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Abstract

Background: Patient representation learning aims to learn features, also called representations, from input sources automatically,
often in an unsupervised manner, for use in predictive models. This obviates the need for cumbersome, time- and resource-intensive
manual feature engineering, especially from unstructured data such as text, images, or graphs. Most previous techniques have
used neural network–based autoencoders to learn patient representations, primarily from clinical notes in electronic medical
records (EMRs). Knowledge graphs (KGs), with clinical entities as nodes and their relations as edges, can be extracted automatically
from biomedical literature and provide complementary information to EMR data that have been found to provide valuable
predictive signals.

Objective: This study aims to evaluate the efficacy of collective matrix factorization (CMF), both the classical variant and a
recent neural architecture called deep CMF (DCMF), in integrating heterogeneous data sources from EMR and KG to obtain
patient representations for clinical decision support tasks.

Methods: Using a recent formulation for obtaining graph representations through matrix factorization within the context of
CMF, we infused auxiliary information during patient representation learning. We also extended the DCMF architecture to create
a task-specific end-to-end model that learns to simultaneously find effective patient representations and predictions. We compared
the efficacy of such a model to that of first learning unsupervised representations and then independently learning a predictive
model. We evaluated patient representation learning using CMF-based methods and autoencoders for 2 clinical decision support
tasks on a large EMR data set.

Results: Our experiments show that DCMF provides a seamless way for integrating multiple sources of data to obtain patient
representations, both in unsupervised and supervised settings. Its performance in single-source settings is comparable with that
of previous autoencoder-based representation learning methods. When DCMF is used to obtain representations from a combination
of EMR and KG, where most previous autoencoder-based methods cannot be used directly, its performance is superior to that of
previous nonneural methods for CMF. Infusing information from KGs into patient representations using DCMF was found to
improve downstream predictive performance.

Conclusions: Our experiments indicate that DCMF is a versatile model that can be used to obtain representations from single
and multiple data sources and combine information from EMR data and KGs. Furthermore, DCMF can be used to learn
representations in both supervised and unsupervised settings. Thus, DCMF offers an effective way of integrating heterogeneous
data sources and infusing auxiliary knowledge into patient representations.
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Introduction

Background
Machine learning–based predictive models have been found to
be highly accurate in many clinical decision support tasks.
Examples include predictions of unforeseen complications [1],
patient severity assessment through mortality predictors [2] and
automated coding for billing [3], and prediction of patient
outcomes [4], to name a few. The key ingredients of these
models are the features used to describe patients for whom
predictions are required. The traditional approach for building
these features is to handcraft them typically in collaboration
with a domain expert. However, with the growing amount,
complexity, and diversity of clinical information sources, such
manual feature engineering is practically infeasible. For instance,
in electronic medical records (EMRs), patient information may
be distributed among laboratory tests, nursing notes, radiology
images and reports, genomic data, and other data sources.

Representation learning aims to learn features or representations
from the given input sources automatically, often in an
unsupervised manner. This obviates the need for manual feature
engineering and is particularly useful with unstructured data
sources such as clinical notes. These real-valued vectorial
representations can be used as features directly in machine
learning models for various downstream tasks such as prediction
or cluster detection. Such representation learning has been found
to be effective in several predictive models, for example, disease
category prediction [5] and mortality prediction [6].

Previous studies have primarily used clinical notes to learn
patient representations. Clinical notes are a rich source of
information containing detailed subjective and objective
evaluations of patient conditions during the hospital stay. Some
previous studies have also combined other structured tables
from EMR with features extracted from notes to obtain patient
representations [1,5] or to mine clinical information such as
drug mentions [7]. Many of these studies have used variants of
deep neural architecture based on autoencoders to obtain
unsupervised patient representations.

When information from multiple heterogeneous sources is
available, predictive models benefit from latent representations
that systematically model correlated shared structures. The aim
of multi-view learning is to effectively build such latent
representations, where views refer to measurements for the same
subjects that differ in source, datatype, or modality;
heterogeneous data sources within EMR provide such multiple
views of patients. A general technique for multi-view
representation learning from arbitrary collections of
heterogeneous data sources is collective matrix factorization
(CMF) [8]. CMF can be used to obtain patient representations
from multi-view EMR data and can also be used to seamlessly
integrate auxiliary information from external sources.

One such auxiliary source of information is a clinical knowledge
graph (KG) that has been found to be valuable for improving
both the accuracy and interpretability of predictive models.
These KGs have clinical entities (eg, diseases, drugs, and
biomolecules) as nodes and different kinds of relations (eg,
treats, predisposes, and causes) as edges. They can be
automatically created from various sources such as biomedical
literature and web-based health portals. Representation learning
methods have also been developed for graph inputs that can
automatically learn vectorial representations of nodes to
incorporate the global structural and semantic properties of the
graph. These node representations can then be used in machine
learning models for graph analytics such as community detection
or node classification. Owing to its wide applicability, a large
number of graph representation learning techniques have been
developed for various classes of graphs, including KGs.

In this paper, we analyze patient representation learning in light
of 2 recent advances in CMF and KG representation learning.
A deep autoencoder-based architecture, called deep CMF
(DCMF), was developed for CMF, which was found to
outperform classical nonneural variants of CMF in several tasks
[9]. Using DCMF, which provides a seamless way of integrating
heterogeneous data, we evaluate the effectiveness of patient
representations when the input data are augmented with
additional information from literature-derived KGs. The
generality of DCMF allows many different ways of using KG
as inputs; however, not all of them are equally effective.
Recently, it has been shown that many graph representation
learning methods can be reformulated as a matrix factorization
problem. Leveraging this formulation within the context of
CMF and DCMF, we infuse auxiliary information during patient
representation learning. To our knowledge, this is the first study
to use this technique to obtain clinical KG representations and
use it within the DCMF framework to obtain patient
representations.

Furthermore, the DCMF architecture can easily be extended to
create a task-specific end-to-end model that learns to
simultaneously find effective patient representations and
predictions. We also compare the efficacy of such a model to
that of a 2-stage process of first learning unsupervised
representations and then independently learning a predictive
model.

We rigorously evaluate patient representation learning using
DCMF-based methods and autoencoders for 2 clinical decision
support tasks on EMR data comprising 28,563 patient episodes.
The first task is that of primary diagnosis category prediction,
which is performed during coding from discharge summaries
when a patient is discharged from the hospital for billing and
reimbursement purposes. The second task is that of mortality
(risk of death) prediction, which can be used to identify high-risk
patients and prioritize their care.
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The utility of DCMF-based patient representations, obtained
from only EMR data and a combination of KGs and EMR data
in these 2 tasks, is empirically analyzed and discussed.

Related Work

Representation Learning
Statistical machine learning models typically assume inputs as
feature vectors. To obviate the need for cumbersome, time- and
resource-intensive manual feature engineering, especially from
unstructured data such as text, images, or graphs, representation
learning aims to learn features or representations from the input
directly, often in an unsupervised manner. These real-valued
vectorial representations can be used as features directly in
machine learning models for various downstream tasks such as
prediction or cluster detection.

Representation learning has been successfully used in many
domains, such as natural language processing (NLP) [10,11],
multimodal learning [12], social network analysis [13], and
bioinformatics [14]. In addition, representation learning has
been applied within medical informatics to learn patient
representations from clinical notes [6], EMR data [1,5], clinical
time series [15], and clinical KGs [16,17].

Autoencoder-based neural architectures have been used in most
methods to learn patient representations. Miotto et al [5] used
stacked denoising autoencoders (SDAE) to learn patient
representations from both structured EMR data and topics
extracted from clinical notes. Dubois et al [18] obtained
note-level representations from clinical notes and combined
them to form patient representations. Suresh et al [19] evaluated
different autoencoder architectures to find patient phenotypes.
Sushil et al [6] evaluated SDAE and Doc2vec representations,
both independently and together, to obtain patient
representations from clinical notes.

An autoencoder is a simple feedforward neural network that
learns to reconstruct its input; it does so by first encoding the
input into a dense, low-dimensional vector, also called
bottleneck (which is used as the representation after training),
and then decoding the bottleneck into the output. The network
is trained to make the output as close as possible to the input.
Both the encoder and decoder are implemented using neural
networks. When there are multiple sources of patient
information, such as demographic data, laboratories, and
medications, they can be concatenated and provided as input to
an autoencoder. A denoising autoencoder uses corrupted
versions of inputs and is trained to reconstruct the uncorrupted
version. SDAE is a variant based on stacking layers of denoising
autoencoders, which are trained locally to denoise corrupted
versions of their inputs [20].

In a different approach for combining multiple data sources,
patient representations based on CMF were used in the study
by Huddar et al [1] to combine multiple EMR matrices with
features extracted from clinical notes. These representations
were found to be effective in predicting postoperative acute
respiratory failure in intensive care unit (ICU) patients.

DCMF Architecture
In multi-view learning, views refer to measurements for the
same subjects that differ in source, datatype, or modality. CMF
is a general technique for learning shared representations from
arbitrary collections of heterogeneous data sources [8].

For a single matrix Xm×n containing m rows and n columns,
low-rank factorization aims to obtain latent factors Um×k’ and

Vn×k’ such that X≈UVT, where the latent dimension k<min(m,n).
The latent factors can be viewed as low-dimensional
representations of the row and column entities. For example, if
X is a matrix containing diagnoses of m patients, where each
patient can have n≥1 diagnoses, the factors provide
k-dimensional representations of patients (in U) and diseases
(in V). The factors are typically learned by solving the

optimization problem: , where l denotes a loss
function.

CMF generalizes this idea of single matrix factorization for an
arbitrary collection of matrices. The input to the CMF is a
collection of matrices, where each matrix, representing a view,
has a relationship between 2 entity types along each matrix
dimension, and entity types may be involved in multiple views.
CMF collectively factorizes the input set of matrices to learn a
low-rank latent representation for each entity type from all the
views in which the entity type is present. As the CMF models
arbitrary collections of matrices, this setting is also referred to
as augmented multi-view learning.

A model for CMF based on deep learning was developed by
Mariappan and Rajan [9], which is briefly described next. Given
M matrices (indexed by m) that describe the relationships
between E entities (indexed by e), each with dimension de,

DCMF jointly obtains latent representations of each entity Ue

and low-rank factorizations of each matrix 

such that Ue=fθ ([C](e)), where fθ is an entity-specific nonlinear
transformation, obtained through a neural network–based

encoder with weights θ and [C](e) denotes all matrices in the
collection that contain a relationship of entity e. The entities

corresponding to the rows and columns of the mth matrix are
denoted by indices rm and cm, respectively.

There are 2 steps in DCMF model construction:

1. Input transformation: For each entity e, we create a new

matrix C(e), which we call a concatenated matrix, by
concatenating all the matrices containing entity e.

2. Network construction: We then use E (dependent)
autoencoders to obtain the latent factors Ue from the

concatenated matrices C(e). For each entity e, our network

has an autoencoder whose input is C(e), and the decoding

is represented by C(e)’. The bottleneck or encoding of each
autoencoder, after training, forms the latent factor Ue.

The latent factors are learned by training all the autoencoders
together by solving the following equation:
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where lE is the reconstruction loss between the autoencoder’s

input C(e) and the decoding C(e)’; lR is the matrix reconstruction

loss, where the reconstructed matrix of the

mth view is obtained by multiplying the associated row and

column entity representations and . Figure 1 shows

a schematic of the model construction steps for an example
comprising 5 matrices.

Collective training of all autoencoders induces dependencies
between the autoencoder networks, which may result in
simultaneous underfitting in some networks and overfitting in
other networks. This makes collective learning of all latent
representations challenging and, to scale to arbitrary collections
of matrices, necessitates automatic hyperparameter selection.
We address these optimization challenges through multitask
Bayesian optimization (details can be found in the study by
Mariappan and Rajan [9]).

Figure 1. Schematic of supervised deep collective matrix factorization architecture for an example input of 5 matrices, 6 entities. Top: input matrices
and a graph showing the entities present in each matrix. Bottom: for each entity, matrices containing that entity (as row or column) are concatenated
(shaded) and then given as input to the autoencoder. All autoencoders are trained collectively.

Graph Embeddings
Representation learning from graphs aims to learn
low-dimensional real-valued features of its nodes, also called
graph embeddings, to capture the global structural information
and semantic properties in the graph. Many representation
learning methods have been proposed for homogeneous graphs,
where nodes and edges are both of a single type, for example,
DeepWalk [21] and Node2Vec [22]. Many real-world
interactions, including those found in clinical KGs, give rise to
heterogeneous information networks (HINs) where nodes and
edges can be of different types. Representation learning methods
for such graphs have also been developed, for example,
Metapath2vec [23] and Heterogeneous Graph Neural Network
[24]. Cui et al [25] and Cai et al [26] described general surveys,
Yang et al [27] described a survey on HIN embeddings, and
Wang et al [28] described a survey on representation learning
of KGs.

The key underlying idea of many of these techniques is to learn
the similarities or correlations between nodes in the input
network and approximate them at the latent level in the
embeddings. Many network embedding techniques are
equivalent to the factorization of a node similarity matrix with
suitable definitions of similarities [29].

Knowledge Graphs
Knowledge bases and ontologies systematically organize the
wealth of available biomedical knowledge. For instance, the

Unified Medical Language System (UMLS) Metathesaurus [30]
contains >5 million clinical concepts, identified by controlled
unique identifiers (CUIs) and organized into several structured
ontologies. Biomedical knowledge is growing at a rapid
rate—MEDLINE, the largest index of medical literature,
contains >24 million articles with >1.8 million new articles
published annually [31]. One cannot possibly assimilate all the
knowledge, even in a narrow domain that is growing at such a
tremendous pace, let alone find novel connections. To facilitate
automated knowledge discovery, hypothesis generation, and
predictive modeling from such an enormous and rapidly growing
source, automated techniques to extract and organize knowledge
into KGs have been developed.

These KGs contain clinical entities as nodes and the relations
between entities as edges. As there are different kinds of clinical
entities (eg, diseases, drugs, and biomolecules) and different
kinds of relations (eg, treats, predisposes, and causes), such
KGs are essentially HINs. Examples include Hetionet [32],
which comprises 47,031 nodes of 11 types and 2,250,197
relationships of 24 types; KnowLife [33], which contains
>500,000 relations for 13 node types, covering genes, organs,
diseases, symptoms, and treatments, as well as environmental
and lifestyle risk factors; and Semantic Medline Database
(SemMedDB) [34], which contains approximately 94 million
relations automatically extracted from approximately 27.9
million PubMed abstracts.
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In this study, we used the SemMedDB, which, through the use
of NLP techniques, automatically creates a KG from biomedical
literature. In SemMedDB, clinical concepts are identified in
PubMed abstracts through entity recognition algorithms and
then mapped to their CUIs. Various heuristics are used to infer
the relations between concepts [35]. SemMedDB infers 30
different kinds of relations that are organized into
sub jec t -pred ica te -ob jec t t r ip le t s  (eg ,
drugA–TREATS–diseaseB), where both the subject and object
are clinical concepts, and the predicate is a relation. These
triplets form an HIN comprising multiple vertex types (clinical
concepts) and multiple edge types (predicates).

Biomedical knowledge, in various forms, including KGs, has
been used in clinical predictive models. For instance, the
International Classification of Diseases (ICD) hierarchy, which
represents relationships across diseases, has been used for
diagnosis prediction [36-38]. Recently, domain
knowledge–guided recurrent neural network, a recurrent neural
network architecture, was proposed [39], where embeddings
from a general KG were used internally for initialization. Most
of these approaches have specialized architectures for predictive
tasks and are not designed to obtain patient representations from
heterogeneous collections of data.

Methods

Supervised DCMF
We extended the unsupervised DCMF model to incorporate
task-specific supervision. This allowed us to learn entity
representations that are influenced by the target variables
provided for the predictive task. Furthermore, this creates a
predictive model that can seamlessly learn from arbitrary
collections of matrices. We assumed that the predictive task,
for example, regression or classification, is with respect to one
entity only. In the case of clinical tasks, this entity is most often
patients. All other data, such as EMRs and KGs, can be used
as inputs from which a predictive model for patients can be
built. Examples include predicting the length of stay (regression)
or the risk of an unforeseen complication (classification).

The DCMF architecture is extended by adding an additional
task-specific layer that takes as input the latent representation
of the entity for which labels are provided. This layer is provided
with labels during training and is trained along with the rest of
the network. Let ep be the specific entity (eg, patients) for which

task-specific labels yT are provided for a task T. Let be
the bottleneck of the autoencoder corresponding to the entity
ep. The network is constructed as described above with the

addition of a single network layer that takes as input and
has an activation layer depending on the task and loss function

(eg, sigmoid for classification and linear for regression). There
is a task-specific loss lT(yT,y’) associated with this layer that is
also task dependent (eg, cross-entropy for classification and
mean-squared error for regression), where y’ denotes the
network’s predictions. The supervised latent representations are
now learned by solving the following equation:

Collective training of all autoencoders is performed in exactly
the same way as in DCMF but with the new loss function as
given above. During prediction, new inputs for entity ep may
be given along with all other auxiliary data, and the additional
layer’s outputs can be used as predictions.

Figure 1 shows a schematic of the model. There are 5 input
matrices containing pairwise relations across 6 entities. The
graph at the top shows the associations between entities and
matrices. One of the entities (shaded) is associated with the
labels for a classification task. The network comprises 6
autoencoders, as shown at the bottom, 1 for each entity. The
input to the autoencoders is from the concatenated matrix
corresponding to each entity (shown in the input transformation
part). The bottleneck layer from the first autoencoder is used
as input to a network layer that uses the provided labels during
training. Note that this illustration shows a specific example of
5 matrices; however, the DCMF model can be used with any
collection of input matrices.

Combined Data-Driven and Knowledge-Based
Representation Learning Using DCMF
Any graph may be represented by its adjacency matrix.
However, factorization of this adjacency matrix may not yield
effective representations. We also observed this empirically in
our experiments. Another way of using KGs is to first obtain
graph embeddings and then use the embeddings within the CMF.
We experimented with TransE [40] and found that this did not
yield effective representations. To obtain good representations,
we used the technique used previously by Liu et al [29]. The
key idea was to compute the similarities between the nodes in
the graphs and obtain representations by factorizing the
similarity matrices.

The global resource allocation (GRA) similarity, between 2
nodes in a graph, was proposed by Liu et al [29] with the aim
of having similar embeddings for similar nodes and generalizing
previous metrics. We found similarities between diseases,
medications, and procedures (separately) from the SemMedDB
KG using the GRA similarity. These similarity matrices are
provided as input to CMF-based methods that internally
factorize all the matrices collectively, as shown in Figure 2.
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Figure 2. Schematic of combined data-driven knowledge-based representation learning. Pairwise Global Resource Allocation similarities among clinical
entities are computed from the knowledge graph. Patient representations are learnt from these similarity matrices and the input electronic health record
data collectively using Collective Matrix Factorization-based methods. CMF: Collective Matrix Factorization; EHR: electronic health record.

We now provide an intuitive explanation of GRA similarity and
explain why it is a good measure for clinical KGs; a more
technical description can be found in the study by Liu et al [29].
The similarity between 2 nodes i and j is computed based on
the paths that exist between them. Such a global measure can
be applied to any 2 nodes in the graph, irrespective of their
distance within the graph. In contrast, local measures, such as
the number of common neighbors, often yield ineffective
embeddings as many node pairs may have the same scores. This
is particularly true for dense clinical KGs.

The similarity score depends on (1) the number of paths, (2)
the length of the paths, and (3) the node degrees of the
intermediate nodes in each path. For each path between i and
j, its contribution is equal to the reciprocal of the product of the

degrees of the intermediate nodes of the path. Let pl(i,j) be a
path of length l between nodes i and j, and let the intermediate
nodes be i1,i2,...i{l–2}. Let k(i) denote the degree of node i, that
is, the number of edges incoming to or outgoing from i. The

contribution of a path c(pl) is defined as follows:

In this manner, paths that contain high-degree nodes have higher
denominators, and their contributions are decreased. This is
justified as high-degree nodes connect many different nodes
and thus affect many paths. Therefore, paths that do not contain
such high-degree nodes should contribute to the higher similarity

between the nodes. The final GRA similarity is the sum of the
contributions over all paths weighted by a factor that decays
exponentially with path length:

By exponentially decaying the weights, shorter paths are
assigned higher weights. Thus, both the number and length of
the paths are accounted for in the similarity measure.

Liu et al [29] showed that this technique generalizes and
outperforms many previous graph embedding methods. To our
knowledge, ours is the first study to use this technique to obtain
clinical KG representations and use it within a collective matrix
factorization setting to obtain patient representations.

Experiment Settings
Figure 3 shows a schematic of the experimental settings. We
considered 3 views: 1, 2, and 3. View 1 comprises data extracted
from clinical notes that have been used for patient representation
learning in several previous studies. In view 2, data from
SemMedDB KGs were extracted as described above and added
to the data from view 1. In view 3, structured data from the
EMR were also added to obtain patient representations. In the
following section, we evaluate the performance of
representations learned from these 3 views in 2 clinical decision
support tasks.
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Figure 3. Views 1, 2, and 3 used to obtain patient representations. EMR: electronic medical record; SemMedDB: Semantic Medline Database.

Data

Overview
We used the Medical Information Mart for Intensive Care
(MIMIC) III database [41], which contains clinical data of
>40,000 patients admitted to the ICUs in the Beth Israel
Deaconess Medical Center in Boston, Massachusetts, between
2001 and 2012. The data were extracted and deidentified in
compliance with the Health Insurance Portability and
Accountability Act standards [41]. We excluded patients with
>1 hospital stay at MIMIC-III. Patients aged <18 years were
also excluded. A total of 28,563 patient episodes were used.

Clinical Notes Preprocessing
The NOTEEVENTS table in MIMIC-III contains all clinical
notes for patients. It contains a column called IS_ERROR. A
value of 1 in this column for a note indicates that a physician
has identified the note as an error. Using this value, we first
excluded notes that were considered erroneous. The
CATEGORY column in the table indicates the type of note
recorded. Discharge summaries often contain detailed
information about the patient’s stay, including diagnoses that
are used for billing. As we wanted to predict the diagnosis
category automatically from the clinical notes, we excluded all
the notes that had been categorized as discharge summaries.
The remaining notes were used in our analysis.

The timestamp of a clinical note is obtained from the
CHARTTIME and CHARTDATE columns in the
NOTEEVENTS table. They recorded the time and date,
respectively, at which the notes were charted. Notes are
contained in the TEXT column of the NOTEEVENTS table.
To efficiently process the notes, they were aggregated over time
intervals of 6 hours, starting from the time of ICU admission,
and stored as text files. These text files were provided as input
to the cTakes software (Apache) [42], which identifies clinical
concepts in the input text and provides their CUI values. The

software identifies several concept types, such as anatomical
site, disease disorder, medication, procedure, and
sign–symptoms. We considered only 3 concept
types—medication, procedure, and disease–disorder—for our
analysis.

For each of the 3 concept types, we constructed a separate
matrix, where each row corresponded to a patient episode and
the columns corresponded to CUI for the clinical entity. Note
that concepts identified from all the notes of a patient episode
were considered together to construct the row in the matrix. The
disease matrix is binary, indicating the presence or absence of
the CUI in the text. Thus, a 1 in the ij-th cell of the matrix
indicates the presence of the j-th CUI in a note of the i-th patient
episode. The medication and procedure matrices are count
matrices, where each cell indicates the number of times the
corresponding CUI is mentioned in the text. The total number
of CUIs (ie, columns) in the disease, medication, and procedure
matrices was 6604. The matrices were transformed to obtain
term frequency-inverse document frequency vectors, where
each identified CUI was considered a term, and all the
considered notes for each patient episode were considered a
document.

SemMedDB Preprocessing
SemMedDB contains 30 different kinds of relations that are
organized into subject-predicate-object triplets (eg,
drugA–TREATS–diseaseB), where both the subject and object
are clinical concepts, and the predicate is a relation. The
PREDICATION table in SemMedDB contains all the triplets,
1 in each row. The columns SUBJECT_CUI, PREDICATE,
and OBJECT_CUI were used to identify the CUI of the subject,
predicate, and object, respectively, for each triple. As described
earlier, our aim was to obtain a set of triplets to inform us of
pairwise relationships across diseases, medications, and
procedures for the patient data obtained from MIMIC-III.
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As the database is very large, we excluded some relations that
were not directly related to clinical concepts in the patient data.
These predicates included (1) PART_OF, indicating that a
physical unit is a part of a larger unit; (2) LOCATION_OF,
indicating the site or region of an entity; and (3) PROCESS_OF,
indicating the organism in which a process occurs. In addition,
all negations of the predicates in SemMedDB, which begin with
NEG, were not considered. More details of these ontological
predicates can be found in the study by Kilicoglu et al [34]. The
rows containing these predicates were removed from the table.
From the remaining rows, only those rows where both the
subject and object CUIs were present in the 6604 CUIs used in
the patient data were considered; the other rows were excluded.

The final set of triplets was used to construct an undirected
graph in the following steps. All clinical concepts present as
subjects or objects in the triplets were used as nodes. An edge
was added to the graph between nodes u and v if there was a
predicate with subject u and object v in the considered triplets.
Note that there may be multiple triples between the same subject
and object if there are different types of relations. The edges in
our graph only indicated the existence of a relation and did not
describe the type. Thus, our constructed KG had 6604, 4653,
and 3406 nodes of 3 types—disease, medication, and procedure,
respectively—and 51,326,066 edges among them. This graph
was used to construct GRA similarity matrices, as described
earlier for diseases, medications, and procedures.

Structured EMR Data
The prescriptions and laboratory events tables from MIMIC for
the selected episodes were used directly. UMLS CUIs for
medications were fetched by invoking the representational state
transfer application programming interface from RxNorm [43].
The UMLS CUIs for laboratories were obtained using the
MRCONSO file from UMLS [30]. Thus, we obtained 1841 and
242 CUIs for medications and laboratories, respectively.

Evaluation

Overview
We evaluated the performance of the models by constructing
randomly selected held-out test sets. We split the patient

episodes into 90% as training set and 10% as test set. A total
of 3 different 90 to 10 splits were randomly generated, and all
results shown were averaged over these 3 test sets.

Clinical Decision Support Tasks
Predictive performance was evaluated on 2 clinical decision
support tasks.

The first task was that of the primary diagnosis category
prediction. When a patient is discharged from the hospital,
clinical coders use clinical and demographic data in EMR to
assign codes in a standard format, such as ICD, for billing and
reimbursement purposes. Several factors such as disease
etiology, anatomical site, and severity are used in coding
algorithms [44]. This is a time-consuming and error-prone
process, and mistakes can lead to claim denials and
underpayment for hospitals [45]. As a result, many methods
have been developed for automated ICD coding [3,46,47]. An
important code, from a billing perspective, that needs to be
ascertained is the primary diagnosis (the reason for
hospitalization). Following the study by Sushil et al [6], we
predicted the category of primary diagnosis, where the categories
were grouped into 18 generic categories that corresponded to
diagnosis-related groups [48]. We modeled this as a multilabel
classification task.

Our second task was that of mortality (risk of death) prediction.
At the individual patient level, such models can be used to
identify high-risk patients and prioritize their care within the
ICU. It can also aid in critical decisions such as interrupting
treatments or providing do-not-resuscitate orders [2,49].
MIMIC-III provides 3 different mortality labels: in-hospital,
1-month, and 1-year mortality. We used 1-year mortality, which
had the least class imbalance. The label indicates whether a
patient died within 1 year of discharge from the hospital. Thus,
this was a binary classification task.

The label distributions for both the data sets are shown in Tables
1 and 2.

Table 1. Label distribution for 1-year mortality prediction task.

Episodes, n (%)MeaningLabel

25,071 (87.79)Not expired within 1 year after discharge0

3487 (12.21)Expired within 1 year after discharge1

JMIR Med Inform 2022 | vol. 10 | iss. 1 | e28842 | p. 8https://medinform.jmir.org/2022/1/e28842
(page number not for citation purposes)

Kumar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Label distribution for diagnosis category prediction task.

Episodes, n (%)MeaningLabel

2067 (7.24)Infection and parasitic diseases0

2202 (7.71)Neoplasms1

616 (2.16)Endocrine, nutritional, and metabolic diseases and immunity disorders2

96 (0.34)Diseases of blood and blood-forming organs3

273 (0.96)Mental disorders4

487 (1.71)Diseases of nervous system and sense organs5

11,249 (39.39)Diseases of the circulatory system6

2031 (7.11)Diseases of the respiratory system7

2614 (9.15)Diseases of the digestive system8

505 (1.77)Diseases of the genitourinary system9

119 (0.42)Complications of pregnancy, childbirth, and the puerperium10

75 (0.26)Diseases of the skin and subcutaneous tissue11

372 (1.3)Diseases of the musculoskeletal system and connective tissue12

217 (0.76)Congenital anomalies13

0 (0)Certain conditions originating in the perinatal period14

333 (1.17)Symptoms, signs, and ill-defined conditions15

5210 (18.24)Injury and poisoning16

85 (0.3)Supplementary factors influencing health status and contact with health services17

7 (0.02)Supplementary classification of external causes of injury and poisoning18

Models Compared
We compared 3 models to obtain patient representations. The
first was the SDAE that has been used in several previous
studies. It was also found to have good performance in
representation learning from clinical notes for our selected tasks
[6]. Note that the SDAE cannot be used when KG matrices are
used.

The other 2 models are the nonneural versions of CMF and
DCMF, which can be used in all 3 views. All 3 models were
unsupervised learning methods. The representations learned
from these methods can be used to train any off-the-shelf
classifier. We evaluated the performance using 2 classifiers:
random forest [50] and logistic regression. We also evaluated
DCMF in the extended supervised mode, where no additional
classifier was required.

The SDAE was trained following the implementation of Vincent
et al [20]. A single hidden layer was used with an embedding
dimension of 300, with sigmoid encoding activation and linear
decoding activation. The network was trained using the
RMSprop optimizer with a batch size of 32, 0.4 dropout [51],
mean square error loss function, and for 20 epochs. DCMF,
both supervised and unsupervised, was trained using a single
hidden layer in each entity’s autoencoder, with tanh activation
functions. The weight decay of 1e-6 was used with a learning
rate of 1e-5. The network was trained using the Adam [52]. The
R package for CMF [53] was used with default parameters.

Evaluation Metrics
Diagnosis category prediction was a multilabel classification
task, and we used the standard metrics of accuracy, macro F1,
and weighted F1 scores. The F1 score is the harmonic mean of
precision and recall. Macro F1 is the unweighted mean of the
F1 score for each label. Weighted F1 determines the mean
weighted by the number of true instances for each label.

Mortality prediction is a binary classification task, and we use
the F1 score and area under the receiver operating characteristic
(AUC) curve as evaluation metrics. The AUC shows the overall
classifier performance at different thresholds that trade-off
sensitivity for specificity.

Results

Overview
We first present the results of the diagnosis category prediction
and then mortality prediction. For each task, we visually present
the results in 2 ways: one organized by view and another
organized by method. The former allowed us to compare
methods within each view, and the latter allowed us to compare
views within each method.

Diagnosis Category Prediction
Table 3 shows the results of the diagnosis category prediction.
In view 1, predictions using supervised DCMF yielded >30%
improvement in macro-F1 scores compared with classifiers with
SDAE-based representations. In views 2 and 3, considerable
improvement, ranging from 82% to 1955% in macro-F1 scores,
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was observed over other methods that separately learned
representations and classifiers. In view 1, the accuracy and
weighted F1-score of supervised DCMF were comparable with
those obtained from classifiers trained on SDAE-based

representations. However, with the addition of knowledge
matrices in view 3, which can be performed seamlessly,
supervised DCMF surpassed their performance.

Table 3. Results of diagnosis category prediction.

F1 score-weighted (%)F1 score-macro (%)Accuracy (%)Model and view

View 1

64.9929.9968.25SDAEa LRb

57.7922.7463.03SDAE RFc

2.400.996.66CMFd LR

34.579.0843.96CMF RF

58.0122.5962.44DCMFe LR

52.3417.6658.44DCMF RF

65.7f39.22f66.86fDCMF supervised

View 2

22.873.3839.95CMF LR

26.834.9941.05CMF RF

59.8725.3463.71DCMF LR

58.3122.9562.48DCMF RF

66.69f39.58f67.96fDCMF supervised

View 3

5.212.009.39CMF LR

37.4410.9044.51CMF RF

56.9422.5660.94DCMF LR

49.8817.2656.17DCMF RF

69.39f41.10f70.87fDCMF supervised

aSDAE: stacked denoising autoencoder.
bLR: logistic regression.
cRF: random forest.
dCMF: collective matrix factorization.
eDCMF: deep collective matrix factorization.
fBest score for the corresponding view.

Figure 4 shows the results of the diagnosis category prediction
across the 3 views. In view 1, we observed that neural
representations from SDAE and DCMF outperformed nonneural
representations from CMF. The supervised DCMF outperformed

all other methods. The addition of information from KGs in
view 2 improved the performance of DCMF, both unsupervised
and supervised, in all 3 metrics. The addition of structured EMR
data in view 3 further improved the performance.
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Figure 4. Diagnosis category prediction across Views. Top row: accuracy; middle row: macro F1 score; bottom row: weighted F1 score. CMF: collective
matrix factorization; DCMF: deep collective matrix factorization; LR: logistic regression; RF: random forest; SDAE: stacked denoising autoencoder.

Figure 5 shows the same results of diagnosis category prediction
as seen in Figure 4 but is organized based on the method. SDAE
representations cannot be used in augmented multi-view settings
but outperform CMF-based representations even when the CMF
uses more data in views 2 and 3. This is likely because of the
better representation learning capability of the neural networks.
We also see that the DCMF learned better representations from

all 3 views. However, although the addition of KG matrices in
view 2 improved performance over view 1, further addition of
data in view 3 deteriorated performance. However, with the
addition of supervision from the labels, supervised DCMF was
able to learn better with increasing performance across the 3
views.

JMIR Med Inform 2022 | vol. 10 | iss. 1 | e28842 | p. 11https://medinform.jmir.org/2022/1/e28842
(page number not for citation purposes)

Kumar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Diagnosis category prediction across Models. Top row: accuracy; middle row: macro F1 score; bottom row: weighted F1 score. CMF:
collective matrix factorization; DCMF: deep collective matrix factorization; LR: logistic regression; RF: random forest; SDAE: stacked denoising
autoencoder.

Mortality Prediction
Table 4 shows the results of mortality prediction. We observed
that supervised DCMF outperformed SDAE-based models by
>16% in AUC and >13% in macro-F1 in view 1, where data
were obtained from clinical notes. In views 2 and 3, where data

from KGs and EMRs were cumulatively added to clinical notes,
supervised DCMF outperformed all the baselines by similar
margins. These results demonstrate the advantage of end-to-end
learning using supervised DCMF over other methods that
separately learn representations and classifiers.

JMIR Med Inform 2022 | vol. 10 | iss. 1 | e28842 | p. 12https://medinform.jmir.org/2022/1/e28842
(page number not for citation purposes)

Kumar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Results of mortality prediction.

F1 score-weighted (%)F1 score-macro (%)AUCa (%)Model and view

View 1

83.9553.1552.06SDAEb LRc

82.6547.7751.55SDAE RFd

81.9048.5950.37CMFe LR

82.4447.5550.21CMF RF

83.4150.8851.96DCMFf LR

82.5847.4850.31DCMF RF

83.99g60.41g60.44gDCMF supervised

View 2

82.4046.8150.00CMF LR

82.4346.9150.04CMF RF

84.0453.7153.48DCMF LR

83.1249.7651.38DCMF RF

82.97g60.25g60.41gDCMF supervised

View 3

82.3946.8149.99CMF LR

82.3746.9550.00CMF RF

83.2850.5751.76DCMF LR

82.4447.0050.08DCMF RF

84.43g62.05g61.22gDCMF supervised

aAUC: area under receiver operating characteristic curve.
bSDAE: stacked denoising autoencoders.
cLR: logistic regression.
dRF: random forest.
eCMF LR: collective matrix factorization.
fDCMF: deep collective matrix factorization.
gBest score for the corresponding view.

Figure 6 shows the AUC and F1 scores obtained by the methods
across the 3 views. In view 1, the SDAE representations
outperform those from CMF. Results with the logistic regression
classifier were marginally better than those from the random
forest, with SDAE, CMF, and DCMF representations. In view
1, DCMF representations have performance comparable with

that of SDAE. Supervised DCMF outperformed all other
methods by a large margin. The addition of KG matrices in
view 2 improved the performance of the unsupervised
DCMF-based classifier. The addition of structured EMR data
in view 3 improved the performance of the supervised DCMF.
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Figure 6. Mortality prediction across Views. Top row: area under receiver operating characteristic curve; bottom row: F1 score. AUC: area under
receiver operating characteristic curve; CMF: collective matrix factorization; DCMF: deep collective matrix factorization; LR: logistic regression; RF:
random forest; SDAE: stacked denoising autoencoder.

Figure 7 shows the same results from Figure 6, but is organized
based on each method. The performances of the unsupervised
neural methods SDAE and DCMF are comparable. DCMF can
use information from KG matrices to boost its performance.

However, the addition of structured EMR data did not increase
its performance. However, supervised DCMF is able to use
additional data well and achieves the best performance overall
with view 3.

Figure 7. Mortality prediction across Models. Top row: area under receiver operating characteristic curve; bottom row: F1 score. AUC: area under
receiver operating characteristic curve; CMF: collective matrix factorization; DCMF: deep collective matrix factorization; LR: logistic regression; RF:
random forest; SDAE: stacked denoising autoencoder.

Discussion

Principal Findings
Our experiments strongly suggest that end-to-end models that
are trained in a supervised manner outperform models
comprising 2 stages of unsupervised representation learning
and an independently learned classifier. An end-to-end neural

model also learns patient representations internally; however,
these representations are influenced by task-specific labels used
for supervision. How these supervised representations perform
on tasks other than what they are trained for, that is, whether
they are beneficial in transfer learning, remains to be examined.
Thus, for a given clinical decision support task, if labels are
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available, our experiments indicate that an end-to-end model
should be preferred.

DCMF provides a seamless way of integrating multiple sources
of data for obtaining patient representations in both unsupervised
and supervised settings. As a versatile learning method, it can
be used with inputs from a single source (eg, clinical notes) as
well as when inputs are from multiple sources (eg, clinical notes
and structured EMR tables). Its performance in these settings
is comparable with that of previous autoencoder-based
representation learning methods. DCMF can also be used to
obtain representations in augmented multi-view settings
containing arbitrary collections of matrices, where most previous
representation learning methods cannot be used directly. In such
settings, its performance is considerably superior to that of the
previous nonneural methods for CMF. Thus, it provides a
framework for infusing valuable information from auxiliary
information sources, such as KG, into patient representations.

Graph embeddings allow us to obtain vectorial representations
of nodes in a graph in a way that incorporates the global
structural and semantic properties of the graph. Such
embeddings can be obtained for KGs as well. The technique
for obtaining the embedding can be formulated as a factorization
of a similarity matrix where the similarities between nodes are
defined based on the number and structural characteristics of
the paths between them. With this formulation, the factorization
can become part of CMF, which enables us to learn patient
representations from multiple clinical data sources as well as
KGs. Such patient representations were found to improve
downstream predictive performance, especially in supervised
settings. Other ways of using KGs within DCMF were not found
to be as effective; the 2 alternatives tested were directly using
the adjacency matrices of the graphs and first obtaining graph
embeddings and then using the embedding matrices within
CMF.

Limitations
Our experimental evaluation was conducted on 2 clinical
decision support tasks: a binary classification task (mortality
prediction) and a multilabel classification task (primary

diagnosis category prediction). Furthermore, the evaluation was
performed on a subset of data sources (clinical notes, laboratory
investigations, and medications) from a single hospital. The
trends in performance are expected to remain the same for other
tasks (eg, regression tasks) and the addition of other data sources
(eg, radiology images) but must be empirically verified.

The KG used is derived automatically from biomedical literature
using NLP techniques. Inaccuracies because of NLP algorithms
may lead to false positives (erroneous nodes and edges) and
false negatives (incompleteness) in KG. Further investigation
into the effects of these inaccuracies in the representations is
required. Evaluation of KGs derived from other sources can
also be performed. It is possible that the results may improve
with decreasing inaccuracies in the KG.

Very little hyperparameter tuning was performed for the neural
models. The results of all neural models are expected to improve
with more tuning. The autoencoders used within the DCMF are
simple feedforward networks. Other types of autoencoders, such
as SDAE or variational autoencoders, may also be used, which
may improve the performance of the DCMF.

Conclusions
In this study, we investigated the use of DCMF to obtain patient
representations for 2 clinical decision support tasks. The key
advantage of DCMF is its versatility: it can be used to obtain
representations from a single view (eg, clinical notes), from
multiple views (eg, notes and structured tables in EMR data),
and in augmented multi-view settings where it can seamlessly
integrate information from diverse sources such as EMR data
and KGs. Most previous representation learning methods cannot
be used with such augmented multi-view data. Furthermore,
DCMF can be easily used to learn representations in both
supervised and unsupervised settings. In our experiments, we
found that DCMF-based representations lead to predictive
accuracy that is comparable with or better than previous
techniques. Thus, DCMF offers an effective way of integrating
heterogeneous data sources and infusing auxiliary knowledge
into patient representations.
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