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Abstract

Background: Wearable technology has the potential to improve cardiovascular health monitoring by using machine learning.
Such technology enables remote health monitoring and allows for the diagnosis and prevention of cardiovascular diseases. In
addition to the detection of cardiovascular disease, it can exclude this diagnosis in symptomatic patients, thereby preventing
unnecessary hospital visits. In addition, early warning systems can aid cardiologists in timely treatment and prevention.

Objective: This study aims to systematically assess the literature on detecting and predicting outcomes of patients with
cardiovascular diseases by using machine learning with data obtained from wearables to gain insights into the current state,
challenges, and limitations of this technology.

Methods: We searched PubMed, Scopus, and IEEE Xplore on September 26, 2020, with no restrictions on the publication date
and by using keywords such as “wearables,” “machine learning,” and “cardiovascular disease.” Methodologies were categorized
and analyzed according to machine learning–based technology readiness levels (TRLs), which score studies on their potential to
be deployed in an operational setting from 1 to 9 (most ready).

Results: After the removal of duplicates, application of exclusion criteria, and full-text screening, 55 eligible studies were
included in the analysis, covering a variety of cardiovascular diseases. We assessed the quality of the included studies and found
that none of the studies were integrated into a health care system (TRL<6), prospective phase 2 and phase 3 trials were absent
(TRL<7 and 8), and group cross-validation was rarely used. These issues limited these studies’ ability to demonstrate the
effectiveness of their methodologies. Furthermore, there seemed to be no agreement on the sample size needed to train these
studies’ models, the size of the observation window used to make predictions, how long participants should be observed, and the
type of machine learning model that is suitable for predicting cardiovascular outcomes.

Conclusions: Although current studies show the potential of wearables to monitor cardiovascular events, their deployment as
a diagnostic or prognostic cardiovascular clinical tool is hampered by the lack of a realistic data set and proper systematic and
prospective evaluation.

(JMIR Med Inform 2022;10(1):e29434) doi: 10.2196/29434
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Introduction

Background
The use of diagnostic modalities in cardiovascular disease is
often limited to hospital visits. As a result, the clinical value
may be limited by the short observation period. This is especially
problematic for cardiovascular problems that do not manifest
constantly, such as paroxysmal arrhythmias, heart failure, or
even chest discomfort that may not be present during the hospital
visit. Advancements in eHealth, especially in wearable
technology, such as electrocardiograms (ECGs) [1] and
photoplethysmograms (PPGs) [2], and subsequent signal
processing by machine learning have enabled new opportunities
for remote monitoring in the outpatient setting.

Continuous monitoring over long periods has shown to be
effective [3,4]. For example, remote monitoring of patients with
cardiac diseases, using pacemakers or implantable cardioverter
defibrillators and patients with heart failure have improved
patient care [5]. However, current sensors used in health care,
such as Holter devices, are limited to a maximum of 14 days
(but typically endure 24 hours) of continuous monitoring,
limiting the use of these devices. Overcoming this could enable
early warning systems for acute events such as cardiac arrest
and could capture subtle cardiovascular exacerbation or
rehabilitation that manifests over a much longer time because
of, for example, changes in lifestyle or intervention.

Although widely used, currently 24-hour ECG or blood pressure
monitoring devices are cumbersome to wear and impose a
burden on patients in a longitudinal setting. Rechargeable,
easy-to-wear sensors, such as smartwatches, are becoming an
interesting alternative as they contain sensors with a potentially
unlimited observation period with minimal burden to the patient
for a fraction of the costs. However, the signals that these
wearables measure, such as the PPG-derived heart rate, activity,
and skin temperature, are not clinically informative enough for
clinical decision-making by a cardiologist. With current
developments in artificial intelligence (AI), a powerful solution
is expected from machine learning algorithms that can learn the
relationship between the wearable sensor signals and a
cardiovascular outcome in a (fully) data-driven manner.

Another great benefit of automatic cardiovascular diagnostics
and prognostics by machine learning is minimizing inter- and
intraobserver variability, which is a major problem in the
subjective interpretation of clinical and diagnostic information
by human cardiologists. Interobserver disagreement [6,7]
because of, for example, differences in experience or
specialization and intraobserver disagreement because of stress
or fatigue [8], can be minimized. Variations in clinical practice
may lead to medical errors, whereas automatic systems are not
(or less) susceptible to such factors. Another possibility is to
exclude patients who experience symptoms such as chest pain,
which are not caused by cardiovascular disease. Automatic
exclusion of these patients can reduce unnecessary visits to a

cardiologist; relieving the cardiologist, thereby increasing the
capacity of cardiovascular care; and directing patients to the
proper specialist quicker.

Because of these promises, the field of research on diagnosing
cardiovascular events from wearable data is very active and
many machine learning solutions are being presented to
automatically detect cardiovascular events. Various reviews
have been presented to categorize the developed machine
learning tools. A study by Krittanawong et al [9] shows that a
plethora of wearable devices are researched for a variety of
cardiovascular outcomes and discusses a paradigm for remote
cardiovascular monitoring consisting of sensors, machine
learning diagnosis, data infrastructure, and ethics. They conclude
that especially the latter two aspects have several unaddressed
challenges. An overview of wearable devices on the market is
provided by Bayoumy et al [10]. The study reports their
frequency of use in (cardiovascular) trials and Food and Drug
Administration status. As reported by Giebel and Gissel [11],
most mobile health devices for atrial fibrillation detection are
not Food and Drug Administration approved and therefore
cannot be used in cardiovascular monitoring systems.

Objectives
Although many machine learning tools have been proposed and
studies have shown good performance, they do not seem to have
been implemented in operational and functional health care
systems. Therefore, we decided to systematically review the
machine learning tools to detect cardiovascular events from
wearable data from the perspective of their technology readiness
level (TRL), that is, how far these proposed tools are in realizing
an operational system and what factor is impeding them to get
there. The TRL paradigm originates from the National
Aeronautics and Space Administration and is a way to assess
the maturity level of a particular technology used in space travel
by giving solutions a score from 1 to 9 in increasing order of
readiness, from basic technology research (score 1) to launch
operations (score 9) [12].

Interestingly, 2 studies tailor the TRL framework for medical
machine learning. A study by Komorowski [13] proposes a TRL
for supervised, unsupervised, and reinforcement learning
problems and describes criteria to reach TRLs 3, 4, 6, and 7. A
description of the 9 TRLs for medical machine learning in
intensive care medicine, including examples, is proposed by
Fleuren et al [14]. We review the wearable-based cardiovascular
machine learning solutions following the framework by Fleuren
et al [14] adjusted for remote medicine. We identify aspects in
the studies and systematically assign these to TRLs and group
some of the TRLs together in a taxonomy to help interpret their
relevance (Figure 1). We address the overuse of benchmark
data sets, considerations on data acquisition related to the
environment and type of sensor, integration in a health care
system, construction of the machine learning model, and
subsequent model validations.
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Figure 1. Taxonomy of the eligible studies. TRLs are based on the proposed descriptions for machine learning for medical devices proposed by Fleuren
et al [14]. The studies were categorized according to the relevance of their content to these descriptions (aspects within boxes) and were grouped and
assigned to the different TRLs (below and above boxes). TRL: technology readiness level.

By assessing current methods by their technological readiness,
we show that the current methodologies are promising but that
deployment is severely hampered by the lack of realistic data
sets and proper systematic and prospective evaluation. To arrive
at a readiness that is operational at the health care system level,
these bottlenecks need to be resolved.

Methods

Screening
The systematic review was performed by following the PRISMA
(Preferred Reporting Items for Systematic Reviews and

Meta-Analyses) guidelines [15], as shown in Figure 2. We
followed the patient or population, intervention, comparison,
and outcomes framework for our research question, which was
as follows: “In patients with cardiovascular disease, using
machine learning with data from wearables, what methods and
accompanying limitations are used, to deploy this technology
to detect and predict cardiovascular disease in standard
healthcare?”

Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for the systematic review.

Study Inclusion
Search queries were performed on September 26, 2020, in the
electronic databases Scopus, PubMed, and IEEE Xplore. Only
peer-reviewed journals were considered. Studies were eligible
for inclusion if data were acquired from wearables, a machine
learning method was used, and had the goal to detect or predict
cardiovascular disease (see Multimedia Appendix 1 for used

queries). The following exclusion criteria were used: opinion
or perspective, letter, review, study protocol, or conference
paper; studies not in English; and studies in which only
simulated data were used. The eligibility assessment was
performed by the first author, ANJ. First, the title and abstract
of each study were assessed for relevance based on the inclusion
and exclusion criteria. The full texts of the remaining studies
were then read and again subjected to the selection criteria. The
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second author, DT, verified this by reading a subsample of the
selection.

TRL and Taxonomy
From the eligible studies through discussions with all authors,
the first author, ANJ, identified some general overarching
evaluation aspects that the studies had in common and assigned
these studies to a taxonomy (Multimedia Appendix 2 [16-70]).
These aspects were related to one or more TRLs, as defined by
Fleuren et al [14]. Accordingly, the eligible studies were
assigned to the taxonomy and different TRLs (Figure 1). The
TRL framework states that studies that use only a benchmark
data set as a data source do not progress further than level 3.
Furthermore, the framework originally grouped levels 3 and 4
together. We split these levels and assigned studies using their
own acquired data without an external validation set from a
different study level 4. Next, we assigned studies that use an
external validation set from a different study to level 5; although,
according to Fleuren et al [14], level 5 further requires that the
acquired data set is realistic. However, we interpreted the
independently acquired data representative of data recorded
during the deployment of the machine learning system as
realistic. Therefore, we differentiated levels 3, 4, and 5 mostly
on the data sets being used for model deployment and related
these levels to the data sets taxonomy. As level 5 mainly focuses
on realistic data sets we also assigned practical aspects of the
wearables to this TRL. Here, we differentiated the following
three aspects: (1) which modality is being measured by the
wearable and where on the body it is placed; (2) under which
conditions data are measured, such as in the wild or in controlled
environments; and (3) for how long data are recorded, that is,
the temporal aspect of the acquired data. Level 6 required
integrating the machine learning model into a health care system.
Therefore, the device in which the model was integrated into
was assigned to this level. Finally, levels 7 and 8 required
demonstrating the model as a cardiovascular tool. Therefore,
the model effectiveness and validation aspects were assigned
to these levels. Levels 1, 2, and 9 were disregarded here because
none of the papers fit into these categories.

Results

Article Identification
A total of 578 records were retrieved from electronic databases.
After the removal of duplicates, 70.8% (409/578) of records

remained. One was externally included as it fulfilled the
inclusion criteria but was missed by the search query because
it did not explicitly mention the term machine learning. As
shown in Figure 1, these were further narrowed down during
title or abstract screening, resulting in 23.9% (138/578) of
records. Finally, after full-text reading, 9.5% (55/578) of records
remained to be covered in this study.

We related each of the studies to different TRLs for machine
learning methods (Methods) according to an identified taxonomy
of different evaluation criteria that relate to these TRLs (Figure
1; Methods). The TRL framework states that studies that use
only a benchmark data set do not progress further than level 3.

Study Characteristics
The key characteristics of the eligible studies are summarized
in Multimedia Appendix 2. Notably, of the 55 studies, 27 (49%)
exclusively used benchmark data sets, which were all defined
as benchmark studies. Furthermore, of the 55 included studies,
6 (11%) were published before 2018 and the remaining 49 (89%)
were published thereafter. In the following sections, the study
characteristics are described more closely based on the
taxonomy.

Activity and Environment (Level 5)
For studies that did not use benchmark data sets, they reported
the data acquired either in a controlled environment (hospital
or research laboratory) or in a free-living environment, where
participants were remotely observed performing their natural
daily routines. The latter is also known as in-the-wild.
Furthermore, the activities of the participants can be divided
into sedentary or active during data acquisition. To capture these
two related aspects, we assigned studies on an axis representing
a controlled environment and sedentary activity on one side and
in-the-wild measurement of active participants on the other side
of the axis (Figure 3). Interestingly, only 5 [16-20] studies
mapped to the active, free-living situation that complied with
the requirement of realistic data acquisition for these aspects
that map to TRL5. Thus, only one-tenth of the studies used the
potential of wearables to be used for remote, longitudinal
monitoring.

Figure 3. Studies ordered based on participant activity and acquisition environment. The leftmost scenario indicates highly controlled acquisition with
sedentary participants. The opposite is described by the rightmost scenario where participants are monitored in an active, free-living situation. Controlled
environment includes hospitals or laboratories. Free-living participants are monitored during their daily routines.
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Placement and Modality (Level 5)
Realistic data acquisition requires continuous monitoring.
Practically, the wearable should therefore not burden the
participant when wearing. This burden depended mostly on the
placement of the sensor on the body. In addition, the placement
also restricted the type of biometric signals that could be
measured, which was referred to as the modality. We categorized
studies based on the placement and modality for the
nonbenchmark studies jointly (Figure 4). The sensor placements
for cardiovascular monitoring that results in the least burden
for the patient, and thus would be the best candidates to acquire
a realistic data set, were the wrist and finger. Less than half

(N=13) of the studies were reported with such placements, of
which 8 (62%) studies acquired one modality: 3 (23%) studies
acquired wrist-based ECGs [18,21,22], 2 (15%) studies acquired
wrist-based PPGs [17,23], and 3 (23%) studies acquired
finger-based PPGs [24,30,37]. Of the 13 studies, the remaining
5 (39%) studies acquired wrist-based multimodal data: 4 (31%)
studies acquired PPGs and accelerometer data [19,20,29,47]
and 1 (8%) study acquired both ECGs and PPGs [25]. Thus,
the wrist and finger severely limited the additional modalities
that were measured (usually only acceleration), although
wearables were shown to be able to measure increasing number
of modalities [10].

Figure 4. Placement and modalities of wearable sensors: light blue, placement of sensors; blue, modalities used. Others: head, near-infrared spectroscopy;
chest, seismocardiography or gyrocardiography. Overlapping blocks represent multiple placements or modalities used. ECG: electrocardiogram; GSR:
galvanic skin response; PPG: photoplethysmogram; SIT: skin impedance and temperature.

Temporal Aspects (Levels 5, 7, and 8)
Besides the requirement of a realistic data set in level 5, levels
7 and 8 required phase 2 and phase 3 studies, respectively. In
the context of drug testing, this requires an investigation of the
effective, but safe, drug dosage. Analogously, for wearable
machine learning, this translated to the time a participant must
be exposed to a machine learning model before a cardiovascular
outcome could be accurately detected or predicted. Therefore,
a realistic deployment setting is dependent on the length of time
participants are observed. As it is further essential to characterize
the data for reproducibility and the description under which
circumstances a model is valid, we decided to outline the
temporal aspect of the acquired wearable data in more detail.
We recognized the following four levels of time aspects: (1)
study duration, (2) observation period, (3) recording duration,
and (4) input window size (Figure 5). Within the study duration,
patients were included and observed for a certain period—the

observation period. The lengths of these periods had an impact
on the realistic deployment of a system. For example, Quer et
al [71] used wrist-worn Fitbit devices to show that resting heart
rate within individuals had a significant seasonal trend in
longitudinal data. Therefore, a model constructed using data
from a certain period might not be valid for another period. It
was therefore important to consider how long the participants
were observed to ensure this seasonal effect was incorporated
in the model. Within the observation period, the wearable
recorded a time series. Theoretically, this could be as long as
the observation period itself. However, patients could interrupt
the measurements for several reasons (eg, to charge the device
and low compliance rate). We denoted the duration of a
continuously measured part of the time series as the recording
duration. Finally, the records were further segmented into
windows, from which features were generated or which were
used as raw inputs to a machine learning model. We referred
to the duration of these windows as the input window size (I).
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Figure 5. Venn diagram of reported temporal aspects described in the studies. The S, O, R, and I are represented in the legend. I: input window size;
O: observation period; R: recording duration; S: study duration.

We assessed the temporal aspects of all the nonbenchmark
studies (Figure 5). One study did not report any aspects [26]
and was omitted from the Figure 5. Another study used multiple
fixed input window sizes to incorporate different timescales of
the data [19]. Overall, most studies did not report all the aspects
and were thus not comprehensive about their data characteristics.
In almost all studies, the recording rate and input window size
were reported, whereas the study and observation periods were
mentioned in about half of the studies. For a realistic data set,
required for level 5 and progression to level 7 or 8, the
observation period and recording duration were specifically
important, as we found in 12 studies. Three studies used an
observation period of 24 hours [23,32,64]; one for a week [17],
one for 2 weeks [27], and one for 90 days [16]. Overall, 2 studies
implied an observation period of months but did not explicitly
report it [19,20]. One considered recordings of at least eight
hours [19] and one reported an average recording duration of
11.3 hours [20]. Finally, only one [27] fully used the potential
of wearables and reported a (near-) continuous recording
duration.

Cardiovascular Outcomes (All Levels)
Although the required observation period and recording duration
to detect or predict a cardiovascular outcome is still an open

and active research topic, these periods will be different for
different outcomes. Therefore, we inventoried which
(combinations of) cardiovascular outcomes were considered in
which studies (Figure 6). Interestingly, the control group was
defined differently in each study. Only half of the nonbenchmark
studies included a (normal) sinus rhythm class as control and
could therefore exclude the presence of cardiovascular disease
in participants. From these, 8 studies [17,21-23,28-31] used
data from healthy individuals to represent normal sinus rhythm.
The remaining 6 studies [32-37] derived normal sinus rhythm
data from patients with arrhythmia (such as paroxysmal atrial
fibrillation) or were unclear about the control group. Three
studies had cardiovascular (disease) prevention as the target.
One of these described this as a cardiovascular risk assessment
where the predicted classes were healthy, precaution, and critical
status [28]. Another study predicted vascular age and 10-year
cardiovascular disease risk [34]. The third assigned a
cardiorespiratory fitness score [27]. Notably, only the first 2
studies constructed a prognostic model. Two other prognostic
models forecast cardiac arrest and heart failure exacerbation by
forecasting rehospitalization after heart failure admission
[16,21].
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Figure 6. Studies categorized according to the type of cardiovascular outcomes predicted by the models. AA: atrial arrhythmia; C: control; CAD:
coronary artery disease; CP: cardiovascular prevention; HF: heart failure; SR: sinus rhythm; VA: ventricular arrhythmia; VHD: valvular heart disease.

Bottleneck TRL5
Although many cardiovascular outcomes were investigated with
wearables, the promising studies that have reached level 5 were
all focused on atrial arrhythmia using wrist-based PPGs.
However, their temporal properties were often inconclusive, as
they were not reported. Moreover, to progress to level 6, a model

should be functional within a health care system (even if it was
merely used observationally). None of the studies progressed
to this level. An overview of the level 5 models, including the
modalities that they are based on, is given in Table 1. Although
none of the methodologies progressed to level 6, we decided to
prospectively evaluate the studies to investigate the progression
of the current state.

Table 1. Studies fulfilling requirements for technology readiness level 5.

IcRbOaModalityOutcomesStudy

25 secondsNRe1 weekPPGdSinus rhythm, atrial arrhythmiaTorres-Soto and Ashley
[17]

2 minutesNRNRECGfAtrial arrhythmia, ventricular arrhythmiaBashar et al [18]

5 seconds, 30 sec-
onds, 5 minutes, and
30 minutes

>8 hours a dayNRPPG, accelerometergAtrial arrhythmia, controlTison et al [19]

1 hour11.3 hours a dayNRPPG, accelerometerAtrial arrhythmia, controlWasserlauf et al [20]

aO: observation period.
bR: recording duration.
cI: input window size.
dPPG: photoplethysmogram.
eNR: not reported.
fECG: electrocardiogram.
gSensor-provided heart rate and step counter data.

Processing Device (Level 6)
Integration in a health care system could be carried out on
different devices. These studies demonstrated their models on
either a computer (eg, a server), smartphone, or embedded
device (Table 2). Only the latter two enabled real-time
cardiovascular monitoring locally on the patient side, required

for real-time detection and prevention of acute cardiovascular
disease, as real-time information exchange to an external system
would require high battery consumption and was therefore not
feasible. Smartphones were used in both benchmark [38-40]
and nonbenchmark [21,30,31,35] studies. Embedded devices,
however, had only been demonstrated in benchmark studies
[41-44].
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Table 2. Processing device of trained models used in studies.

Benchmarks excluded, nBenchmarks included, nProcessing device

2444Computer

47Smartphone

04Embedded device

Feature Extraction Methods (Levels 7 and 8)
Levels 7 and 8 of the TRL assessed the model effectiveness
through phases 2 and 3 clinical trials. We translated that to what
features from the observed modalities were being used to
construct the models. A significant number of studies used ECG
as a modality and used different information from fiducial points
[72] to extract features (Figure 7). In many studies, samples
were selected before and after the R-peak. For example, the RR
interval is the time interval between 2 adjacent R-peaks. Some
studies also used techniques to locate other fiducial points and
used the time interval between them as features [45]. Together,
we denoted these types of features as waveform information

features. Next to the specific ECG features, more general
features could be derived, such as statistical features (eg, heart
rate [variability] derived from 10 RR intervals) or spectral
features obtained through techniques such as the Fourier
transform. Raw data could also be used as features upon which
a neural network can be used to automatically learn informative
features [46]. Next to the features based on the sensed signal,
demographic information could be used to provide more context
[28,47]. Benchmark studies mostly use raw features (using the
same data set) and were, therefore, excluded from this study.
However, it is noteworthy that 2 of these used more advanced
methods, namely, compressed learning [48] combined with
dynamic time warping [49].

Figure 7. Features used in the studies. D: demographic; O: others; R: raw; SP: spectral; ST: statistical; WI: waveform information.

The most commonly used features were raw features (studies:
9/28, 32.1%). This was followed by waveform information and
statistical features. In all, 2 studies also included demographic
metadata from participants [28,47]. One study used hemoglobin
parameters [26], which we represented in the others group in
Figure 7. Interestingly, 1 study included timestamps [19]. From
the 11 studies that used multimodal data (Figure 4), 6 (55%)
studies extract features for each modality were separately
extracted. Of the 11 studies, the remaining 5 (46%) studies
exploited the covariance among the modalities in feature
extraction, although 1 (9%) study did not elaborate on the exact

method [16]. For example, of the 15 studies, 1 (9%) study
computed the time between an R-peak in the ECG and the
closest following peak in the PPG [34]. Of the 5 studies, 2 (40%)
studies concatenated windows of the different modalities and
then extracted the features [20,50] and 1 (20%) study
concatenated windows whereafter a convolutional layer in a
neural network is used to automatically extract features from
the concatenated data [19].
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Model Construction Methods (Levels 7 and 8)
Another aspect that defines the model effectiveness relates to
the type of models being constructed, which we categorized
across both the benchmark and nonbenchmark studies (Table
3). Most of the studies used a neural network, and most of them
were nonsequential (eg, convolutional and multilayer
perceptron). A noteworthy type is the spiking neural network
[51,52], which is designed to be energy efficient and suitable
for real-time cardiovascular monitoring in an embedded device.
Although sequential models were specifically designed for
sequence or time series, these types of models were used much

less. Some studies had combined sequential and nonsequential
neural network architectures [17,19,32,42,46,53]. After the
neural networks, most of the models were classical machine
learning methods, including linear models: support vector
machines; decision trees; and similarity-based models, such as
k-nearest neighbor classifiers. Furthermore, ensemble methods
had been used that combined multiple simpler models to
construct a more complex model [22,28,44,50,54-56]. Finally,
2 studies used models that explicitly exploit the hierarchical
structure of medical time series data: a hierarchical Bayesian
model [27] and a Multiple-Instance Learning via Embedded
instance Selection model [23].

Table 3. Types of machine learning models used in the studies.

Number of times usedModel type

30Nonsequential

20Classical

9Ensemble

6Sequential neural network

5Nonsequential + sequential neural network

2Hierarchical

Validation (Levels 7 and 8)
The effectiveness of a model was heavily influenced by the
number of samples with which the model had been trained. In
phase 2 and phase 3 studies, a priori power analyses were
performed to estimate the required sample size per group or
class to observe an effect. It was empirically shown by Quintana
[73] that for heart rate variability studies, an effect size of 0.25,
0.5, and 0.9 corresponded to a low, medium, and high effect,
respectively. The corresponding sample sizes were 233, 61, and
21 for 80% statistical power and 312, 82, and 28 for a 90%
statistical power. We considered nonbenchmark studies with a
sufficient sample size per group or class, from which 9 studies
remained. From the remaining 9 studies, a power of 90% was
reached with small [19,20,24] and large [16,30,37,47] effect
sizes, and 2 studies [29,32] achieved 80% power with a large
effect size.

This showed that studies generally choose a train sample size
(per group or class) that is too small to find a significant effect
based on a priori power analysis.

In contrast to a priori power analysis, the purpose of model
validation is to retrospectively analyze the performance of the
model on data it has not seen before, that is, to assess the
generalization error of the model. The included studies chose
from 2 validation schemes: cross-validation and holdout [74]
(Figure 8), although 5 studies [16,20,28,64,65] did not report
the validation method. When splitting data into training and
testing, one needed to ensure nonoverlapping grouping and
stratification of the data (Figure 8). With nonoverlapping
grouping [75], one ensured that the same group of data did not
appear in both the training and test sets, for example, avoiding
that data from the same participant was in both the training and
test set, albeit the samples might be from different periods. With

stratification, one ensured that both the training samples and
the test samples exhibit a similar proportion of samples for an
arbitrary variable. For example, it was important to keep the
proportion of men and women consistent or to ensure that the
proportion of sensor samples representing normal rhythm and
arrhythmia is equal. For progressing to TRL 7, 4 studies used
leave-one-subject-out group cross-validation [18,23,27,45] and
4 other types of group cross-validation [29,30,37,44]. Ideally,
a stratified group cross-validation is used, but none of the studies
used this. In addition to validation strategies, it is important to
use replication data, that is, completely independently acquired
d a t a ,  w h i c h  w a s  o n l y  d o n e  i n  1 1
[17,18,21,24,25,31,33,35,36,40,70] studies.

It is important to realize that data sets could suffer from highly
imbalanced classes. An example is when there are proportionally
more samples representing sinus rhythm than atrial fibrillation.
In this case, the model may be biased to focus more on correctly
classifying sinus rhythm, as this contributed more to higher
overall classification performance. However, this led to poor
characterization of cardiovascular disease, as the corresponding
samples would be misclassified more often than sinus rhythm.
In all, 6 studies [32,41,59-62] mitigated this by (randomly)
up-sampling the minority class. A total of 4 studies [22,29,48,52]
used the synthetic minority oversampling technique [76].

Finally, it is noteworthy that some studies [41-43,45,49,51,63]
constructed a semi–patient-specific model. This could be
beneficial, as there were large differences in heart rate data
among individuals [71]. This was done by training only a small
number of samples from the target patient together with data
from other patients. The test set consisted of the remainder of
the target patient’s samples, which caused overlapping grouping
between the training and test sets.
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Figure 8. Venn diagram of validation methods used in the studies. CV: cross-validation; G: grouping; H: holdout; S: stratification.

Discussion

Principal Findings
We have shown that machine learning–based technologies that
detect cardiovascular outcomes using wearables, bottleneck at
TRL5, most dominantly on the requirement of proper realistic
data acquisition. To progress to the next level of technology
readiness, models need to become operational (either
interventional or observational) in a health care system. A study
by Komorowski [13] supports these observations and defines
the lack of testing or deployment in clinical practice as an
information bottleneck, which often occurs in medical machine
learning. Moreover, half of the eligible studies used a benchmark
data set (27/55, 49%), and the most common data set [77] was
used 18 times. We argue that overusing a data set can introduce
bias and overfitting, effectively making such a data set useless,
thereby increasing the need for realistic data sets even more.

The usefulness of wearable cardiovascular diagnostics lies in
free-living and active situations because the low burden for
wearing them and the 24/7 monitoring abilities. Placement of
the sensor on the wrist does fit these criteria best. Moreover,
commercial-grade smartwatches can measure multimodal data
with low battery consumption. This makes these types of sensors
promising to use wearable technology for cardiovascular
diagnostics. However, most studies do not fully demonstrate
this potential. Moreover, very few prognostic models have been
proposed so that cardiovascular disease prevention using
wearable machine learning is, in fact, not (yet) well researched.

Although most studies include detailed baseline characteristics
of the study population, it is worrisome that the data were not
described with a similar level of consistency, structure, and
detail. For example, some studies (explicitly or implicitly) have
reported acquiring continuous wearable data, but participants

do need to take off the device for charging or otherwise have a
low compliance rate. These studies then fail to report these
details; thus, it is unknown how continuous the data, that is, the
length of the recording duration, actually is. We believe that,
analogous to the baseline characteristics, data characteristics
should be reported in detail to predict how a model will
generalize when deployed in a particular setting and
environment.

The segmentation of the time series data in the windows was
performed with a fixed window size in all studies. None of the
studies have considered a variable-length or adaptive window
size. Furthermore, no previous physiological knowledge has
been used to determine informative timescales. For example,
the exercise-recovery curve (usually obtained from an exercise
tolerance test) is often used to quantify cardiovascular
characteristics during activity. This describes a participant’s
ability to adaptively increase the heart rate during exercise and
recover it back to a resting level after exercise. Studies that had
access to accelerometer data did not look at similar timescale
events. To this end, we believe that identifying informative
timescales within the time series and incorporating this in the
model can be valuable to detect cardiovascular diseases.

Remarkably, studies primarily prefer nonsequential neural
networks over sequential ones, although the latter is designed
for time series data. Similarly, the hierarchical structure of the
data has rarely been exploited in the published models. We
advocate that much more emphasis should be on the exploration
of these models, although this also requires larger data sets as
these methods are data hungry.

Although some studies make use of a healthy control group,
most do not include a group with no arrhythmia, sinus rhythm,
or a similar group, although diagnosing a participant having no
arrhythmia at all is just as, or even more powerful, than detecting
a specific heart problem. From a machine learning point of view,
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this can be seen as a one-class classification (outlier detection)
problem: instead of predicting a diverse set of clinical outcomes,
the focus of these models lies in modeling the normal class as
good as possible and consider deviating data as abnormal. Thus,
this would be an interesting avenue to explore. In general, it is
important to have clearly defined data annotations. For example,
some studies have annotated sinus rhythm events in patients
with arrhythmia. One might question whether this is similar to
annotated sinus rhythm events for nonarrhythmic individuals
and whether a machine learning–based approach might fail by
mixing these annotations.

We have shown that studies use a training sample size that is
too small according to a priori power analysis. Sample size
determination in machine learning [78] is focused on posthoc
methods, such as learning curves [79]. Prehoc methods, such
as power analysis, are difficult in machine learning, as there are
many factors that influence the effect size of the model.
Furthermore, we have discussed different validation schemes
that can be used. An important observation is that a significant
number of studies do not validate their model using a
nonoverlapping grouping strategy. We believe that validation
based on nonoverlapping grouping is crucial for cardiovascular
machine learning and any medical machine learning validation
in general. Without, experiments will simply suggest
performances that are too optimistic.

We have shown that only a few papers used multimodal data
and even less considered features across modalities. In our view,
this is a missed opportunity; there is valuable information to be
extracted when combining features from different modalities.
An example is the correlation between heart rate and activity.
When the heart rate changes abruptly without activity, this can
indicate an interesting segment for a model to detect heart
problems. As another example, 1 study used timestamps as
features that can provide information about seasonality in
longitudinal data. This could be used to inspect (change in)
circadian rhythm as a biomarker for cardiovascular disease.
Interestingly, ECG morphology is well researched and used as
a feature. However, no analogous decomposition of PPG signals
is used in the studies. Therefore, we advocate a similar
exploration of the PPG signals.

Finally, we argue that in addition to the technical shortcomings
discussed, societal factors (under the umbrella term ethical or
socially responsible AI) must also be addressed [80]. From the
patients’ point of view, there are concerns regarding reliability,
privacy, and especially fairness and AI bias of the system [81].
Our findings of the lack of realistic data and the imbalance in
data link to the latter, as it introduces sampling bias [82], for

example. A study by Parikh et al [83] refers to this as a statistical
bias and argues that, especially in the medical field, there can
also be social biases that are caused by inequity of patients’
access to health care (technology) or a combination of both, for
example, missing data in certain subgroups. Efforts should be
made to remove bias in data (before exposing to an AI model)
[80] and in the model itself. This referred to as debiasing
[80,82,84].

From the physicians’point of view, the performance of machine
learning models is potentially reaching that of health care
professionals’ point of view [85,86], which brings
techno-dystopic fear of rivalry between AI and human experts.
The study by Di Ieva [87] offers an alternative view by stating
that this fear can be overcome by considering the success of
multidisciplinary teams in modern medicine and that in line
with that paradigm, AI is an assisting expert in that team, rather
than a competitor.

As a final note, we would like to emphasize that we did not
fully perform a quality assessment of the risk of bias in the
clinical data acquisition of the studies. Instead, we used the TRL
to capture these risks from a machine learning perspective and
describe these limitations throughout. To this end, studies with
low methodological quality did not achieve a higher TRL. In
addition, we did not consider conference papers as journal
papers are more comprehensive and elaborate in general.
However, in the field of machine learning, conferences are used
to publish completed research (not limited to an abstract as in
other fields). Therefore, we might have missed new
developments from conference papers that have been described
in detail, yet not fully scrutinized as in journal papers.

Conclusions
TRL has enabled us to perform a structured assessment of the
(required) progression of machine learning–based wearable
technology for deployment in an operational setting. We
discussed that the promise is mainly achieved by acquiring
longitudinal data from participants in a free-living environment,
which is made possible because of low–energy-consuming
sensors that are easy to wear. However, we have also observed
that none of the studies detect or predict cardiovascular
outcomes on realistic data, which limits TRL of this technology.
In addition, we identified many other aspects that hamper
deployment progression, which need to be addressed before the
promise of using wearable technology for cardiovascular disease
detection and prevention becomes reality. On the other hand,
of the 55 included studies, 6 (11%) were published before 2018
and the remaining 49 (89%) after. Therefore, we expect a large
increase in research popularity in the coming years.
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