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Abstract

Background: Assessment of the physical frailty of older patients is of great importance in many medical disciplines to be able
to implement individualized therapies. For physical tests, time is usually used as the only objective measure. To record other
objective factors, modern wearables offer great potential for generating valid data and integrating the data into medical
decision-making.

Objective: The aim of this study was to compare the predictive value of insole data, which were collected during the
Timed-Up-and-Go (TUG) test, to the benchmark standard questionnaire for sarcopenia (SARC-F: strength, assistance with
walking, rising from a chair, climbing stairs, and falls) and physical assessment (TUG test) for evaluating physical frailty, defined
by the Short Physical Performance Battery (SPPB), using machine learning algorithms.

Methods: This cross-sectional study included patients aged >60 years with independent ambulation and no mental or neurological
impairment. A comprehensive set of parameters associated with physical frailty were assessed, including body composition,
questionnaires (European Quality of Life 5-dimension [EQ 5D 5L], SARC-F), and physical performance tests (SPPB, TUG),
along with digital sensor insole gait parameters collected during the TUG test. Physical frailty was defined as an SPPB score≤8.
Advanced statistics, including random forest (RF) feature selection and machine learning algorithms (K-nearest neighbor [KNN]
and RF) were used to compare the diagnostic value of these parameters to identify patients with physical frailty.

Results: Classified by the SPPB, 23 of the 57 eligible patients were defined as having physical frailty. Several gait parameters
were significantly different between the two groups (with and without physical frailty). The area under the receiver operating
characteristic curve (AUROC) of the TUG test was superior to that of the SARC-F (0.862 vs 0.639). The recursive feature
elimination algorithm identified 9 parameters, 8 of which were digital insole gait parameters. Both the KNN and RF algorithms
trained with these parameters resulted in excellent results (AUROC of 0.801 and 0.919, respectively).

Conclusions: A gait analysis based on machine learning algorithms using sensor soles is superior to the SARC-F and the TUG
test to identify physical frailty in orthogeriatric patients.

(JMIR Med Inform 2022;10(1):e32724) doi: 10.2196/32724
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Introduction

The physiological process of aging is inevitably connected to
a decrease in physical performance [1]. It has been estimated
that approximately 30% of the US population above the age of
55 years suffer from moderate to severe physical limitations
[2]. In an orthogeriatric patient population, the assessment of
physical frailty is of particular importance, as it is not only
strongly associated with falls but also to an inferior outcome
following surgery [3]. Consequently, it is of upmost importance
to test for and thereby objectify physical impairment (ie, frailty).

Various individual parameters have been proposed to assess
physical performance, including handgrip strength, daily step
count, and gait speed. However, all of these have considerable
interindividual variation [4]. Along with individual physiologic
parameters, a variety of questionnaires such as the Barthel index
[5], De-Morton Mobility index [6], or FRAIL scale [7] have
been developed to quantify frailty. However, these
questionnaires have proven to be inferior to the more complex
physical assessments [8]. The Short Physical Performance
Battery (SPPB) [9] is often considered one of the benchmark
tests to assess frailty [8]. The SPPB combines multiple physical
assessments, including gait, balance, and strength [10]. There
is a consensus that screening for physical frailty is not only the
prerequisite for successful individual patient care but also for
cost-effectiveness [11]. Nonetheless, an international consensus
on the most appropriate screening method is still missing [12].

As outlined above, comprehensive physical stance and gait
assessments might be the most effective approach to quantify
frailty. A new approach to assess physical activity and gait
parameters includes the use of wearables and physical activity
monitors [13]. These devices enable physicians and researchers
to assess physical activity comprehensively under real-life
conditions, and they have already been successfully applied to
assist in the diagnosis of musculoskeletal diseases and to monitor
rehabilitation [14-17]. A more recent development is sensor
insoles with pressure and gyroscope sensors. These insoles can
be easily inserted into any shoe and allow for the assessment
of several gait parameters in an outpatient setting and also during
various daily activities. This might provide a more feasible
alternative to time-consuming assessments in specialized gait
laboratories.

Although sensor insoles might help in the assessment of frailty,
the large number of data points generated necessitates advanced
statistical analysis. The random forest (RF) based on decision
trees or the K-nearest neighbor (KNN) based on the Euclidean
distance between points in high-dimensional space are two
suitable strategies to develop clinical decision algorithms [18].

The aim of this study was to compare the classification
capability of insole data collected during the Timed-Up-and-Go
(TUG) test—a clinical gait test to assess a patient’s mobility
and risk of falling—to SARC-F (a five-item questionnaire for
the quick assessment of the risk of sarcopenia, assessing
strength, assistance with walking, rising from a chair, climbing
stairs, and falls) and the TUG test to assess physical frailty,
defined by the SPPB, using machine learning algorithms.

Methods

Patient Selection
Patients presenting to our orthogeriatric outpatient clinic for an
osteoporosis diagnosis or therapy between December 2020 and
March 2021 were invited to participate in this study. Inclusion
criteria were aged >60 years, independent ambulation without
any walking aids, and no mental or neurological impairment.
Patients were informed of the study details, including the
anonymized evaluation of the collected data, and then provided
written consent. This cross-sectional study was approved by
the local ethics committee (#19-177).

General Data Assessment
All data were collected in a standardized fashion by a unique,
specially trained investigator. Demographic data included age,
weight, height, BMI, body composition, general health-related
quality of life assessed by the European Quality of Life
5-dimension (EQ-5D-5L) questionnaire [19], and the sarcopenia
and physical frailty screening questionnaire SARC-F [20]. All
questionnaires were completed together with the patients to
obtain the highest possible data quality. Body composition (ie,
body fat and muscle percentages) was measured using a
clinically validated body composition monitor (BF511,
Omron-Healthcare, Kyoto, Japan).

Assessment of Physical Frailty
Physical frailty was assessed by three different means: the SPPB,
the TUG test, and digital insole gait parameters assessed during
the TUG test using sensor insoles (Science3, Moticon, Munich,
Germany).

The SPPB [9] is considered the benchmark test to assess
physical frailty and was therefore used as the primary outcome
parameter [8]. The SPPB is comprised of multiple tests for gait
and stance safety, as well as lower-extremity strength and
performance [10]. This tool scores the ability to stand in three
different positions for 10 seconds, the time required to walk 3
meters, and the time it takes to rise from and sit down on a chair
5 times. Points are awarded for each subtest according to the
time achieved, with a maximum score of 12 and a minimum
score of 0. Patients with SPPB scores≤8 are considered to be
physically frail [21,22]. The binary SPPB score (not physically
frail vs physically frail) was used as the classification label for
the machine learning models applied in this study.

The TUG test measures the time a patient takes to rise from a
chair (height 46 centimeters), walk 3 meters, turn 180 degrees,
and return to their initial seating position [23]. A duration of 12
seconds or longer has been associated with a higher probability
of physical frailty [24]. Therefore, a cut-off value of 12 seconds
was chosen to classify patients into physically frail and not
physically frail groups.

The gait parameters were assessed by Science3 digital sensor
insoles during the TUG test. Each of these insoles has 19
pressure sensors and a 3D gyroscope sensor to measure a variety
of temporal, spatial, and local gait parameters, including gait
speed and pressure distribution [25,26]. The parameters assessed
are outlined in detail in Table 1.
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Table 1. Overview of all insole gait parameters assessed.

UnitParameter

secondsTUGa test time

numberSteps

millimetersMean length of gait line

metersStandard deviation x/y of gait line

NewtonsMean total force during stance

secondsMean gait cycle time

strides/minuteMean gait cadence

secondsMean double support time

gMean acceleration over gait cycle (x/y/z)

metersMean stride length

%Mean fraction of stance phase

%Mean fraction of swing phase

metersWalking distance

meters/secondMean walking speed

metersCOPb variability (left/right)

metersCOP trace length (left/right)

aTUG: Timed-Up-and-Go.
bCOP: center of pressure.

General Statistical Analysis
Unpaired t tests were used with α adjustment according to the
Benjamini and Hochberg method [27] to compare
interval-scaled, normally distributed variables (demographics,
questionnaires, and gait parameters) between patients with and
without physical frailty. Data are expressed as mean (SD). The
effect size is expressed as the standardized mean difference.

Prediction Algorithms
To train the prediction algorithms, all collected performance-
and nonperformance-related variables were used to train a
recursive feature elimination algorithm that can identify the
most relevant parameters for distinguishing patients with (SPPB
score≤8) and without (SPPB score>8) physical frailty. For this
purpose, the feature elimination algorithm was used to choose
the best suitable variables based on an RF algorithm from the
ranger package [28]. Gini impurity was used to rank the
variables in order of their importance, as this measure is
particularly suited to assess how well certain variables divide
up a data set [29]. Based on this ordering of the variables, the
variables were gradually removed until the lowest possible
classification error was achieved. The classification error was
chosen as the performance measure for the recursive feature
selection, since the main focus was on maximizing the accuracy
of the models developed later.

Two supervised machine learning algorithms, KNN [30] and
RF, were used for further analysis using the previously selected
variables. Both algorithms rely on being trained with labeled
training data with a subsequent performance evaluation using
test data. Prior to the training and tuning processes, the data

were split into a training and a testing data set at a 70:30 ratio.
The training process included an internal 3-fold cross-validation
step. As hyperparameter tuning is essential for supervised
machine learning algorithms to increase the accuracy of the
classification [31], both algorithms were subjected to a tuning
process that optimizes all variables to be tuned simultaneously,
exclusively using the training data set. For the KNN, the tuning
range for the number of neighbors was set from 1 to 22. For the
type of kernels, the four variants rectangular, Gaussian, rank,
and optimal were tested. For the unit of measurement of the
distance, the options Euclidean distance, absolute distance, and
Minkowski distance were available. For the RF, the number of
variables considered as split candidates within a tree was tuned
in the range of 1 to 7, the maximum number of branches in a
tree was in the range of 2 to 10, and the number of trees in the
RF was set from 100 to 1000. The nested resampling technique
was used to enable better estimation of the true model
performance on unseen data [32]. The 30% of the data not seen
by the model were used to compare the performance of the
different models subsequently.

To compare the generated algorithms to the classification
properties of the TUG and SARC-F, confusion matrices and
receiver operating characteristic (ROC) curves were created
based on a logistic regression for the SARC-F using solely the
score achieved and for the TUG using only the time taken to
complete the test so as to compare the different prediction
strategies. All data were collected in a REDCap study database
[33] and analyzed in a standardized manner with RStudio
software (version 1.3.1093), R (version 4.0.3), using the
packages dplyr (version 1.0.2), Hmisc (version 4.6-0), ggplot2
(version 3.3.2), caret (version 6.0-86), and mlr3 (version 6.0-86)
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[34]. The code used to create and compare the models to the
established tests has been made publicly available on GitHub
[35].

Results

All of the 57 eligible consecutive orthogeriatric patients were
included in the final analysis. The patients’ mean age was 77
(SD 6) years and 93% were women. Classified by the SPPB,
23 patients (40%) had physical frailty. Table 2 shows the
comparison of all assessed general parameters between the
patients with and without physical frailty. Only age, EQ-5D-5L
index, and SARC-F score differed significantly between the
two groups. It should be emphasized that the average age of the
patients with physical frailty was more than 5 years above the
average age of the patients without physical frailty. In parallel,
the mean health index of the patients with physical frailty
determined by the EQ-5D-5L was almost 0.2 points below that
of the patients without physical frailty. All other collected
demographic data such as weight, height, BMI, body fat, and
muscle mass did not differ significantly between the two groups.

The between-groups comparison of the digital gait analysis is
presented in Table 3. The two groups differed significantly for
all insole-generated gait parameters (all P<.05).

The classification errors of the TUG test and SARC-F to identify
patients with physical frailty were 0.333 and 0.316, respectively.
However, the area under the ROC curve (AUROC) for the TUG
test was higher when compared with that of the SARC-F (0.862
vs 0.639; Figure 1A, Figure 1B).

The RF-based recursive feature elimination algorithm was
trained to extract the most important features for classifying
physical frailty using all parameters collected, except the SPPB,

TUG test, and SARC-F, as they either define the result or
represent the classification methods to be compared.

Based on the defined criteria, the 9 parameters outlined in Figure
2 were included. Notably, 8 out of the 9 parameters selected
were gait parameters collected by the insoles (Figure 2). The
number of steps and the step length were the most decisive
factors for the identification of physical frailty by the algorithm.
The gait speed followed in third place. Of the variables selected,
double support seemed to have the least effect on classification.

These variables were then used to train the two classification
algorithms KNN and RF. The tuning process resulted in an
optimal combination of hyperparameters for the KNN as
follows: k=15, a “rank” kernel, and the Minkowski distance.
The optimal combination for the RF was 7 split variables, 6
branches, and 550 trees.

To compare the classification abilities of the TUG and the
SARC-F with the algorithms created, a logistic regression was
carried out on the SARC-F score and the TUG time on the
dependent variable physical frailty and the ROC curve was
drawn (Figure 1A-D). Table 4 summarizes the prediction
accuracy of the four classifiers. Both classical approaches were
outperformed by the machine learning–based models in terms
of classification error (KNN=0.246, Figure 1D; RF=0.281,
Figure 1C). The AUROC for the RF was slightly superior to
that of the KNN (Table 4). Overall, the KNN showed the lowest
error rate in classification at 24.6% (Figure 1). RF showed the
largest AUROC value and thus appears to be the most suitable
for classification. In the conventional tests, the TUG test was
far superior to the SARC-F in terms of area under the ROC
curve and classification error. The KNN showed the lowest
classification error rate, but had a slightly smaller AUROC
value than those of the RF and the TUG test.
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Table 2. Comparison of demographics, body composition, physical activity, physical performance, and health questionnaire scores between patients
with and without physical frailty.

SMDaP valuePhysical frailty (n=23)No physical frailty (n=34)Variable

0.892.00280.00 (5.82)74.76 (5.92)Age (years), mean (SD)

0.055.8424.66 (3.79)24.42 (4.81)BMI (kg/m2), mean (SD)

0.053.85160.56 (7.84)160.94 (6.37)Height (cm), mean (SD)

0.070.8063.45 (9.61)62.77 (9.72)Weight (kg), mean (SD)

0.243.3732.14 (7.86)30.15 (8.55)Body fat (%), mean (SD)

0.254.348.71 (2.72)7.95 (3.21)Visceral fat (%), mean (SD)

0.460.0928.52 (3.29)30.26 (4.20)Muscle mass (%), mean (SD)

0.034.901341.29 (123.22)1345.32 (110.40)Resting metabolism (kcal), mean (SD)

0.228.4134.31 (3.30)35.04 (3.12)Calf circumference, mean (SD)

0.818.0070.65 (0.27)0.84 (0.16)EQ-5D-5Lb index, mean (SD)

–3.106<.0016.44 (2.06)11.30 (0.79)SPPBc score (points), mean (SD)

<.00123 (40)0 (0)SPPB score≤8, n (%)

1.002.01SARC-Fd score, n (%)

6 (26)22 (65)0

7 (30)8 (24)1

3 (13)2 (6)2

4 (17)0 (0)3

3 (13)2 (6)4

0.422.31Number of falls in past year, n (%)

12 (52)24 (71)0

9 (39)7 (21)1-3

2 (9)3 (9)>3

0.303.270.59 (0.06)0.61 (0.06)BMDe femoral neck (g/cm3), mean (SD)

0.391.170.91 (0.16)0.85 (0.12)BMD lumbar spine (g/cm3), mean (SD)

0.005>.99Smoking, n (%)

21 (91)31 (91)No

2 (9)3 (9)Yes

0.103.74Self-sustaining, n (%)

5 (22)6 (18)No

18 (78)28 (82)Yes

0.566.05Daily leaving apartment, n (%)

8 (35)4 (12)No

15 (65)30 (88)Yes

0.569.06Weekly sports activity (>3 h), n (%)

13 (57)10 (29)No

10 (43)24 (71)Yes

aSMD: standardized mean difference.
bEQ-5D-5L: European Quality of Life 5-dimension questionnaire.
cSPPB: Short Physical Performance Battery.
dSARC-F: sarcopenia test (strength, assistance with walking, rising from a chair, climbing stairs, and fall).

JMIR Med Inform 2022 | vol. 10 | iss. 1 | e32724 | p. 5https://medinform.jmir.org/2022/1/e32724
(page number not for citation purposes)

Kraus et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


eBMD: bone mineral density.

Table 3. Comparison of gait parameters between patients with and without physical frailty.

SMDaP valuePhysical frailty, mean (SD)No physical frailty, mean (SD)Variable

–1.637<.0010.69 (0.19)1.09 (0.28)Mean gait speed (m/s)

1.765<.00115.79 (5.50)8.52 (1.93)TUGb time (s)

–1.450<.0010.85 (0.17)1.12 (0.19)Mean stride length (m)

–1.214<.00149.37 (8.21)59.72 (8.83)Mean gait cadence (strides/min)

1.199<.0011.27 (0.20)1.05 (0.16)Mean gait cycle time (s)

0.843.0030.51 (0.14)0.40 (0.13)Mean double support time (s)

0.804.00520.04 (5.67)15.32 (6.05)Number of steps (n)

0.695.020.59 (0.74)0.03 (0.89)Mean acceleration over gait cycle right (g)

0.680.027.06 (3.22)5.25 (1.96)COPc trace length right (m)

0.672.02–1.39 (1.54)–2.36 (1.32)Mean acceleration over gait cycle right (g)

0.574.04142.66 (19.05)131.10 (21.20)Mean length width of gait line right (mm)

–0.552.051.21 (0.78)1.66 (0.86)Variance of acceleration over gait cycle (m/s2)

aSMD: standardized mean difference.
bTUG: Timed-Up-and-Go.
cCOP: center of pressure.
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Figure 1. Comparison of the receiver operating characteristic (ROC) curves of the classification properties of the sarcopenia index SARC-F (A),
Timed-Up-and-Go (TUG) test (B), and the random forest (C) and k-nearest neighbor (D) algorithms. AUC: area under the ROC curve.
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Figure 2. Selected parameters based on the recursive feature elimination algorithm, ordered by their importance for reduction of classification error
ranked by Gini-Impurity [29].

Table 4. Comparison of physical frailty prediction methods.

RFe classifierKNNd classifierTUGc test LRSARC-Fa LRbPerformance metric

0.7240.7190.6670.684Accuracy

0.8590.9190.8620.639AUROCf

aSARC-F: sarcopenia test (strength, assistance with walking, rising from a chair, climbing stairs, and fall).
bLR: logistic regression.
cTUG: Timed-Up-and-Go.
dKNN: K-nearest neighbor.
eRF: random forest.
fAUROC: area under the receiver operating characteristic curve.

Discussion

Principal Findings
Based on a sample of 57 patients and advanced statistics, this
study shows that gait parameters assessed by digital insoles
during the TUG test outperformed both the benchmark tests
(the TUG physical assessment and SARC-F questionnaire) to
identify patients with physical frailty.

Patients identified as physically frail classified by their SPPB
scores (≤8) were on average 5 years older than patients that
were not classified as physically frail, with no significant
difference in BMI or body composition. By contrast, previous
studies have reported a decreased muscle mass and increased
fat percentage in patients with physical frailty [36]. Despite the
considerable amount of physical frailty–related data collected
(Tables 1 and 2), the vast majority (8 out of 9) of the parameters
selected by the recursive feature elimination algorithm were
insole gait parameters collected during the TUG test. Although

the temporal gait variables such as gait speed, double support
time, and gait cadence can be considered dependent variables,
they all reflect different aspects of gait. For this reason, it makes
sense to integrate several of these aspects into the machine
learning algorithms to better map the gait pattern of an
individual patient and derive the best possible classification.

Previous studies have proposed that gait speed is the most
relevant parameter to identify patients with physical frailty [4].
It has been shown that a slow gait speed is associated with an
increased fall risk [37], as well as a higher mortality rate [38].
Interestingly, the advanced modeling used in this study weighted
stride length equally important as gait speed to differentiate
between physical frailty and no physical frailty in patients, in
terms of their classification importance measured by the Gini
impurity (Figure 2). Although gait speed is easily assessed, it
might be biased by patients’ motivation. One can hypothesize
a “white coat effect,” in this case a higher level of motivation
during medical gait speed examinations. Stride length might be
a more robust (ie, harder to influence consciously) parameter
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in such settings, which might explain its superiority in the herein
applied modeling. Espy et al [39] provided a possible
explanation for the higher robustness of stride length compared
to gait speed. They were able to show that a slow gait leads to
instability, which again is compensated for by a small-stepped
gait pattern [39]. It appears reasonable that patients with physical
frailty would therefore compensate for their unstable gait pattern
by a reduction of their stride length [39]. Overall, stride length
and gait speed were found to be the two most relevant
parameters for the model (Figure 2), and could only be slightly
increased by adding additional gait parameters such as cadence,
double support time, and acceleration over gait cycle.
Consequently, stride length in addition to gait speed might be
a valuable clinical parameter to identify patients with physical
frailty. Their early identification is essential to reduce the
number of falls [37] and possibly mortality rates [38], as well
as to increase further health outcomes [40]. These considerable
implications are not only important in an orthogeriatric setting
but also for almost all medical specialties.

In line with previous studies, the SARC-F as well as the TUG
test were found to be suitable for estimating the physical frailty
status [41]. The slightly better results for the TUG test compared
with the SARC-F might be explained by their different natures.
The SARC-F is a patient-reported outcome measure, whereas
the TUG test is a more objective score. Older patients have been
shown to overestimate their physical abilities [42,43], which
might result in false negative SARF-F scores. Complementing
the SARC-F by an objective measurement such as the TUG
test, handgrip strength, or a gait analysis might increase its
accuracy and therefore screening value.

Nevertheless, the combination of machine learning algorithms
and digital gait analysis outperformed the TUG test and SARC-F
in the detection of physical frailty. The digital insoles used in
this study can easily be applied and have proven to be reliable
[25]. Furthermore, they could be integrated into health
assessment apps, such as on a smartphone. This can facilitate
both the collection of longitudinal data and remote monitoring
of at-risk patients, and potentially even guide rehabilitation.
Consequently, gait analysis by digital insoles might become
another valuable part of the growing body of digital health
devices.

Limitations and Strengths
An obvious limitation of this study is the limited number of
patients. The smaller the number of patients the algorithm is
trained on, the more limited is its generalizability. Therefore,

the herein proposed algorithm must be validated in a larger
cohort. In the setting of a longitudinal, multicenter trial, the
applied statistics could be extended to deep learning methods
such as neural networks, which could further increase the
accuracy of the predictions. Another limitation is the definition
of physical frailty. Due to the current setup, it was only possible
to define physical frailty by the SPPB. Although the SPBB is
considered one of the benchmark tests for physical frailty [44],
it would be even more meaningful to directly assess the
occurrence of various health impairments such as falls, fractures,
progression to impaired ambulation, or death. Nonetheless,
these parameters can only be assessed in a longitudinal study
setup.

Despite these limitations, several strengths of this study are
noteworthy. First, the combined use of modern wearables and
data analysis strategies from the field of data science to
complement the classic statistical analysis is an advantage of
this study. Due to the increasing amount of data points collected
by digital devices, advanced statistics will become the primary
working horse to analyze the data. Second, the meta-modeling
approach applied represents a pessimistic estimation of the
models’ performance in a larger cohort. Nevertheless, the
resulting AUROC values of 0.801 and 0.841 can be judged as
excellent [45]. These excellent results argue for the value of
digital insole gait parameters. For application in clinical practice,
it is conceivable that a doctor will receive an analysis on their
terminal device in real time during the test, which can provide
time-efficient support in clinical decision-making for or against
prescribing fall prevention training, certain medications, or other
therapeutic interventions. Finally, this study also indicates that
gait parameters might be a promising target for physical frailty
therapies. It can by hypothesized that focused physiotherapy or
fall risk minimization counseling could counteract physical
frailty and thereby increase the patient’s health-related quality
of life.

Conclusion
Machine learning algorithms–based gait analysis using mobile
insoles appears to be a promising approach to screen for physical
frailty in an outpatient setting. Due to the increasing amount of
data collected, high-performance data processing will become
increasingly important. Future large-scale, longitudinal, and
multicenter screening trials should collect as many data points
as possible, including from digital devices such as wearables,
and apply advanced statistics to increase the diagnostic
sensitivity and accuracy of physical frailty diagnosis.
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