location, it needs to first obtain the patient’s
ID and join the encounter subject. Then, it can use the encounter
location to find the location resource. Finally, the FHIR client
can obtain the patient location.

In Figure 3, the FHIR client can perform the following: (1)
when an FHIR client needs to access a particular patient using

metadata, it can use the HTTP GET method to obtain the Bundle
resource response; (2) when an FHIR client wants to update the
location name for the hospital, it can use the HTTP PUT method
to update the Location resource; and (3) after the FHIR client
obtains sufficient vital signs data from the Observation resource,
it can use the HTTP DELETE method to delete the resource
that is missing vital signs values.
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Figure 2. Data mapping and resource relationships in the IHCA implementation guide. ETL: Extract Transform Load; FHIR: Fast Healthcare
Interoperability Resources; HIS: healthcare information system; IHCA: in-hospital cardiac arrest.

Figure 3. FHIR (Fast Healthcare Interoperability Resources) application, which uses the HTTP RESTful API (application programming interface) to
control the data on the FHIR server.

Workflow Design
In this section, we describe the complete workflow of FHIR
implementation. Workflow 1 develops the data mappings for
the FHIR resources. First, the FHIR ETL uses the database
connection library to access the table view of the HIS database.
Then, it verifies that the patient’s information exists. To maintain

data consistency, when converting to the Observation resource,
the system must add the universally unique identifier of Patient
resource as a reference link. If the patient’s basic data already
exists, the vital signs will be converted into an Observation
resource based on the FHIR vital signs profile.

Workflow 2 develops the data acquisition process for FHIR
applications. First, the FHIR application can use URL (/Patient)
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with the HTTP GET method to access the Bundle resource. In
the Bundle resource, the FHIR application can find all of the
patient’s data. If the FHIR application needs to obtain patient
information such as location and practitioner information, it can
use the Patient ID to join the Encounter subject. Then, it can

obtain the Encounter participant and Encounter location. Finally,
it can also use the Patient ID to join the URL
(/Observation?subject=) with the HTTP GET method to obtain
the Observation resource (Figure 4).

Figure 4. Workflow of the Fast Healthcare Interoperability Resources (FHIR) Extract Transform Load (ETL) and the FHIR client application. HIS:
healthcare information system; UUID: universally unique identifier.

Results

FHIR Resources
The FHIR ETL is an automation service that extracts vital signs.
When the vital signs system stores the data in the HIS database,
the FHIR ETL can access the vital signs data immediately, and
as shown in Figure 2, it adds the vital signs to the Observation
resource. Multimedia Appendix 1 shows examples of an FHIR
resource that refers to an FHIR vital signs profile and other
resources.

Software Development
We describe the software development, which is shown in
Figure 5. The HIS database was developed using the SQL server
database and the Oracle database server. The FHIR server was
installed on the Health Level 7 API FHIR R4 server (version
6.1.0) [20] with a docker container based on the Java
environment. This open-source system is widely used. We
developed the back-end service of the FHIR ETL using Python
software (version 3; Python Software Foundation), and the
machine learning pipeline was implemented using Flask. The
front-end website was constructed using Vue.js and is used for
IHCA web management.
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Figure 5. System architecture used in this study. API: application programming interface; ETL: Extract Transform Load; FHIR: Fast Healthcare
Interoperability Resources; HAPI: Health Level 7 application programming interface; HIS: healthcare information system; IHCA: in-hospital cardiac
arrest; MLP: machine learning pipeline.

System Implementation
The study data set [21] included the EHRs of adult inpatients
who visited the En-Chu-Kong hospital. Medical staff regularly
measured these vital signs at least 2 to 3 times per day during
the day, night, and early morning. The total number of patients
was 16,865, and the number of patients with IHCA was 118.

We converted the 5 vital signs into FHIR observations in JSON
format using FHIR ETL. These vital signs include systolic blood
pressure, diastolic blood pressure, heart rate, respiratory rate,
and body temperature. For demonstration, we used
pseudonymization [22] to protect the patient’s privacy.
Furthermore, we divided the proposed system into the following
3 components: data management, an early warning system, and
a machine learning pipeline. In terms of data management, as
shown in Figure 6, we developed a data static dashboard so that
it can be accessed by medical staff using a browser. The

dashboard uses the HTTP GET method to obtain both the Patient
and Observation resources. Then, the patient’s vital signs over
the previous 48 hours are displayed. In the early warning system,
medical staff can set the vital signs alert threshold to decide
whether to show the alert in the notification list as shown in
Figure 7. Then, the machine learning pipeline exports the vital
signs data from the Observation resource to the FHIR server.
We integrated a long short-term memory network–based model
[21] using vital signs data to predict IHCA. It used the time
series early warning score, which used heart rate, systolic blood
pressure, and respiratory data. When the training process of the
prediction model is initiated, the status “in progress” will appear
in MongoDB. After model training, the status will be updated
to “final,” and the dashboard will show the latest accuracy of
the model. The proposed dashboard is shown in Figure 8.
However, the system can be used on mobile devices as well as
desktop computers. We followed the Responsive Web Design
[23] to design a user-friendly mobile interface (Figure 9).
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Figure 6. Screenshot of the data management overview in the dashboard.

Figure 7. Screenshot of the early warning system’s notification overview.
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Figure 8. Screenshot of the machine learning pipeline including prediction and training. DEP: department; IHCA: in-hospital cardiac arrest.

Figure 9. User interface developed using Responsive Web Design for mobile devices. IHCA: in-hospital cardiac arrest.

Discussion

Principal Findings
In this paper, we piloted the use of an implementation guide
that combines IHCA with vital signs, which have been widely
adopted in IHCA assessment [4,21] and play an important role
in inpatient deterioration detection. Many health care institutions
have developed early warning score systems to identify
hospitalized patients that are at risk of deterioration, and in
recent years, they have begun to incorporate machine
learning–based models into this process. To promote system

interoperability, we used the FHIR standard to achieve consistent
information exchange. We also combined 5 resources
(Organization, Location, Practitioner, Patient, and Encounter)
to represent the EHR. Then, based on the FHIR vital signs
profile, we exported vital signs data to HIS database and defined
the IHCA implementation. In addition, we developed the 3
FHIR applications of data management using a dashboard, a
real-time early warning system, and a machine learning–based
pipeline. According to the IHCA implementation guide, our
proposed system makes it easy to integrate vital signs–related
applications.
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Limitations
The implementation guide was only developed for vital
signs–related studies. However, some case studies still need to
include treatment history [24], blood urea nitrogen [25], and
creatinine [25]. These further improvements can be made to the
EHR.

Comparison With Prior Work
Despite the result that indicated that FHIR can improve the
interoperability of health care information systems [26-28],
existing studies have only developed the resource and profiles.
Seong et al [16] demonstrated how quality information regarding
clinical next-generation sequencing genomic testing can be
exchanged in a standardized format by profiling an FHIR
genomic resource and developing an FHIR-based web
application that exchanges quality information. Based on the
human-centered design methodology, Park et al [17] developed
a worker-centered personal health record (PHR) app for
occupational health. The PHRs were managed through a cloud
server using Azure API for FHIR, and the PHR FHIR resources
included Patient, Organization, DiagnosticReport, Observation,
Practitioner, Condition, Procedure, MedicationStatement,
Medication, and Encounter. In addition, Chukwu et al [18]
profiled FHIR resources for maternal and child health referral

use cases. Our study is distinguished from these previous works
because we provided the IHCA implementation guidance
regarding the use of FHIR resources as a conduit for the data
required by the early monitoring system and machine learning.
We also proposed a minimum requirements data model and
combined it with the FHIR standard. To integrate the early
monitoring system and machine learning, we based them on the
FHIR vital sign profile and many FHIR resources to extend the
data model. Besides, the related studies focus on new application
development. In this study, we focus on legacy system
integration, so we transfer and synchronize data through FHIR
ETL.

Conclusions
We successfully demonstrated a process that standardizes health
care information for inpatient deterioration detection using vital
signs. Based on the FHIR definition, we provided an
implementation guide that includes data mapping, an integration
process, and IHCA assessment using vital signs. We also
provided a clarified system architecture that can be used to
develop clinical decision support systems. Based on FHIR, we
integrated the 3 different systems into 1 dashboard system,
which can effectively solve the complexity of the system in the
medical staff workflow.
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Abstract

Background: Early detection of tooth-related diseases in patients plays a key role in maintaining their dental health and preventing
future complications. Since dentists are not overly attentive to tooth-related diseases that may be difficult to judge visually, many
patients miss timely treatment. The 5 representative tooth-related diseases, that is, coronal caries or defect, proximal caries,
cervical caries or abrasion, periapical radiolucency, and residual root can be detected on panoramic images. In this study, a web
service was constructed for the detection of these diseases on panoramic images in real time, which helped shorten the treatment
planning time and reduce the probability of misdiagnosis.

Objective: This study designed a model to assess tooth-related diseases in panoramic images by using artificial intelligence in
real time. This model can perform an auxiliary role in the diagnosis of tooth-related diseases by dentists and reduce the treatment
planning time spent through telemedicine.

Methods: For learning the 5 tooth-related diseases, 10,000 panoramic images were modeled: 4206 coronal caries or defects,
4478 proximal caries, 6920 cervical caries or abrasion, 8290 periapical radiolucencies, and 1446 residual roots. To learn the
model, the fast region-based convolutional network (Fast R-CNN), residual neural network (ResNet), and inception models were
used. Learning about the 5 tooth-related diseases completely did not provide accurate information on the diseases because of
indistinct features present in the panoramic pictures. Therefore, 1 detection model was applied to each tooth-related disease, and
the models for each of the diseases were integrated to increase accuracy.

Results: The Fast R-CNN model showed the highest accuracy, with an accuracy of over 90%, in diagnosing the 5 tooth-related
diseases. Thus, Fast R-CNN was selected as the final judgment model as it facilitated the real-time diagnosis of dental diseases
that are difficult to judge visually from radiographs and images, thereby assisting the dentists in their treatment plans.

Conclusions: The Fast R-CNN model showed the highest accuracy in the real-time diagnosis of dental diseases and can therefore
play an auxiliary role in shortening the treatment planning time after the dentists diagnose the tooth-related disease. In addition,
by updating the captured panoramic images of patients on the web service developed in this study, we are looking forward to
increasing the accuracy of diagnosing these 5 tooth-related diseases. The dental diagnosis system in this study takes 2 minutes
for diagnosing 5 diseases in 1 panoramic image. Therefore, this system plays an effective role in setting a dental treatment
schedule.

(JMIR Med Inform 2022;10(10):e38640)   doi:10.2196/38640
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Introduction

Usage of Medical Data and Artificial Intelligence in
Health Care
Several recent studies [1-3] have used various medical data for
eHealth care, but they are merely adding digital and network
functions to the existing medical equipment, and remote services
included in the treatment are unused. In addition, although
eHealth care processes medical data and information through
the networking function of doctors and patients, in reality,
patients cannot obtain and confirm much information. Although
a large amount of medical data has been accumulated, there has
been a limit to using these data to provide information to patients
and find new practical implications. As the importance of
medical data has increased, a clinical data warehouse has been
established to research how to utilize various medical data and
for patients to find medical information easily through the
provision of public and private medical data [4]. Various studies
on the application of big data and artificial intelligence (AI) in
medicine have shown that the University of North Carolina
Healthcare has dramatically reduced the time and effort of
medical staff by performing unstructured medical data analysis
using content analytics and natural language processing and
automatically extracting abnormal parts by machine reading
and automatic processing algorithms in mammography
screenings and pap smears [5]. Patients’ conditions are
diagnosed remotely after the initial treatment by clinical
professionals providing them with the medical information to
manage their disease [6]. Recently, a method that allows users
to easily use various medical data based on their experiences
and help them make decisions through optimal information
delivery when applying it to medical systems has been studied
[7]. Using medical data and AI, patients can prevent diseases
in advance and increase their autonomy in treatment scheduling
by receiving knowledge of their condition and medical
information. In addition, AI using medical data can reduce
medical time and cost by assisting doctors in treatment.

Dental Caries Diagnosis Using Images
Dental caries is diagnosed using videos and radiographs, and
studies [8,9] have shown the processing of videos and images
for a more accurate diagnosis of dental caries. In 2003, Møystad
et al [10] diagnosed dental caries by using pre-enhanced Digora
storage phosphor images while performing radiography on areas
where tooth decay occurred and where panorama X-ray and
computed tomography systems (Soredex Medical Systems)
could not be used because of territorial issues. In 2017, Veena
Divya et al [11] diagnosed dental caries by using the contrast
map of a panoramic image, controlling the contrast of the bright
and dark parts to make the blurred panoramic image clear. In
the same year, Singh and Sehgal [12] added light contrast to
panoramic images to enhance the clarity and diagnose dental
caries by exploring the dark areas, which corresponded to dental
caries in the images. In 2019, Kale et al [13] showed that

mothers were able to diagnose dental caries in photos of normal
and decayed teeth obtained with a smartphone by using an atlas.
In 2020, the Laplacian filtering backpropagation algorithm was
used to learn and diagnose dental caries [14]. In 2021, Bayraktar
and Ayan [15] diagnosed dental caries by using image deep
learning algorithms; that study used 1000 radiographic teeth
data points for learning and validation. Labeling the dental caries
was performed by a professional dentist, and dental caries in
the premolars and molars were examined [15].

Importance of Dental Caries Diagnosis
Dental caries is one of the most common chronic diseases
worldwide. Oral diseases are recognized as serious diseases like
other systemic diseases and were classified by the World Health
Organization in 2011 as serious noncommunicable diseases.
The teeth are one of the most important organs in the body, and
dental caries is one of the biggest causes of tooth disease [16].
Dental caries develop and progress in 4 stages, starting as a tiny
black spot in stage 1, followed by enamel decay in stage 2, nerve
damage in stage 3, and pulp damage and pus and inflammation
in stage 4. Dental caries can be easily repaired with simple
treatment in stages 1 and 2; however, if the initial stages 1 and
2 are not judged or are overlooked, dental caries progress to
stages 3 and 4. This leads to complications such as toothache,
inflammation, and acute osteomyelitis, which destroys the bones
around the teeth. Therefore, it is important to prevent and
manage dental caries. The management and early removal of
dental caries through an initial diagnosis are essential factors
for good dental health [17]. However, if there are no clinical
symptoms in the early stages of dental caries, people often do
not pay much attention. In addition, since dental treatment is
generally performed to promptly resolve uncomfortable areas,
dentists can also pass over without diagnosing any of the
following: proximal caries, which occurs between teeth;
periapical radiolucency, which occurs from the root apex; and
residual root in the bone. Therefore, to solve this problem, AI
can help dentists diagnose early dental caries and other
tooth-related diseases that may be difficult to judge visually by
using panoramic images. Through this system, dentists and
patients can reduce treatment planning time and easily treat
tooth problems before they worsen, and patients can identify
problems with their teeth and improve their quality of life by
preventing diseases that could occur in the future.

Although various simple and easy AI diagnostic methods in the
dental field have been studied, there are limitations [18] in
diagnosing dental caries accurately in tooth sections. Since
previous models have been used for diagnosing dental caries
in the entire tooth, there are limitations in diagnosing dental
caries that require precise diagnosis, such as proximal and root
caries. This study aims to learn and diagnose 5 tooth-related
diseases (ie, coronal caries or defects, proximal caries, cervical
caries or abrasion, periapical radiolucency, and residual root)
by using image deep learning models, which can assist dentists’
diagnosis by reducing treatment planning time.
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Methods

Data Collection
Since this study evaluated 5 tooth-related diseases (ie, coronal
caries or defects, proximal caries, cervical caries or abrasion,
periapical radiolucency, and residual root), which are commonly
diagnosed using dental imaging, training data were generated
by collecting and labeling panoramic images with tooth-related
diseases. This study used panoramic images provided by 50
dental clinics from 2001 to 2021. Data from 30 dental hospitals
in Korea were collected, anonymized, and used for this study.
Among the anonymized genders, there were 3702 males and
3783 females, with a total of 2515 unidentified persons who
could not be identified. Population distribution by age group
did not include teenagers; there were 1721 persons in their 20s,
956 persons in their 30s, 1134 persons in their 40s, 1351 persons
in their 50s, 1914 persons in their 60s and older, and 2934
persons with unknown identities.

A total of 10,000 panoramic images with one or more of the
following 5 tooth-related diseases were used for labeling: 4206
images of coronal caries or defects, 4478 images of proximal
caries, 6920 images of cervical caries or abrasion, 8290 images

of periapical radiolucency, and 1446 images of residual roots.
As shown in Figure 1 and Table 1, coronal caries or defects
showed defects or radiolucencies that lacked density compared
to the normal in the coronal portion of the tooth, proximal caries
showed radiolucency that lacked density compared to the normal
in the adjacent surfaces between teeth, and cervical caries or
abrasion showed radiolucency that lacked density compared to
the normal in the cervical area of the tooth. In addition,
periapical radiolucency showed a lower density than normal
radiolucency in the periapical area, and residual root means that
the coronal portion is completely lost and only the root portion
remains. Each label was created by focusing on these findings
on the panoramic images. We used 10,000 images of male and
female Koreans to label each tooth-related disease. Radiologic
specialists with over 20 years of dental imaging experience
performed the labeling. It took 2 minutes on average for the
radiologic specialists to read the 5 diseases presented in Table
1 on 1 panoramic image of the tooth, and it took approximately
6 hours on average to read 100, including the break time.
Therefore, it took approximately 50 days to label 10,000
samples. Table 1 shows the standards agreed upon by the
graders. This standard is presented in Oral Radiology: Principles
and Interpretation [19].

Figure 1. Findings of each tooth-related disease (ie, coronal caries or defect, proximal caries, cervical caries or abrasion, periapical radiolucency,
residual root, in clockwise order from the top left).

Table 1. Findings of each tooth-related disease.

FindingsTooth-related diseases

Defect or radiolucency that lacks density compared to normal in the coronal portion of a toothCoronal caries or defect

Radiolucency that lacks density compared to normal in the adjacent surfaces between teethProximal caries

Radiolucency that lacks density compared to normal in the cervical area of the toothCervical caries or abrasion

Low density compared to normal in the periapical area of toothPeriapical radiolucency

Coronal portion of tooth is completely lost and only the root portion remainsResidual root

Learning Model (Designing and Training the Model)
Labeling was performed by data collection and preprocessing,
and thus, an image classification model was used to learn about

each of the 5 tooth-related diseases. This study learned dental
diseases by using fast region-based convolutional network (Fast
R-CNN), residual neural network (ResNet), and inception. The
model with the highest accuracy in disease detection was

JMIR Med Inform 2022 | vol. 10 | iss. 10 |e38640 | p.69https://medinform.jmir.org/2022/10/e38640
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


selected. For training the model, 10,000 panoramic images were
modeled in total: 4208 coronal caries or defects, 4478 proximal
caries, 6920 cervical caries or abrasion, 8290 periapical
radiolucency, and 1446 residual roots.

Model Used in This Study (Additional Case of Model
Application)
Fast R-CNN has increased accuracy compared to the existing
object detection algorithms because it extracts the image features
and minimizes the noise in image analysis. Fast R-CNN consists
of a convolution feature map and a region of interest feature
vector [20]. The convolution feature map delivers the image to
the convolution and max-pooling layers, and the received
information is placed as a feature in the region of interest.
Thereafter, the feature vector map is converted into a map with
various features, and the object value of the object image of
class K is determined by moving to the fully connected layers
[21]. In this process, multiple work losses are minimized, and
the learning accuracy is improved by using a loss function.
Learning multiple classes of tooth-related diseases in 1 Fast
R-CNN model sometimes results in errors in the detection of
panoramic images with dark areas, as shown in Figure 2.
Therefore, this study applies a single class to 1 Fast R-CNN
model instead of multiple classes to improve the accuracy of
detecting tooth-related diseases.

For image reading, a rectangular bounding box was first used,
and segmentation was performed through an algorithm based
on about 500 segmentation data. In the case of segmentation,
accuracy was not calculated for the segmented data because it
was used only for grasping the approximate accuracy.
Thereafter, the coordinate values of the box-type tooth classes
that are multilabeled in 1 tooth panoramic image were derived.
Each disease corresponding to the derived coordinate value was
classified by class. Then, each of the 5 tooth classes was applied
to learning through the box coordinate values having the
corresponding dental disease on the panoramic image. Through
this, the input value for 1 model was constructed using the
panoramic image data of 1 class and the box coordinate values
corresponding to dental diseases. As shown in Figure 3, a
bounding box was designated for each tooth-related disease,
and the classes for each tooth-related disease were defined.

ResNet derives a value through the weight layer to solve the
problem of overfitting owing to increased dimensional depth
in deep learning, which adds the result learned through the
previous weight layer to the activation function and delivers it
to the next layer [22]. Therefore, this learning method, even if
the depth of the learning layer deepens, solves the overfitting
problem because important weights can be used for the next

learning without forgetting the past learning results [23].
Because of these advantages, in this study, deep-layer learning
is required to derive detailed results in learning panoramic
images with similar image characteristics, and the ResNet model
that can learn such a model was selected.

Inception, like ResNet, is created to solve the overfitting
problem and the increase in computational traffic through a lot
of learning when the size of the model is increased by increasing
the depth of the layer [24]. In the inception model, it is possible
to derive results in a fast learning time by using a small number
of calculations, even in a model with a complex structure, by
connecting only nodes with a high relationship between each
node [25]. In addition, using various convolution filters, we
derived a model that can make optimal judgments based on the
features derived from each filter. This study evaluated 5
tooth-related diseases by using 3 models: Fast R-CNN, ResNet,
and inception. To increase the detection accuracy for 5
tooth-related diseases, a model was designed through a process
shown in Figure 4 (additional model), and the 5 tooth-related
diseases were learned through Fast R-CNN, ResNet, and
inception. In learning tooth-related disease data (the result of
the additional model), the 3 models provided good performance
for multi-class learning. However, for each part of the panoramic
image composed of the contrast ratio of white and black, if
multiple classes are learned in one detection model for
tooth-related diseases that have similar characteristics but
different sizes, there were cases where the black background
was detected as a tooth-related disease. As the learning
proceeded by inputting data for 5 tooth-related diseases as a
whole, more black screens were learned, and the results are
shown in Figure 2. As shown in the box in Figure 2, there are
cases where areas such as the background of other panoramic
images that are not included in the teeth are detected. To solve
the problem of multi-class learning, as shown in Figure 2,
professional reading experts labeled 10,000 images in a
bounding box form with 5 dental diseases in a single tooth image
and finally converted it into the CSV format. Label information
corresponding to each dental disease was extracted from the
data set containing the labeling information of 5 dental diseases,
and each data set was derived for each of the 5 dental diseases.
Therefore, 5 CSV-format data sets that were composed of
panoramic images were modeled in total: 4208 coronal caries
or defects, 4478 proximal caries, 6920 cervical caries or
abrasion, 8290 periapical radiolucency, and 1446 residual roots.
Further, depending on the model, DICOM (digital imaging and
communications in medicine) to BMP (bitmap) conversion was
performed, and auto brightness correction and adjustment were
partially performed.
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Figure 2. Case of misclassification of tooth-related diseases. The green boxes represent detected areas that are not included in the teeth.

Figure 3. Bounding box for each tooth-related disease.

Figure 4. Integrated detection system for the learning process. DICOM: digital imaging and communications in medicine.
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Development of an Integrated Detection System for
Tooth-Related Diseases
While learning about the 5 tooth-related diseases through Fast
R-CNN, ResNet, and inception, problems, as shown in Figure
2, appeared. To solve these problems, a single model was
applied to 1 class of tooth-related diseases to create a training
model for each of the 5 tooth-related diseases so that varying
locations and sizes of the diseases could be detected in detail.

Based on the process shown in Figure 4, 5 tooth-related diseases
were learned, and dentists and experts designed a real-time
diagnosis, as shown in Figure 5. In designing the process, the
service and administrator web were implemented using Python
(version 3.6)-based Flask [26] engines (version 1.0.0), and the
web page configuration was implemented using Jinja
template-based HTML and Vanilla JavaScript [27]. The
communication part of the AI application programming interface
was composed of a Python-based Flask engine, which was
installed within the Flask engine through model learning using
TensorFlow 2.0.0 (Google Brain Team). Additionally, the image
data of the database server were divided into file name,
photographing date, patient name, patient age, image labeling
prediction model data, and image labeling correct answer data
to assist the dentist in the diagnosis. In the form of
training/validation/test, splits were first performed and then
labeled. A total of 6000 pieces were used for training, 2000
pieces were used for validation, and the remaining 2000 pieces
were used for test splitting. In fact, we used ResNet/inception
as the backbone of Fast R-CNN. As the input value for one
model, learning data were constructed using the panoramic
image data of one class and the box coordinate values
corresponding to dental diseases. Through this, the input value
for one model was constructed using the panoramic image data
of one class and the box coordinate values corresponding to
dental diseases.

In the training layer structure of each model of Fast R-CNN,
ResNet, and inception, looking at the structure of the Fast
R-CNN model (region proposal → CNN classification → region
of interest projection), region of interest projection and bounding
box regression were performed through region of interest
pooling. The model is configured as shown in Figure 5, and 300
range boxes for each dental disease were specified using the
CNN model in the region proposal for dental disease detection,
and the features of the range corresponding to a specific class
were identified. At this time, after converting features of fixed
sizes in the region of interest pooling layer into a feature map,
a feature vector was generated with a fully connected layer
corresponding to each feature. At this time, for each feature,
the position of the corresponding class was predicted using
SoftMax and Bbox regressor. The epoch of model training was
performed 100,000 times, and the learning rate was set to 0.001.

ResNet improves the accuracy by reducing the depth of the
learning layer and increasing the performance compared to the
CNN model, which is an existing image analysis model, through
residual learning. In order to increase the learning accuracy in
general CNNs, many layers are stacked. However, such a deep
layer can lower the accuracy of the learning model. When
learning through residual learning, the positive error rate can

be lowered even when learning in a deep layer. When ResNet
derives a value from the weight layer through the activation
function in the convolution operation, it imports the previously
learned information as it is, as shown in Figure 5, and learns
the residual information, F(x). Looking at the formula, when
the input value x is input, the first weight value is multiplied,
and the activation function is multiplied by the second weight
value. At this time, it is additionally multiplied by x identity,
that is, x value. Therefore, since the result is derived through
continuous repetition of this process, y is derived by adding a
multiple convolutional layer F(x,{Wi}) and short connection
Wsx, which takes the existing input value as it is, to the result
value.

y = F (x,{Wi}) + Wsx

In this way, by adding information to the result derived from
the weight layer, information can be added and computational
complexity can be reduced so that a model with faster learning
and better performance can be derived. Since ResNet learns 1
dental disease by using 5 models as 1 model, 50 hidden layers
of each dental disease were designated for learning. For training,
like Fast R-CNN, the training epoch was performed 100,000
times, and the learning rate was set to 0.001.

The inception model connects the highly correlated nodes when
the correlation between each node is high in the fully connected
architecture and does not connect the rest so that N clusters are
created for each feature. When creating a connected architecture,
we additionally convolve features that are far from each other
through filters of various sizes for nonuniform and inefficient
sparse structures and reduce the number of channels by using
a 1 × 1 filter for nodes with high correlation. The inception
model was constructed, as shown in Figure 6. For the model
configuration, a dental disease detection model was built using
10 pooling layers. The training epoch was performed 100,000
times, and the learning rate was set to 0.001. When a list of
images is received from a computer connected to the X-ray
equipment and the data are stored in the server database, a
separate image is retransmitted to a system that is requested to
be read from the stored data. Thereafter, it provides information
read through a detection model for tooth-related diseases in real
time so that it can assist dentists in shortening the reading time.

The overall flow diagram is shown in Figure 6 and is divided
into service, manager, and AI algorithm categories. In the
service web, the data for each tooth-related disease previously
labeled by experts and the updated panoramic images are
continuously accumulated and provided to the server. In the
manager app, the accumulated data are transmitted to the server,
and the transmitted panoramic image is read by dental experts
to determine the tooth-related disease. Then, the analysis data
are collected through labeling, and the collected data are used
to derive the result by using an AI algorithm.

Based on the process shown in Figure 5, the detailed process
of the tooth-related disease determination system proposed in
this study was constructed, and it can be divided into 3 parts
(service, system, and personal computer). The service part is
designed to receive panoramic image data and read information
through the website, and the messaging system is designed for
users to communicate through the channel talk application
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programming interface [23]. The information provided to the
readers was labeled so that the AI model could be learned, and
it was designed to enable continuous data updates. In addition,
when the labeling result was applied to the AI model and the
AI result was judged again by the reader, it was updated to Case
1 if it was correctly judged and to Case 2 when the judgment
was incorrect. Therefore, after being read accurately again by
the reader, the accuracy of the model was improved through
continuous data updates with the AI server. In the system, a
server was built to enable the website of the service part to work.
The server was built based on Flask, and it was largely divided
into the presentation, business, and persistence layers [28,29].
The server connects the user and client systems through 3 layers
and enables the movement of data in the database. The database

was designed using MongoDB [30], which can quickly operate
various types of data. AI, chatting, image, and message servers
were built into MongoDB to increase the real-time movement
speed of the data. The AI server, which plays a role in providing
tooth-related disease reading results, updates the results of expert
reading provided by doctors and provides the doctor with
tooth-related disease results on new images to improve accuracy
through mutual feedback, which helps users to understand by
providing feedback on the opinions of users on the personal
computer. Finally, it stores the dental panoramic image provided
through the image server or provides medical information to
personal computer users so that they can view and continuously
manage the medical records whenever necessary.

Figure 5. Flow diagram of the learning process. AI: artificial intelligence; PC: personal computer.

Figure 6. Schematic diagram of a detection system for tooth-related diseases. AI: artificial intelligence; API: application programming interface; DB:
database; PACS: picture archiving and communication system; PC: personal computer.

Ethical Considerations
Since the data is a retrospective study, it was processed in the
direction of protecting personal information through database
anonymization, etc. In addition, data collected for research

purposes were collected through Cheongju University Bioethics
Committee IRB (1041107-202208-HR-024-01).
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Results

Detection System
The web service in this study was built based on the process
presented in Figure 6 and Figure 7. As shown in Figure 7,
panoramic images facilitate faster judgment of dental-related
diseases than the conventional doctor’s diagnosis techniques.
The detection system aids and shortens the treatment time

through the transmission of images taken in real time. Figure 7
shows a case in which a tooth disease was correctly judged and
another case in which a dental disease was incorrectly judged.
Since cases can be judged inaccurately, doctors can use this
auxiliary system to check the patient’s condition once again.
Figure 8 shows that patients can check their panoramic images
on the web, and they can know about the treatment plan and
receive information on tooth-related diseases for effective
disease management.

Figure 7. Success and fail cases in the detection of the 5 dental diseases.
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Figure 8. Web system for tooth-related diseases.

Benefits of Using Web-Based Systems and User
Interface
To detect tooth-related diseases, Fast R-CNN, which has the
best performance among the classification models from the
point of view of a dentist, was applied. For learning the model
for judging the 5 types of tooth-related diseases, dentists can
update the panoramic images in real time through the web
application programming interface and continuously collect
data by improving the accuracy through additional updates on
the tooth-related disease detection labeling. Figure 6 shows how
the tooth-related disease judgment web service screen appears.
Figure 6 shows that by providing doctors and patients with the
diagnosis of their diseases through the patient’s panoramic
image, past medical records, and current status on the web,
doctors can provide prompt treatment for dental diseases and
patients can monitor their dental status. Therefore, from the
patient’s perspective, users can check medical records and
treatment areas through the web screen of the panoramic image
provided by the hospital where they have been treated and check
for tooth-related diseases. In addition, because the treatment
time and the subsequent treatment times can be known, users
can use this system to manage their tooth-related diseases, which
require continuous management.

Model Comparison Results
This study created a detection model for 5 dental diseases that
are difficult to judge visually (ie, coronal caries or defect,
proximal caries, cervical caries or abrasion, periapical
radiolucency, and residual root) by using a dental panoramic
image. Fast R-CNN, ResNet, and inception have previously
been used to learn about dental disease detection [20,22,31]. In
training the model, 4206 cases of coronal caries or defects, 4478

cases of proximal caries, 6920 cases of cervical caries or
abrasion, and 8290 cases of periapical radiolucency, and 1446
cases of residual roots were trained among a total of 10,000
panoramic images. Therefore, a model for judging the 5 types
of dental caries using 1 panoramic image was developed by
creating a training model for each dental disease into one
detection model through an integrated detection system for
dental diseases. Regarding the number of training sessions, all
3 models were trained 200,000 times, the results were compared,
and the model with the highest accuracy was selected. The
results of deriving the precision, sensitivity, and specificity of
the detection results for the 5 dental diseases are shown in Figure
8. As shown in Figure 8, the coronal defect showed the highest
specificity, with an average specificity of 90 or more. In
addition, the sensitivity was found to be above 80 on average,
indicating that it would show high accuracy even when other
data were used for learning.

Table 2 shows the results of learning with Fast R-CNN, ResNet,
and inception for the 5 tooth-related diseases. As shown in Table
2, 5 tooth-related diseases were detected with an average
accuracy of over 90%. Also, as shown in Figure 6, the specificity
is the highest for the 5 tooth-related diseases. This means that
each tooth-related disease can be detected with high accuracy.
With the tooth-related disease detection web service presented
in this study, considerable time can be saved in diagnosing
tooth-related diseases. On average, it takes about 1 minute for
dental doctors to judge 5 dental diseases on 1 panoramic image.
However, if the system proposed in this study is used, the results
of the classification model can be judged at once through the
user interface, and the time can be reduced to about 10 seconds
in judging dental diseases. Therefore, it is judged to be an
effective system to assist in the judgment of dental diseases.
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Table 2. Tooth-related disease detection results.

SpecificitySensitivityPrecisionModel, diseases

Fast region-based convolutional network

0.9820.7080.785Coronal caries or defect

0.9180.7920.484Proximal caries

0.9520.7670.795Cervical caries or abrasion

0.8950.9530.824Periapical radiolucency

0.9720.9040.640Residual root

Inception

0.8480.6090.253Coronal caries or defect

0.8830.7830.327Proximal caries

0.7850.7070.444Cervical caries or abrasion

0.5560.9460.371Periapical radiolucency

0.8730.8930.232Residual root

Residual neural network

0.8760.3950.2101Coronal caries or defect

0.9870.3770.685Proximal caries

0.9960.0110.378Cervical caries or abrasion

0.4510.8830.308Periapical radiolucency

0.890.7440.225Residual root

Discussion

Strengths and Limitations
This study has several advantages. The use of panoramic images
of individual patients in dentistry is a complex procedure. This
study designed a model that could determine 5 types of dental
caries by acquiring various panoramic image data and collecting
10,000 pieces of data with various oral structures and dental
caries. Therefore, a tooth-related disease determination system
with high accuracy and without complex procedures was
developed. However, since there is a large deviation in the
number of classes for each tooth-related disease, there was a
problem in that the learning accuracy was slightly lowered where
the number of analysis groups was small. The accuracy of the
model is expected to be improved by collecting and
supplementing data through continuous updates by using
real-time panoramic images uploaded to the web.

Conclusions
In this study, the tooth-related disease judgment system
identified 5 types of tooth-related diseases that are difficult to
determine clinically (visually) by using an AI model, and this

information was provided on the web to create a system that
allows doctors and patients to make real-time judgments. The
trained model labeled 5 dental caries through 10,000 panoramic
images. Accuracy was compared using Fast R-CNN, ResNet,
and inception models, which are good models for detection.
Among these models, Fast R-CNN was finally used, which has
the highest accuracy. Therefore, Fast R-CNN can be used to
shorten the time required for the diagnosis and treatment of
dental caries. In addition, by updating the captured panoramic
images of patients on the web service developed in this study,
the system can acquire new data and further increase the
accuracy of diagnosing tooth-related diseases. Additionally, the
patient can be aware of the tooth areas where he or she has
received treatment, the treatment time, and the type of caries,
so that he or she can adjust the schedule for the future dental
visit, which will aid in continuous management of dental health.
Thus, this study is meaningful as it collects learning data from
cases embodied as actual services and implements a
prototype-type service based on the collected data. In the future,
it will be possible to develop a model for predicting overall oral
diseases with panoramic images through additional learning of
various dental diseases.
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Abstract

Background: Cardio-cerebrovascular diseases (CVDs) result in 17.5 million deaths annually worldwide, accounting for 46.2%
of noncommunicable causes of death, and are the leading cause of death, followed by cancer, respiratory disease, and diabetes
mellitus. Coronary artery computed tomography angiography (CCTA), which detects calcification in the coronary arteries, can
be used to detect asymptomatic but serious vascular disease. It allows for noninvasive and quick testing despite involving radiation
exposure.

Objective: The objective of our study was to investigate the effectiveness of CCTA screening on CVD outcomes by using the
Observational Health Data Sciences and Informatics’ Observational Medical Outcomes Partnership Common Data Model
(OMOP-CDM) data and the population-level estimation method.

Methods: Using electronic health record–based OMOP-CDM data, including health questionnaire responses, adults (aged 30-74
years) without a history of CVD were selected, and 5-year CVD outcomes were compared between patients undergoing CCTA
(target group) and a comparison group via 1:1 propensity score matching. Participants were stratified into low-risk and high-risk
groups based on the American College of Cardiology/American Heart Association atherosclerotic cardiovascular disease (ASCVD)
risk score and Framingham risk score (FRS) for subgroup analyses.

Results: The 2-year and 5-year risk scores were compared as secondary outcomes between the two groups. In total, 8787
participants were included in both the target group and comparison group. No significant differences (calibration P=.37) were
found between the hazard ratios of the groups at 5 years. The subgroup analysis also revealed no significant differences between
the ASCVD risk scores and FRSs of the groups at 5 years (ASCVD risk score: P=.97; FRS: P=.85). However, the CCTA group
showed a significantly lower increase in risk scores at 2 years (ASCVD risk score: P=.03; FRS: P=.02).

Conclusions: Although we could not confirm a significant difference in the preventive effects of CCTA screening for CVDs
over a long period of 5 years, it may have a beneficial effect on risk score management over 2 years.

(JMIR Med Inform 2022;10(10):e41503)   doi:10.2196/41503

JMIR Med Inform 2022 | vol. 10 | iss. 10 |e41503 | p.79https://medinform.jmir.org/2022/10/e41503
(page number not for citation purposes)

Bae et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:yoosoo0@snubh.org
http://dx.doi.org/10.2196/41503
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

cardiovascular diseases; coronary artery computed tomography angiography; observational study; common data model; population
level estimation; cardiology; vascular disease; medical informatics; computed tomography; angiography; electronic health record;
risk score; health data science; data modeling

Introduction

Cardio-cerebrovascular diseases (CVDs) result in 17.5 million
deaths annually worldwide, accounting for 46.2% of
noncommunicable causes of death, and are the leading cause
of death, followed by cancer, respiratory disease, and diabetes
mellitus [1]. CVDs involve demographic factors (age, sex, and
family history), pre-existing conditions (hypertension, diabetes
mellitus, and hyperlipidemia), and lifestyle and environmental
factors. Unlike demographic characteristics, lifestyle factors,
such as an inappropriate diet, a lack of exercise, smoking, stress,
and excessive drinking, can be improved to reduce the risk of
CVDs [2].

Coronary artery computed tomography angiography (CCTA)
detects calcification in the coronary arteries and can be used to
detect asymptomatic but serious vascular disease. It allows for
noninvasive and quick testing despite involving radiation
exposure [3,4]. For these reasons, many studies have
investigated the early detection of CVDs by using CCTA, which
enables prompt treatment and results in better outcomes.

In recent years, there has been debate about whether screening
via CCTA helps prevent CVDs in populations with varying
degrees of risk. CCTA has been recommended to predict CVDs
in patients with cancer [2,5], but among asymptomatic
individuals, the evidence about its effectiveness is inconsistent.

We aimed to study the effectiveness of CCTA screening by
analyzing observational health checkup data from electronic
health records (EHRs) in the form of the Observational Medical
Outcomes Partnership Common Data Model (OMOP-CDM),
using a cohort study design [6]. The OMOP-CDM standardizes
disparate data and enables the analysis of deidentified,
large-scale observational data in a distributed research data
network. Moreover, as the data are standardized, the same
analytical codes can be used to conduct efficient analyses
through the data network. Observational Health Data Sciences
and Informatics (OHDSI)—an open international collaborative
community—provides an open-source analytics tool for
OMOP-CDM data that produces scientific, reliable, and
reproducible evidence.

Using the OHDSI analytics tool, we performed a comparative
effectiveness study of CVD outcomes in asymptomatic patients
without a history of CVD who underwent a health checkup at
a tertiary university hospital. The conventional assessments of
CVD risk, namely assessments of the Framingham risk score
(FRS) and the American College of Cardiology/American Heart
Association (ACC/AHA) atherosclerotic cardiovascular disease
(ASCVD) risk score, were used to stratify the participants into
high-risk and low-risk groups for stratified analyses. Although
the risk of CVD increases with age, we compared differences
between the two groups after 2 and 5 years to assess the
short-term benefits of CCTA-based screening and whether it
can help prevent CVDs.

Methods

Data Sources
The study site was the Seoul National University Bundang
Hospital (SNUBH), which is located in the Seoul metropolitan
area. The SNUBH collected OMOP-CDM version 5.3 data
based on EHRs from 2003 to 2020. The data included patients’
demographic information, clinical information (diagnoses,
medications, tests, surgeries and procedures, family histories,
past histories, and nursing flowcharts), and health questionnaire
responses. The health questionnaire responses about medical
history, family history, socioeconomic status, medication
history, marital status, exercise and physical activity status, and
depression assessment results were converted to OMOP-CDM
data. In this study, we used the deidentified OMOP-CDM data
that the SNUBH collected from over 2 million patients,
including outpatients, inpatients, and emergency department
visits.

Ethical Considerations
This study adhered to the relevant guidelines and regulations
of the SNUBH Institutional Review Board (IRB). As the
OMOP-CDM is a deidentified data set, the study was exempted
from review by the SNUBH IRB (IRB number:
X-2202-736-903).

Study Design
This was a retrospective, observational, comparative cohort
study that used OMOP-CDM–formatted EHR data. We analyzed
data from adults aged 30 to 74 years who underwent a health
checkup between April 1, 2003, and December 31, 2015, and
were followed up for at least 5 years. Only those who responded
to the questionnaire item about medical history in the health
checkup survey were included. Individuals with a history of
CVD were excluded from this study. The index date was set as
the date of completing the health checkup questionnaire at a
health checkup visit for the first time. CVDs that occurred within
60 days of the index date were considered as cases in which
patients were diagnosed during the health checkup, and these
CVD events were excluded as CVD outcomes. Thus, the
outcome was defined as CVD events that occurred 60 days after
the index date, and follow-ups ended on the date that CVD
events occurred (ie, within 5 years from the index date), the
date of the final hospital visit, or the date of death. As such, the
time-at-risk period was set as 61 days after the index date to 5
years after the index date.

The primary outcome was the comparison of CVD hazard ratios
(HRs) between the group that underwent CCTA (target group)
and the group that did not undergo CCTA at the health checkup
visit (comparison group).

In the subgroup analyses, the CVD HRs, which were based on
the ACC/AHA ASCVD risk score and the FRS, were analyzed.
The patients were stratified into the nonrisk and low-risk group
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or the high-risk group based on a cutoff score of 10 for the FRS
[7] and 5 for the ASCVD risk score [8].

The secondary outcome was the difference between the risk
scores of patients who underwent health checkups 2 years and
5 years after the index date. The differences between the risk
scores at the index date and those at the times of subsequent
examinations were used for comparative analyses.

Study Population
From April 2003 to December 2015, a total of 69,334 patients
aged 30 to 74 years were enrolled for a health checkup. Of these
patients, only 49,496 responded to the questionnaire, and only
46,087 patients had no cardiovascular history. A total of 42,489
patients for whom we could calculate the risk score—a key
indicator of this study—were selected as the initial cohort.

Initially, of the 42,489 patients who were included in the
analysis, 12,661 underwent CCTA (target group), and 29,828

did not (comparison group). Of these patients, 1514 from the
target group and 1519 from the comparison group with a history
of CVD before the index date were excluded from the analysis.
In addition, 1783 patients from the target group and 5004
patients from the comparison group who did not fulfill the
minimum observation period of 1 day during the time-at-risk
window were excluded. The remaining 9364 patients from the
target group and 23,305 patients from the comparator group
underwent 1:1 propensity score matching. During 1:1 propensity
score matching, 577 people who did not match the comparator
group were excluded from the target group because matching
was performed to maximize the minority group, and 14,518
people were excluded from the comparator group. Finally, 8787
of the 12,661 patients (69.4%) from the initial target cohort
were selected as the final target group, and 8787 of the 29,828
patients (29.5%) from the initial comparator cohort were used
for the analysis as the final comparator group (Figure 1).
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Figure 1. The flowchart of the study population. CCTA: coronary artery computed tomography angiography.

Covariates
Approximately 13,000 variables were used as covariates for
propensity score matching. These covariates included patient
clinical data that were obtained at any time prior to the index
date and health checkup data that were obtained on the index
date. The patient clinical covariates included the condition era,
the condition group era, the drug group era, observations,
measurements, procedures, the Charlson Comorbidity Index

score, the Diabetes Complications Severity Index score, the
CHADS2 (Congestive Heart Failure, Hypertension, Age,
Diabetes, Previous Stroke/Transient Ischemic Attack [2 points])
score, the CHA2DS2-VASc (Congestive Heart Failure,
Hypertension, Age≥75 [Doubled], Diabetes, Stroke [Doubled],
Vascular Disease, Age 65 to 74, and Sex Category [Female])
score, and the hospital frailty risk score. The covariates that
were measured at the index date included demographic data,
such as sex, age, education level, average monthly income, and
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marital status; health questionnaire data, such as any history of
cancer and chronic diseases (hypertension, diabetes, and
hyperlipidemia), medication history (antihypertensive drugs,
antidiabetic drugs, antihyperlipidemic drugs, and aspirin),
smoking status, and family history; and health checkup data,
such as height, weight, BMI, blood pressure (systolic and
diastolic), waist circumference, glucose levels, uric acid levels,
aspartate aminotransferase levels, alanine aminotransferase
levels, triglyceride levels, total cholesterol, high-density
lipoprotein cholesterol levels, low-density lipoprotein cholesterol
levels, and glycated hemoglobin A1c levels.

Outcomes
The outcome of this study was the first registered CVD event,
which was based on a CVD diagnosis during the observation
period. A CVD event was defined based on International
Classification of Diseases, 10th Revision (ICD-10) codes I20
to I25 (ischemic heart disease), I50 (heart failure), I60 to I69
and G45 to G46 (stroke), and E78 (hypercholesterolemia). As
we intended to assess the HRs of CVDs resulting from
arteriosclerotic diseases only, we excluded cardiogenic diseases,
such as atrial fibrillation and aneurysm (I42-I43, I48, I71, I62,
and I68), and diseases caused by external accidental factors (I60
and I62). The ICD-10 codes that were chosen as the outcomes
were reviewed by 1 clinical specialist and 1 nurse.

Statistical Analysis
We used the population-level estimation methodology and an
open-source tool provided by OHDSI [9]. All analyses were
performed by using R version 4.0.3 (R Foundation for Statistical
Computing) [10]. Large-scale propensity score matching [11]
was performed to adjust for potential confounding and to resolve
the imbalance between the target and comparison cohorts caused
by selection bias—a result of the retrospective observational
nature of this study. The propensity score–matched model,
which used approximately 13,000 covariates, was fitted through
regularized regression, and the propensity score was calculated
as the probability of a patient undergoing CCTA based on the
covariates. Target and comparison group patients with similar
propensity scores were matched to create a balanced cohort. To
establish a matched cohort, we performed 1:1 propensity score
matching by using a caliper width of 0.2 of the SD of the logit.
The conditional Cox proportional hazards model was used to
estimate HRs for the target group, in relation to the comparison

group. The balance of the covariates between the cohorts was
assessed based on the standardized difference of the mean
(<0.1). Statistical significance was evaluated at P<.05 for
2-tailed tests.

To explain any residual bias after controlling for the measured
covariates, we used negative control outcomes that were unlikely
to be induced or prevented by undergoing CCTA; thus, the
actual HR was anticipated to be 1. The negative control
outcomes were selected by a clinical specialist through a manual
review of the outcomes that were used in a previous OHDSI
study [12] (Table S1 in Multimedia Appendix 1). The same
study design was used to estimate the outcomes of interest and
calculate the HR estimate for the negative control group, and
all HR estimates were presented with 95% CIs and P values,
along with the empirical null distribution and adjustment
[13,14]. The empirical equivalence of the two cohorts was
assessed by using the propensity score distribution. We also
reported the power analysis; propensity score; cohort balance
before and after propensity score matching; fitted null
distribution; calibration chart for negative control outcomes;
and Kaplan-Meier curve, which shows the proportional hazards
assumption over time.

To confirm the changes in the differences in ASCVD risk scores
and FRSs, we used the 2-group comparison method. The
normality of the amount of change was confirmed by using the
Shapiro-Wilk test, and the changes in the two groups were
confirmed by using the Wilcoxon rank-sum test.

Results

Characteristics of Study Participants
Table 1 shows the baseline characteristics of the patients before
and after propensity score matching. The table shows the
patients’ age groups, sex, and BMIs; the number of patients in
the risk score groups; and the follow-up periods. For most
demographic characteristics, the differences between groups
decreased after matching. The standardized difference of the
mean for the covariates decreased from 0.4 to 0.07 after
propensity score matching, which is lower than the conventional
standard of 0.1, thereby confirming that propensity score
matching was performed correctly (Figure 2). This can also be
observed in Figure 3, which compares the distributions from
before and after propensity score matching.
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Table 1. The baseline characteristics of the study population before and after propensity score matching.

After matchingBefore matchingCharacteristics

Standard differ-
ence

Non-CCTA group

(n=8787)

CCTA group

(n=8787)

Standard differ-
ence

Non-CCTA group
(n=29,828)

CCTAa group
(n=12,661)

Age groupb (years), n (%)

0155 (1.8)150 (1.7)−0.262442 (8.2)226 (1.8)30-34

0.03700 (8)761 (8.7)−0.194319 (14.5)1043 (8.2)35-39

0.051263 (14.4)1406 (16)−0.085257 (17.6)1870 (14.8)40-44

0.041697 (19.3)1846 (21)0.075134 (17.2)2516 (19.9)45-49

0.011678 (19.1)1702 (19.4)0.104617 (15.5)2435 (19.2)50-54

−0.021438 (16.4)1373 (15.6)0.163322 (11.1)2084 (16.5)55-59

−0.051050 (11.9)908 (10.3)0.142275 (7.6)1468 (11.6)60-64

−0.05568 (6.5)471 (5.4)0.021564 (5.2)734 (5.8)65-69

−0.05238 (2.7)170 (1.9)−0.05898 (3.0)285 (2.3)70-74

Sexb, n (%)

0.043368 (38.3)3561 (40.5)−0.1012,650 (42.4)4757 (37.6)Female

−0.045419 (61.7)5226 (59.5)0.1017,178 (57.6)7904 (62.4)Male

−0.0324.1 (3.1)24.0 (3.1)0.1823.7 (0.2)24.2 (3.1)BMIb (kg/m2), mean (SD)

ACC/AHAc ASCVDd risk scoree, n (%)

N/A3493 (39.8)3062 (34.8)N/Af8576 (28.8)5036 (39.8)High (≥5)

N/A5294 (60.2)5725 (65.2)N/A21,252 (71.2)7625 (60.2)Low (<5)

Framingham risk scoree, n (%)

N/A3381 (38.5)3030 (34.5)N/A8155 (27.3)4996 (39.5)High (≥10)

N/A5406 (61.5)5757 (65.5)N/A21,673 (72.7)7665 (60.5)Low (<10)

N/A2583.1 (1657.0)2604 (1594.4)N/A1928.9 (1675.5)2220.3 (1731.6)Follow-up period (days)e,
mean (SD)

aCCTA: coronary artery computed tomography angiography.
bVariables used in propensity score matching.
cACC/AHA: American College of Cardiology/American Heart Association.
dASCVD: atherosclerotic cardiovascular disease.
eVariables not used in propensity score matching.
fN/A: not applicable.
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Figure 2. Standardized difference of means between the two groups of covariates before and after propensity score matching.

Figure 3. Distribution of propensity scores in each group (A) before and (B) after propensity score matching.

Effect of CCTA on CVDs
The Cox proportional hazards model was used to estimate and
compare the HRs of CVDs among the target and comparison
groups after propensity score matching, and no statistically
significant differences were found between the two groups. The

Kaplan-Meier analysis revealed that the HR was 1.048 (95%
CI 0.960-1.144), which was not statistically significant (P=.30).
The calibration P value, which was adjusted by using a negative
control and was the most important indicator in our analysis,
was .37, indicating no statistical significance (Figure 4).
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Figure 4. (A) Kaplan-Meier curve plot and (B) rejection area plot with negative outcome controls applied in the main analysis. HR: hazard ratio.

Subgroup Analysis
The study population was stratified based on the cutoff scores
for the ACC/AHA ASCVD risk score and FRS for subgroup
analyses. Table 2 presents the results of each analysis. In each
subgroup, the standardized difference of the mean dropped to
<0.1 after propensity score matching. Figure S1 in Multimedia
Appendix 1 shows the propensity score distributions, and Figure
S2 in Multimedia Appendix 1 shows the standardized difference
of the mean among groups of covariates before and after
propensity score matching.

In the ASCVD high-risk subgroup (risk score≥5), 3149 patients
were included in both the target group and comparison group.
In the low-risk subgroup (risk score<5), 5524 patients were

included in both the target group and comparison group. In the
high-risk and low-risk subgroups, the calibration P value, which
was adjusted by using negative controls, was .39 and .50,
respectively, showing no significant differences in the HRs of
CVDs among the target and comparison groups.

In the FRS high-risk subgroup (FRS≥10), 3110 participants
were included in both the target group and comparison group.
In the low-risk subgroup (FRS<10), 5602 patients were included
in both the target group and comparison group. The calibration
P value, which was adjusted by using negative controls, was
.13 and .57 in the high-risk and low-risk subgroups, respectively,
indicating no significant differences in the HRs of CVDs among
the target and comparison groups (Figure S3 in Multimedia
Appendix 1).

Table 2. The risk of cardio-cerebrovascular disease at 5 years in each subgroup based on the American College of Cardiology/American Heart Association
(ACC/AHA) atherosclerotic cardiovascular disease (ASCVD) risk score and Framingham risk score (FRS).

Calibration P valuebP valueaHazard ratio (95% CI)

ACC/AHA ASCVD risk score

.39.091.113 (0.984-1.259)High (≥5)

.50.990.999 (0.881-1.133)Low (<5)

FRS

.13.021.166 (1.031-1.321)High (≥10)

.57.961.004 (0.883-1.141)Low (<10)

aKaplan-Meier analysis P value.
bCalibration P value that was adjusted by using a negative control.

Risk Scores at 2 and 5 Years
The 2-year median change in the ASCVD risk scores and the
FRSs of the non-CCTA group was 0.23 and 0.60, respectively.
In contrast, the ASCVD risk scores and the FRSs of the CCTA
group changed by 0.17 and 0.39, respectively. There was a
statistically significant difference for both risk scores, with P
values of .03 and .02, respectively.

The 5-year median change in the ASCVD risk scores and the
FRSs of the non-CCTA group was 1.06 and 1.61, respectively.
In contrast, the ASCVD risk scores and the FRSs of the CCTA
group changed by 1.10 and 1.66, respectively. There was no
statistically significant difference for both risk scores, with P
values of .97 and .85, respectively (Table 3).
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Table 3. Changes in the differences in American College of Cardiology/American Heart Association (ACC/AHA) atherosclerotic cardiovascular disease
(ASCVD) risk scores and Framingham risk score (FRSs) from baseline at 2 and 5 years.

P valuebNon-CCTA groupCCTAa group

Change in score, median (IQR)Patients, nChange in score, median (IQR)Patients, n

Differences in risk scores from baseline at 2 years

.030.23 (−0.10 to 1.30)16910.17 (−0.16 to 1.08)1330ACC/AHA ASCVD risk scores

.020.60 (−0.69 to 2.26)16910.39 (−0.80 to 1.96)1330FRSs

Differences in risk scores from baseline at 5 years

.971.06 (0 to 2.79)13721.10 (0.08 to 1.57)1232ACC/AHA ASCVD risk scores

.851.61 (0.09 to 4.11)13721.66 (0.04 to 3.92)1232FRSs

aCCTA: coronary artery computed tomography angiography.
bWilcoxon rank-sum test P value.

Discussion

Principal Results
From our population-level estimation study, which compared
the CVD HRs of a health checkup group that was undergoing
CCTA with those of a group that was not undergoing CCTA
over 5 years, although some benefits were observed at 2 years,
we found no significant difference (calibration P=.37) in the
final risk of CVD events between the two groups. It seems that
CCTA has no beneficial effect on CVD prevention for long
periods of time.

Communication about medical examinations and examination
results through counseling has been reported to improve health
indicators, such as CVD risk. In the Korean national health
insurance service screening program, the group that underwent
cardiovascular health screening for 40-year-olds had higher
rates of new hypertension, diabetes, and hyperlipidemia, whereas
the incidence of CVD mortality, all-cause mortality, and major
adverse cardiovascular events was lower [15]. Per the results
of an analysis of the same data, the group that received
counseling after the health checkup had higher motivation stages
of health behavior change than those of the group that received
only the checkup [16]. The smoking cessation rate was higher
after 2 years when compared to that of the group who received
only the checkup [17]. Engberg et al [18] reported that
cardiovascular risk scores, BMIs, and serum cholesterol levels
were lower in the intervention groups than those in the control
group after 5 years’ worth of health screenings and
consultations.

In existing studies that require lifestyle modifications, such as
modifications for obesity, smoking cessation, and substance
abuse, the effects of 1-time interventions or short-term
interventions, interviews, and counseling tend to weaken over
time. In a study that used the motivational interview technique
for people with substance abuse issues, the positive effect
observed at 3 months disappeared at 12 months [19], and in
another study, the effect of smoking cessation treatment
continued for 10 weeks and gradually slowed down at 3, 6, and
12 months [20].

Our study compared patients who did or did not undergo
additional coronary computed tomography. Both groups

underwent the same levels of examination and counseling, which
were conducted by the cardiovascular health screening program
of the national service in 1 hospital.

Smoking status, blood pressure, and blood lipid concentration,
which are major factors in the FRS and ASCVD pooled cohort
equations score, are closely related to lifestyle changes. Similar
to previous studies, the effect of a single coronary computed
tomography scan and the results of counseling decreased over
time, and the differences that were observed after 2 years
disappeared after 5 years.

Limitations
This study has some limitations. First, the follow-up period was
5 years, and the risk scores were not observed for a longer period
(eg, 10 years, as CVDs can last for >10 years). A follow-up
study for identifying a risk score that is suitable for CVD
prediction over longer periods can be conducted in the future.
Second, as this was a single-center study, some of the outcomes
may not be generalizable. Multicenter studies that use OHDSI
data networks can provide more generalizable evidence. Third,
this study included patients who visited the health promotion
center multiple times; those who did not undergo CCTA at the
first visit but underwent CCTA during subsequent visits were
included in the comparison group. Therefore, the differences
between the groups might have been attenuated. This can be
avoided by conducting a prospective cohort study. Lastly,
observational research that uses EHR data has the limitation
that it cannot fully capture the entirety of a patient's health
information [21]. This study converted EHR data into common
data model data, and it has the same limitation. If the participants
of this study underwent examinations and treatments outside
of the hospital, there was a disadvantage that the records for
these procedures were not recorded in the database.
Additionally, with regard to drugs, the SNUBH common data
model converted data on prescription drugs for outpatients and
administration drugs for inpatients. Thus, it was not known
whether the drugs ordered for the outpatients were taken on
time by the patients. As such, selection bias may have occurred
due to information not being recorded in the database. Although
it is possible to reduce channeling bias through large-scale
propensity score matching, which we used in this study, there
may still be the limitation that such matching cannot reduce
selection bias [22].
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Comparison With Prior Work
Waugh et al [23] conducted a systematic review and
meta-analysis of 5 studies and reported that computed
tomography has no benefits as a screening tool for the potential
onset of CVDs. However, a closer review revealed that all 5
included studies were inappropriate in terms of their findings
about the prophylactic benefits of CCTA. All of these studies
investigated the association between coronary artery calcium
(CAC) and the onset of CVDs or death after a specific follow-up
period in patients who underwent CCTA screening. They used
a short follow-up period and analyzed the results in the context
of the presence of CAC as opposed to CCTA findings.
Therefore, the conclusion of the meta-analysis by Waugh et al
[23]—CCTA screening is not effective—was based on the
finding that the risk of heart disease was not elevated in people
undergoing a CAC assessment via CCTA, as opposed to an
assessment of the prophylactic benefits of CCTA itself. Further,
since the measurement of CAC is regarded as a reliable method
for CVD risk assessment, a study claimed that CCTA should
be introduced for the screening of asymptomatic individuals
[24]. However, other studies claim that CCTA is
cost-ineffective, although these admit that CAC, when observed
via CCTA, is a better predictor of CVD than the FRS [25]. We
supplemented these studies by comparing groups that underwent
CCTA with those that did not undergo CCTA.

McEvoy et al [26] examined the differences in the incidence of
coronary artery disease between CCTA and comparison groups
after a fixed follow-up period. The authors matched the
propensity scores of 1000 individuals who underwent CCTA
for a health checkup with those of 1000 individuals who did
not undergo CCTA (ie, the comparison group) and compared
the incidence of coronary artery disease at the 90-day and
18-month follow-ups. The study reported that CCTA-based
screening was significantly associated with an increased rate of
invasive tests and medication use but was not associated with
the incidence of coronary artery disease, concluding that CCTA
is not recommended for screening purposes. However, the study
was limited by the small number of cases and the short follow-up
periods.

Our study presents reliable evidence about CCTA, which was
obtained by performing large-scale propensity score matching

and using EHR and health checkup questionnaire responses
from OMOP-CDM data. We studied a large study sample over
a longer study period than those used by previous studies.
Although past studies used either 90-day follow-ups or 18-month
follow-ups, we observed the patients from 60 days after the
index date to 5 years after the index date to analyze the CVD
HRs in relation to CCTA. Moreover, while previous studies
had approximately 1000 patients in both the target group and
comparison group, we included 8787 patients in each group.
The data were also standardized, which enabled us to perform
an efficient analysis across organizations and use the same
analysis codes. Future studies can investigate the effects of
CCTA and CVD in larger populations over long follow-up
periods, in collaboration with organizations that convert health
questionnaire data into the common data model format.

We also stratified the population into high-risk and low-risk
groups based on the ASCVD risk score and FRS. Even in the
high-risk group, CCTA screening did not have a significant
effect (ASCVD risk score: calibration P=.39; FRS: calibration
P=.13) on the prevention of CVD.

Based on the changes in risk scores, a significant difference was
observed between the CCTA and comparison groups after 2
years (change in ASCVD risk scores: P=.03; change in FRSs:
P=.02). However, this difference was not significant after 5
years (change in ASCVD risk score: P=.92; change in FRSs:
P=.85). We speculate that patients are motivated to manage
their risk score factors for a brief period immediately after the
CCTA test; however, the significance decreases over long
periods.

Conclusions
Through a retrospective cohort study that was conducted over
a 5-year period, we found that CCTA had no significant
preventive effect on future CVDs. We also demonstrated the
potential of converting health checkup data into OMOP-CDM
data and integrating such data into common data model–based
EHR data for research targeting the health checkup population.
Although we examined the outcomes of CVDs after CCTA,
future studies could examine patients’ health behaviors
following CCTA. It is expected that the use of common data
model data will be expanded to multicenter studies.
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Abstract

Background: Despite the many opportunities data reuse offers, its implementation presents many difficulties, and raw data
cannot be reused directly. Information is not always directly available in the source database and needs to be computed afterwards
with raw data for defining an algorithm.

Objective: The main purpose of this article is to present a standardized description of the steps and transformations required
during the feature extraction process when conducting retrospective observational studies. A secondary objective is to identify
how the features could be stored in the schema of a data warehouse.

Methods: This study involved the following 3 main steps: (1) the collection of relevant study cases related to feature extraction
and based on the automatic and secondary use of data; (2) the standardized description of raw data, steps, and transformations,
which were common to the study cases; and (3) the identification of an appropriate table to store the features in the Observation
Medical Outcomes Partnership (OMOP) common data model (CDM).

Results: We interviewed 10 researchers from 3 French university hospitals and a national institution, who were involved in 8
retrospective and observational studies. Based on these studies, 2 states (track and feature) and 2 transformations (track definition
and track aggregation) emerged. “Track” is a time-dependent signal or period of interest, defined by a statistical unit, a value,
and 2 milestones (a start event and an end event). “Feature” is time-independent high-level information with dimensionality
identical to the statistical unit of the study, defined by a label and a value. The time dimension has become implicit in the value
or name of the variable. We propose the 2 tables “TRACK” and “FEATURE” to store variables obtained in feature extraction
and extend the OMOP CDM.

Conclusions: We propose a standardized description of the feature extraction process. The process combined the 2 steps of
track definition and track aggregation. By dividing the feature extraction into these 2 steps, difficulty was managed during track
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definition. The standardization of tracks requires great expertise with regard to the data, but allows the application of an infinite
number of complex transformations. On the contrary, track aggregation is a very simple operation with a finite number of
possibilities. A complete description of these steps could enhance the reproducibility of retrospective studies.

(JMIR Med Inform 2022;10(10):e38936)   doi:10.2196/38936

KEYWORDS

feature extraction; data reuse; data warehouse; database; algorithm; Observation Medical Outcomes Partnership

Introduction

The increasing implementation of electronic health records over
the last few decades has made a significant amount of clinical
data available in electronic format [1,2]. Originally, electronic
health records were designed to collect and deliver data for
health care, administrative, or billing purposes. In addition to
these initial uses, they also offer opportunities for data reuse
defined as “nondirect care use of personal health information”
[3]. Thus, data reuse provides possibilities for research, quality
of care assessment, activity management, or public health
management [4-10].

When conducting research, the traditional approach consists of
prospectively and often manually collecting simple and specific
data according to the question addressed by the research
protocol, using a clinical report form [11]. These data correspond
to inclusion criteria and variables, that is, outcomes (eg, the
length of stay in hospital or survival), exposures (eg, the taking
of a drug or a surgery procedure), and adjusting variables (eg,
age, sex, and patient history). When performing a prospective
study, these data are defined upstream and are then collected
manually in routine practice with human expertise, one record
at a time, and background is taken into account. If needed,
third-party data sources can be queried or caregiver expertise
can be sought. This approach is expensive and time-consuming,
and it generally results in only a limited sample size for a single
use [7,11]. However, the final data set consists of explicit
information that does not need further computation.

In contrast, data reuse builds on data sources already available
at a low cost and offers a large volume of data [7]. Despite the
many opportunities data reuse offers, its implementation presents
many difficulties, and primary data cannot be reused directly.
First, data reuse encounters data quality problems that arise
from the manner in which the data were entered or collected
[12-16], and it requires a phase of data cleaning to deduplicate,
filter, homogenize, or convert raw data [17,18]. Moreover,
information is not always directly available in the source
database and needs to be computed later from raw data when
defining an algorithm [19-23]. This is generally called “data
transformation” [24], “data aggregation” [25,26], or “feature
extraction” [27]. Even if feature extraction often approximately
answers the question, the process is not easy and brings
methodological issues. Indeed, features are extracted from a
static database (already saved and closed) for patients for whom
the care event has already been completed years earlier and for
a large number of records. All scenarios must be taken into
consideration so as to avoid having to modify the extracted
records individually and by hand before the analysis. The

method of extraction may have substantial effects on the features
generated [28].

Lastly, the heterogeneity of local data models and vocabularies
complicates the pooling of data and the sharing of algorithms,
tools, and results [29-33]. Initiatives have emerged to promote
the reuse of data through “large-scale clinical data sharing and
federation” and the implementation of common data models
(CDMs) [34-38]. Observational Health Data Sciences and
Informatics (OHDSI) is a community developed from the
Observational Medical Outcomes Partnership (OMOP) [39-42].
The OMOP CDM is dedicated to observational studies, medical
product safety surveillance, comparative effectiveness research,
and patient-level predictive modeling. In this context, the
OHDSI community shares methods and tools for the use of the
OMOP CDM, which standardizes the structure and vocabulary
of observational data. Around 2000 collaborators from 74
countries were involved in the OHDSI community in mid-2022
[43]. Analyses could be successfully applied on this model and
be used at different data sites around the world [44,45].

Beside clinical data tables, which are appropriate for the storage
of individual low-level records (ie, procedure_occurrence,
condition_occurrence, and measurement), the OMOP CDM
was extended with 5 tables to store derived elements [46]. In
particular, the EPISODE table stores the abstracted episodes of
care previously defined [47,48] and allows the extraction of
chemotherapy episodes from drug records in order to compare
anticancer treatment trajectories [49].

Feature extraction methods are poorly described when applied
to compute secondary information from retrospective databases.
They also lack an approach to store features in a persistent way
in a data warehouse. The purpose of this article is to propose a
standardized description of the steps and transformations that
could help researchers to implement and document feature
extraction, and improve the reproducibility of retrospective
studies. It also includes identifying how features could be stored
in the schema of a data warehouse implemented with the OMOP
CDM.

Methods

Overview
This study involved the following 3 main steps: (1) the
collection of relevant study cases that applied feature extraction
and were based on the automatic and secondary use of data; (2)
the standardized description of the feature extraction process,
including the concepts, their characteristics, and the methods
that were common to the study cases; and (3) the proposal of
convenient tables to store features in the OMOP CDM.
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Ethics Approval
This study did not require ethics approval as no personal data
were collected and no interventions were implemented.

Collection of Study Cases
We were seeking examples of retrospective observational studies
for which feature extraction operations had to be implemented.
These studies did not need to be conducted for a specific field
of research, during a defined time period, or using a particular
data model. The prerequisite was to have transformed raw data
into usable information and to be able to describe the process.
We focused on studies performed with structured data and did
not investigate feature extraction from unstructured data such
as text, images, videos, or sound. We contacted researchers
from 7 teams involved in data reuse in France between
September 1, 2021, and December 31, 2021.

We conducted individual interviews and obtained handwritten
notes. The researchers were asked to describe (1) the objective
of the study, (2) the database they used (ie, claims or clinical
database), (3) the nature of the data and the terminologies, (4)
the difficulties they encountered when extracting information
from raw data, (5) the features they had to extract to achieve
the objectives of the study, (6) the use they made of the features
in the study (ie, inclusion criteria, explanatory variables, or
response variables), and (7) the steps that composed the feature
extraction and the parameters that characterized the features.

The inclusion criteria define the characteristics that subjects
must have to be included in a study. They usually include age,
type and stage of a disease, and surgical procedure. The response
variable is the target of a question in the study or experiment.
It is usually survival, length of hospital stay, recovery, or
complication of a disease. The explanatory variable is that
variable whose changes might affect the response variable. It
may be exposure to an event or to a treatment.

The studies were carried out on the following 2 types of
databases: claims databases and hospital clinical databases.
These 2 sources are relational databases with a tabular format.
Each table contains only 1 entity (eg, patients, stays, and
diagnoses), and each row corresponds to 1 record. The tables
are linked together by the mechanism of foreign keys, allowing
the identification of all the data of a patient or a stay, whatever
the category. Most of the columns are structured data (ie, 1 type
and 1 value per cell). These databases are usually queried using
the SQL language. They can then be processed with
programming languages, such as R and Python, to recalculate
new essential information or to adapt the structure of the data
to be able to analyze them more easily.

The claims databases were the French national hospital
discharge database, referred to as Programme de médicalisation
des systèmes d'information (PMSI) [50], and the French national
claims database, referred to as Système National des Données
de Santé (SNDS) [51]. These nationwide databases collect
standardized discharge reports for all inpatient stays in French
nonprofit or for-profit hospitals. They include individual-level
data about the dates of admission and discharge, the hospital
code number, the sector code and outcome (ie, discharge,
hospital transfer, and death), social demographics (ie, gender,

age, and place of residence), diagnoses, and medical procedures
performed during the hospital stay. The diagnoses are coded
according to the French version of the International Statistical
Classification of Diseases and Related Health Problems, 10th
Revision (ICD10). The medical procedures are documented
according to the Classification Commune des Actes Médicaux
(CCAM). In addition to these data, the SNDS database includes
consumption of care outside the hospital (ie, pharmacy visits,
general medical reimbursements, and nursing care). Prescribed
medications are documented with the Anatomical Therapeutic
Chemical (ATC) system, an international classification system,
or with the Code Identifiant de la Présentation (CIP13).

The clinical databases were local hospital data warehouses
collecting all information about laboratory results, medical
procedures, diagnoses, and types of medical units and transfers
between them. Two databases included the details of anesthesia
procedures (ie, the steps of the surgical procedures, drug
administrations, and signals recorded by the equipment in the
operating room, eg, mean arterial pressure, heart rate, and tidal
volume) [52]. In these databases, vocabularies are local
terminologies developed by the software editor and updated by
the physician during practice. They cover drugs, measurements,
and steps of the surgical procedure. The last database was the
Medical Information Mart for Intensive Care III database, a
large open-source medical record database of critical care stays,
publicly available in PhysioNet [53,54]. Diagnoses are
documented with the International Statistical Classification of
Diseases and Related Health Problems, 9th Revision (ICD9),
and the procedures are documented with the Current Procedural
Terminology.

Standardized Description of the Feature Extraction
In the second step, we performed a hierarchical analysis of the
task (HAT) [55]. A HAT allows an understanding of the tasks
that users need to accomplish in order to achieve certain goals.
These tasks may be decomposed into several levels of subtasks,
up to having atomic operations. In this study, we carried out a
HAT to (1) understand the steps and transformations that the
researchers had to implement to transform raw data into features
and (2) identify the successive states of data, from raw data to
features, describing the complexity and time dependency.

To do so, we asked them to describe the raw data they had at
the beginning, and which were the different transformations
they had to chain to obtain features. At each step, we described
the complexity and time dependency. We have illustrated the
succession of subtasks for each case study, in collaboration with
the researcher involved in the study. From the obtained task
descriptions and illustrations, we grouped the tasks according
to the types of input and output data. Lastly, we propose a
description of these different states and transformations, based
on what was common to the study cases.

Evaluation of Feature Storage Possibilities in the
OMOP CDM
In the last part, we studied the existing tables of the OMOP
CDM that could allow the storage of features without losing
information, that is, with adequate fields. In the reverse case,
we would propose new tables to conform to the OMOP standard.
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We would also define the attributes that would have to respect
the OMOP standard and keep track of how features were
computed to ensure the reproducibility of the studies.

Results

Collection of Study Cases
Among the 15 people we contacted, 3 did not answer and 2
reported not performing feature extraction. Based on the
semistructured interviews, we collected 8 retrospective and
observational studies from teams in 3 French university hospitals
(Amiens, Lille, and Rouen) and the French high authority of
health. Two of the studies were multisite studies, 4 used claims
databases, and 5 used clinical databases.

The features identified represented different types of variables
used for conducting retrospective analyses: inclusion criteria,
explanatory variables, and response variables. Generic features
were (1) occurrences of diagnoses, medical procedures, and age
as inclusion criteria; (2) occurrences of medical procedures,
occurrences of drug administrations, and transformations of
vital signs as explanatory variables; and (3) hospital and
intensive care mortality, hospital stay duration, and passage in
intensive care as response variables. The study cases and the
more complex features reported by the researchers are described
in Table 1.

These various study cases were based on complex (ie,
heterogeneous, multidimensional, unbalanced, and
time-dependent) raw data. The heterogeneity of these raw data
comes from the diversity of the variables involved to extract
secondary computed features. The first 5 study cases (SC1-5)
used measurements and transformed vital signs (arterial pressure
and heart rate) or ventilatory signals (partial pressure of oxygen
and tidal volume), SC6 and SC7 used drug administrations, and
SC7 used laboratory results. In addition to their heterogeneity,
the databases are multidimensional, which implies that the tables
that compose them have different dimensions (ie, statistical
units). Thus, each patient will have a different number of records
in the other tables (procedures, diagnoses, measurements, drugs,
etc), depending on the length of hospital stay, the care received,
and the duration of follow-up. This number of different records
from one patient to the other should however be reduced to one
line per statistical unit of the study. Next, the modalities of
variables are numerous and unbalanced, that is, each
terminology has thousands of codes, some of which are widely
used, while others are almost never needed. As a result, at the
time of feature extraction, these thousands of codes generate as
many columns, with, for example, features reporting the code
as absent/present or the number, or reporting the number of
times it has been documented. At last, raw data are
time-dependent variables, that is, variables that are not
necessarily constant over the course of the study.
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Table 1. Description of study cases involving feature extraction for retrospective observational studies.

Features needed to achieve the objectives of the studyObjective of the studyStudy case

Explanatory variable: Weighted average of PaO2
b for

mechanically ventilated patients with septic shock ac-
cording to the SEPSIS-3 criteria. The measurements
are recorded at irregular intervals. The signal is recon-
structed to give one measurement per second.

To evaluate the effect of hyperoxemia on ICUa mortality, during
the first 24 h of ICU stay, in mechanically ventilated patients
with septic shock according to the SEPSIS-3 criteria [56]

SC1: Detection of hyperox-
emia in mechanically ven-
tilated patients

Explanatory variable: Duration of arterial pressure
spent with a drop of 10% from the average value,
during the procedure.

To evaluate the impact of early blood pressure control in heavy
surgeries on in-hospital mortality and length of stay

SC2: Duration of hypoten-
sion during heavy surgery

Explanatory variable: Duration of systolic arterial
pressure with a drop of 20% from a reference value
between induction and birth for a cesarean section with
spinal anesthesia. The reference value is the mean
value of the systolic arterial pressure between arrival
in the operating room and the induction.

To characterize the effect of hypotension during cesarean section
with spinal anesthesia on fetal pain

SC3: Duration of hypoten-
sion during cesarean sec-
tion with spinal anesthesia

Explanatory variables: The median, minimum, and
maximum values of heart rate are computed during 2
periods of 10 minutes, designed around the administra-
tion of atropine.

To assess the evolution of heart rate before and after the admin-
istration of atropine (a medication used to treat bradycardia)

SC4: Heart rate and admin-
istration of atropine

Explanatory variable: End-tidal volume <8 mL/kg of
ideal body weight during surgery.

To evaluate whether the recommendations in terms of ventilation
in the operating room have been carried out [57]

SC5: Compliance with
ventilatory guidelines

Explanatory variable: Number of drug administrations
from the French Laroche list [58] (potentially inappro-
priate medications) in the 90 days preceding the hospi-
talization.

Number of drug administrations from the French
Laroche list in the 90 days following the hospitaliza-
tion.

To measure the impact of a therapeutic optimization intervention

included in an integrated care pathway on PIMc prevalence and
on hospital readmission in frail older people

SC6: Potentially inappro-
priate medications

Explanatory variable: Administration of VKA with

another drug defined in a DDI rule. Raw ATCg codes
are mapped to wider categories by taking into account
the active substances and the administration route. The
period of interest started the day after the 2 drugs had
been administered together and ended 4 days after the
first of the 2 drugs was discontinued.

Response variable: VKA potentiation with at least one
value of INR ≥5 or VKA inhibition with at least one
value of INR ≤1.5.

To estimate the probability of the occurrence of INRd changes

for each DDIe rule involving VKAf [59]

SC7: Drug-drug interac-
tions

Explanatory variable: Suspect COPD patients defined
as patients aged more than 40 years with one of several
of the following treatments: bronchodilators, 3 antibi-
otic therapies for respiratory infection, or nicotinic
substitutes.

To assess the percentage of suspect COPD patients having func-
tional respiratory exploration for diagnosis

SC8: Compliance with

guidelines for COPDh pa-
tients

aICU: intensive care unit.
bPaO2: partial pressure of oxygen.
cPIM: potentially inappropriate medication.
dINR: international normalized ratio.
eDDI: drug-drug interactions.
fVKA: vitamin K antagonist.
gATC: Anatomical Therapeutic Chemical.
hCOPD: chronic obstructive pulmonary disease.

Standardized Description of the States and
Transformations Related to Feature Extraction
Figure 1 provides the complete description of SC6. First, raw
records of administrative data were transformed into a new type
of record corresponding to the occurrence of hospital stay (step

1). We will refer to this period as “track” in the rest of the
manuscript. Then, this track was transformed to obtain a second
track representing the 90 days before hospital stay (90_days)
(step 2). Drug administrations included in the Laroche list were
identified from raw records, and the periods of administration
of drug A and drug B were computed based on the dates of
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administration and the duration of treatment, in steps 3 and 4,
respectively. Similar tracks were computed for all drugs included
in the Laroche list, but for the clarity of the figure, we have
chosen to illustrate only the first 2 drugs. After these 4 steps,
comparisons between tracks were realized successively. This
allowed comparisons of the tracks of administration of drug A
and drug B to track 90_days, in steps 5 and 6, respectively. The
results were joined in a common track to obtain the tracks of
the administration of Laroche list items during track 90_days

(step 7). Lastly, the number of distinct items was counted to
obtain the final feature, that is, the number of drugs from the
Laroche list administered in the 90 days preceding the hospital
stay.

Table 2 summarizes these transformations, as well as the input
and output data of each transformation. Standardized
descriptions of all other study cases and feature extraction
processes are available in Multimedia Appendix 1 and
Multimedia Appendix 2.

Figure 1. Standardized description of study case 6.
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Table 2. Input data, transformations, and output data for each step involved in the feature extraction of study case 6 (potentially inappropriate medications).

Output dataTransformationInput dataStep

Track: Hospital staySelection of fields “admission date” and
“discharge date”

Raw data: Hospital stay1

Track: 90 days before hospital stayComputing the previous 90 daysTrack: Hospital stay2

Track: Drug ASelection of drugs included in the Laroche
list

Raw data: Drug administration3

Track: Drug BSelection of drugs included in the Laroche
list

Raw data: Drug administration4

Track: Drug A (Laroche)/90 days before hos-
pital stay

Intersection of the 2 tracksTrack: 90 days before hospital stay + Track:
Drug A

5

Track: Drug B (Laroche)/90 days before hospi-
tal stay

Intersection of the 2 tracksTrack: 90 days before hospital stay + Track:
Drug B

6

Track: Drug Laroche list/90 days before hospi-
tal stay

Union of the 2 tracksTrack: Drug A (Laroche)/90 days before hos-
pital stay + Track: Drug B (Laroche)/90 days
before hospital stay

7

Feature: Number of drugs from the Laroche
list prescribed in the 90 days before hospital
stay

Count distinct (drug Laroche list/90 days be-
fore hospital stay)

Track: Laroche list/90 days before hospital stay8

States and Transformations
Based on the study cases and the HAT, we identified that data
went through 2 states (track and feature) and benefited from 2
transformations (track definition and track aggregation). Table
3 summarizes the differences between the raw data, track, and
feature, as well as the definitions of the 2 transformations. The
whole process of feature extraction is illustrated for several
types of raw data in Figure 2, and is fully described below.

The step of track definition aims at reducing the dimensions of
raw data to the statistical unit of the study, which is the element
of the population on which the statistical study is conducted.
The statistical unit may refer to not only a patient, but also a
hospital, hospital stay (SC6), specialized unit stay (SC1), or a
procedure (SC2, SC3, SC4, and SC5), depending on the purpose
of the study. During track definition, the data may be rebuilt or
computed based on operations such as the selection of variables
and values, the mappings between codes of terminologies (SC6
and SC7), the detection of the passage of values beyond a
threshold (SC2 and SC3), or the application of any other expert
rule (SC5, SC6, and SC7).

Track is an intermediate state between raw data and features.
It results from the first operation and remains a time-dependent
signal, defined by a statistical unit, a type of track, a value, or
a set of values. The type of track may be the passage in a care
unit, the administration of a drug, a health condition
characterized by a diagnosis, or a heart rate signal. The value
represents the track state, with a binary value for an on/off state
or a quantitative value for a signal. Conditional operations may
also be applied between tracks to generate new ones (eg, for
detecting the simultaneous administration of 2 drugs). Based
on this definition, Table 4 presents the tracks for the 8 study
cases.

The step of track aggregation extracts final information from
tracks during a specified period of interest. The extraction
method reduces the multidimensionality and releases from the
dependence on time. These methods are usual statistical
functions (eg, minimum, maximum, mean, median, count,
duration, and delay).

The period of interest is defined by a start date and an end date,
which may come from different sources as follows: the
administration of a drug, the step of a procedure, the visit with
a health care professional, or the visit to a health care unit. For
each date, there could be more than one candidate event. For
example, in SC3, the start of the anesthesia procedure may be
documented with 4 different events as follows: induction event,
hypnotic administration, intubation, and mechanical ventilation.
In the same way, the end of the anesthesia procedure may be
defined by the following 2 events: extubation or the end of the
anesthesia event. In this case, a priority rule based on expert
knowledge or an aggregation operation (first or last event)
selects the main event. Lastly, a time interval may be added to
the start and end dates of the period to create an artificial period
as follows: the 90 days preceding or following hospitalization
(SC6).

At the end of the process, feature is a single value associated
with a label (the feature name). In a feature, time is implicit and
is no longer formalized by a date in the record. It may be
sometimes represented in the name of the variable, with, for
example, the mean value of arterial pressure before induction
(eg, mean_map_before_induction). It may also be represented
in the value of the feature itself (eg, for a delay or a duration).
The feature depends greatly on the context of the study; thus,
in SC2 and SC3, the same raw signal produces 2 distinct features
that depend on the extraction methods and the periods of interest.
Table 5 describes the features identified in our 8 study cases,
according to the statistical unit, period, signal, and extraction
method.
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Table 3. Definitions and comparisons of the states and transformations involved in the feature extraction.

ComplexityTime dimensionExampleDescriptionStates and transformations

YesYesRaw measurements of
mean arterial pressure

Heterogeneous, multidimensional, and time-dependent
low-level clinical data: demographic data, patient flow,
laboratory results, drug administrations, procedures, diag-
noses, and measurements.

The time dimension is always beside the value as an at-
tribute.

Raw data (state)

ReducedYesResampling of the signalReduction of the initial dimensions to the statistical unit
and standardization of the data representation through an
infinite possibility of operations with high expert knowl-
edge.

Conservation of the time dimension.

Conditional operations may be performed on tracks to
generate new tracks.

Track definition (transfor-
mation)

NoYesResampled signal with one
measurement per second

Homogeneous and time-dependent signal, defined by a
homogeneous statistical unit, a type of track, and a set of
time-stamped values.

The time dimension remains beside each track.

Track (state)

NoReducedAggregation (minimum
and mean values) of mea-
surements recorded be-
tween the start and end of
the anesthesia procedure

Reduction of the time dimension: a period of interest, a
track, and an extraction method based on a finished number
of operations (minimum, maximum, median, sum, count,
etc).

The time dimension is reduced to obtain a single value,
with time embedded in the variable name or inside the
value.

Track aggregation (trans-
formation)

NoImplicitMinimum and mean values
of mean arterial pressure
during the anesthesia pro-
cedure

Time-independent high-level information with dimension-
ality identical to the statistical unit of the study, defined by
a label and a value.

The time dimension has become implicit in the value (eg,
in a delay or a duration) or name of the variable (eg, a value
at day 1).

Feature (state)
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Figure 2. Feature extraction process transforming raw data into features.
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Table 4. Definition of tracks used in the study cases.

Value(s)TrackStudy case and statistical unit

SC1: Hyperoxemia in mechanically ventilated patients

ICU stay=1First 24 hours of ICU stay for mechanically ventilated patients
with septic shock

ICUa stay

PaO2 repeated measurementsResampled PaO2
bICU stay

SC2: Duration of hypotension during general anesthesia

General anesthesia procedure=1General anesthesia procedureHeavy surgery

Average valueAverage value of mean arterial pressureHeavy surgery

Episode=1Episode of mean arterial pressure below 90% of the average
value

Heavy surgery

SC3: Duration of hypotension during cesarean section with spinal anesthesia

Reference period=1Arrival in the operating room to induction of anesthesiaCesarean section with spinal
anesthesia

Spinal anesthesia=1Induction of anesthesia to birthCesarean section with spinal
anesthesia

Average valueAverage value of the systolic arterial pressure between arrival
in the operating room and induction of anesthesia

Cesarean section with spinal
anesthesia

Episode=1Episode of systolic arterial pressure below 80% of the average
value

Cesarean section with spinal
anesthesia

SC4: Heart rate and administration of atropine

Before=1Before administration of atropineAdministration of atropine

After=1After administration of atropineAdministration of atropine

SC5: Compliance with ventilatory guidelines

Surgery=1SurgeryAnesthesia procedure with
mechanical ventilation

SC6: Potentially inappropriate medications

Before hospital stay=1Before hospital stayHospital stay

After hospital stay=1After hospital stayHospital stay

Drug X=1Administration of drug X from the Laroche listHospital stay

SC7: Drug-drug interactions

Drug X=1Administration of drug X (raw code)Patient

ATC category=1Administration of a drug family (ATCc category)Patient

Concomitant administration=1Concomitant administration of a VKAd with a drug defined

in a DDIe rule

Patient

Episode of INR ≥5INRf ≥5Patient

Episode of INR ≤1.5INR ≤1.5Patient

VKA potentiation=1Concomitant administration of a VKA with a drug defined in
a DDI rule and INR ≥5

Patient

VKA inhibition=1Concomitant administration of a VKA with a drug defined in
a DDI rule and INR ≤1.5

Patient

SC8: Compliance with guidelines for COPD patients

Drug X ≥1Administration of one of several drugs among bronchodilators
or nicotinic substitutes (ATC codes)

Patient

Drug X ≥3Administration of 3 antibiotic therapies for respiratory infec-
tion (ATC codes)

Patient
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Value(s)TrackStudy case and statistical unit

Exposure to COPD-specific drugs=1Exposure to at least one of the drugs specific to suspected

COPDg
Patient

Episode=1Induction of spirometry or functional respiratory explorationPatient

aICU: intensive care unit.
bPaO2: partial pressure of oxygen.
cATC: Anatomical Therapeutic Chemical.
dVKA: vitamin K antagonist.
eDDI: drug-drug interaction.
fINR: international normalized ratio.
gCOPD: chronic obstructive pulmonary disease.

Table 5. Definitions of the characteristics for each feature of the study cases.

Extraction methodTrackPeriodStatistical unitStudy case

Weighted averageResampled PaO2
bFirst 24 hours of ICU stay

for mechanically ventilated
patients with septic shock

ICUa staySC1: Hyperoxemia in me-
chanically ventilated pa-
tients

Sum of the duration of
episodes of mean arterial
pressure with a drop of 10%
from the reference value

Mean arterial pressureAnesthesia periodGeneral anesthesia proce-
dure

SC2: Hypotension during
anesthesia

Total duration of systolic
arterial pressure below 80%
of the reference value

Systolic arterial pressureAnesthesia periodCesarean section with
spinal anesthesia

SC3: Duration of hypoten-
sion during cesarean section
with spinal anesthesia

Median, minimum, and
maximum values of heart
rate

Heart ratePeriods of 10 minutes before
and after the administration
of atropine

Administration of atropineSC4 :Heart rate and adminis-
tration of atropine

Mean end-tidal/ideal body
weight >8

End-tidal volumeSurgery periodAnesthesia procedure with
mechanical ventilation

SC5: Compliance with ven-
tilatory guidelines

Count of inappropriate drug
administration according to
the French Laroche list.

Administration of medicationsBefore hospital stay; after
hospital stay

Hospital visitSC6: Potentially inappropri-
ate medications

Count of VKA potentiation.

Count of VKA inhibition.

Concomitant administration

of a VKAc with a drug de-

fined in a DDId rule and INRe

≥5.

Concomitant administration
of a VKA with a drug defined
in a DDI rule and INR ≤1.5.

Day after the 2 drugs have
been administered together
and until 4 days after the
first of the 2 drugs was dis-
continued.

PatientSC7: Drug-drug interactions

Count of the administration
of drugs specific to COPD

Binary indicator of FREg

induction

Administration of medicationsYear following exposure to
one of the drugs specific to
COPD

PatientSC8: Compliance with

guidelines for COPDf pa-
tients

aICU: intensive care unit.
bPaO2: partial pressure of oxygen.
cVKA: vitamin K antagonist.
dDDI: drug-drug interaction.
eINR: international normalized ratio.
fCOPD: chronic obstructive pulmonary disease.
gFRE: functional respiratory exploration.
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Evaluation of Feature Storage Possibilities in the
OMOP CDM
Five tables already exist in the OMOP CDM (DRUG_ERA,
DOSE_ERA, CONDITION_ERA, EPISODE, and
EPISODE_EVENT) for storing elements derived from raw data
[46]. These tables cover the storage of spans of time when the
patient is exposed to a specific drug ingredient (DRUG_ERA),
when the patient is exposed to a constant dose of a specific drug
ingredient (DOSE_ERA), or when the patient is assumed to
have a given condition (CONDITION_ERA). These existing
tables are suitable for pharmacoepidemiology studies with the
comparison of periods of drug exposure and the resulting
adverse events or evolution of the disease. The studies require
only diagnosis and medication data from the tables
CONDITION_OCCURRENCE and DRUG_EXPOSURE [39].

However, other types of data also need to be retransformed to
obtain usable information for statistical analysis (in particular,
procedures, measurements, biology results, or any types of steps
in patient care). At this point, 2 alternatives allow other types
of derived elements to be stored. The first approach involves
adding an era table for each raw information that can be
transformed into an era (ie, a measurement era, procedure era,
biology era, etc). The second approach involves proposing a
generic era table that would cover all types of raw data. With
these 2 approaches, there would still be a lack of storage for the
final features, which do not have the same structure as eras or
episodes, since they are only an association of a value and a
label, independent of time.

For this reason, on the one hand, the table TRACK could
complement the model and store intermediate data (ie, all types
of tracks and eras), which would ultimately be used to compute
features, and on the other hand, the table FEATURE could
extend the OMOP CDM for storing secondary computed data
from measurements, procedures, observations, and stays, which
would be used for the analysis and would need to be stored on
a long-term basis.

These 2 new conceptual tables are illustrated in Figure 3. They
comply with the OMOP guidelines in terms of field name and
table organization [60]. For both tables, foreign keys reference
the person, the visit, the visit details, the main concept
(TRACK_CONCEPT_ID and FEATURE_CONCEPT_ID),
and the type of this concept (TRACK_TYPE_CONCEPT_ID
and FEATURE_TYPE_CONCEPT_ID). Similarly, the 2 tables
provide core fields to store continuous values
(VALUE_AS_NUMBER) or categorical values
(VALUE_AS_CONCEPT_ID). The specificity of TRACK
involves the preservation of the time dimension through the
fields TRACK_START_DATE and TRACK_END_DATE. In
the FEATURE table, in the case where a patient could present
the same feature several times (eg, on different days), a foreign
key to the EPISODE table allows differentiation of the
occurrences of a feature [47]. Both tables also have the usual
fields to store the source values expressed with local
vocabularies.

Figure 3. Data model for the storage of periods and features in a relational database, compliant with the Observational Medical Outcomes Partnership
(OMOP) common data model. FK: foreign key; PK: primary key.
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Discussion

Principal Findings
In this article, we propose a standardized description of the
feature extraction process, which is implemented when
transforming heterogeneous, multidimensional, and
time-dependent raw data into valuable information for
conducting observational retrospective studies. The process
combines 2 steps (track definition and track aggregation). Track
definition aims at transforming raw data into multiple tracks
representing the periods of interest or reconstructing a signal.
Track aggregation computes usable information from a final
track for applying an extraction method during a period of
interest. The resulting features are the 1-dimensional and
time-independent variables that will be included in the statistical
analysis.

By dividing the feature extraction into these 2 steps, the
difficulty is managed during track definition. The first step aims
at creating tracks, with a common unit adequate for the statistical
unit of the study and a homogeneous temporal scale. Tracks
then allow the application of an infinite number of complex
transformations, such as the mapping of concepts for the
detection of drug-drug interactions (SC7). These transformations
require great expertise with regard to the data and are mainly
implemented on a custom basis. On the contrary, track
aggregation is a very simple operation, with a finite number of
possibilities.

Strengths of the Study
The definitions of the transformations are based on various
cases, and they were carried out on different databases from
several centers. Feature extraction is the algorithmic translation
of expert knowledge. Our work shows that this process requires
the sequencing of several transformations, including, for track
definition, the choice of (1) a time-dependent signal or an
already available track, (2) a statistical unit, (3) a type of track,
and (4) a value or a set of values, and track aggregation is the
final transformation based on (5) a track, which is performed
during (6) a period of interest and involves (7) an extraction
method. The formalization and documentation of these 7 items
should enhance the reproducibility of studies and the sharing
of features between collaborators, by removing the ambiguity
about what is being calculated.

Limits
In this study, we focused on feature extraction based on expert
rules and did not take into account feature extraction based on
deep learning techniques [61,62]. In this case, although the aim
is also to reduce the dimensionality of the source data, there is
no need to interpret features, which are often abstract and
designed to result in the best prediction model without being
interpreted [62]. Recent advances in natural language processing
[63-65] could be leveraged to automatize the extraction of
relevant clinical features from clinical text [66]. Once the feature
of interest has been well defined, a small annotation campaign
should be conducted to fine-tune and evaluate pretrained model
performances. Afterwards, the extracted feature can be
integrated in our workflow as a new structured piece of

information. The impressive results of large language models
suggest that a few labeled examples are sufficient to fine-tune
these models [67]. Three limitations must be explored before
using these models. First, due to the variability of the wordings
of clinical concepts, it has not been proved that a large language
model can capture every targeted feature. Second, the computing
intensiveness is incompatible with large-scale information
retrieval. Third, the ability to conduct quick targeted annotation
campaigns for precise clinical terms requires appropriate tooling
and processes. We have not provided any use cases involving
text. However, both tracks and features could be constructed
from, for example, the presence of a symptom or the reporting
of a scale in a consultation report. Such extraction from raw
text raises the question of the automatic detection of specific
concepts in text and the performance of the tools used for this.

Although some features, such as the length of stay, are generic
and frequently used, the majority remain dependent on the study
context. The period of interest and the extraction method are
proxies for what is expected by the clinician or researcher, and
the feature would need to be manually evaluated to ensure its
validity [49].

Even if SNOMED CT (Systematized Nomenclature of Medicine
- Clinical Terms) and ICD10 propose aggregate concepts, such
as “Hypotension following procedure” (SNOMED CT code
16055431000119108), “Decreased mean arterial pressure”
(SNOMED CT code 31013001), or “Hypotension” (ICD10 code
I95), these concepts are only a part of the label of a feature, and
they do not document how to compute the feature or mention
the period (ie, surgery, anesthesia, intensive care unit stay, or
first day of hospitalization). Standardized concepts that fully
document features are yet to be defined in these terminologies.

At present, we cannot judge the generalization of our proposal.
However, this study is the first to propose a standardized
description of feature extraction from structured databases. The
approach remains to be evaluated by comparing it with other
study cases, particularly from other countries.

The next step of this project is the implementation of an R
package with functions dedicated to the definition and
aggregation of tracks. This package would rely on the OMOP
CDM and allow reproducibility of feature extraction. Attention
will need to be paid to the physical implementation of the 2
tables and, in particular, to the storage of tracks, which can be
voluminous and can impact performance with regard to queries
and response times. Finally, it would be relevant to implement
a data mart with features arranged in columns (when they are
still stored in rows in the feature table) to gain time when
building tables to construct cohorts.

Conclusions
We have clarified the process of feature extraction implemented
when conducting retrospective observational studies. We
identified 2 transformations (track definition and track
aggregation) to transform complex raw data into tracks and
features. Track definition requires high expertise, but reduces
the complexity of data and simplifies the reduction of time
dimensionality during track aggregation.
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Abstract

Background: Anticoagulation therapy with heparin is a frequent treatment in intensive care units and is monitored by activated
partial thromboplastin clotting time (aPTT). It has been demonstrated that reaching an established anticoagulation target within
24 hours is associated with favorable outcomes. However, patients respond to heparin differently and reaching the anticoagulation
target can be challenging. Machine learning algorithms may potentially support clinicians with improved dosing recommendations.

Objective: This study evaluates a range of machine learning algorithms on their capability of predicting the patients’ response
to heparin treatment. In this analysis, we apply, for the first time, a model that considers time series.

Methods: We extracted patient demographics, laboratory values, dialysis and extracorporeal membrane oxygenation treatments,
and scores from the hospital information system. We predicted the numerical values of aPTT laboratory values 24 hours after
continuous heparin infusion and evaluated 7 different machine learning models. The best-performing model was compared to
recently published models on a classification task. We considered all data before and within the first 12 hours of continuous
heparin infusion as features and predicted the aPTT value after 24 hours.

Results: The distribution of aPTT in our cohort of 5926 hospital admissions was highly skewed. Most patients showed aPTT
values below 75 s, while some outliers showed much higher aPTT values. A recurrent neural network that consumes a time series
of features showed the highest performance on the test set.

Conclusions: A recurrent neural network that uses time series of features instead of only static and aggregated features showed
the highest performance in predicting aPTT after heparin treatment.

(JMIR Med Inform 2022;10(10):e39187)   doi:10.2196/39187

KEYWORDS

machine learning; health care; recurrent neural network; heparin; activated partial thromboplastin time (aPTT); deep learning;
ICU; critical care
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Introduction

Thromboembolic complications are associated with increased
mortality [1,2]. Risk factors for deep venous thrombosis and
pulmonary embolism include, for example, immobility,
malignancy, higher age, and a history of thromboembolism
[3,4]. Anticoagulation by drugs is applied either prophylactically
to prevent thromboembolism [5] or therapeutically to treat
existing thromboembolic complications, which reduces mortality
[6].

In perioperative normal care wards, prophylactic and therapeutic
anticoagulation is frequently performed subcutaneously by
low–molecular weight heparins [5]. In the perioperative setting,
prophylactic anticoagulation is indicated in patients with
intermediate or high risk for thromboembolism. This includes,
for example, most trauma surgeries, elective orthopedic surgeries
with consecutive immobility of the lower limbs, and major
abdominal or thoracic surgery, particularly in the presence of
malignant and inflammatory processes [5].

In critical illness, the risk for venous thromboembolism is
increased in almost all patients due to the combination of general
risk factors related to chronic disease and intensive care unit
(ICU)–associated risk factors, including sedation, immobility,
or central venous catheters [7]. In intensive care, prophylactic
or therapeutic anticoagulation is regularly applied intravenously
by continuous unfractionated heparin, particularly during renal
failure or hemodynamic instability [8]. The short half-life of
the anticoagulant and the possibility of antagonizing heparin
with protamine are advantages of unfractionated heparin in these
vulnerable patients [9]. However, poor controllability is an issue.
Consequently, overdosing with hemorrhagic or underdosing
with thrombotic complications may occur [10]. Hence,
therapeutic unfractionated heparin application requires
monitoring. The dosing of unfractionated heparin is performed
by determination of activated partial thromboplastin time (aPTT)
in patients' blood [11]. Based on older studies, the pursued aPTT
target is approximately a 1.5 to 2.5-times prolongation of the
reference clotting time [11-13] although individual targets are
usually defined. Achieving the aPTT target within 24 hours has
been associated with increased survival in patients with
pulmonary embolism [6]. However, due to patient- and
disease-related variations, achieving the aPTT target within 24
hours is challenging.

Nowadays, big data sets are generated by digital patient data
management systems in ICU routine. Machine learning (ML)
approaches that include individual information from large data
sets may help to predict aPTT at an earlier stage than can routine
blood sampling. Previous results of applying ML to predict
aPTT show great promise [14-17]. Some authors [16,17]
consider the numerical value of aPTT and consequently the
prediction of aPTT as a regression task. We prefer the prediction
of the numerical value since it makes no assumption of the aPTT
target range. However, most recent literature on similar-sized
data sets consider aPTT after heparin treatment as a multiclass
prediction with 3 distinct ranges (subtherapeutic, therapeutic,
or supratherapeutic) [14,15,18].

In previous model comparison studies [15,16,18], it has been
demonstrated that artificial neural networks show the highest
performance on aPTT prediction tasks.

Recently, a systematic review of ML approaches on predicting
aPTT after heparin administration highlighted that still multiple
innovations are required before ML-assisted heparin dosing is
ready for clinical practice [19].

We compared multiple ML models on our patient cohort and
are, to our knowledge, the first to apply a recurrent neural
network model that takes the dynamics of variables in the form
of time series into account. At the outset of the study, we
specified inclusion criteria that resulted in 5926 distinct hospital
admissions. On this cohort, we trained and evaluated multiple
ML models on the aPTT prediction task. To allow comparison
of the recurrent neural network model with previously published
models [14,15,18], we subsequently used our model in a
classification setup.

The aim of this analysis is to evaluate whether ML models can
accurately predict subsequent aPTT measurements well (12
hours) in advance. In the future, data-driven approaches could
help clinicians to adjust heparin dosing to improve time in the
target range aPTT after 24 hours.

Methods

Data Selection Criteria
The database system for surgical and intensive care patients at
Charité – Universitätsmedizin Berlin (Charité) was first adopted
in 2012 and over time rolled out to all ICUs. Since we extracted
data in November 2021, we considered a time period from 2012
to October 31, 2021. We selected patients and hospital
admissions that satisfied the following inclusion criteria: at least
18 years old at the beginning of treatment, received a minimum
of 1000 IU of heparin, received some of the heparin as
continuous infusion, had at least a single aPTT measurement
after 12 hours and before 36 hours after the intravenous
treatment commenced, and had weight and height documented
(within reasonable limits: height between 25 cm to 250 cm,
weight between 3 kg to 300 kg).

Ethics Approval
Ethics approval for this study was obtained by the Charité ethics
committee (vote #EA4/241/21).

Feature Selection and Prediction Targets
We extracted patient characteristics (age, gender, height,
weight), laboratory values (aPTT, bilirubin, C-reactive protein,
creatinine, quick value, platelet count), whether patients received
dialysis or a form of extracorporeal membrane oxygenation
(ECMO) treatment, and routinely collected scores (therapeutic
intervention scoring system 10 [TISS-10], simplified acute
physiology score [SAPS-II], sequential organ failure assessment
[SOFA], acute physiology and chronic health evaluation II
[APACHE II]) from the hospital information system.
Furthermore, we extracted the time of the start and end of each
heparin dosing, concentration, and administration rate. Heparin
can be administered as a bolus or as a continuous infusion. All
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data were restricted to the time period 7 days prior to treatment
to 36 hours after treatment started.

Our goal was to predict the aPTT 24 hours after initiation of
continuous heparin treatment. However, not all patients had a
laboratory measurement exactly 24 hours after the treatment
with heparin. Thus, any aPTT measurement between 12 to 36
hours after heparin treatment began was accepted as the
prediction target. In case multiple values were recorded between
12 hours and 36 hours, we chose the value that was closest to
24 hours after continuous treatment started. Consequently, only
values that were taken before or within 12 hours after continuous
heparin treatment commenced were available as features for
the model (including any aPTT measurement in that time frame).
Hospital stays were left aligned, and the start of the continuous
intravenous heparin delivery corresponded to time zero.

Handling of Missing Data
The data we used for our study were collected during routine
care and were not of uniform quality across all hospital
admissions. A typical problem when using retrospective data
for ML is missing observations [20-22]. This problem is
exacerbated for the recurrent neural network, as it expects an
input for every feature every 2 hours.

The static values of gender, age, height, and weight had no
missing values and were replicated for every timestamp. The
one-hot–encoded variables, including ECMO treatment, dialysis,
bolus delivery of heparin, and continuous delivery of heparin,
were set to 0 if no other value was recorded for a given
timestamp. Other features (eg, laboratory measurements and
scores) were filled in a 2-step process as follows: (1) If a
previous value was recorded within 7 days prior to continuous
heparin treatment, those values were forward filled; (2) Any
still missing values were replaced by the mean across the
training population.

Only using the above 2-step procedure discards information
about which measurement is from the patient at the given
timestamp. Since it has been shown that the missing pattern can
be informative [23], we included an “indicator” variable for
each variable filled in the 2-step process that is 1 if the value
was measured at the given timestamp and 0 if it was imputed.

Together with the indicator variables, each model sees 35
different input variables.

The recurrent neural network, thus, may see time series between
t = –168 (7 days prior to continuous heparin delivery) to t= 12.
In general, however, patients’ time series are not of the same
length.

Models and Variable Encoding
The input data consisted of numerical and categorical variables.
Categorical variables (gender, ECMO treatment, dialysis
treatment, continuous heparin administration, bolus heparin
administration) were one-hot encoded. Each option for a
categorical variable resulted in 1 input dimension that could
either be 1 or 0. One-hot–encoded variables were not further
scaled and were directly used as input features.

Other numerical variables were standardized before being fed
into the model. Mean and SD were estimated only on the
training data set.

We compared 6 models that take a single value per feature and
1 model that takes the entire time series of features. Some
features were constant over the course of treatment (age, gender,
height, and weight), while the other features changed frequently.
Models that take a single value per feature received the
last-observed value before the 12-hour cutoff. The recurrent
neural network received time series, resampled to 2-hour
intervals, for each feature. If multiple measurements were taken
within 2 hours, those values were replaced by the mean over
this 2-hour window. Static variables were repeated for each
timestamp. The prediction target (a single aPTT measurement)
is log-transformed during model training. The log transformation
is discussed in the Results section. All model parameters are
optimized on the mean-squared error (MSE) loss function.
Additionally, we evaluated the mean absolute error and the
explained variance for each model.

The 6 regression models were linear regression, elastic net,
generalized linear model, support vector machine regression
(SVR), K-nearest neighbor regression (KNN), and regression
trees. We optimized hyperparameters using a grid search with
5-fold cross-validation. For the cross-validation, training and
validation data were combined. The hyperparameter grids are
shown in Table 1.

The models, cross-validation, and the grid search routine were
from the scikit-learn package [24] and implemented in Python
(The Python Software Foundation).
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Table 1. Hyperparameters for each static model.

HyperparametersModel

NoneLinear regression

α = (10–4, 10–3, 10–2, 10–1, 1, 2, 3)

L1ratio = (0, 0.1, … 1.0)

Elastic net

Power = (0, 1, 2, 3)

α = (10–2, 10–1, 1, 2, 3)

GLMa

Kernel = (“linear,” “poly,” “rbf,” “sigmoid”)

Degree = (2, 3, 4, 5, 6)
SVRb

K = (2, 3, 4, 5, 6, 7, 8, 9, 10)

Weights = (“uniform,” “distance”)
KNNc

Max_depth = (2, 3, 4, 5, unlimited)

Min_samples_split = (2, 3, 4, 5, 6)

Min_samples_leaf = (1, 2, 3, 4, 5)

Regression trees

aGLM: generalized linear model.
bSVR: support vector machine regression.
cKNN: K-nearest neighbor regression.

Recurrent Neural Network Model
This model consists of a gated recurrent unit (GRU), which can
process a time series of arbitrary length and a fully connected
network that uses the output of the GRU as input. Since we are
only interested in predicting a single value, only the last output

of the GRU is fed into a 3-layer fully connected model. No
activation function is used between the output of the GRU and
the first fully connected layer. The outputs of the 2 fully
connected layers have rectified linear unit activation functions
[25], and the final layer has no activation function. A schematic
overview can be seen in Figure 1.

Figure 1. Schematic overview of input features, recurrent neural network, and feedforward network. GRU: gated recurrent unit.

As for the previously described models, the recurrent neural
network was optimized on the MSE. For experiments with the
recurrent neural network, weights were optimized on the training
set, and the results between experiments were compared on the
validation set. We used the Adam optimizer with L2 penalty
[26]. For each experiment, we chose weights with the lowest
error on the validation set, which may occur before the
maximum number of epochs are reached.

This model is significantly more costly to train compared to
“static” models. Therefore, we did not perform a systematic
hyperparameter optimization but ran several experiments with
different hyperparameters and handpicked the best set of
hyperparameters, which are shown in the Results section.
Hyperparameters for the GRU submodel are hidden size (n=1,
2, 3, …), bidirectional connection (True, False), and the number
of layers (n=1, 2, 3, …).

The 3-layered fully connected submodel had the number of
neurons in each layer as 3 hyperparameters. Hyperparameters
related to the training are the learning rate, L2 penalty, and the
maximum number of epochs.

Patients have a different number of inputs per feature, since
they receive their continuous heparin treatment at different times
within their hospital stay. Thus, for training, we are limited to
a batch size of 1 but accumulate multiple batches before weights
are updated. To combat overfitting, we used an L2 penalty on
the weights in the fully connected part of the model and chose
weights on the epoch with the highest performance on the
validation set.

All models and training scripts are available on github [27].

Classification Models
To phrase aPTT prediction as a classification task, we used the
3 ranges first introduced by Ghassemi et al [14] of
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subtherapeutic for values below 60 s, therapeutic for values
between 60 s to 100 s, and supratherapeutic for values above
100 s for the aPTT measurements. We compared our GRU
model to the logistic regression model from Ghassemi et al [14]
and the feedforward neural networks models by Su et al [15]
and Li et al [18]. All parameters were taken from the reference
literature for the respective model. For the feedforward networks
from Su et al [15] and Li et al [18], we used cross-entropy [28]
as a loss function with early stopping since the loss functions
are not mentioned in the references.

The 3 classification models are retrained on the training split
and receive the last value of each feature before the 12-hour
cutoff in the same manner as the “static” regression models.
The GRU is not retrained on the classification task, but the
numeric predictions are binned into the 3 ranges post hoc. We
evaluated the models on macroaveraged precision,
macroaveraged recall, macroaveraged F1-score, and accuracy
[29].

Results

Patient Cohort
A flow diagram of consecutively applied filter criteria (specified
in the methods section) to the entire patient cohort is shown in
Figure 2. The selection criteria resulted in 5926 hospital
admissions from a total of 5742 unique patients. Given that
fewer than 4% of admissions occurred for previously admitted
patients, we considered hospital admissions to be independent
events. Basic patient characteristics and missing values are
documented in Table 2.

Before model training or parameter estimation for mean and
SD were performed, the admissions were split into training
(n=3800), validation (n=945), and test (n=1181) samples. We
ensured that different admissions by the same patient were in
the same fold.

Figure 2. Flow diagram of unique patients and admissions that satisfy the specified inclusion criteria. aPTT: activated partial thromboplastin time; IV:
intravenous line.
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Table 2. Basic characteristics of the study cohort. The third column indicates how many patients do not have a single measurement during the hospital
admission.

Patients missing for entire stay, n (%)Value (N=5926)Feature

0 (0)70.62 (60.95-77.74)Age (years), median (IQR)

0 (0)Gender, n (%)

N/Aa1910 (32)Female

N/A4016 (68)Male

0 (0)172 (164-178)Height (cm), median (IQR)

0 (0)77 (66-90)Weight (kg), median (IQR)

442 (7.46)5 (2-8)SOFAb, median (IQR)

449 (7.58)36 (27-47)SAPS IIc, median (IQR)

525 (8.86)17 (12-23)APACHE IId, median (IQR)

5755 (97.11)10 (5-15)TISS-10e, median (IQR)

0 (0)449 (7.57)Dialysis, n (%)

0 (0)76 (1.28)ECMOf, n (%)

0 (0)42.6 (36.1-54.6)aPTTg (s), median (IQR)

2529 (42.69)0.6 (0.35-1.24)Bilirubin (mg/dL), median (IQR)

1782 (30.07)56.2 (18.6-118.8)CRPh (mg/L), median (IQR)

71 (1.20)67 (39-90)Gfri (count), median (IQR)

32 (0.54)1.01 (0.74-1.56)Creatinine (mg/dL), median (IQR)

17 (0.29)76 (64-87)Quick value (%), median (IQR)

19 (0.32)204 (139-292)Platelet count (per nL), median (IQR)

0 (0)32398 (9500-90000)Total heparin administered (IU), median (IQR)

aN/A: not applicable.
bSOFA: sequential organ failure assessment.
cSAPS II: simplified acute physiology score II.
dAPACHE II: acute physiology and chronic health evaluation II.
eTISS-10: therapeutic intervention scoring system 10.
fECMO: extracorporeal membrane oxygenation.
gaPTT: activated partial thromboplastin time.
hCRP: C-reactive protein.
iGfr: glomerular filtration rate.

Distribution of aPTT Values
A histogram of measured aPTT before and after treatment is
shown in Figure 3. In our cohort, both aPTT distributions before

and after heparin treatment are narrowly peaked with a heavy
tail. Values above 100 s occur very rarely. Small peaks are
visible at 240 s where the laboratory reports some values as
>240 s, which is mapped to 240 s.
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Figure 3. Histogram of aPTT values before treatment (a) and after treatment (b) with intravenous heparin. The histogram was obtained through binning,
using 120 bins between minimal and maximal values. Shaded regions indicate regions identified in Ghassemi et al [14] and Su et al [15]. aPTT: activated
partial thromboplastin time.

The effect of heparin treatment on the entire cohort is clearly
seen by the shift of the distribution. The difference in means is
8.64 s (95% CI 7.72-9.56; P<.001). The first 4 moments of the
distribution of aPTT at t=0 and at t=24 are documented in Table
3. The mean aPTT value is higher after continuous heparin
delivery compared to before treatment. Skew and kurtosis (while
smaller after treatment) quantifiably indicate that the aPTT
distribution is not symmetric and has a heavy tail. This fact
makes the prediction of aPTT challenging. To make the learning
task easier for our models, we log-transform the target variable
to reduce skew and kurtosis. In effect, this makes “rare” events
in the original distribution easier to predict.

The distribution that we observed in the Charité cohort contrasts
with the aPTT values that are documented by other authors. Su
et al [15] and Ghassemi et al [14] base their modeling studies
on the Medical Information Mart for Intensive Care (MIMIC)
II/III and eICU databases. The distribution of aPTT on the eICU
database [15] is more heavy tailed than is the MIMIC cohort,
however, less so than is our cohort. The 3 treatment categories
reported in those works are indicated as shaded regions in Figure
3b. However, we do not classify our cohort into these categories
but treat the prediction of aPTT after treatment as a regression
problem.

Table 3. Statistical description of the binned distribution of aPTT values before continuous heparin treatment (t=0), 24 hours after continuous treatment
commenced (t=24), and the log-transformed distribution after 24 hours.

Log (aPTT [t=24])aPTT (t=24)aPTTa (t=0)

592659264850Observations, n

3.8349.2840.64Mean

0.11608.19561.55Variance

1.914.746.11Skew

5.3726.7142.93Kurtosis

aaPTT: activated partial thromboplastin time.

Model Comparisons
In this section, the results of comparing 7 different models on
the prediction of aPTT (see Table 4) are shown. Models 1-6
received only the last-measured values of each input feature
before the 12-hour cutoff. We optimized hyperparameters for
each model using a grid search and 5-fold cross-validation. The
reported results are based on the test data that was not included
in the 5 folds. A full description of the used grids appears in the
Methods section. The best parameters for Models 1-6 are
documented in Multimedia Appendix 1.

Model 7 (recurrent neural network) consumes the entire time
series, resampled to 2-hour timestamps, for each input feature.
We experimented also with resampling to 1-hour time steps and
4-hour time steps and found that the performance was similar
(see Multimedia Appendix 1 for numerical results).

It is the most complex model in the comparison and ingests data
from up to 7 days before continuous treatment to 12 hours after
continuous treatment is administered. A systematic
hyperparameter optimization for Model 7 was not performed;
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hence, we are underestimating the performance of the recurrent
neural network in comparison to other models.

However, the recurrent neural network model achieved the
highest score on the explained variance and MSE metrics. It
ranked second to the SVR model on the mean absolute error
(which penalizes outliers less than does the MSE). The SVR

models ranked second to the recurrent neural network model
on explained variance and MSE.

CIs were obtained by taking 1000 random samples of the same
size as the test set, with replacement. Given that the distribution
had a small number of large outliers, which had a significant
effect on the quantity of interest, the CIs are wide.

Table 4. Comparison of different models for explained variance (higher is better), mean-squared error (lower is better), and mean absolute error (lower
is better) obtained by resampling 1000 samples from the test set.

MAEbMSEaExplained varianceModel

0.474 (0.45-0.497)0.487 (0.425-0.556)0.163 (0.115-0.211)Linear regression,

test set value, (95% CI)

1

0.474 (0.453-0.497)0.484 (0.433-0.554)0.168 (0.124-0.214)Elastic net regression2

0.473 (0.450-0.5)0.484 (0.422-0.556)0.169 (0.121-0.21)GLMc3

0.442 (0.418-0.469)0.476 (0.406-0.554)0.203 (0.161-0.244)Support vector regression4

0.502 (0.477-0.528)0.529 (0.460-0.597)0.101 (0.055-0.140)Nearest neighbors5

0.471 (0.447-0.495)0.492 (0.427-0.563)0.154 (0.108-0.198)Decision tree regression6

0.454 (0.432-0.477)0.459 (0.4-0.523)0.21 (0.165-0.254)Recurrent NNd7

aMSE: mean-squared error.
bMAE: mean absolute error.
cGLM: generalized linear model.
dNN: neural network.

Prediction of aPTT by the Recurrent Neural Network
Model
In this section we present the results of the recurrent neural
network model and compare predictions with measured values
on the test set. Multiple experiments with the model were
performed, and the best handpicked parameters are shown in
Table 5.

Predictions and measurements are shown in Figure 4. The
distributions of aPTT values in the test data alone show a similar

distribution as the aPTT values over the entire data set (cf Figure
3 and Figure 4 right panel). The histogram of predictions of the
recurrent neural network model has a similar shape (cf Figure
4 top panel and Figure 4 right panel).

Direct comparisons between predictions and measurements can
be seen in the center of Figure 4. The model can predict the
majority of aPTT values very well. Although some outliers are
predicted accurately, there are a few outliers above 150 s where
predictions fall below 75 s. Likewise, some predicted outliers
do not manifest as actual outliers.

Table 5. Best hyperparameters for the recurrent neural network model.

ValueParameter

1e–3Learning rate

Single GRUa layer; 3 feedforward layers with 10, 5, and 1 output neurons,
respectively

Layers

5Hidden size (GRU)

TrueBidirectional

16Accumulate gradient batches

0.2L2 penalty on all weights

aGRU: gated recurrent unit.
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Figure 4. Predictions versus measurements. The figure shows predicted (abcissa) and measured aPTT (ordinate) after 24 hours in the central panel.
Only predictions on the test set are shown. The dashed diagonal line indicates a perfect match between prediction and measurement. Above and to the
right are binned distributions of all predictions and measurements, respectively. aPTT: activated partial thromboplastin time.

Comparison With Classification Models
In the previous sections, we have seen that the recurrent neural
network shows the highest performance on the regression task.
However, it is also apparent that not all predictions are accurate.
To understand whether improvements needed to occur on the
models or on data quality aspects, we rephrased the problem as
a classification task to be able to compare the performance of
the trained model with the 3 most recently published
classification models [14,15,18]. Each of the 3 models was
trained on our data set (details in the Methods section).

Our recurrent neural network scored the highest performance
in recall and F1-score. The simplest model (logistic regression
by Ghassemi et al [14]) had the highest precision, and the
feedforward neural network by Li et al [18] had the highest
accuracy (see Table 6 for results). No single model outperformed
the others on all 4 metrics, and the appropriate model may be
chosen depending on which metric is considered most relevant.

The fact that the best-published models show a comparable
performance indicate that significant improvements require a
closer monitoring of patients, additional tests, and improved
data quality.

Table 6. Comparison of different models when formulating activated partial thromboplastin time prediction as a classification task. For each metric,
a higher score is better.

AccuracyF1-scoreRecallPrecisionModel

0.8290.3980.3960.411GRUa

0.8250.3560.3570.707Ghassemi [14]

0.8340.3160.3380.357Su [15]

0.8380.3380.3500.430Li [18]

aGRU: gated recurrent unit.
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Discussion

Principal Findings
In this study, we analyzed and predicted the effect of heparin
treatment on a cohort of 5742 patients and 5926 hospital
admissions 24 hours after continuous application. A statistically
significant shift of aPTT measurements compared to the
beginning of the treatment was observed. Most patients’ aPTT
measurements were within 35 s to 75 s; however, some patients
showed much higher aPTT values, leading to a challenging
prediction problem with a long-tailed distribution. We
demonstrated that ML models can aid in predicting the aPTT
values 12 hours in advance. Additionally, we have shown that
using the time series of variables improves predictive
performance.

Some underlying medical conditions, while occurring rarely,
are known to cause much higher aPTT values. These medical
conditions include lupus anticoagulants or deficiencies in the
intrinsic (deficiency in factors IX or X) or extrinsic pathways
(deficiency in factors VII) [30,31]. These conditions are not
routinely checked for and are only diagnosed when advanced
lab testing is ordered.

Established guidelines aim for a prolongation of aPTT by 1.5
to 2.5 times [11-13]. Since patients have different aPTT values
before heparin is administered, the target value according to the
guidelines is different. Furthermore, medical professionals may
define individual anticoagulation targets that do not match a
prolongation of 1.5 to 2.5 times the baseline value. Thus, we
consider aPTT prediction to be a regression problem as Kong
et al [16] and Smith et al [17] have done. A model that predicts
aPTT several hours before blood is drawn and analyzed can
serve as a valuable aid in adjusting the heparin dosing to meet
the patient’s aPTT target earlier.

In principle, aPTT can be predicted continuously. However, to
allow a comparison between models that make a single
prediction based on measurements at a single point in time and
a model that consumes the entire time series, we fixed 2 time
points (at 12 hours and 24 hours after continuous treatment
started). Models can use data available at 12 hours and make a
prediction for 24 hours after continuous treatment starts. The
cutoff after 12 hours is arbitrary and could be reasonably made
at a different time. The second point in time is motivated by the
observation that reaching the aPTT target within 24 hours is
associated with favorable outcomes [6]. The recurrent neural
network showed the best performance, and its predictions were

analyzed in detail. Although most samples were predicted well,
an unsolved problem is that rare cases exhibit a remarkably high
aPTT and are not captured by the model. As mentioned earlier,
underlying medical conditions are known to cause significantly
longer aPTT. We hypothesized that, for significantly improved
predictions, either testing of conditions that cause a long aPTT
or much more frequent measurements of aPTT combined with
dosing adjustments are required.

Recent literature on aPTT prediction after heparin treatment
considers 3 distinct ranges [14,15,18]. In order to compare our
model to those in the literature, we binned our predictions into
subtherapeutic, therapeutic, and supratherapeutic as introduced
by Ghassemi et al [14]. We observed that our model showed a
higher recall and F1-score than did the other models. Arguably,
the setup that we chose was the most difficult compared to the
references since we predicted a single aPTT value 12 to 36 hours
in advance. Others made predictions 4 to 6 hours [15] or 4 to 8
hours [14] in advance or averaged aPTT measurements between
4 and 24 hours [18].

Limitations
Other anticoagulants, such as warfarin or argatroban, were not
considered. We expect that only a small sample of patients, if
any, are receiving heparin together with anticoagulants and,
therefore, decided not to take it into account as is common in
similar studies [19].

It is well known that the laboratory conditions can affect the
ranges of aPTT measurements [32]. The aPTT measurements
were all reported by the same laboratory. Thus, the model may
not be applicable to other centers and laboratories without
parameter fine-tuning.

Modeling decisions that may negatively affect the model
performance are the resampling of time series to 2-hour
intervals. This resampling might miss significant changes in
some variables. Furthermore, handling of missing data by
forward and mean imputation could be improved by multiple
imputation methods.

Conclusions
Anticoagulation therapy with heparin monitored by the aPTT
laboratory assay is a widely used procedure in ICUs. It is well
known that heparin dosing is challenging due to high interpatient
variability. In the future, ML may help to suggest personalized
dosing recommendations. We demonstrated that a model based
on time series performs best.
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Multimedia Appendix 1
The best hyperparameters of the static models along with additional evaluation metrics.
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Abstract

Background: With the rapid expansion of biomedical literature, biomedical information extraction has attracted increasing
attention from researchers. In particular, relation extraction between 2 entities is a long-term research topic.

Objective: This study aimed to perform 2 multiclass relation extraction tasks of Biomedical Natural Language Processing
Workshop 2019 Open Shared Tasks: relation extraction of Bacteria-Biotope (BB-rel) task and binary relation extraction of plant
seed development (SeeDev-binary) task. In essence, these 2 tasks are aimed at extracting the relation between annotated entity
pairs from biomedical texts, which is a challenging problem.

Methods: Traditional research methods adopted feature- or kernel-based methods and achieved good performance. For these
tasks, we propose a deep learning model based on a combination of several distributed features, such as domain-specific word
embedding, part-of-speech embedding, entity-type embedding, distance embedding, and position embedding. The multi-head
attention mechanism is used to extract the global semantic features of an entire sentence. Meanwhile, we introduced a
dependency-type feature and the shortest dependency path connecting 2 candidate entities in the syntactic dependency graph to
enrich the feature representation.

Results: Experiments show that our proposed model has excellent performance in biomedical relation extraction, achieving F1

scores of 65.56% and 38.04% on the test sets of the BB-rel and SeeDev-binary tasks. Especially in the SeeDev-binary task, the
F1 score of our model is superior to that of other existing models and achieves state-of-the-art performance.

Conclusions: We demonstrated that the multi-head attention mechanism can learn relevant syntactic and semantic features in
different representation subspaces and different positions to extract comprehensive feature representation. Moreover, syntactic
dependency features can improve the performance of the model by learning dependency relation between the entities in biomedical
texts.

(JMIR Med Inform 2022;10(10):e41136)   doi:10.2196/41136
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biomedical relation extraction; deep learning; feature combination; multi-head attention; additive attention; syntactic dependency
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Introduction

Background
Information extraction (IE) [1] involves extracting specific
events or related information from texts; automatically
classifying, extracting, and reconstructing useful information
from massive amounts of content; and transforming it into
structured knowledge. With the increasing demand for text
mining technology to locate key information in biomedical
literature, biomedical IE [2,3] has become a new research hot
spot. Simultaneously, with the explosive development of
biomedical literature, many research directions for biomedical
IE have been promoted, such as named entity recognition,
protein relation extraction [4], and drug interaction extraction
[5]. In particular, it is a challenging and practical problem to
detect the relation between annotated entities in the biomedical
text under relation constraints, which is an important research
direction.

The Biomedical Natural Language Processing Workshop-Open
Shared Task (BioNLP-OST) series [6] is representative of
biomolecular IE, which aims to facilitate the development and
sharing of biomedical text mining and fine-grained IE.
BioNLP-OST has made a great contribution to the development
of biomedical IE and has been held for 5 times. The research
topics of BioNLP-OST include fine-grained event extraction,
biomedical knowledge base construction, and other scopes. This
study mainly focused on the relation extraction of
Bacteria-Biotope (BB-rel) task and the binary relation extraction
of plant seed development (SeeDev-binary) task in BioNLP-OST
2019 [7]. These 2 multiclass subtasks are essential for predicting
whether and what relationship exists between 2 annotated
entities. This study contributes to the development of practical
applications for biomedical text mining.

A series of innovative systems have achieved good results and
actively promoted the development of biomedical IE. For
example, in BB-rel and SeeDev-binary tasks, traditional relation
extraction models are mainly based on feature-based [8,9] and
kernel-based methods [10,11]. These methods rely on
domain-specific knowledge or language tools to extract artificial
features. For example, in the study by Björne and Salakoski
[12], a relation extraction system was constructed using a feature
based on the shortest dependent path and support vector machine
(SVM). In recent years, deep learning (DL) models have been
successfully applied in many fields of natural language
processing, requiring less feature engineering and automatic
learning of useful information from corpus data (Kumar, S,
unpublished data, May 2017). In the biomedical relation
extraction field, several well-known DL models have been
gradually applied and have achieved excellent performance,
including distributed representation [13,14], convolutional neural
network (CNN) [15-17], and recurrent neural network [18-20].
Consequently, instead of complicating handcrafted feature
engineering, we used the DL method to extract relations in
biomedical texts.

The combined application of the distributed features of a full
sentence is the most common method for biomedical relation
extraction [13,21,22]. Here, we use a variety of distributed

features, such as domain-specific word embedding [23], part of
speech (POS) embedding [24], entity-type embedding [13], and
distance embedding [25]. However, the commonly used model
is difficult to focus on the key information of full sentence;
therefore, the attention mechanism [26] has been proposed and
proven to be successful in a wide range of natural languages
processing fields, such as machine translation, reading
comprehension, and sentiment classification [27-29]. In our
proposed model, we use the multi-head attention mechanism
proposed by Vaswani et al [30] to deal with the combination of
distributed features of the full sentence. Multi-head attention
can ignore the distance between words, directly calculate the
dependency between words, and learn the syntactic and semantic
features of sentences in different representation subspaces. We
also constructed position embedding (PE) to inject position
information to take advantage of the order of words in a
sentence.

In our proposed model, we also integrated the shortest
dependency path and dependency-type feature based on the
syntactic dependency graph as one of the input features, which
has been proven to be effective in several studies [19,31,32].
Although syntactic dependency features contain valuable
syntactic information to facilitate the extraction of biomedical
relations, they may still lose important information, such as
prepositions before or after entities are likely to be discarded
on the dependency path, which should play a key role [33].
Hence, this study adopts the combination of distributed features
and syntactic dependency features as the final feature
representation of biomedical texts, in which syntactic
dependency features exist as supplementary features.

In this paper, we introduce a DL model to solve 2 biomedical
relation extraction tasks: SeeDev-binary and BB-rel. We
combined several distributed features and a multi-head attention
mechanism to automatically extract global semantic features
from long and complicated sentences. Syntactic-dependent
features were also integrated into the model. As the shortest
dependency path connecting 2 entities is short and concise, we
apply a CNN to learn its features. We conducted extensive
experiments, and our approach achieved F1 scores of 65.56%
and 38.04% on BB-rel and SeeDev-binary tasks and achieved
state-of-the-art performance on the SeeDev-binary task.

Related Work
The BB-rel task was conducted 3 times [34] before, and the
fourth edition [35] in the BioNLP-OST 2019 focused on
extracting information about bacterial biotopes and phenotypes,
motivated by the importance of knowledge on biodiversity for
theoretical research and applications in microbiology, involving
entity recognition, entity normalization, and relation extraction.
This edition has been extended to include a new entity type of
phenotype, relation category of Exhibits, and new documents.
We mainly studied one of the subtasks, the relation extraction
task (BB-rel), which is to predict the relationship of Lives_In
category between microorganisms, habitats, and geographic
entities, and the relation of Exhibits category between
microorganism and phenotype entities from PubMed abstracts
and full-text excerpts, where entity annotation has been
provided. Many researchers have contributed their efforts to the

JMIR Med Inform 2022 | vol. 10 | iss. 10 |e41136 | p.123https://medinform.jmir.org/2022/10/e41136
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


BB-rel task and have proposed innovative methods. For
example, in Biomedical Natural Language Processing Workshop
2016, TurkuNLP team used the method of the shortest dependent
path using the Turku event extraction system (TEES) [12] and
3 long short-term memory (LSTM) units, achieving an F1 score
of 52.10% [31]. The bidirectional gated recurrent unit-Attn team
proposed a bidirectional gated recurrent unit with an attention
model, with an F1 score of 57.42% [36]. Amarin et al [33]
combined feature combinations with an attention model and
contextual representations to achieve a state-of-the-art
performance with an F1 score of 60.77%. In BioNLP-OST 2019,
almost all researchers used neural network models in various
architectures. For instance, the Yuhang_Wu team used a
multilayer perceptron and achieved an F1 score of 60.49% on
the test set. The highest F1 score was 66.39%, which was
submitted by the whunlp team [37]. They constructed a
dependency graph based on lexical association, and used
bidirectional LSTM (BiLSTM) [38] and an attention graph
convolution neural network to detect the relation. In addition,
the AliAI team innovatively used a multitask architecture similar
to Bidirectional Encoder Representations from Transformers
(BERT) and achieved 64.96%, which effectively alleviated the
lack of information in the domain-specific field [39].

The SeeDev task [40] aims to facilitate the extraction of complex
events on regulations in plant development from scientific
articles, with a focus on events describing the genetic and
molecular mechanisms involved in Arabidopsis thaliana seed
development. The SeeDev task involves extracting 21 relation
categories, involving 16 entity types, to accurately reflect the
complexity of the regulatory mechanisms of seed development,
which is a major scientific challenge. SeeDev was originally
proposed at BioNLP-OST 2016 [6], and in 2019, the evaluation
methodology focused more on the contribution of biology. It
includes full and binary relation extraction, in which we mainly

study the binary relation extraction subtask SeeDev-binary. To
address this problem, most researchers have used traditional
supervised machine learning approaches. These systems design
artificial templates or manually extract many features based on
domain-specific knowledge, such as linguistic features, semantic
features, and syntactic information, which are added to the
system as feature representations. Kernel-based machine
learning algorithms such as SVM and Bayesian are then used
to detect the relation categories, which are widely used for IE.
For instance, the UniMelb team [41] developed an event
extraction system using rich feature sets and SVM classifiers
with a linear kernel. In addition, the MIC-CIS team [42] used
an SVM combined with linguistic features to achieve optimal
results on BioNLP-OST 2019. As the DL model gradually
became the main research method, the DUTIR team [13]
innovatively used a DL model based on distributed features and
a CNN model [15]. The YNU-junyi team [14] integrated the
LSTM model [18] based on a CNN model to address the
problem that CNN alone cannot capture the long-range
dependence of sequences, and they obtained an F1 score of
34.18% on the SeeDev-binary task of BioNLP-OST 2019.

Methods

Overview
In this section, we describe our proposed model for the 2
biomedical relation extraction tasks in detail. The overall
architecture is shown in Figure 1. The preprocessing of the data
sets is described in the first part. In the second part, we introduce
a series of distributed semantic features used in our method,
and the multi-head attention mechanism used on them is
introduced in the third part. The fourth part explains the
construction of the syntactic dependency feature. In the fifth
part, we introduce the classification and training details. Finally,
we present the training and hyperparameter settings.
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Figure 1. The overall architecture of our proposed model with global semantic feature based on feature combination and multi-head attention as well
as syntactic dependency feature. Dist_1: distance embedding corresponding to the first entity in a sentence; Dist_2: distance embedding corresponding
to the second entity in a sentence; entity type: entity type embedding; POS: part-of-speech embedding; Word: word embedding.

Data Preprocessing
In the data preprocessing phase, we used TEES [12,31] to run
a text preprocessing pipeline. The TEES system splits the text
into sentences using the GENIA Sentence Splitter [43] and
parses the sentences through the integrated the Brown
Laboratory for Linguistic Information Processing parser [44]
with the biomedical domain model [45] to obtain the tokens,
POS tags, and parse graphs for each word. Then, the phrase
structure trees obtained by the parser are further processed using
the Stanford conversion tool [46] to obtain the syntactic
dependency graph.

The BB-rel and SeeDev-binary tasks are relation extraction
tasks, which detect whether and what relations exist between 2
annotated entities in biomedical texts. For example, in the
sentence “The percentage of penicillin-resistant N. gonorrhoeae
isolated in the region over the decade varied considerably,” in
which N. gonorrhoeae is a microorganism-type entity and
“percentage” is a phenotype-type entity, we need to detect
whether there is a relationship between them and the category
of the relation. There are usually 2 solutions to the relation
extraction task: the first is to identify whether there is a relation
between entity pairs in a sentence and then classify a correct
category [47], and the second method is to combine the 2 steps
of identification and classification into 1 step [13]. This paper
adopts the second method, which regards nonrelation as a

category of relationships and carries out multi-category
classification.

In the training and validation sets of the BB-rel and
SeeDev-binary tasks, only positive instances were labeled.
However, in the prediction phase, there may be a nonrelation
between 2 candidate entities; therefore, it is necessary to
manually construct negative instances in the training phase.
After the biomedical texts are divided into sentences, we
enumerate each entity pair in the sentence and judge the
unlabeled instances as nonrelational. Because the biomedical
relation extraction of SeeDev-binary and BB-rel tasks is under
the constraint of regulation, there must be no relation between
some entity types. For example, in the BB-rel task, there must
be no biomedical relation between the entity of geographic type
and the entity of phenotype type. Therefore, we need to further
eliminate the entity pairs that do not comply with the regulations.

In the data sets of the 2 tasks, not only do the entities of a
relation appear in the same sentence (intrasentence) but also the
entities of a relation may be in different sentences
(intersentence), which is a great challenge regarding biomedical
relation extraction tasks [35]. In our method, we only considered
intrasentence relations and ignored intersentence relations. There
are 2 difficulties involved in the intersentence relation: one is
that the reasoning relationship is difficult and complex; the other
is that the number of negative instances increases exponentially,
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which leads to an extreme imbalance of positive and negative
samples, resulting in performance degradation of the model.
Therefore, all existing systems only extract intrasentence
relations without considering intersentence relations [35,40].
In addition, an instance is eliminated if there is no syntactic
dependency path between the 2 candidate entities.

Distributed Semantic Representation
Our method extracts global semantic features from a full
sentence through a combination of several distributed features
and a multi-head attention mechanism. Domain-specific word
embedding, POS embedding, entity-type embedding, distance
embedding, and PE were integrated into our model.

Word embedding is a frequently used distributed representation
model that encodes rich semantic information into vectors. The
sequence of a full sentence of length n can be represented as
{w1,e1,...,e2,wn}, where e1 and e2 represent entity pairs. We
initialized our word embeddings with a pretrained
200-dimensional biomedical word embedding model [23], which
was trained on PubMed and PMC abstracts, and full texts
contained an unannotated corpus of 5 billion tokens. The
pretrained embedding model was trained using the word2vec
tool with the skip-gram model [48]. We only used the most
frequent 100k words to build dictionary D, and the unknown
words in the data sets were randomly initialized. Taking the
BB-rel task as an example, it is possible that the words of entity
are not in dictionary D, so we add the words “Microorganism,”
“Habitat,” “Geographical,” and “phenotype” to the dictionary
and initialize them randomly. If an entity is of microorganism
type and is not in the word embedding model, it will be replaced
by the word “Microorganism.” Through the pretrained word
embedding matrix, we can transform the sequence of tokens in

a full sentence into a vector sequence . We also used POS
embedding [24] to encode the POS for words in a sentence,
which usually plays an important role. The POS embedding
was randomly initialized and fine-tuned during the training
phase.

The combination of different types of entities has different
probabilities for some relations; therefore, the entity type is an
important factor for prediction [13]. As the 2 biomedical relation
extraction tasks are conditionally constrained, they do not
involve the direction between entity pairs, so the entity-type
sequence only needs one chain to represent. Therefore, the
entity-type sequence can be expressed as {−1,t1,...,t2,−1}, where
nonentity words are labeled as −1. Through a randomly
initialized type embedding matrix, the entity-type vector

sequence can be represented as .

The distance sequence is divided into 2 chains, namely, the
distance from the current word to the 2 candidate entities. In
our method, relative distance [25] is used to measure the distance
between the current word and an entity, which can be formulated
as equation 1, where l is the absolute distance and s is the
maximum distance in the data sets. As the relative distance is
not an integer, it is necessary to construct a distance dictionary
and use the distance embedding matrix to generate the
distance-vector sequence.

As we use the multi-head attention model to deal with the
combination of a series of distributed features without using
any time series model, we have to inject some absolute position
information of words into the model; therefore, we introduce
PE with reference as shown in the study by Vaswani et al [30].
In our method, the PE vectors have the same dimension dword

as the word embedding, and then PE vectors can be calculated
according to the sine and cosine functions of the frequencies.
The formulas are given in equations 2 and 3, where pos is the
position and i represents the i-th dimension of one word. Finally,
the position information was injected into the model by adding
the PE vector into the word embedding.

Finally, a series of distributed features is concatenated, and each

word wi in the sentence can be represented as . This
comprehensive distributed feature is sent to the multi-head
attention layer to extract the global semantic features of the full
sentence.

Multi-Head Attention Layer
In recent years, a series of attention-based models have been
applied to relationship extraction tasks with remarkable success
[49,50]. The core idea of the attention mechanism is to locate
key information from text by assigning attention scores. At
present, the most widely used attention models are additive
attention [26] and dot-product attention [30]. In the study by
Vaswani et al [30], the multi-head attention mechanism was
proposed as the main component unit of the transformer model.
In this model, attention can be used to compute the output of a
series of values through value mapping to a set of key-value
pairs, that is, to calculate a weighted sum of the values, where
the weight assigned to each value is computed by a query with
the corresponding key. In our method, the multi-head attention
mechanism is used as an encoder to extract the global semantic
feature of the full sentence, and each attention head is calculated
by integrating the position information and using the scaled
dot-product attention function.

The overall structure of scaled dot-product attention and
multi-head attention is shown in Figure 2, similar to that shown
in the study by Vaswani et al [30]. Here, Q, K, and V are the
same, which are the feature combinations from the full sentence;
therefore, multi-head attention can also be understood as a form
of self-attention. Eight attention heads based on scaled
dot-product attention were used to extract features, which
divided feature combinations into 8 channels. For each channel,
the embedding of each word in the sentence with length n can
be expressed as zi. Through the weights (Wq, Wk, Wv) that are
not shared between channels, we can get the vector expression
of a word in different subspaces, namely (qi, ki, vi), as shown in
equation 4.
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The attention weight vector ai corresponding to i-th query is
calculated by the dot product of the query vector and key vector

and then scaled by and calculated by a Softmax function,

where dk is the dimensionality of the feature combination and
n is the length of the sentence, as shown in equation 5.

By multiplying the attention weight vector ai by the value
sequence of length n, a feature vector ci is obtained, which is a
weighted sum of the values, as shown in equation 6.

Therefore, the attention head of each channel is a concatenated
matrix of n feature vectors, which can be expressed as hi using

equation 7. Each attention head can encode the semantic
information of a sentence in subspaces with different
representations.

hi = [c1;c2;...;cn] (7)

Furthermore, we concatenated multiple attention heads in the
last dimension to obtain the multi-head attention feature of the
full sentence, as shown in equation 8.

MultiHead = [h1;h2;...;h8] (8)

Similar to the transformer model, we also used a fully connected
neural network behind the multi-head attention model and used
a residual join, as shown in Figure 1. Finally, the global semantic
features of the full sentence are obtained using a max-pooling
operation.

Figure 2. Scaled dot-product attention function (left). Multi-head attention consists of several scaled dot-product attention (right). Concat: concatenate;
K: key; Matmul: matrix multiply; Q: query; V: value.

Syntactic Dependency Feature
The syntactic dependency features for the proposed DL model
are generated based on the shortest dependency path connecting
2 candidate entities and the dependency type in the dependency
graph. The shortest dependency path contains the most important
terms related to characterizing the extraction and has been
successfully applied in relation extraction many times [51,52].
An example of syntactic dependency is shown in Figure 3,
where “Enterococcus” is a microorganism-type entity and
“Gram-positive” is a phenotype-type entity. We can observe
that the dependency parse between the words is directional. To
simplify the calculation, we use the method by Mehryary et al
[31] to convert the dependency relation of a sentence into an
undirected graph and then find the shortest path between 2
candidate entities using the Dijkstra algorithm. In the case of
BB-rel task, we always process from a microorganism-type
entity to location entities (either a habitat or a geographic entity)
or phenotype entity, regardless of their positions in sentences.
Therefore, in the example in Figure 3, the shortest dependency
path sequence is (“Enterococcus,” “cause,” “infection,”

“Gram-positive”) and the dependency-type sequence is (nsubj,
prep_of, amod).

In this case, the sequence of the shortest dependency path with
m tokens can be represented as {e1,w2,...,e2}, where e1 and e2

represent the entity pairs at the head and end of the sequence,
respectively. We used the previously mentioned pretrained
200-dimensional biomedical word embedding model [23]. Using
the pretrained word embedding model, we can transform the

dependent path sequence into a vector sequence . For the

dependent-type sequence {t1,t2,...,tm−1}, we transform it into 
by randomly initializing the embedding matrix and filling it to
the same length as the dependency path. The 2 vector sequences

are concatenated, and i-th word can be denoted as .

To learn the local features of syntactic dependency from the
dependency path and dependency type, LSTM [53] are the most
frequently used DL models. By observing the length of the
shortest dependency path, it is found that most of the interentity
dependency lengths are 2 to 5, which belongs to the feature
extraction of super-short sequences. Compared with LSTM,
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CNN is more suitable for super-short and concise sequences
(Yin, W, unpublished data, February 2017). In addition, CNN
are more suitable for parallel computing. Hence, we introduced
a multifilter CNN model [54] and a max-pooling operation to

learn syntactic dependency features, which has the advantage
of learning hidden and advanced features from sentences with
multiple channels.

Figure 3. An example of syntactic dependency between phenotype-type entity “Enterococcus” and phenotype-type entity “Gram-positive”; solid lines
are entity dependencies, and dashed lines are irrelevant dependencies. advmod: adverbial modifier; amod: adjectival modifier; cop: copula; det: determiner;
nsubj: nominal subject; prep_of: preposition of.

Classification and Training
In the output layer, we concatenate the global semantic feature
vector and syntactic-dependent feature vector of the sentence
to obtain a high-quality feature representation of the instance.
Furthermore, the dropout algorithm [55] is used to prevent
overfitting, the Softmax function is used to classify biomedical
relations, and the probability distribution over each relation
category is obtained.

The 2 tasks included a training set, validation set, and test set.
In the training phase, taking the multi-classification cross
entropy as the objective function, the Adaptive moment
estimation optimization algorithm [56] with a learning rate of
0.001 was used to update the neural network parameters. The
training times determine the generalization performance of the
model; that is, too few training epochs lead to underfitting, and
overtraining leads to overfitting. Therefore, the traditional early
stopping method is adopted in our method, that is, training is
stopped when the performance on the validation set is no longer
improved. The experimental results show that the training epoch
number is not a fixed value and that the model generally
converges in approximately 4 epochs.

The data sets of the 2 biomedical relation extraction tasks were
relatively small, and the DL model had more training
parameters. Consequently, the initial random state of the model
may have a significant impact on the final performance of the
model, which was verified by a pre-experiment. To reduce the
impact of the initialization state on the model, 10 different
random initializations were used to evaluate the model, which
was to train the same model structure with different random
seeds. Finally, the model with the best F1 score on the validation
set was used as the final model. We used the final model to
predict the test set and used the results to evaluate our model
on a web-based evaluation service.

Parameter Settings
Through the pre-experiment and evaluation based on the
validation set, the hyperparameters of our model were
determined. The dimensions of domain-specific word
embedding, POS embedding, entity-type embedding, distance
embedding, PE, and dependency-type embedding were 200,
200, 200, 100, 200, and 200, respectively, and the embedding
matrix was fine-tuned during the training phase. For the

multi-head attention mechanism, we adopted a single-layer
multi-head attention model, in which 8 parallel attention heads
were used, and the number of units in the linear layer of each
attention head was the same as the input. To extract the syntactic
dependency feature, the number of convolution layers was 1,
the number of filters was set to 128, and the window sizes were
2, 3, and 4. In addition, the LSTM model was used in the
experiment, and the output dimension of the hidden units was
set as 128. For the combination of global semantic features and
syntactic dependency features, the dropout rate was 0.5. The
batch size was set to 8. Finally, we used the DL framework
Pytorch [57] to implement our model and carry out the
experimental process.

Ethics Approval
The data set and methods used in this work are publicly available
and do not involve any ethical or moral issues.

Results

Data Set and Evaluation Metrics
We conducted a series of experiments on the BB-rel and
SeeDev-binary task data sets to evaluate our proposed approach.

The BB-rel task in BioNLP-OST 2019 is quite different from
the previous versions, which integrate the new entity type of
phenotype and relation category of Exhibits. Therefore, this task
involves 4 entity types, microorganism, habitat, geography,
and phenotype, and 2 relation categories between entity pairs,
Lives_In and Exhibits. In practice, the nonrelation between
entity pairs is also regarded as a prediction category, so this
task is treated as a multi-classification relation extraction task.
In addition to intrasentence relations, the BB-rel task also
considers intersentence relations, which remains a significant
challenge. The proportion of intersentence relationships in the
corpus was 17.5%. In our method, we consider only the
intrasentence relationship. We adopted the method described
in the data preprocessing section to segment the text into
sentences, construct negative instances, and remove instances
that do not comply with the constraint of regulation. In this
manner, we constructed 1996 training instances, including 943
related instances; 1040 validation instances, including 517
related instances; and 1414 test instances. The detailed
distribution of the BB-rel task data set after the preprocessing
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procedure is summarized in Table 1. Owing to different data
revision and processing methods, the number of instances may
be inconsistent with other studies.

We used the predictions of the test set to evaluate our methods
on the web-based evaluation service [58]. Its evaluation metrics
are similar to those of previous versions, including precision,
recall, F1 score, and the results of the intrasentence and
intersentence relations of various relation categories [35].

The SeeDev-binary task corpus is a set of 87 paragraphs from
20 full articles on the seed development of Arabidopsis thaliana,
with 17 entity types and 22 relation categories manually
annotated by domain experts. There are 3575 annotated
relations, including 1628 relations for the training sets, 819
relations for the validation sets, and 1128 relations for the test
sets. We used the same method to preprocess the data set and
eliminate intersentence relations. Then, 18,997 training instances
were constructed, including 1508 related instances; 8955

validation instances were constructed, including 746 related
instances; and 12,737 test instances were constructed, and the
detailed distribution is shown in Table 2. It can be seen that
there is an extreme imbalance where the number of nonrelation
samples far exceeds the positive samples, which is more
challenging and will negatively affect the performance of the
model [47]. Therefore, to alleviate this problem, through a series
of pre-experiments, we finally decided to randomly delete 90%
(15,740/17,489) of the negative samples in the training stage,
but the validation and test sets were not reduced.

The SeeDev-binary is also applicable to the web-based
evaluation services. Compared with SeeDev-binary 2016, task
organizers have added new evaluation metrics to emphasize
biomedical contributions. The evaluation metrics are global
results for all relations, the results of intrasentence relations,
and type clusters, each of which has a precision, recall, and F1

score.

Table 1. Detailed statistics of the relation extraction of Bacteria-Biotope task data set. The statistics of the test set is none because the organizer has
not released the annotated relation on the test set.

Test setValidation setTraining setCategory

141410401996Total

None377659Lives_in

None140284Exhibits

None517943Lives_in and Exhibits

None5231053Nonrelation

Table 2. Detailed statistics of the binary relation extraction of plant seed development task data set. The number of relationships in the test set is none
because the number of relationships cannot be determined after preprocessing.

Test setValidation setTraining setCategory

12,737895518,997Total

None7461508All relation

None820917,489Nonrelation

Experiment Results
In the BB-rel task, we used the proposed DL model based on
the multi-head attention mechanism and syntactic dependency
feature to detect biomedical relations. Our proposed method
finally obtained an F1 score of 65.56% on the test set; the details
are shown in Table 3. Our method has an F1 scores of 62.36%
and 73.62% for the relation category of Lives_In and Exhibits,
respectively, and performs better in the relation category
Exhibits. Moreover, it can be noted that the F1 scores in the
identification of intrasentence relations of Lives_In and Exhibits
are 69.00% and 77.67%, which are higher than the
comprehensive F1 score. This is because our preprocessing
method only deals with intrasentence relations; therefore, it
performs better in the identification of intrasentence relations.

Table 4 lists the comparison between our method and other
previous systems in BB-rel task. The first 3 lines in the table
are the official top 3 systems (10 participated), among which
Yuhang_Wu used a multilayer perceptron [35], AliAI [39] used
a multitask architecture similar to BERT, and whunlp [37]

achieves state-of-the-art performance by using dependency
graph and attention graph convolution neural network. The
fourth line is the baseline provided by the task organizer, which
uses a co-occurrence method. Owing to the huge difference
between the model architecture of these systems, only the final
F1 score is used for comparison. The F1 score of our method is
5.07% higher than the third-placed Yuhang_Wu and 0.60%
superior to the second-placed AliAI, who achieved the result
of 64.96%. It is worth noting that our model achieved the best
precision of 69.50%, which is superior to all existing systems
in BB-rel task. This result reveals that our method tends to
predict fewer positive classes, that is, it performs better on false
positives than other models. In conclusion, this comparison
indicates that our proposed model is effective and achieved
excellent performance in BB-rel task.

In the SeeDev-binary task, our proposed method achieved an
F1 score of 38.04% for all relations in the test set. The detailed
results for the specific relation categories are shown in Table
5. As shown in the table, 7 types of relation categories were not
detected, such as Is_Involved_In_Process and Occurs_During.
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Through the statistical analysis of the data set, it was found that
there were few positive instances of these relation categories in
the training set, which was obviously responsible for the uneven
classification.

Table 6 lists the results of comparison between our method and
other systems for the SeeDev-binary task. The first 2 systems
are the top 2 of the official ranks in BioNLP-OST 2019. Among
them, the first-placed MIC-CIS [42] used linguistic feature and
SVM classifier to achieve an F1 score of 37.38%, whereas
YNU-junyi [14], the second-ranking system, obtained an F1

score of 34.18% using a DL model combined with distributed
representation, CNN and LSTM model. The results show that
our method achieves the state-of-the-art performance in both
category of all relation and intrasentence relation, with F1 scores
of 38.04% and 38.68%, respectively. In the all-relation category,
the F1 score of our system outperformed the first-ranking system
by 0.66% and the second-ranking system by 3.86%. Meanwhile,

the result is similar to BB-rel task; our system performed
excellently in precision. In All relation and intrasentence
relation, the precision surpassed the first-ranking system by
7.30% and 5.30%, respectively. This once again proves that our
model has a lower false-positive rate than other models.
Therefore, we can conclude that our model can take advantage
of both the multi-head attention mechanism and syntactic
dependency feature to achieve excellent performance in
biomedical relation extraction tasks.

The results by cluster are also important evaluation metrics in
the SeeDev-binary task, and the comparison of F1 scores is
shown in Table 7. It can be seen from the table that our model
achieves optimal results in 3 cluster categories: function,
regulation, and genic regulation, and it performs poorly in 2
cluster categories: composition membership and interaction,
but the overall performance of our proposed model is generally
satisfactory.

Table 3. Detailed results of our method on the test set of relation extraction of Bacteria-Biotope task.

F1 scoreRecallPrecisionCategory

65. 56 a62.0569.50Lives_In and Exhibits

62.3656.6469.38Lives_In

69.0068.2769.75Lives_In (intrasentence)

73.6277.9269.77Exhibits

77.6786.9670.18Exhibits (intrasentence)

aThe final F1 score is shown in italics.

Table 4. Comparison of results between our method and other systems for the relation extraction of Bacteria-Biotope task.

F1 scoreRecallPrecisionModels

66.3870.22 a62.94whunlp [37]

64.9662.0168.20AliAI [39]

60.4967.0355.10Yuhang_Wu [35]

63.4780.1352.54Baseline [35]

65.5662.0569.50Our model

aThe maximum results are shown in italics.
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Table 5. Detailed results of our method on the test set of the binary relation extraction of plant seed development task.

F1 scoreRecallPrecisionBinary relation type

35.9632.2840.59Exists_In_Genotype

000Occurs_In_Genotype

16.6710.0050.00Exists_At_Stage

000Occurs_During

42.0346.7738.16Is_Localized_In

000Is_Involved_In_Process

000Transcribes_Or_Translates_To

58.2155.7160.94Is_Functionally_Equivalent_To

36.3625.0066.67Regulates_Accumulation

29.4941.5622.86Regulates_Development_Phase

33.1850.7224.65Regulates_Expression

000Regulates_Molecule_Activity

49.4764.7140.04Regulates_Process

000Regulates_Tissue_Development

46.1537.5060.00Composes_Primary_Structure

57.1466.6750.00Composes_Protein_Complex

22.2219.3526.09Is_Protein_Domain_Of

36.2952.3327.78Is_Member_Of_Family

64.6247.73100.00Has_Sequence_Identical_To

25.0014.8180.00Interacts_With

17.7812.5030.77Binds_To

000Is_Linked_To

38.04 a42.0234.75All relations

aThe final F1 score is shown in italics.

Table 6. Comparison of results between our method and other systems for the binary relation extraction of plant seed development task.

Intrasentence relationAll relationModels

F1 scoreRecallPrecisionF1 scoreRecallPrecision

37.8853.0829.4537.3851.15 a27.45MIC-CIS [42]

34.6547.5627.2534.1845.8327.25YNU-junyi [14]

38.6843.6134.7538.0442.0234.75Our method

aThe maximum results are shown in italics.

Table 7. Comparison of F1 scores by cluster between our method and other systems for the binary relation extraction of plant seed development task.

InteractionComposition
membership

Genic regulationRegulationFunctionComparisonAllModels

34.2440.25 a33.8434.7817.3947.9237.38MIC-CIS [42]

21.8734.6823.0034.2125.0050.4534.18YNU-junyi [14]

22.0232.7234.0440.7825.5349.6838.04Our method

aThe maximum results are shown in italics.
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Discussion

Overview
In this section, we construct ablation experiments to analyze
the effectiveness of multi-head attention mechanism and
syntactic dependency feature. To avoid the instability of a single
model, the mean F1 score on the test set was used to measure
model performance. Subsequently, we conducted an error
analysis and manually analyzed the correct and incorrect
predictions.

Effectiveness of Multi-Head Attention Mechanism
We first analyzed the effectiveness of the multi-head attention
mechanism in the global semantic feature extraction of a full
sentence compared with the traditional CNN, BiLSTM, and
additive attention models [26]. All models use the distributed
features and syntactic dependency features that we use, such as
domain-specific word embedding. Owing to the application of
PE in the multi-head attention mechanism, we integrate PE into
all models for a fair comparison. Table 8 shows a comparison
of the mean F1 scores using various models to encode global
semantic features.

From the table, the first 2 lines are the results of extracting the
feature representation of sentences using the CNN or BiLSTM
model alone, among which the result of the BiLSTM model
was slightly better. A possible explanation is that the length of
sentences in instances is generally large, and the CNN model
can only process window information and rely on a pooling
operation to summarize the overall structure of the sentences.
However, the BiLSTM model is more suitable for sequence
modeling and encoding longer sequence information using a

bidirectional memory network. They were then combined with
an additive attention model. Compared with CNN and LSTM
models alone, the application of the attention model improved
F1 scores by 1.82% and 1.22% on BB-rel and 1.31% and 1.11%
on SeeDev-binary, respectively. In addition, the performance
of CNN with attention exceeds that of BiLSTM with attention
on the BB-rel task, possibly because the attention mechanism
fills the shortcoming that CNN cannot capture the long-range
dependence of sentences. Hence, these results suggest that the
attention mechanism can effectively improve the performance
of the model by focusing on the key information of the token
sequence and learning the overall structure of a sentence.

Finally, the multi-head attention mechanism is introduced into
our model without any CNN or recurrent neural network
structure, and the optimal result is achieved. The mean F1 score
was 63.13% and 36.37% for the 2 tasks, which are 1.11% and
1.24% higher than that of the BiLSTM-attention model and
0.96% and 1.45% higher than that of the CNN-attention model,
respectively. The results show that the multi-head attention
mechanism significantly outperforms the additive attention
model in biomedical relation extraction. To some extent,
additive attention can be understood as a single-head attention
model that can only learn the global semantic features in one
representation space. However, the advantage of the multi-head
attention mechanism is that it captures the global semantic
information in different representation subspaces and integrates
the contextual information of relevant words into the current
word from multiple channels. The experimental results
demonstrate that the multi-head attention mechanism can extract
more comprehensive feature representations and effectively
improve the performance of the relation extraction model.

Table 8. The comparison of mean F1 score of using different models to extract global semantic features in the relation extraction of Bacteria-Biotope
task (BB-rel) and the binary relation extraction of plant seed development task (SeeDev-binary).

SeeDev-binaryBB-relGlobal semantic fea-
tures

Mean (SD)MaximumbMinimumaMean (SD)MaximumbMinimuma

33.61 (1.33)35.8531.6760.35 (2.11)63.2657.26CNNc

34.02 (1.53)36.2832.3960.80 (1.88)63.8057.89BiLSTMd

34.92 (1.47)37.5232.8962.17 (1.69)65.0159.69CNN-attention

35.13 (1.18)37.3033.6162.02 (1.45)64.3859.80BiLSTM-attention

36.37 (1.13)38.0434.4763.13 ( 1.55 )65.5660.68 eMulti-head attention

aThe lowest F1-scores of 10 different random initializations.
bThe highest F1-scores of 10 different random initializations.
cCNN: convolutional neural network.
dBilSTM: bidirectional long short-term memory network.
eThe maximum results are shown in italics.

Effectiveness of Syntactic Dependency Feature
Furthermore, we analyzed the effectiveness of the syntactic
dependency feature in our model. The length of the shortest
dependency paths, based on syntactic analysis, is mostly 2 to
5, which belongs to a super-short sequence. Therefore, we only

tried to use the CNN and BiLSTM models for feature extraction,
and the results are shown in Table 9. The first line shows the
results that the model does not use syntactic dependency
features, and the average F1 scores were 60.85% and 34.60%
for BB-rel and SeeDev-binary tasks, respectively. When the
LSTM model was used to extract syntactic dependency features,
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the mean F1 scores of the model were 62.88% and 36.06%.
When we used the CNN model, the performance of the model
reached optimal F1 scores, which improved to 63.13% and
36.37% on BB-rel and SeeDev-binary tasks, respectively. The
results also show that the CNN model is superior to LSTM in

terms of feature extraction for super-short sequences. By
comparison, it can be demonstrated that the integration of
syntactic dependency features can enable the model to learn
syntactic information between entity pairs through a dependency
graph, which can effectively improve the performance of the
model.

Table 9. The comparison of mean F1 scores of using different models to extract syntactic dependency features in the relation extraction of Bacteria-Biotope
task (BB-rel) and the binary relation extraction of plant seed development task (SeeDev-binary).

SeeDev-binaryBB-relSyntactic dependency
feature

Mean (SD)MaximumbMinimumaMean (SD)MaximumbMinimuma

34.60 (1.16)36.5332.8960.85 (1.65)63.7058.51No-use

36.06 (1.07)37.9034.55 d62.88 (1.66)65.1659.93LSTMc

36.37 (1.13)38.0434.4763.13 (1.55)65.5660.68CNNe

aThe lowest F1-scores of 10 different random initializations.
bThe highest F1-scores of 10 different random initializations.
cLSTM: long short-term memory network.
dThe maximum results are shown in italics.
eCNN: convolutional neural network.

Error Analysis
To verify the advantages and weaknesses of our proposed model,
we compared the experimental results with those of other
existing models. We find that our system performs better in
terms of the precision of the 2 relation extraction tasks, far
surpassing other models, which means that our approach has a
lower false-positive rate than the other models. One possible
explanation is that our model structure introduces the shortest
dependent paths compared with other systems, which can more
definitely identify the biomedical relationship between entity
pairs.

The 2 relationship extraction tasks are constrained under
regulations; therefore, it is necessary to investigate whether
there is a situation in which the predicted relationship does not
conform to the rules. For example, in the sentence “An
evaluation of selective broths based on the bi-selenite ion and
on hypertonic strontium chloride in Salmonellae detection in
egg products,” the entity “Salmonellae” is of microorganism
type, and the entity “egg products” is of habitat type. There
may be a Lives_In relationship between them, but if it is
predicted as an Exhibits relationship, it must be wrong. Through
an analysis of the prediction results on the validation set, it was
found that this situation rarely occurs. Therefore, our research
should focus on whether a biomedical relationship exists
between entity pairs.

In addition, we manually analyzed the correct and false
predictions from the validation set compared with existing DL
models (structures similar to YNU-junyi [14]). We found that
our proposed model generally performed better on long
sentences. A complicated sentence structure and long distance
between 2 entities are more likely to lead to relationship
classification errors. For example, in the sentence “The
prevalence of H. pylori infection in dyspeptic patients in Yemen
is very high, the eradication rate with standard triple therapy

was unsatisfactory probably because of widespread bacterial
resistance due to unrestricted antibiotic use,” “H. pylori” is a
microorganism entity, “widespread bacterial resistance due to
unrestricted antibiotic use” is a phenotypic entity, and there is
an Exhibits relationship between them. The DL model, similar
to YNU-junyi, predicted it as a nonrelationship category, but
our model can better detect it, probably because our proposed
model can capture the long-term dependency between words
in a long sentence.

Conclusions
This paper focuses on the 2 relation extraction tasks in
BioNLP-OST 2019: BB-rel task and SeeDev-binary task, which
aim to promote the development of fine-grained IE from
biomedical texts. For these tasks, we propose a DL model based
on the combination of a series of distributed features to detect
relations, introduce a multi-head attention mechanism to extract
global semantic features, and use syntactic-dependent features
to enrich the feature representation. Our proposed method
obtained F1 scores of 65.56% and 38.04% on the test sets of the
2 tasks and achieved state-of-the-art results in the SeeDev-binary
task. Through ablation experiments, the effectiveness of
multi-head attention and syntactic dependency features was
demonstrated. The multi-head attention mechanism allows the
model to learn relevant semantic information in different
representation subspaces at different positions and integrates
the contextual information of relevant words in the sentence
into the current word representation, which greatly improves
the performance of the biomedical relation extraction model.

Despite the excellent performance of our model on BB-rel and
SeeDev-binary tasks, there are still many challenges. In
particular, the intersentence relation is not considered in our
method, which remains a difficult problem in biomedical relation
extraction tasks. This situation is because of the complexity of
the reasoning relationship and the extreme imbalance between
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the positive and negative examples. In contrast, the use of a DL
model to extract high-quality features from small training data
sets is a problem that needs to be solved. In future work, we

will consider using a semisupervised learning method or
transformer model, such as BERT, to better solve the topic of
biomedical relation extraction.

 

Acknowledgments
This study was supported by the Youth Science and Technology Talent Growth Project of the general university in Guizhou
Province (黔教合KY字 [2022] 281号), the Zunyi Science and Technology Cooperation Fund (遵市科合HZ字 [2020] 81号),
and the Guizhou Science and Technology Cooperation Platform Talent Fund (黔科合平台人才 [2018] 5772-088, 黔科合平台
人才 [2019]-020).

Conflicts of Interest
None declared.

References
1. Mooney RJ, Bunescu R. Mining knowledge from text using information extraction. SIGKDD Explor Newsl 2005 Jun

01;7(1):3-10. [doi: 10.1145/1089815.1089817]
2. Krallinger M, Erhardt RA, Valencia A. Text-mining approaches in molecular biology and biomedicine. Drug Discov Today

2005 Mar 15;10(6):439-445. [doi: 10.1016/S1359-6446(05)03376-3] [Medline: 15808823]
3. Zweigenbaum P, Demner-Fushman D, Yu H, Cohen KB. Frontiers of biomedical text mining: current progress. Brief

Bioinform 2007 Sep;8(5):358-375 [FREE Full text] [doi: 10.1093/bib/bbm045] [Medline: 17977867]
4. Blaschke C, Andrade MA, Ouzounis C, Valencia A. Automatic extraction of biological information from scientific text:

protein-protein interactions. Proc Int Conf Intell Syst Mol Biol 1999:60-67. [Medline: 10786287]
5. Segura-Bedmar I, Martínez P, de Pablo-Sánchez C. Extracting drug-drug interactions from biomedical texts. BMC

Bioinformatics 2010 Oct 06;11(S5):P9 [FREE Full text] [doi: 10.1186/1471-2105-11-s5-p9]
6. Nédellec C, Bossy R, Kim JD. Proceedings of the 4th BioNLP Shared Task Workshop. 2016 Presented at: BioNLP '16;

August 13, 2016; Berlin, Germany. [doi: 10.18653/v1/w16-30]
7. BioNLP Open Shared Tasks 2019. URL: https://2019.bionlp-ost.org/home [accessed 2022-09-01]
8. Kambhatla N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations.

In: Proceedings of the ACL 2004 on Interactive poster and demonstration sessions. 2004 Presented at: ACLdemo '04; July
21-26, 2004; Barcelona, Spain p. 22-es. [doi: 10.3115/1219044.1219066]

9. Nguyen TH, Grishman R. Employing word representations and regularization for domain adaptation of relation extraction.
In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
2014 Presented at: ACL '14; June 22-27, 2014; Baltimore, MD, USA p. 68-74. [doi: 10.3115/v1/p14-2012]

10. Nguyen TV, Moschitti A, Riccardi G. Convolution kernels on constituent, dependency and sequential structures for relation
extraction. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. 2009 Aug
Presented at: EMNLP '09; August 6-7, 2009; Singapore, Singapore p. 1378-1387. [doi: 10.3115/1699648.1699684]

11. Sun L, Han X. A feature-enriched tree kernel for relation extraction. In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). 2014 Presented at: ACL '14; June 22-27, 2014;
Baltimore, MD, USA p. 61-67. [doi: 10.3115/v1/p14-2011]

12. Björne J, Salakoski T. TEES 2.1: Automated annotation scheme learning in the BioNLP 2013 Shared Task. In: Proceedings
of the BioNLP Shared Task 2013 Workshop. 2013 Presented at: BioNLP '13; August 9, 2013; Sofia, Bulgaria p. 16-25
URL: https://aclanthology.org/W13-2003.pdf

13. Li H, Zhang J, Wang J, Lin H, Yang Z. DUTIR in BioNLP-ST 2016: utilizing convolutional network and distributed
representation to extract complicate relations. In: Proceedings of the 4th BioNLP shared task workshop. 2016 Presented
at: BioNLP '16; August 13, 2016; Berlin, Germany p. 93-100 URL: https://aclanthology.org/W16-3012.pdf

14. Li J, Zhou X, Wu Y, Wang B. YNU-junyi in BioNLP-OST 2019: Using CNN-LSTM Model with Embeddings for SeeDev
Binary Event Extraction. In: Proceedings of The 5th Workshop on BioNLP Open Shared Tasks. 2019 Presented at: BioNLP
'19; November 4, 2019; Hong Kong, China p. 110-114. [doi: 10.18653/v1/D19-5717]

15. LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. In: Arbib MA, editor. The Handbook of
Brain Theory and Neural Networks. Cambridge, MA, USA: MIT Press; Oct 1998:255-258.

16. Liu S, Tang B, Chen Q, Wang X. Drug-drug interaction extraction via convolutional neural networks. Comput Math Methods
Med 2016;2016:6918381 [FREE Full text] [doi: 10.1155/2016/6918381] [Medline: 26941831]

17. Zeng D, Liu K, Lai S, Zhou G, Zhao J. Relation classification via convolutional deep neural network. In: Proceedings of
COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. 2014 Presented at:
COLING '14; August 23-29, 2014; Dublin, Ireland p. 2335-2344 URL: https://aclanthology.org/C14-1220.pdf

JMIR Med Inform 2022 | vol. 10 | iss. 10 |e41136 | p.134https://medinform.jmir.org/2022/10/e41136
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1145/1089815.1089817
http://dx.doi.org/10.1016/S1359-6446(05)03376-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15808823&dopt=Abstract
https://europepmc.org/abstract/MED/17977867
http://dx.doi.org/10.1093/bib/bbm045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17977867&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10786287&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(11)00069-4
http://dx.doi.org/10.1186/1471-2105-11-s5-p9
http://dx.doi.org/10.18653/v1/w16-30
https://2019.bionlp-ost.org/home
http://dx.doi.org/10.3115/1219044.1219066
http://dx.doi.org/10.3115/v1/p14-2012
http://dx.doi.org/10.3115/1699648.1699684
http://dx.doi.org/10.3115/v1/p14-2011
https://aclanthology.org/W13-2003.pdf
https://aclanthology.org/W16-3012.pdf
http://dx.doi.org/10.18653/v1/D19-5717
https://doi.org/10.1155/2016/6918381
http://dx.doi.org/10.1155/2016/6918381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26941831&dopt=Abstract
https://aclanthology.org/C14-1220.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


18. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997 Nov 15;9(8):1735-1780. [doi:
10.1162/neco.1997.9.8.1735] [Medline: 9377276]

19. Zhang Y, Zheng W, Lin H, Wang J, Yang Z, Dumontier M. Drug-drug interaction extraction via hierarchical RNNs on
sequence and shortest dependency paths. Bioinformatics 2018 Mar 01;34(5):828-835 [FREE Full text] [doi:
10.1093/bioinformatics/btx659] [Medline: 29077847]

20. Sahu SK, Anand A. Drug-drug interaction extraction from biomedical texts using long short-term memory network. J
Biomed Inform 2018 Oct;86:15-24 [FREE Full text] [doi: 10.1016/j.jbi.2018.08.005] [Medline: 30142385]

21. Vu NT, Adel H, Gupta P, Schütze H. Combining recurrent and convolutional neural networks for relation classification.
In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 2016 Jun Presented at: NAACL '16; June 12-17, 2016; San Diego, California p. 534-539
URL: https://aclanthology.org/N16-1065/

22. Zheng S, Hao Y, Lu D, Bao H, Xu J, Hao H, et al. Joint entity and relation extraction based on a hybrid neural network.
Neurocomputing 2017 Sep;257:59-66. [doi: 10.1016/j.neucom.2016.12.075]

23. Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional semantics resources for biomedical text processing.
In: Proceedings of the 5th International Symposium on Languages in Biology and Medicine. 2013 Presented at: LBM '13;
December 12-13, 2013; Tokyo, Japan p. 39-44 URL: https://bio.nlplab.org/pdf/pyysalo13literature.pdf

24. Pasupa K, Seneewong Na Ayutthaya T. Thai sentiment analysis with deep learning techniques: a comparative study based
on word embedding, POS-tag, and sentic features. Sustain Cities Soc 2019 Oct;50:101615. [doi: 10.1016/j.scs.2019.101615]

25. Cormode G. Sequence distance embeddings. Department of Computer Science, The University of Warwick. 2003 Jan.
URL: https://www.dcs.warwick.ac.uk/report/pdfs/cs-rr-393.pdf [accessed 2022-09-01]

26. Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In: Proceedings of
the 3rd International Conference on Learning Representations. 2015 Presented at: ICLR '15; May 7-9, 2015; San Diego,
CA, USA URL: https://arxiv.org/abs/1409.0473

27. Luong MT, Pham H, Manning CD. Effective approaches to attention-based neural machine translation. In: Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing. 2015 Sep Presented at: EMNLP '15; September
17-21, 2015; Lisbon, Portugal p. 1412-1421 URL: https://aclanthology.org/D15-1166/

28. Yu AW, Dohan D, Luong MT, Zhao R, Chen K, Norouzi M, et al. QANet: combining local convolution with global
self-attention for reading comprehension. In: Proceedings of the 6th International Conference on Learning Representations.
2018 Presented at: ICLR '18; April 30-May 3, 2018; Vancouver, Canada URL: https://openreview.net/forum?id=B14TlG-RW

29. Wang Y, Huang M, Zhu X, Zhao L. Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing. 2016 Presented at: EMNLP '16; November
1-5, 2016; Austin, TX, USA p. 606-615 URL: https://aclanthology.org/D16-1058.pdf

30. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Joens L, Gomez AN, et al. Attention is all you need. In: Proceedings of the
2017 Advances in Neural Information Processing Systems. 2017 Presented at: NeurIPS '17; December 4-9, 2017; Long
Beach, CA, USA p. 5998-6008.

31. Mehryary F, Björne J, Pyysalo S, Salakoski T, Ginter F. Deep learning with minimal training data: TurkuNLP entry in the
BioNLP shared task 2016. In: Proceedings of the 4th BioNLP Shared Task Workshop. 2016 Presented at: BioNLP '16;
August 13, 2016; Berlin, Germany p. 73-81 URL: https://aclanthology.org/W16-3009.pdf [doi: 10.18653/v1/W16-3009]

32. Hua L, Quan C. A shortest dependency path based convolutional neural network for protein-protein relation extraction.
Biomed Res Int 2016;2016:8479587 [FREE Full text] [doi: 10.1155/2016/8479587] [Medline: 27493967]

33. Jettakul A, Wichadakul D, Vateekul P. Relation extraction between bacteria and biotopes from biomedical texts with
attention mechanisms and domain-specific contextual representations. BMC Bioinformatics 2019 Dec 03;20(1):627 [FREE
Full text] [doi: 10.1186/s12859-019-3217-3] [Medline: 31795930]

34. Deléger L, Bossy R, Chaix E, Ba M, Ferré A, Bessières P, et al. Overview of the bacteria biotope task at BioNLP shared
task 2016. In: Proceedings of the 4th BioNLP Shared Task Workshop. 2016 Presented at: BioNLP '16; August 13, 2016;
Berlin, Germany p. 12-22. [doi: 10.18653/v1/w16-3002]

35. Bossy R, Deléger L, Chaix E, Ba M, Nédellec C. Bacteria biotope at BioNLP open shared tasks 2019. In: Proceedings of
The 5th Workshop on BioNLP Open Shared Tasks. 2019 Presented at: BioNLP '19; November 4, 2019; Hong Kong, China
p. 121-131. [doi: 10.18653/v1/D19-5719]

36. Li L, Wan J, Zheng J, Wang J. Biomedical event extraction based on GRU integrating attention mechanism. BMC
Bioinformatics 2018 Aug 13;19(Suppl 9):285 [FREE Full text] [doi: 10.1186/s12859-018-2275-2] [Medline: 30367569]

37. Xiong W, Li F, Cheng M, Yu H, Ji D. Bacteria biotope relation extraction via lexical chains and dependency graphs. In:
Proceedings of The 5th Workshop on BioNLP Open Shared Tasks. 2019 Presented at: BioNLP '19; November 4, 2019;
Hong Kong, China p. 158-167. [doi: 10.18653/v1/D19-5723]

38. Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans Signal Process 1997 Nov;45(11):2673-2681.
[doi: 10.1109/78.650093]

39. Zhang Q, Liu C, Chi Y, Xie X, Hua X. A multi-task learning framework for extracting bacteria biotope information. In:
Proceedings of The 5th Workshop on BioNLP Open Shared Tasks. 2019 Presented at: BioNLP '19; November 4, 2019;
Hong Kong, China p. 105-109 URL: https://aclanthology.org/D19-5716/ [doi: 10.18653/v1/D19-5716]

JMIR Med Inform 2022 | vol. 10 | iss. 10 |e41136 | p.135https://medinform.jmir.org/2022/10/e41136
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9377276&dopt=Abstract
https://europepmc.org/abstract/MED/29077847
http://dx.doi.org/10.1093/bioinformatics/btx659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29077847&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(18)30160-6
http://dx.doi.org/10.1016/j.jbi.2018.08.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30142385&dopt=Abstract
https://aclanthology.org/N16-1065/
http://dx.doi.org/10.1016/j.neucom.2016.12.075
https://bio.nlplab.org/pdf/pyysalo13literature.pdf
http://dx.doi.org/10.1016/j.scs.2019.101615
https://www.dcs.warwick.ac.uk/report/pdfs/cs-rr-393.pdf
https://arxiv.org/abs/1409.0473
https://aclanthology.org/D15-1166/
https://openreview.net/forum?id=B14TlG-RW
https://aclanthology.org/D16-1058.pdf
https://aclanthology.org/W16-3009.pdf
http://dx.doi.org/10.18653/v1/W16-3009
https://doi.org/10.1155/2016/8479587
http://dx.doi.org/10.1155/2016/8479587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27493967&dopt=Abstract
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3217-3
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3217-3
http://dx.doi.org/10.1186/s12859-019-3217-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31795930&dopt=Abstract
http://dx.doi.org/10.18653/v1/w16-3002
http://dx.doi.org/10.18653/v1/D19-5719
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2275-2
http://dx.doi.org/10.1186/s12859-018-2275-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30367569&dopt=Abstract
http://dx.doi.org/10.18653/v1/D19-5723
http://dx.doi.org/10.1109/78.650093
https://aclanthology.org/D19-5716/
http://dx.doi.org/10.18653/v1/D19-5716
http://www.w3.org/Style/XSL
http://www.renderx.com/


40. Chaix E, Dubreucq B, Fatihi A, Valsamou D, Bossy R, Ba M, et al. Overview of the regulatory network of plant seed
development (SeeDev) task at the BioNLP shared task 2016. In: Proceedings of the 4th BioNLP Shared Task Workshop.
2016 Presented at: BioNLP '16; August 13, 2016; Berlin, Germany p. 1-11. [doi: 10.18653/v1/W16-3001]

41. Panyam NC, Khirbat G, Verspoor K, Cohn T, Ramamohanarao K. SeeDev binary event extraction using SVMs and a rich
feature set. In: Proceedings of the 4th BioNLP Shared Task Workshop. 2016 Presented at: BioNLP '16; August 13, 2016;
Berlin, Germany p. 82-87. [doi: 10.18653/v1/W16-3010]

42. Gupta P, Yaseen U, Schütze H. Linguistically informed relation extraction and neural architectures for nested named entity
recognition in BioNLP-OST 2019. In: Proceedings of The 5th Workshop on BioNLP Open Shared Tasks. 2019 Presented
at: BioNLP '19; November 4, 2019; Hong Kong, China p. 132-142. [doi: 10.18653/v1/D19-5720]

43. Kim JD, Ohta T, Tateisi Y, Tsujii J. GENIA corpus--semantically annotated corpus for bio-textmining. Bioinformatics
2003;19 Suppl 1:i180-i182. [doi: 10.1093/bioinformatics/btg1023] [Medline: 12855455]

44. Charniak E, Johnson M. Coarse-to-fine n-best parsing and MaxEnt discriminative reranking. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics. 2005 Presented at: ACL '05; June 25-30, 2005; Ann Arbor,
MI, USA p. 173-180 URL: https://aclanthology.org/P05-1022.pdf [doi: 10.3115/1219840.1219862]

45. McClosky D. Any Domain Parsing: Automatic Domain Adaptation for Natural Language Parsing. Providence, RI, USA:
Brown University; 2010.

46. de Marneffe MC, MacCartney B, Manning CD. Generating typed dependency parses from phrase structure parses. In:
Proceedings of the Fifth International Conference on Language Resources and Evaluation. 2006 Presented at: LRE '06;
May 22-28, 2006; Genoa, Italy p. 449-454 URL: http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf

47. Ye W, Li B, Xie R, Sheng Z, Chen L, Zhang S. Exploiting entity BIO tag embeddings and multi-task learning for relation
extraction with imbalanced data. In: Proceedings of the 57th Conference of the Association for Computational Linguistics.
2019 Presented at: ACL '19; July 28- August 2, 2019; Florence, Italy p. 1351-1360 URL: https://aclanthology.org/P19-1130/

48. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their
compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume
2. 2013 Presented at: NIPS '13; December 5-10, 2013; Lake Tahoe, NV, USA p. 3111-3119.

49. Zheng W, Lin H, Luo L, Zhao Z, Li Z, Zhang Y, et al. An attention-based effective neural model for drug-drug interactions
extraction. BMC Bioinformatics 2017 Oct 10;18(1):445 [FREE Full text] [doi: 10.1186/s12859-017-1855-x] [Medline:
29017459]

50. Liu S, Shen F, Komandur Elayavilli R, Wang Y, Rastegar-Mojarad M, Chaudhary V, et al. Extracting chemical-protein
relations using attention-based neural networks. Database (Oxford) 2018 Jan 01;2018:bay102 [FREE Full text] [doi:
10.1093/database/bay102] [Medline: 30295724]

51. Bunescu R, Mooney R. A shortest path dependency kernel for relation extraction. In: Proceedings of Human Language
Technology Conference and Conference on Empirical Methods in Natural Language Processing. 2005 Presented at: EMNLP
'05; October 6-8, 2005; Vancouver, Canada p. 724-731 URL: https://aclanthology.org/H05-1091.pdf

52. Chowdhury FM, Lavelli A, Moschitti A. A study on dependency tree kernels for automatic extraction of protein-protein
interaction. In: Proceedings of BioNLP 2011 Workshop. 2011 Presented at: BioNLP '11; June 23-24, 2011; Portland, OR,
USA p. 124-133 URL: https://aclanthology.org/W11-0216.pdf

53. Xu Y, Mou L, Li G, Chen Y, Peng H, Jin Z. Classifying relations via long short term memory networks along shortest
dependency paths. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015
Presented at: EMNLP '15; September 17-21, 2015; Lisbon, Portugal p. 1785-1794 URL: https://aclanthology.org/D15-1206.
pdf

54. Kim Y. Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing. 2014 Oct Presented at: EMNLP '16; October 25-29, 2014; Doha, Qatar p.
1746-1751 URL: https://aclanthology.org/D14-1181/

55. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks
from overfitting. J Mach Learn Res 2014;15(56):1929-1958.

56. Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on
Learning Representations. 2014 Dec 22 Presented at: ICLR '15; May 7-9, 2015; San Diego, CA, USA URL: https://arxiv.
org/abs/1412.6980

57. Paszke A, Gross S, Massa F, Lerer A, Bradbury H, Chanan G, et al. PyTorch: an imperative style, high-performance deep
learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019
Presented at: NeurIPS '19; December 8-14, 2019; Vancouver, Canada p. 8024-8035 URL: https://proceedings.neurips.cc/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

58. BioNLP-OST 2019 Evaluation Service. Institut National de la Recherche Agronomique. 2019. URL: http://bibliome.
jouy.inra.fr/demo/BioNLP-OST-2019-Evaluation/index.html [accessed 2022-06-01]

Abbreviations
BB-rel: relation extraction of Bacteria-Biotope task

JMIR Med Inform 2022 | vol. 10 | iss. 10 |e41136 | p.136https://medinform.jmir.org/2022/10/e41136
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.18653/v1/W16-3001
http://dx.doi.org/10.18653/v1/W16-3010
http://dx.doi.org/10.18653/v1/D19-5720
http://dx.doi.org/10.1093/bioinformatics/btg1023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12855455&dopt=Abstract
https://aclanthology.org/P05-1022.pdf
http://dx.doi.org/10.3115/1219840.1219862
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
https://aclanthology.org/P19-1130/
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1855-x
http://dx.doi.org/10.1186/s12859-017-1855-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29017459&dopt=Abstract
https://academic.oup.com/database/article-lookup/doi/10.1093/database/bay102
http://dx.doi.org/10.1093/database/bay102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30295724&dopt=Abstract
https://aclanthology.org/H05-1091.pdf
https://aclanthology.org/W11-0216.pdf
https://aclanthology.org/D15-1206.pdf
https://aclanthology.org/D15-1206.pdf
https://aclanthology.org/D14-1181/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://bibliome.jouy.inra.fr/demo/BioNLP-OST-2019-Evaluation/index.html
http://bibliome.jouy.inra.fr/demo/BioNLP-OST-2019-Evaluation/index.html
http://www.w3.org/Style/XSL
http://www.renderx.com/


BERT: Bidirectional Encoder Representations from Transformers
BiLSTM: bidirectional long short-term memory
BioNLP-OST: Biomedical Natural Language Processing Workshop-Open Shared Task
CNN: convolutional neural network
DL: deep learning
IE: information extraction
LSTM: long short-term memory
PE: position embedding
POS: part of speech
SeeDev-binary: binary relation extraction of plant seed development task
SVM: support vector machine
TEES: Turku Event Extraction System

Edited by C Lovis, J Hefner; submitted 16.07.22; peer-reviewed by Y Cui, M Wang; comments to author 02.08.22; revised version
received 27.08.22; accepted 07.09.22; published 20.10.22.

Please cite as:
Li Y, Hui L, Zou L, Li H, Xu L, Wang X, Chua S
Relation Extraction in Biomedical Texts Based on Multi-Head Attention Model With Syntactic Dependency Feature: Modeling Study
JMIR Med Inform 2022;10(10):e41136
URL: https://medinform.jmir.org/2022/10/e41136 
doi:10.2196/41136
PMID:36264604

©Yongbin Li, Linhu Hui, Liping Zou, Huyang Li, Luo Xu, Xiaohua Wang, Stephanie Chua. Originally published in JMIR Medical
Informatics (https://medinform.jmir.org), 20.10.2022. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The
complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright
and license information must be included.

JMIR Med Inform 2022 | vol. 10 | iss. 10 |e41136 | p.137https://medinform.jmir.org/2022/10/e41136
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://medinform.jmir.org/2022/10/e41136
http://dx.doi.org/10.2196/41136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36264604&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Identifying Patients With Heart Failure Who Are Susceptible to
De Novo Acute Kidney Injury: Machine Learning Approach

Caogen Hong1,2, MSc; Zhoujian Sun3, PhD; Yuzhe Hao2, MSc; Zhanghuiya Dong2, MSc; Zhaodan Gu2, MSc;

Zhengxing Huang4, PhD
1College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
2Jiangsu Automation Research Institute, Lianyungang, China
3Research Center for Applied Mathematics and Machine Intelligence, Zhejiang Lab, Hangzhou, China
4College of Computer Science and Technology, Zhejiang University, Hangzhou, China

Corresponding Author:
Zhoujian Sun, PhD
Research Center for Applied Mathematics and Machine Intelligence
Zhejiang Lab
Kechuang Ave, Zhongtai Subdistrict, Yuhang District
Hangzhou, 311121
China
Phone: 86 571 56390515
Fax: 86 518 85983716
Email: sunzj@zhejianglab.edu.cn

Abstract

Background: Studies have shown that more than half of patients with heart failure (HF) with acute kidney injury (AKI) have
newonset AKI, and renal function evaluation markers such as estimated glomerular filtration rate are usually not repeatedly tested
during the hospitalization. As an independent risk factor, delayed AKI recognition has been shown to be associated with the
adverse events of patients with HF, such as chronic kidney disease and death.

Objective: The aim of this study is to develop and assess of an unsupervised machine learning model that identifies patients
with HF and normal renal function but who are susceptible to de novo AKI.

Methods: We analyzed an electronic health record data set that included 5075 patients admitted for HF with normal renal
function, from which 2 phenogroups were categorized using an unsupervised machine learning algorithm called K-means clustering.
We then determined whether the inferred phenogroup index had the potential to be an essential risk indicator by conducting
survival analysis, AKI prediction, and the hazard ratio test.

Results: The AKI incidence rate in the generated phenogroup 2 was significantly higher than that in phenogroup 1 (group 1:
106/2823, 3.75%; group 2: 259/2252, 11.50%; P<.001). The survival rate of phenogroup 2 was consistently lower than that of
phenogroup 1 (P<.005). According to logistic regression, the univariate model using the phenogroup index achieved promising
performance in AKI prediction (sensitivity 0.710). The generated phenogroup index was also significant in serving as a risk
indicator for AKI (hazard ratio 3.20, 95% CI 2.55-4.01). Consistent results were yielded by applying the proposed model on an
external validation data set extracted from Medical Information Mart for Intensive Care (MIMIC) III pertaining to 1006 patients
with HF and normal renal function.

Conclusions: According to a machine learning analysis on electronic health record data, patients with HF who had normal renal
function were clustered into separate phenogroups associated with different risk levels of de novo AKI. Our investigation suggests
that using machine learning can facilitate patient phengrouping and stratification in clinical settings where the identification of
high-risk patients has been challenging.

(JMIR Med Inform 2022;10(10):e37484)   doi:10.2196/37484
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Introduction

Acute kidney injury (AKI) is a common disorder in patients
with heart failure (HF), with the reported incidence rate varying
from 7% to 38% in cardiology departments [1-3]. A recently
conducted nationwide survey in China showed that about 85%
of AKI incidents that occurred during cardiac hospitalization
were ignored or were late to be identified [4,5]. As an
independent risk factor, the delayed recognition of AKI has
been proven to be associated with worse outcomes of patients
with HF (eg, chronic kidney diseaseand mortality) [4,6]. To this
end, the prompt identification of patients with HF at high-risk
of AKI has great potential to improve clinical outcomes.

Although a few specific clinical markers (eg, estimated
glomerular filtration rate [eGFR]) have been adopted to evaluate
the renal function of patients with HF such that those at high
risk of AKI can be identified, these markers lack the ability to
screen de novo AKI patients who had normal renal function at
admission [7,8]. Of note, several recently conducted population
studies have indicated that more than half of the AKI that
occurred in patients with HF were de novo [1-3]. To address
this challenge, we attempted to clarify the characteristics of
patients with HF who are susceptible to de novo AKI and
developed a machine learning model for identification of HF
patients with normal renal function but at high risk of de novo
AKI.

As recently conducted cardiovascular studies have demonstrated
that an unsupervised machine learning approach is able to model
correlations among variables that contain prognostic information
and cluster cohesive patients into 1 homogeneous phenogroup

[9-11], we hypothesized that it can also be applied to identify
patients with HF at high risk of de novo AKI. Recently, with
the rapid development of hospital information systems, a large
collection of electronic health records (EHRs) has become
available that documents various types of patient information
(eg, vital signs, laboratory test results) and treatments (eg,
medication, surgery) and thus offers the considerable potential
to implement a large-scale real-world analysis at a low
expenditure. Therefore, in this study, we aimed to develop an
EHR-based unsupervised machine learning analysis to group
patients with HF and identify those who are susceptible to de
novo AKI.

Methods

Study Population
The proposed retrospective study used a real-world data set
obtained from the EHR system of the Chinese PLA General
Hospital (PLAGH). The data set documented regular medical
information in 84,705 hospitalizations of 29,699 patients who
were diagnosed with HF in the PLAGH from 1998 to 2018.
Adult patients with HF and normal renal function (eGFR >60

mL/min/1.73m2 as calculated by the serum creatinine [SCr]
version of the Chronic Kidney Disease Epidemiology
Collaboration [CKD-EPI] equation [12] and without chronic
kidney disease diagnosis) were considered for inclusion.
Additionally, patients who did not have echocardiogram records
were excluded. For patients with multiple hospitalizations, only
the last hospitalization was reserved. The detailed preprocessing
procedure is illustrated in Figure 1.

Figure 1. Preprocessing procedure of the PLAGH data set. CKD: chronic kidney disease; eGFR: estimate glomerular filtration rate; HF: heart failure;
PLAGH: PLA General Hospital.
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Ethics Approval
The study protocol was approved, with a waiver of consent
granted on the basis of minimal harm and general
impracticability by the health institutional review board of
Zhejiang University (No. ZJU-2021-27).

Variable Selection and Machine Learning Model
In this study, 58 variables potentially associated with AKI,
including demographics, vital sign measurements, medications,
laboratories, operations, and echocardiogram exams, and
routinely documented in EHRs at the admission stage of
hospitalization were considered as candidates for analysis. To
ensure that the most informative variables were selected and
the correlation between variables could be diluted, we excluded
variables with a missing rate larger than 30% or with a Pearson
correlation coefficient >0.6 or that were documented fewer than
100 times in the raw EHR data set. As a result, 39 variables
were included in the cohort. All continuous variables were
transformed to standard normal distribution for the convenience
of the unsupervised machine learning model (Table S1,
Multimedia Appendix 1). Thereafter, we adopted multivariate
imputation by chained equations [13] to impute the missing
data.

We employed a simple yet effective unsupervised machine
learning model called K-means clustering to categorize patients
into different phenogroups [14]. The silhouette coefficient was
applied to determine the optimal number of phenogroups [15].
We also adopted the nonlinear dimensionality reduction
technique of t-distributed stochastic neighbor embedding [16]
to visualize and evaluate the clustering results in a qualitative
manner. The model was repeatedly run 1000 times to guarantee
the achieved results stable.

Outcomes of Interest
The primary outcome was the incidence of AKI, which was
defined according to the Kidney Disease: Improving Global
Outcomes (KDIGO) standard [17], with the occurrence of AKI
defined as the increase of SCr to ≥1.5 times the baseline in 7
days or the increase of SCr by ≥26.5 μmol/L within 48 hours.
The secondary outcome was in-hospital mortality.

Characterization of Phenogroups
Once patients with HF were categorized into separate
phenogroups, we measured the differences of variables in
different groups. Continuous variables are reported as median
and IQR (interquartile range). Categorical variables are reported
as the frequencies and counts. Differences between groups were
tested using the 1-way analysis of variance, Kruskal-Wallis test,
or the chi-square test where appropriate. A P value of <.01 was
considered statistically significant.

Discrimination of Phenogroups
We validated whether the phenogroup index generated by
K-means clustering correlated with outcomes of interests by
carrying out the following 3 experiments. First, Kaplan-Meier
estimators with log-rank tests were conducted to analyze the
time-to-event characteristics in different phenogroups. Second,
we compared the prediction performance on AKI and in-hospital
mortality to check whether the inferred phenogroup index was

an effective risk predictor for outcomes of interest. Specifically,
we selected the top-ranked 10 variables using a forward stepwise
strategy with the Akaike information criterion and then
developed 5 logistic regression (LR) models to predict the
outcomes of interest. Model 1 used the phenogroup index as
the univariate predictor. Model 2 used the top-ranked 10
variables as predictors. Model 3 used the top-ranked 10 variables
and the phenogroup index. Model 4 used all 39 variables. Model
5 used all 39 variables and the phenogroup index. All models
were trained by 70% of the data from the PLAGH data set and
tested with the remaining 30% of data. Third, to evaluate
whether the phenogroup index could achieve the competitive
discriminative performance compared to the original variables
with respect to the primary and secondary outcomes, we applied
unadjusted Cox proportional hazard regression to examine
hazard ratios (HRs), 95% CIs, and P values for all included
original variables as well as the phenogroup index on both the
whole PLAGH data set and the following subgroups: age (age
<65 vs ≥65 years), sex, type of HF (acute vs chronic), diabetes
mellitus, stroke, atrial fibrillation, coronary heart disease,
anemia, and left ventricular ejection fraction (<40%, 40%-49%,
and ≥50%). To assess continuous variables appropriately, we
categorized all continuous variables in validation, and the cutoff
points for these continuous variables are presented in online
supplementary Table S2, Multimedia Appendix 1.

External Validation
We externally validated our model on a well-known open-source
database, Medical Information Mart for Intensive Care
(MIMIC)-III [18]. After a requisite preprocessing procedure
(online supplementary, Figure S1), we prepared a MIMIC-III
data set that contained 1006 patients with HF who had normal
renal function. The model trained by the PLAGH data set was
directly transferred onto the MIMIC-III data set. In detail, we
compared the distance between the data of each patient in the
MIMIC-III data set and the centroids of the derived phenogroups
from the PLAGH data set and then assigned the patient into a
phenogroup with the minimum Euclidean distance. After that,
we assessed the survival rate and prediction performance of
AKI and in-hospital mortality of the generated phenogroups
from the MIMIC-III data set. As patients contained in the
PLAGH data set were mainly from general wards in the PLAGH
and patients included in the MIMIC-III data set were from
intensive care units in the United States, there inevitably were
statistical differences between the baseline characteristics of
patients in the 2 data sets (Table S3, Multimedia Appendix 1).
In this sense, the external validation was able to evaluate the
stability of the proposed model in diverse clinical settings.

In this study, statistical and machine learning analysis was based
on sklearn, lifelines, scipy package [19-21], and Python. We
also report the centroids of the generated phenogroups from the
PLAGH data set (Table S4, Multimedia Appendix 1), which
may be nontrivial knowledge to assist clinicians in identifying
their patients with HF at high risk of de novo AKI.
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Results

Phenogroup Results
After preprocessing, 5075 hospitalizations and 39 variables
(Table 1) were reserved for the PLAGH data set (median age
61 years, IQR 51-70 years; female 1723/5075, 32.39%; acute

HF 1723/5075, 33.95%). Using K-means clustering, we naturally
separated patients into 2 basically nonoverlapping phenogroups,
where the number of clusters was suggested by the silhouette
coefficient test (Figure S1, Multimedia Appendix 1). Similar
results were found using t-distributed stochastic neighbor
embedding visualization (Figure S2, Multimedia Appendix 1).

Table 1. Included variables for clustering.

FeaturesDomain

Age, sexDemographic

Acute/chronic HF, atrial fibrillation, cardiomyopathy, coronary heart disease, diabetes, stroke, valvular heart diseaseDisease

Angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, anticoagulant, antiplatelet, beta blocker, calcium
channel blocker, diuretic, positive inotropic drug, vasodilator

Medication

Left ventricular ejection functionEchocardiography

Alanine aminotransferase, aspartate transaminase, estimated glomerular filtration rate, gamma-glutamyl transferase, hemoglobin,
high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, N-terminal probrain natriuretic peptide, serum calcium,
serum potassium, serum sodium, serum urea, total bilirubin, total serum protein, triglyceride, troponin T

Laboratory result

Angiography percutaneous coronary interventionOperation

BMI, diastolic blood pressure, systolic blood pressureVital sign

aOnly drugs used in the first 48 hours after admission were included to ensure the drug usage could reflect the patient admission status.

Characteristics of Phenogroups
Table 2 illustrates the baseline characteristics of the PLAGH
data set and the 2 derived phenogroups. Compared to
phenogroup 1, phenogroup 2 had a higher rates of AKI (group
1: 106/2823, 3.75%; group 2: 259/2252, 11.50%; P<.001) and
in-hospital mortality (phenogroup 1: 21/2823, 0.74%;
phenogroup 2: 118/2252, 5.24%; P<.001). In addition, patients
in phenogroup 2 were generally older than those in phenogroup
1 (58 vs 65 years; P<.001).

As can be seen in Table 2, there are more patients diagnosed
with acute HF in phenogroup 2 than those in phenogroup 1
(phenogroup 1: 738/2823, 26.14%; phenogroup 2: 985/2252,
43.74%; P<.001). Moreover, cardiac function of patients in
phenogroup 2 was worse than that in phenogroup 1. Specifically,
there were statistical differences between patients in phenogroup
1 and phenogroup 2 in terms of left ventricular ejection fraction
(50% vs 41%; P<.001), diastolic blood pressure (77 mmHg vs
70 mmHg; P<.001), systolic blood pressure (130 mmHg vs 118
mmHg; P<.001), N-terminal pro-brain natriuretic peptide (572
pg/mL vs 2680 pg/mL; P<.001), hemoglobin (143 g/L vs 129
g/L; P<.001), atrial fibrillation (phenogroup 1: 526/2823,
18.63%; phenogroup 2: 595/2252, 26.42%; P<.001), diuretic
usage (phenogroup 1: 1608/2823, 56.96%; phenogroup 2:
1799/2252, 79.88%; P<.001), and positive inotropic drug usage
(phenogroup 1: 778/2823, 27.56%; phenogroup 2: 1089/2252,
48.36%; P<.001). Furthermore, phenogroup 2 had higher
troponin T levels (0.01 ng/mL vs 0.02 ng/mL; P<.001),
indicating that there were more patients in phenogroup 2 who

underwent myocardial damage. Patients in phenogroup 2 had
higher values of gamma-glutamyl transferase (31.70 IU/L vs
40.30 IU/L; P<.001), total bilirubin (12.79 μmol/L vs 15.85
μmol/L; P<.001), and aspartate aminotransferase (19.60 IU/L
vs 24.29 IU/L; P<.001), indicating that patients in phenogroup
2 might have worse liver function compared with phenogroup
1. Moreover, although we had excluded patients with renal
dysfunction in advance, patients in phenogroup 2 had worse

eGFR values (92.06 mL/min/1.73m2 vs 81.85 mL/min/1.73 m2;
P<.001) and urea (5.46 mmol/L vs mmol/L; P<.001). These
findings demonstrated that patients in phenogroup 2 had
relatively worse kidney function. Furthermore, patients in
phenogroup 2 used less angiotensin-converting enzyme
inhibitor/angiotensin receptor blocker (phenogroup 1:
1531/2823, 54.23%; phenogroup 2: 1016/2252, 45.11%;
P<.001), calcium channel blocker (phenogroup 1: 789/2823,
27.95%; phenogroup 2: 321/2252, 14.25%; P<.001), and
antiplatelets (phenogroup 1: 1914/2823, 67.80%; phenogroup
2: 1384/2823, 61.45%; P<.001). It was worth nothing that
patients in phenogroup 2 had higher lipid levels (low-density

lipoprotein cholesterol and triglyceride) and BMI (25.88 kg/m2

vs 23.05 kg/m2; P<.001). Compared to phenogroup 1,
phenogroup 2 also received less angiography (phenogroup 1:
1311/2823, 46.44%; phenogroup 2: 1311/2252, 30.95%; P<.001)
and percutaneous coronary intervention (phenogroup 1:
640/2823, 21.96%; phenogroup 2: 349/2252, 15.50%; P<.001).
Comprehensive baseline characteristics including all 58
candidate variables are listed in Table S5, Multimedia Appendix
1.
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Table 2. Baseline characteristics of the PLA General Hospital data set and the generated phenogroups.

P valuePhenogroup 2 (n=2252)Phenogroup 1 (n=2823)Population (N=5075)Feature

Feature of interest, n (%)

<.001259 (11.50)106 (3.75)365 (7.19)AKIa

<.001118 (5.24)21 (0.74)139 (2.74)In-hospital mortality,

Demographic

<.00165 (55-75)58 (48-67)61 (51-70)Age (years), median (IQR)

<.00123.05 (20.95-25.01)25.88 (23.87-28.08)24.60 (22.46-27.08)BMI (kg/m2), median (IQR)

<.00170 (64-78)77 (70-85)74 (67-81)DBPb (mmHg), median (IQR)

<.001118 (106-130)130 (119-143)125 (113-138)SBPc (mmHg), median (IQR)

<.0011488 (66.07)1943 (68.83)3431 (67.61)Male, n (%)

Disease, n (%)

HFd

<.001985 (43.73%)738 (26.14)1723 (33.95)Acute HF

<.0011267 (56.26%)2075 (73.86)3352 (66.05)Chronic HF

<.001595 (26.42)526 (18.63)1121 (22.09)AFe

<.001444 (19.71)497 (17.61)941 (18.54)Cardiomyopathy

.071268 (56.30)1660 (58.80)2928 (57.69)CHDf

<.001961 (42.67)1041 (36.88)2002 (39.44)Diabetes

.09233 (10.35)282 (9.99)485 (9.56)Stroke

.57280 (12.43)336 (11.90)616 (12.13)VHDg

Medication, n (%)

<.0011016 (45.11)1531 (54.23)2547 (50.18)ACEI/ARBh

<.001938 (41.65)989 (35.03)1927 (37.97)Anticoagulant

<.0011384 (61.45)1914 (67.80)3298 (64.99)Antiplatelet

<.0011447 (64.25)1981 (70.17)3428 (67.54)Beta blocker

<.001321 (14.25)789 (27.95)1110 (21.87)CCBi

<.0011799 (79.88)1608 (56.96)3407 (67.13)Diuretic

<.0011089 (48.36)778 (27.56)1867 (36.79)Positive inotropic drugs

.101405 (62.39)1698 (60.15)3103 (61.14)Vasodilator

Echocardiogram

<.00141 (31-54)50 (39-58)46 (35-56)LVEFj, median (IQR)

<.001997 (44.27)719 (25.47)1716 (33.81)<40%, n (%)

.05484 (21.49)690 (24.44)1174 (23.13)40%-50%, n (%)

<.001771 (34.24)1414 (50.09)2185 (42.86)≥50%, n (%)

Laboratory result, median (IQR)

<.00121.54 (13.80-36.49)20.80 (14.70-31.99)21.00 (14.39-33.79)ALTk, (IU/L)

<.00124.29 (18.09-38.80)19.60 (15.50-26.00)21.29 (16.29-30.50)ASTl, (IU/L)

<.0012.19 (2.10-2.27)2.28 (2.21-2.36)2.24 (2.16-2.33)Calcium (mmol/L)

<.00181.85 (70.90-92.91)92.06 (80.84-101.91)87.62 (75.65-98.80)eGFRm (mL/min/1.73 m2)

<.00140.30 (23.09-75.00)31.70 (21.30-54.89)34.80 (21.90-63.79)GGTn (IU/L)
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P valuePhenogroup 2 (n=2252)Phenogroup 1 (n=2823)Population (N=5075)Feature

<.0011.01 (0.82-1.22)1.04 (0.88-1.22)1.02 (0.85-1.22)HDL-Co (mmol/L)

<.001129 (116-142)143 (132-154)137 (124-150)Hemoglobin, g/L

<.0012.04 (1.62-2.48)2.46 (1.96-3.05)2.25 (1.79-2.81)LDL-Cp (mmol/L)

<.0012680 (1355-5188)572 (225-1319)1216 (422-2950)NT-pro-BNPq (pg/mL)

.0053.91 (3.61-4.20)3.87 (3.62-4.13)3.89 (3.62-4.17)Potassium (mmol/L)

<.001139.40 (136.30-142.00)141.30 (139.40-143.20)140.70 (138.10-142.70)Sodium (mmol/L)

<.00115.85 (10.39-24.60)12.79 (9.40-17.40)13.69 (9.80-19.90)Total bilirubin (μmol/L)

<.00165.1 (60.4-69.0)69.2 (65.8-73.3)67.5 (63.3-71.8)Total protein (g/L)

<.0010.92 (0.72-1.21)1.34 (0.98-1.87)1.11 (0.82-1.59)Triglyceride (mmol/L)

<.0010.02 (0.01-0.10)0.01 (0.00-0.02)0.01 (0.01-0.04)Troponin T (ng/mL)

<.0016.45 (5.11-8.12)5.46 (4.51-6.60)5.84 (4.73-7.25)Urea (mmol/L)

Operation, n (%)

<.001697 (30.95)1311 (46.44)2008 (29.57)Angiography

<.001349 (15.50)620 (21.96)969 (19.09)PCIr

aAKI: acuted kidney injury.
bDBP: diastolic blood pressure.
cSBP: systolic blood pressure.
dHF: heart failure.
eAF: atrial fibrillation.
fCHD: coronary artery disease.
gVHD: valvular heart disease.
hACEI/ARB: angiotensin-converting enzyme inhibitor/angiotensin receptor blocker.
iCCB: calcium channel blocker.
jLVEF: left ventricular ejection fraction.
kALT: alanine aminotransferase.
lAST: aspartate transaminase.
meGFR: estimated glomerular filtration rate.
nGGT: gamma-glutamyl transferase.
oHDL-C: high-density lipoprotein cholesterol.
pLDL-C: low-density lipoprotein cholesterol.
qNT-pro-BNP: N-terminal probrain natriuretic peptide.
rPCI: percutaneous coronary intervention.

Survival Analysis
As the prevalence of AKI and in-hospital mortality had a
significant difference between the generated phenogroups,
phenogroup 1 was intuitively labeled as “low-risk” and
phenogroup 2 as “high-risk.” We further investigated whether
the generated phenogroup index could serve as an essential risk
indicator for clinical outcomes of interest.

Figure 2 shows the survival difference with respect to AKI and
in-hospital mortality between the generated “high-risk” and
“low-risk” phenogroups from both the PLAGH data set and the
external validation MIMIC-III data set. For AKI, the curves of

phenogroup 2 were lower than the curves of phenogroup 1 in
both development and external validation data sets (PLAGH:
P=.004; MIMIC-III: P=.002). In addition, we found that most
AKI events often happened in the first few days of
hospitalization in both the PLAGH and MIMIC-III data sets.
This finding was in line with the literature [7,8]. For in-hospital
mortality, the curves of phenogroup 2 were consistently lower
than the curves of phenogroup 1 (PLAGH: P=.002; MIMIC-III:
P=.01). In consideration of the baseline difference between the
PLAGH data set and MIMIC-III data set, the results
demonstrated that our model was robust in discriminating
between high-risk and low-risk patients and easily transferable
to different clinical settings.
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Figure 2. Kaplan-Meier curves for AKI and in-hospital mortality in the development (PLAGH) and external validation (MIMIC-III) data sets. AKI:
acute kidney injury; MIMIC: Medical Information Mart for Intensive Care; PLAGH: PLA General Hospital.

Outcome Prediction
Table 3 compares the prediction performances of the 5 LR
models. Sensitivity, specificity, and concordance statistics are
reported for the prediction performance evaluation. As the
false-negative prediction (ie, neglecting AKI) may lead to
extremely negative consequences, we mainly compared the
sensitivity performance among the 5 models. The threshold of
sensitivity and specificity was 0.5 in all experiments, and the
selected top-10 variables are listed in Table S6, Multimedia

Appendix 1. The results showed that the phenogroup index was
an essential risk predictor of outcomes. For one, Model 1 used
1 variable (the phenogroup index) as the predictor and achieved
promising sensitivity in terms of AKI (0.710) and in-hospital
mortality (0.820) among the 5 prediction models with the
PLAGH data set. For another, the prediction performance of
Model 1 remained quite stable in the external validation (AKI
sensitivity 0.760; in-hospital mortality sensitivity 0.826), while
there existed significant degradation of performance in the other
prediction models.
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Table 3. Prediction performance comparison.

MIMIC-IIIb data set (validation)PLAGHa data set (development)Model by task

C-statisticsSpecificitySensitivityC-statisticcSpecificitySensitivity

AKId

0.5510.3420.7600.6430.5770.710Model 1

0.5320.6520.3740.6960.6380.647Model 2

0.5460.5620.4780.7560.7230.679Model 3

0.5700.5600.5440.8150.7530.737Model 4

0.5750.5400.5730.8160.7460.718Model 5

In-hospital mortality

0.5680.3090.8260.7080.5680.849Model 1

0.6220.6720.5300.8240.7360.791Model 2

0.6470.5990.6220.8560.7630.820Model 3

0.6460.7460.4900.8990.8090.835Model 4

0.6440.7200.6200.9000.8120.856Model 5

aPLAGH: PLA General Hospital.
bMIMIC-III: Medical Information Mart for Intensive Care III.
cC-statistic: concordance statistic.
dAKI: acute kidney injury.

HR Comparison
We used unadjusted Cox proportional hazard regression to
determine whether the phenogroup index can act as an essential
risk stratification indicator in comparison with the original 39
included variables. The top-ranked 10 variables with the highest
HR are listed in Figure 3 (full list is available from Figure S3,
Multimedia Appendix 1). The results showed that the HR of
the phenogroup index was ranked second in AKI analysis and
first in in-hospital mortality analysis, indicating that the
phenogroup index can be an effective risk stratification indicator

compared with the original variables. Of further note, although
troponin T was ranked first for AKI analysis, it was not
appropriate for univariate risk indicators since only 16.73%
(849/5075) of patients in the PLAGH data set had abnormal
records in troponin T. Using troponin T as the indicator only
achieved a sensitivity of 0.431, which was significantly lower
than the performance of the phenogroup index (0.710). The
association between the generated phenogroup index and risk
of AKI (in-hospital mortality) was consistent in all examined
subgroups (Figure 4).

Figure 3. Hazard ratios of of top-ranked 10 discriminative features for (a) acute kidney injury and (b) in-hospital mortality from the PLA General
Hospital data set. AST: aspartate aminotransferase; eGFR: estimated glomerular filtration rate; NT-pro-BNP: N-terminal probrain natriuretic peptide.
*Anemia was defined as hemoglobin <135 g/L for men and hemoglobin <120 g/L for women. All units of variables in this figure are same as the units
in Table 2.
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Figure 4. Subgroup analysis of the generated phenogroup index for (a) acute kidney injury and (b) in-hospital mortality. AF: atrial fibrillation; CHD:
chronic heart disease; HF: heart failure; LVEF: left ventricular ejection fraction. *Anemia was defined as hemoglobin <135 g/L for men and hemoglobin
<120 g/L for women. All units of variables in this figure are same as the units in Table 2.

Discussion

Principal Findings
We explored the potential of using a large volume of EHR data
to cluster patients with HF and identify those with normal renal
function but susceptible to de novo AKI via an unsupervised
machine learning model. The experimental results showed that
there was significant difference in AKI and in-hospital mortality
occurrence between the 2 phenogroups generated from EHR
data. As EHR is a real-world, readily available data source
containing rich medical information of thousands of patients,
our study demonstrated that it was possible for researchers to
answer important clinical and scientific questions effectively
by exploiting the huge potential of EHR data via machine
learning techniques at a fraction of the resource cost that would
have been required using traditional approaches [22,23].

We demonstrated that HF patients with normal renal function
can be naturally separated into a “high-risk phenogroup,” of
patients susceptible to de novo AKI and a “low-risk
phenogroup” who were not. Patients in high-risk phenogroup
were typically older, more susceptible to multi-organ
dysfunction and anemia, and had significantly higher in-hospital
mortality than did those in the low-risk phenogroup. These
findings were in line with recent studies [17,24] and warrant
further assessment. We found that patients in the high-risk
phenogroup had lower levels of lipid and BMI than did those
in the low-risk group. These findings are consistent with
previous studies reporting that worse cardiac function may cause
malnutrition [25] and a decrease of lipid level [26]. Of note,

worse cardiac function was also associated with hemodynamic
instability, which influences the choice of oral medication
strategies [27]. We observed that patients in the high-risk
phenogroup received less medication (angiotensin-converting
enzyme inhibitor, angiotensin receptor blocker, calcium channel
blocker, and beta blockers) than did those in the low-risk
phenogroup. On the contrary, we found that patients in low-risk
phenogroup were likely to receive percutaneous coronary
intervention (PCI) during their stay at the emergency care unit
or in hospitalization to revascularize the stable hemodynamic
level such that the perfusion of the kidney could be improved
and the risk of AKI significantly alleviated. This finding is
consistent with previous findings, emphasizing the benefit of
timely revascularization [28].

Identification of patients with HF with normal renal function
but at high-risk of de novo AKI is a major challenge in HF
treatment management. Clinicians have highlighted the need
for more effective methods to perform this important clinical
task [29]. In this study, we illustrated that machine learning
analysis can tackle this challenge by providing deep integration
of the comprehensive clinical variables routinely documented
in EHR data. As observed in the present study, the phenogroup
index generated by an unsupervised machine learning approach,
as a latent representation of 39 original variables and their
interactions, exhibited a sensitivity of 0.710 and 0.760 on the
development data set (PLAGH) and the external validation data
set (MIMIC-III). In this sense, the generated phenogroups from
raw EHR data are meaningful and can be translated into
actionable information for clinical decision-making. On the
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contrary, all other LR models met a serious overfitting problem
due to the fact that the included variables had different
distributions between the development (PLAGH) and external
validation (MIMIC-III) data sets (as can be seen in Table S3,
Multimedia Appendix 1). Inevitably, this issue caused a
significant performance degeneration in the external validation.
In consideration of the baseline difference between the PLAGH
data set and the MIMIC-III data set, the results suggested that
the generated phenogroup index was able to act as an essential
de novo AKI risk indicator for patients with HF and normal
renal function and be smoothly applied in different clinical
settings and in different patient populations. In fact, machine
learning algorithms can handle a large volume of variables and
a vast number of variable-variable interactions in each patient.
This merit effectively individualizes risk assessment and
remedies many of the limitations of standard statistical models
[22].

Our study has potentially important clinical ramifications. For
one, as AKI risk is often underestimated or neglected in patient
with HF, especially those with normal renal function [5], our
study provided a new perspective for identifying patients with
HF and normal renal function but who are at high risk of AKI.
For another, in comparison with recent studies that focused on
finding new biomarkers for AKI prediction or detection [30],
we adopted an improved alternative strategy that used machine
learning techniques to explore readily available clinical data to
identify patients with HF at high risk of de novo AKI. Such
meaningful use of EHR data may provide the best available
evidence to assist clinical decision-making. It should be noted
that these improvements may be enhanced by mining a large
volume of readily available EHR data, which in turn may
provide a new avenue for improving any given machine learning
algorithm.

Limitations
Several limitations of this study should be acknowledged. First,
this is a single-institution study. Although we have evaluated
our model on an external validation data set extracted from
MIMIC-III, the methods may perform less well in other
situations due to the lack of sufficient external validation
samples collected from different medical facilities and in
different clinical settings. Second, our study was limited by its
retrospective design, and all analyses were purely observational.
Although we found that there were distinct variables associated
with increased risks of de novo AKI and in-hospital mortality,
these nonrandomized comparisons should be interpreted
cautiously in this context, and the prognostic ability of our model
needs to be supported by validation in prospective studies. Third,
considering the sensitivity and the specificity for AKI
forecasting, our model was relatively sensitive but not very
specific. Despite the influence of false-positive classification
being limited in this study, further study will be required to
enable machine learning–based analysis to capture the salient
features distinguishing high- from low-risk cases, such that the
prediction performance of our model can be improved.

Conclusions
This study demonstrated that unsupervised machine
learning–based EHR analysis is able to separate patients with
HF and normal renal function into mutually exclusive
phenogroups that correspond to saliently distinct AKI risk levels.
Our investigation paves the way for developing an easy-to-use,
broadly available model that allows the identification of patients
with HF at high-risk of de novo AKI and may help improve
outcomes in HF, offering a crucial advantage over traditional
techniques for patient phenogrouping and clinical risk
stratification.
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