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Abstract

Background: Timely decision-making regarding intensive care unit (ICU) admission for children with pneumonia is crucial
for a better prognosis. Despite attempts to establish a guideline or triage system for evaluating ICU care needs, no clinically
applicable paradigm is available.

Objective: The aim of this study was to develop machine learning (ML) algorithms to predict ICU care needs for pediatric
pneumonia patients within 24 hours of admission, evaluate their performance, and identify clinical indices for making decisions
for pediatric pneumonia patients.

Methods: Pneumonia patients admitted to National Taiwan University Hospital from January 2010 to December 2019 aged
under 18 years were enrolled. Their underlying diseases, clinical manifestations, and laboratory data at admission were collected.
The outcome of interest was ICU transfer within 24 hours of hospitalization. We compared clinically relevant features between
early ICU transfer patients and patients without ICU care. ML algorithms were developed to predict ICU admission. The
performance of the algorithms was evaluated using sensitivity, specificity, area under the receiver operating characteristic curve
(AUC), and average precision. The relative feature importance of the best-performing algorithm was compared with physician-rated
feature importance for explainability.

Results: A total of 8464 pediatric hospitalizations due to pneumonia were recorded, and 1166 (1166/8464, 13.8%) hospitalized
patients were transferred to the ICU within 24 hours. Early ICU transfer patients were younger (P<.001), had higher rates of
underlying diseases (eg, cardiovascular, neuropsychological, and congenital anomaly/genetic disorders; P<.001), had abnormal
laboratory data, had higher pulse rates (P<.001), had higher breath rates (P<.001), had lower oxygen saturation (P<.001), and
had lower peak body temperature (P<.001) at admission than patients without ICU transfer. The random forest (RF) algorithm
achieved the best performance (sensitivity 0.94, 95% CI 0.92-0.95; specificity 0.94, 95% CI 0.92-0.95; AUC 0.99, 95% CI
0.98-0.99; and average precision 0.93, 95% CI 0.90-0.96). The lowest systolic blood pressure and presence of cardiovascular and
neuropsychological diseases ranked in the top 10 in both RF relative feature importance and clinician judgment.
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Conclusions: The ML approach could provide a clinically applicable triage algorithm and identify important clinical indices,
such as age, underlying diseases, abnormal vital signs, and laboratory data for evaluating the need for intensive care in children
with pneumonia.

(JMIR Med Inform 2022;10(1):e28934) doi: 10.2196/28934
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Introduction

Despite recent advances in vaccine development, pneumonia
remains a major cause of hospitalization and mortality in
children in Taiwan and worldwide [1,2]. New pathogens, such
as the recent coronavirus causing COVID-19, continue to cause
outbreaks of pneumonia and other severe respiratory infections
[3,4]. For hospitalized patients with critical conditions, the
timely decision to admit them to the intensive care unit (ICU)
is crucial for better prognosis and overall medical care quality
[5]. The decision is usually made by doctors based on clinical
criteria (eg, chief complaint, symptoms/signs, vital signs) and
laboratory criteria (eg, microbiology tests, complete blood count,
biochemical examinations). However, no well-structured nor
quantitative approach exists.

The community-acquired pneumonia management guidelines
from the Pediatric Infectious Diseases Society and the Infectious
Diseases Society of America [6] recommend that pediatric
patients who need ventilation, have low blood pressure, or have
low oxygen saturation be admitted to the ICU for pneumonia.
Other risk factors, including white blood cell count and
hemoglobin, have been associated with exacerbation among
pneumonia patients during hospitalization [7]. Some studies
have tried to develop clinical scoring systems to standardize
prognosis and disease exacerbation evaluations. For example,
a modified version of the Sequential Organ Failure Assessment
score for children used vital signs (blood pressure, oxygen
saturation), laboratory data (creatinine, platelet count), and
medications to evaluate the risk of in-hospital mortality [8].
Other scoring systems, such as the Pediatric Early Warning
Score (PEWS) and Pediatric Advanced Warning Score, have
been proposed to assist the evaluation of deterioration of
pediatric inpatients [9-11]. Gold et al [12] used a modified
version of PEWS calculated at admission to predict ICU
admission and reported an area under the receiver operating
characteristic curve (AUC) of 0.86. Nevertheless, the varying
sensitivity, specificity, and degrees of human effort limited their
clinical application.

In the era of health data science, using large amounts of patient
data to develop algorithms to solve clinical problems has become
an important approach [13-18]. For example, Makino et al [19]
applied a logistic regression model to predict aggravation of
diabetic kidney disease 180 days after discharge using patient
demographic data, lab tests, diagnosis codes, and medical
history. Their model reached an AUC of 0.74 [19]. Studies
conducted in the emergency service setting showed promising
results in triaging patients with asthma and chronic obstructive
pulmonary disease [20]. In the critical care setting, Zhang et al
[16] developed an ensemble model for the prediction of agitation

in invasive mechanical ventilation patients under light sedation;
an automated electronic health records model to identify patients
at high risk of acute respiratory failure or death was validated
retrospectively and prospectively and was determined to be
feasible for real-time risk identification [17]. Artificial
intelligence technology is assisting us with interpreting complex
data from critical patients such as patients with acute respiratory
distress syndrome (ARDS) and enables us to further improve
the management of critically ill patients with individual
treatment plans [18]. In these studies, machine learning (ML)
algorithms were usually implemented because of the strength
of incorporating large data sets and exploring the hidden
relationships among features [13,14]. The most common type
of clinical task (eg, determining whether the patient has a
specific diagnosis, the clinical severity, and the prognosis, such
as survival after a specific period) was classification. Decision
tree–based models usually yield the most promising results in
these clinical scenarios because of their strength in classification
tasks [14,20,21].

A computer-aided prognosis prediction framework has also
been applied to evaluate deterioration of pediatric inpatients.
Zhai et al [22] used electronic health records in a single medical
center to predict the need for pediatric intensive care within the
first 24 hours of admission. Their logistic regression model
reached an AUC of 0.91. Mayampurath et al [23] used 6
common vital signs (eg, temperature, pulse, blood pressure) to
predict an ICU transfer event up to 36 hours in advance,
reaching AUCs of 0.7-0.8. Rubin et al [24] applied a boosted
trees model to electronic health records to predict pediatric ICU
transfer at most 2 hours to 8 hours in advance with an AUC of
0.85. These deterioration evaluation models showed promising
results with general pediatric patients.

Most ML studies for pneumonia patients have focused on using
clinical imaging data for diagnosis or mortality [25-27]. Few
studies have explored the possibility of developing an ML-based
prediction framework to evaluate the need for intensive care
among pediatric pneumonia patients and to yield clinically
applicable performance. Therefore, we aimed to use clinical
data from children with pneumonia to develop ML algorithms
to predict the need for ICU transfer within 24 hours of
admission, which could support physician decision-making.

Methods

Data Source
We enrolled pneumonia patients aged under 18 years admitted
to the National Taiwan University Hospital from January 2010
to December 2019. The clinical data for enrolled patients were
retrieved from the National Taiwan University
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Hospital-integrated Medical Database, and all data were
de-identified before being analyzed. The institutional review
board of the National Taiwan University Hospital approved this
study and the use of de-identified electronic health records
(201912131RINB).

The diagnosis of pneumonia was determined from the hospital
records if both of the following criteria were met: (1) clinical
manifestation of respiratory tract infection at admission,
including symptoms (eg, dyspnea, rhinorrhea, cough, sputum),
abnormal breath sounds (eg, rales, crackles, rhonchi), or a
preliminary diagnosis recorded within 24 hours of admission
(see Table S1 in Multimedia Appendix 1), and (2) the
International Classification of Disease, ninth revision (ICD-9)
and tenth revision (ICD-10) diagnostic codes related to
pneumonia at discharge (see Table S2 in Multimedia Appendix
1).

Collection of Clinically Relevant Features
Data including demographics, underlying diseases, vital signs,
pathogens, and laboratory data, which were available within 24
hours of hospitalization and prior to ICU transfer, were collected
and included in the statistical analysis, model training, and
performance evaluation, as seen in Table S3 in Multimedia
Appendix 1. Underlying diseases were identified using ICD-9
and ICD-10 codes. The aforementioned clinically relevant
features associated with pneumonia prognosis were also selected
and ranked by 3 pediatricians specializing in pediatric infectious
diseases, with 5, 10, and over 20 years of experience. If missing
rates of cohort data were greater than 30%, features were
excluded.

Outcome of Interest
The outcome of interest was ICU admission within 24 hours of
hospitalization, including those directly admitted to the ICU
from emergency departments or death within 24 hours of
hospitalization. Therefore, patients transferred to the ICU after
24 hours of admission were excluded. Readmissions due to
pneumonia within 14 days or due to other conditions within 3
days were also excluded because they might be related to
previous admission. The cohort was thus categorized into 2
groups: early ICU transfer (ie, patients transferred to the ICU
or who died within 24 hours of admission) and no ICU
admission (patients who were not admitted to the ICU through
discharge).

Statistical Analysis
In addition to descriptive analyses, we used chi-square tests for
categorical variables to compare differences between the early
ICU transfer group and the no ICU admission group. For
numerical variables, the Shapiro-Wilk test was used to test
normality, the Mann-Whitney U test was used for between-group
comparisons if the data were not normally distributed, and the
t test was used if data were normally distributed. The
Benjamini-Hochberg procedure was applied to adjust for
multiple comparisons. Adjusted P values <.05 were considered
significant.

Model Training and Performance Evaluation
Based on previous research, we developed a logistic regression
model as a baseline reference. Then, we trained random forest
(RF) and eXtreme Gradient Boosting (XGB) models because
of their promising performance on clinical classification tasks
[14,16,17,20,28-31]. For model training, the data set was
separated into development and validation sets at a 4:1 ratio via
random selection. The ML models were trained using the
development set with 5-fold cross-validation. The performance
was then evaluated using the independent validation set. The
accuracy, sensitivity (recall), specificity, positive predictive
value (precision), negative predictive value, AUC, and average
precision were calculated to compare different algorithms and
thresholds.

We chose 3 points to operationalize the best performing model:
the points with the highest Youden index [32], high specificity
(0.99), and high sensitivity (0.99), which could be applied in
different clinical scenarios. The CI was estimated using
bootstrapping methods with 1000 samples.

Comparison of Feature Importance Between the ML
Model and Physicians
With the best-performing model selected using the
aforementioned performance evaluation, we further generated
the relative feature importance list using Tree Explainer based
on Shapley Additive Explanations (SHAP) values [21]. The
relative feature importance was also ranked by 3 physicians
using a 5-point scale, and the list was generated by sorting
clinical features according to the average of importance scores
assessed by the physicians. Then, the relative feature importance
list from the ML model was compared with the relative
importance ranked by the physicians.

Software
All data were managed using the NumPy (version 1.16.5) and
Pandas (version 0.25.1) libraries of the Python programming
language version 3.7.4 (Python Software Foundation,
Fredericksburg, VA). Statistical analyses were conducted using
the SciPy package version 1.3.1 [33]. To train the algorithm,
we used Scikit-learn (The Scikit-learn Contributors, version
0.21.3) [34] for logistic regressions and the RF model. The
XGBoost package (Version 0.90) was used for the XGB
algorithm [35]. The performance evaluation was conducted
using the Scikit-learn package. The Tree Explainer was built
based on SHAP values [21].

Results

Cohort Description and Between-Group Comparison
A total of 6947 patients from 9065 hospitalizations due to
pneumonia were included in the study based on their discharge
diagnosis code and status at admission. The text mining
algorithm correctly labeled 99.8% of admissions with clinical
manifestations of a tentative diagnosis using admission notes
as examined by the authors using 1000 randomly sampled
admissions. Since 601 admissions were excluded based on the
aforementioned exclusion criteria, it resulted in a final cohort
of 8464 admissions (Figure 1).
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Figure 1. Flowchart of patient enrollment. ICU: intensive care unit.

The male-to-female ratio was 1.16:1. The median age was 3.1
(IQR 1.7-5.1) years. Among the 8464 admissions included,
1166 admissions (13.8%) were transferred to the ICU or died
in the hospital within 24 hours of admission, and they were
classified as the early ICU transfer group. The most common
underlying disease in the early ICU transfer group was
cardiovascular disease (459/1166, 39.4%), followed by
neuropsychological disease (416/1166, 35.7%) and congenital
anomaly/genetic disorder (310/1166, 26.6%). Common reasons
for ICU admission included respiratory failure (566/1166,
48.5%, among which 19.3% [109/566] met the criteria of
ARDS), sepsis (392/1166, 33.6%), and chest tube insertion
(102/1166, 8.7%). There were 1003 (1003/8464, 11.9%)
admissions with a positive microbiological test (as listed in

Table S3 in Multimedia Appendix 1) result within 24 hours of
admission and prior to ICU transfer. The most commonly
identified pathogen at admission was influenza virus type A
(14/1166 admissions, 1.2%), followed by influenza virus type
B (9/1166 admissions, 0.8%) and Streptococcus pneumoniae
(5/1166 admissions, 0.4%). Younger age, higher rate of
underlying diseases, higher pulse rate, higher breath rate, lower
oxygen saturation, lower peak body temperature, and abnormal
laboratory data were significantly associated with early ICU
transfer (Table 1 and a complete list in Table S4 in Multimedia
Appendix 1). However, patients with positive results for
influenza A, influenza B, and S. pneumoniae at admission were
less likely to be transferred to the ICU within 24 hours (P=.02,
P<.001, and P<.001, respectively).
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Table 1. Selective results of clinical feature indices based on early intensive care unit (ICU) transfer.

P valueaNo ICU admission (n=7298)Early ICU transfer (n= 1166)Features

Demographic characteristics

.893916 (53.7)623 (53.4)Male, n (%)

<.0013.2 (1.8-5.0)2.1 (0.5-5.3)Age (years), median (IQR)

Underlying diseaseb

<.001599 (8.2)459 (39.4)Cardiovascular diseases, n (%)

<.001836 (11.5)416 (35.7)Neuropsychological diseases, n (%)

<.001537 (7.4)310 (26.6)CA/GDc, n (%)

<.001279 (3.8)228 (19.6)Respiratory disease, n (%)

<.001240 (3.3)144 (12.3)Genital-urinary tract disease, n (%)

Vital signsb

<.001104.0 (92.0-114.0)136.0 (116.0-152.0)Lowest pulse (bpm), median (IQR)

<.00138.4 (37.6-39.1)37.6 (37.0-38.5)Peak body temperature (°C), median (IQR)

<.00166.0 (57.0-75.0)60.0 (51.0-71.0)Lowest DBPd (mm Hg), median (IQR)

<.001107.0 (97.0-119.0)102.0 (91.0-116.0)Lowest SBPe (mm Hg), median (IQR)

.001112.0 (101.0-124.0)110.0 (98.0-123.0)Initial SBP (mm Hg), median (IQR)

Pathogen

.02169 (2.3)14 (1.2)Influenza virus type A, n (%)

<.001172 (2.4)9 (0.8)Influenza virus type B, n (%)

<.001432 (5.9)5 (0.4)Streptococcus pneumoniae, n (%)

Lab datab

<.00128.3 (17.2-42.9)21.3 (12.6-36.5)Lymphocyte (%), median (IQR)

<.0010.4 (0.3-0.5)0.5 (0.3-0.6)Creatinine (U/L), median (IQR)

<.00160.0 (44.4-73.0)67.0 (49.0-79.3)Segment (%), median (IQR)

.431.8 (0.6-4.4)1.7 (0.5-5.6)CRPf (mg/dL), median (IQR)

.0212.5 (11.7-13.3)12.7 (11.2-14.0)Hemoglobin (g/dL), median (IQR)

aAdjusted using the Benjamini-Hochberg procedure.
bOnly the top 5 important features ranked by the Shapley Additive Explanations (SHAP) value are shown. The full table is shown in Table S4 in
Multimedia Appendix 1.
cCA/GD: congenital anomaly/genetic disorder.
dDBP: diastolic blood pressure.
eSBP: systolic blood pressure.
fCRP: C-reactive protein.

Model Performance
After random selection, 6772 (6772/8464, 80.0%) records were
included in the development set, and 1692 (1692/8464, 20.0%)
were included in the validation set (Table 2). In the validation
set, the RF model achieved the best performance in identifying
patients transferred to the ICU within 24 hours after admission
(AUC 0.987, 95% CI 0.981-0.992) compared with the XGB
model (AUC 0.982, 95% CI 0.972-0.990) and logistic regression
model (AUC 0.885, 95% CI 0.863-0.908). The average precision
values were 0.932 (95% CI 0.904-0.956) for RF, 0.941 (95%
CI 0.917-0.963) for the XGB algorithm, and 0.609 (95% CI
0.543-0.681) for the logistic regression model (Figure 2).

For the RF algorithm, at the point with the highest Youden
index, the overall accuracy of the RF algorithm was 0.936 (95%
CI 0.930–0.947), sensitivity was 0.940 (95% CI 0.919–0.954),
and specificity was 0.935 (95% CI 0.924–0.952; Figure 2). At
this threshold, there is approximately one false positive for every
3.1 positive predictions. At the point of highest sensitivity,
which could include most patients with early ICU admission
with some false alarms, the specificity was 0.868 (95% CI
0.642–0.917), and the negative predictive value was 0.998 (95%
CI 0.995-1.000). At the point of highest specificity, which could
avoid the most unnecessary ICU admissions, the sensitivity and
positive predictive value (precision) for our RF algorithm were
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0.835 (95% CI 0.779-0.886) and 0.897 (95% CI 0.883–0.933), respectively.

Table 2. Basic characteristics of the development set and validation set.

Validation set (n=1692)Development set (n=6772)Characteristics

218 (12.9)948 (14.0)ICUa transfers or deaths within 24 hours after admission, n (%)

15765581Unique individuals, n

4.0 (3.0-7.0)4.0 (3.0-7.0)Length of stay (days), median (IQR)

3.9 (3.3)4.0 (3.5)Age (years), mean (SD)

914 (54.0)3625 (53.5)Male, n (%)

aICU: intensive care unit.

Figure 2. For the early intensive care unit (ICU) transfer and no ICU transfer groups, (A) receiver operating characteristic (ROC) curves and confusion
matrices at the operational points with (B) the highest Youden index, (C) 0.99 sensitivity and the highest precision, and (D) 0.99 specificity and the
highest sensitivity. AUC: area under the ROC curve; LogReg: logistic regression; RF: random forest; XGB: extreme gradient boosting.
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Feature Importance From the ML Algorithm and
Clinicians’ Judgment
Figure 3 shows the top 20 features by relative importance from
the RF algorithm based on SHAP values (see Figure S1 in
Multimedia Appendix 2 for a complete list). The 5 most
important features were lowest pulse rate, peak body
temperature, age, lowest diastolic blood pressure, and presence
of cardiovascular disease. For physician-rated relative feature

importance, the presence of immunodeficiency; lowest oxygen
saturation; and presence of solid neoplastic diseases, respiratory
diseases, and cardiovascular diseases were considered the most
important features (Figure S2 in Multimedia Appendix 3). The
presence of cardiovascular diseases, the lowest systolic blood
pressure, and the presence of neuropsychological diseases were
ranked in the top 10 features with the highest importance
measured by both SHAP values in the XGB model and
physicians’ judgment.

Figure 3. Top 20 important features of the random forest model based on Shapley Additive Explanations (SHAP) values. Every admission data point
has one dot on each row for individual features. The color of the dot indicates the value of each feature from the admission data. The pile of dots on the
same row to illustrate the density at different SHAP values. CA/GD congenital anomalies/genetic disorder; DBP: diastolic blood pressure; dz: disease;
SBP: systolic blood pressure; SpO2: blood oxygen saturation.

Discussion

Principal Findings
Using the clinical data from 8464 admissions of children with
pneumonia, we trained 2 ML algorithms to predict the need for
ICU care within 24 hours of admission. Our study showed that
ML algorithms could be applied to accurately triage hospitalized
pediatric patients with pneumonia and effectively identify those
who may need early ICU transfer. The high specificity and
sensitivity of our algorithms supported their potential application
in real-world clinical scenarios, which could provide a
disease-specific alarm for severe conditions with the need for
ICU care in a timely manner based on individual patient
conditions. Because we only included the available features at
admission, this design was considered more practical in clinical
use. In addition, the list of feature importance could be explained
by the clinical reasoning of human physicians. The explainability
further validates the use of the ML approach for the clinical
classification task. To our knowledge, our study is the first to
explore the possibility of applying ML methods to large clinical
data sets for triaging pediatric patients with pneumonia for ICU
care.

The identification of a patient with the need for ICU care in the
emergency room or in the early stage of the disease might
influence medical care quality and clinical outcomes [5,36].
Previous work has revealed the ability to use decision tree–based
algorithms to perform classification tasks in clinical scenarios
or triage, with some promising preliminary results
[13,14,16,17,20,24]. However, applications in clinical
classification usually focus on triaging patients with different
clinical severities and more general clinical diagnoses, such as
respiratory failure, other organ failures, or sepsis [13,14,20,37].

Our work is one of the few studies to focus on a large data set
for a specific diagnosis, pediatric pneumonia. Our algorithm’s
performance has better performance than previous studies that
had AUCs ranging from approximately 0.7 to 0.9 [22-24,29],
suggesting the advantage of an ML approach dedicated to
children with pneumonia. With satisfactory performance, the
application of the ML algorithms we proposed can be applied
to support physicians’ decisions for ICU care based on
individual patient conditions and further improve health care
quality during hospitalization. It can also help reduce clinicians’
burden during outbreaks of community-acquired pneumonia,
such as the recent COVID-19 outbreak, or in hospitals with
insufficient human resources.

Because we could set up different operational points for the
algorithm, our algorithm could be applied in various clinical
settings. For example, at the high sensitivity operational point,
the specificity could be kept at 0.868 (95% CI 0.642-0.917)
with a negative predictive value of 0.998 (95% CI 0.995-1.000),
which could be used to rule out those who did not need ICU
care. Medical centers accommodating single-digit inpatients
with pneumonia per day can operate on this threshold. Using
the high sensitivity point, we could help clinicians identify
patients who might need ICU admission earlier and reduce the
number of undertriaged patients. Although there were
one-quarter of the results as false positives, the burden is
acceptable when the number of inpatients per day remains low,
and false negatives are more harmful. When we further
examined the medical records of those false negative cases in
the current data set, we found that older age might be related
with false negative results. Therefore, clinicians should be aware
of false negative results in older children when applying the
algorithm for their decision support. In contrast, at the high
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specificity point (0.99), our algorithm maintained a sensitivity
of 0.835 (95% CI 0.779-0.886) and a positive predictive value
of 0.897 (95% CI 0.883-0.933). The high specificity with a high
positive predictive value suggest that the algorithm could
prevent unnecessary ICU admissions, so it may be applied when
health care resources are limited or an outbreak happens.
Therefore, the algorithm output could be customized according
to the clinician’s needs. In this way, the improved
discriminability from ML algorithms could contribute to more
accurate clinical decision-making and resource allocation. The
ML model can not only provide automated estimation in clinical
settings but also serve as a tool for training less experienced
physicians or setting an alarm in hospitals with fewer human
resources. Although the model does not reflect 100% of human
physician decisions, it could be considered as a second opinion
in the clinical setting and serve as a reference instead of being
the only guideline for the final medical decision.

Our study also revealed important clinical feature indices (such
as younger age, underlying diseases, higher pulse rate, and lower
blood pressure) for the need for early ICU transfer, but patients
with positive results for influenza A, influenza B, and
S.pneumoniae at admission were less likely to be transferred to
the ICU within 24 hours. These important clinical red flags
could help physicians manage critically ill patients. In addition,
early detection of the pathogens causing pneumonia in children
makes early optimal treatment possible and improves the
patient’s clinical condition.

Limitations
There are some limitations in our study. First, we did not include
imaging data, such as chest X-ray images, in our data set.
However, diagnosis using the ICD codes relied on the
physicians’clinical judgments, and clinicians might have already
considered other clinical clues. Although most pneumonia
patients are diagnosed clinically without specific radiological
findings, including imaging data might still improve the
judgment of clinical severity and thus influence the risk
stratification for ICU care. Second, some clinically relevant
parameters, such as blood gas values and procalcitonin
measures, were not included in our algorithm training because
of the high proportion of missing data. Third, the reasons for
ICU admission usually varied (eg, ARDS, sepsis, respiratory
failure, or other organ failures). Our algorithm could only
evaluate the possible needs for ICU admission instead of the
clinical diagnosis. With more data collected, an individual
algorithm for a specific diagnosis might be developed in the
future. Lastly, the algorithms were trained using a data set from
a single medical center. Generalizability might be an issue if
we would like to apply the findings to other hospital settings.
Clinical validation in real-world settings might be required at

the next stage to examine the application of ML algorithms in
daily clinical work.

Comparisons With Prior Work
Compared with prior work that evaluated the need for ICU
admission for pediatric patients, our disease-specific model for
children with pneumonia demonstrated better performance. Our
study incorporated up to 41 features from different domains
(eg, demographics, vital signs, microbiological tests, and
laboratory examinations) with no human-rated components (eg,
behavior rating, respiratory difficulty). The strength of our
tree-based ML approach is the ability to simultaneously process
high-dimensional data linearly or nonlinearly [21]. With ML
algorithms, we could integrate data with varying characteristics
and solve complicated clinical questions (ie, predict the need
for ICU care for hospitalized children with pneumonia). These
characteristics enable the ML algorithm to include more clinical
data and explore interactions among individual features, which
was almost impossible to conduct with human intelligence or
traditional statistical approaches, such as logistic regression.
To further validate the algorithm’s explainability, we invited 3
experienced physicians to grade the importance of ICU transfer
evaluations from a clinical perspective. The results showed that
features that were considered to be of higher importance by ML
algorithms, such as the lowest systolic blood pressure and the
presence of cardiovascular and neuropsychological diseases,
were also considered essential features in the physicians’clinical
judgment. The results helped us explain the findings of ML
algorithms without being accused of using a “black box” for
clinical decision-making. However, some discrepancies were
still found. For example, human doctors tend to consider
immunodeficiency and solid tumor diseases to be high-risk
factors for early ICU transfer, but the importance of these 2
features in the ML algorithms is very low. This discrepancy
between machine and human intelligence might be the
consequence of proactive management for immunocompromised
patients in clinical settings and thus inversely lowers the
probability of early ICU admission. When applying the ML
algorithm, we still have to consider this limitation in
immunocompromised patients and combine the prediction of
ML algorithms with clinical judgment. In this way, we could
maximize support from machines without neglecting human
intelligence.

Conclusions
In summary, we developed ML algorithms that could accurately
classify the risk of early ICU transfer within 24 hours of
admission for children with pneumonia. The clinical use of
these algorithms might detect high-risk patients earlier and
improve the quality of health care for pediatric pneumonia.
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