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Abstract

Background: The Expanded Disability Status Scale (EDSS) score is a widely used measure to monitor disability progression
in people with multiple sclerosis (MS). However, extracting and deriving the EDSS score from unstructured electronic health
records can be time-consuming.

Objective: We aimed to compare rule-based and deep learning natural language processing algorithms for detecting and
predicting the total EDSS score and EDSS functional system subscores from the electronic health records of patients with MS.

Methods: We studied 17,452 electronic health records of 4906 MS patients followed at one of Canada’s largest MS clinics
between June 2015 and July 2019. We randomly divided the records into training (80%) and test (20%) data sets, and compared
the performance characteristics of 3 natural language processing models. First, we applied a rule-based approach, extracting the
EDSS score from sentences containing the keyword “EDSS.” Next, we trained a convolutional neural network (CNN) model to
predict the 19 half-step increments of the EDSS score. Finally, we used a combined rule-based–CNN model. For each approach,
we determined the accuracy, precision, recall, and F-score compared with the reference standard, which was manually labeled
EDSS scores in the clinic database.

Results: Overall, the combined keyword-CNN model demonstrated the best performance, with accuracy, precision, recall, and
an F-score of 0.90, 0.83, 0.83, and 0.83 respectively. Respective figures for the rule-based and CNN models individually were
0.57, 0.91, 0.65, and 0.70, and 0.86, 0.70, 0.70, and 0.70. Because of missing data, the model performance for EDSS subscores
was lower than that for the total EDSS score. Performance improved when considering notes with known values of the EDSS
subscores.

Conclusions: A combined keyword-CNN natural language processing model can extract and accurately predict EDSS scores
from patient records. This approach can be automated for efficient information extraction in clinical and research settings.
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Introduction

Multiple sclerosis (MS) is the most common cause of
neurological disability in young adults in the developed world
[1]. Although the majority of individuals present initially with
relapsing-remitting disease, neurological disability can
accumulate over time, resulting in significant functional
impairment in a substantial portion of people with MS [1,2].
However, there is considerable individual heterogeneity in MS
disease progression, such that validated measures of disability
are required to monitor functional decline and response to
disease-modifying therapies.

The Kurtzke Expanded Disability Status Scale (EDSS) is the
most widely used validated measure to quantify and monitor
changes in MS-related disability over time [3,4]. The EDSS is
a clinician-administered ordinal rating system that quantifies
disability in 8 functional systems, increasing from 0 (no
disability) to 10 (death due to MS) in increments of 0.5 units.
EDSS subscores can also be determined for each of the
individual functional systems comprising the total score, using
a scale that ranges from 0 to 5 or 6 [3,4]. Because the EDSS
score is used for both clinical and research purposes, it is
typically extracted or derived manually from electronic medical
records and transcribed in clinical and research databases to
monitor trends in disease evolution and response to treatment
[5-7]. However, the EDSS score may not be determined at all
visits, introducing missing data when patient records are used
for research and clinical monitoring [8]. Moreover, extracting
and deriving the EDSS score from patient records is
time-consuming and inefficient because of the unstructured
nature of clinical records [9].

Natural language processing is a field of artificial intelligence
that is increasingly being applied to extract and transform
unstructured notes in electronic medical records into coded data
that can be used for clinical, quality improvement, and research
purposes [10,11]. Natural language processing has been studied
in a variety of clinical settings, including oncology, emergency
medicine, and primary care, for applications as varied as case
ascertainment, risk assessment, and disease staging [12-16].
Within the field of MS, comparatively few studies have
investigated the use and performance of natural language
models. Specific areas of application have included identifying
patients with MS from clinical databases, extracting
disease-specific variables, detecting genotype-phenotype
associations for MS from an electronic medical record–linked
DNA biorepository, identification and sentiment analysis of
MS-related content on social media, biomedical literature
mining, and using clinical variables to derive a disease severity
score [9,17-24]. Existing studies thus far have largely evaluated
rule-based natural language processing approaches, wherein
clinicians provide keywords and a predetermined set of rules
to locate specific text in a note that denotes a particular finding
as either present or absent. Deep learning natural language

processing approaches, in which machine learning algorithms
are trained to capture specific outcomes from text, have been
less well studied in the MS field. Our objective was to compare
rule-based and deep learning natural language processing
algorithms for detecting and predicting the total EDSS score
and EDSS functional system subscores from clinic notes.

Methods

Setting and Data Sources
The Barlo MS Centre of Unity Health Toronto is one of the
largest MS clinics in Canada, providing specialized care to over
7000 Ontario residents living with MS. The clinic database
contains comprehensive information on all patients, including
demographic data, relapse and treatment history, imaging results,
and findings from neurological examinations, including EDSS
and functional system scores. For this study, we extracted all
clinical notes generated for patients seen at the clinic between
June 2015 and July 2019, and randomly divided all notes in the
study period into training (80%) and test (20%) data sets. We
divided notes at the patient level to prevent data leakage (ie,
same patient appearing in both training and test data sets).

Data Preprocessing
To prepare notes for rule-based and deep learning natural
language processing, we first removed all redundant information,
including patient and physician names within the header and
footer of each note, date and time of visit, fax number, and
document number. We also removed identifying information
such as home addresses, phone numbers, patient identification
number, and dates of birth and electronic signatures, as well as
nonletter characters such as punctuation, symbols, and left-over
whitespace. Next, we removed stop words using the Natural
Language Toolkit default list [25]. Stop words are commonly
used terms (eg, “and,” “it,” “the,” etc) that have little value with
respect to the meaning of clinical text. We completed these
steps so that only the most relevant parts of the document would
be provided as input to the text classification model. Finally,
we encoded each note into a sequence of integers, setting the
maximum sequence length to 1000 words, which is within the
limit of most notes included for study. We zero-padded
sequences with smaller word counts, and removed the last few
words when the sequence count exceeded the maximum length.
Preprocessing steps were automated, applicable to the
test-time/application-time, and did not require manual review.

Natural Language Processing
We compared the performance characteristics of 3 natural
language processing models in outputting 1 EDSS score for
each note. First, we used a rule-based approach, wherein the
preprocessed text was divided into sentences, and extracted the
EDSS score on the first occasion when “EDSS” and a numeric
value between 0.0 and 10.0 appeared in the same sentence. To
extract EDSS functional system subscores, MS clinic staff were
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consulted to develop rules that paired keyword patterns
representing clinical findings relevant to a specific functional
system (eg “ataxia” for the cerebellar subscore and “indwelling
catheter” for the bowel and bladder score) with adjectives
denoting the varying levels of disability related to each
functional system, such as “mild,” “moderate,” or “significant.”
These rules were based on Neurostatus definitions and scoring
for neurological examinations [26]. Using this approach, EDSS
subscores were extracted or derived for each functional system.

Because it is possible that multiple keywords can appear in the
same note (eg, “EDSS was 5.0 in the previous visit. …EDSS
is 6.0 in this visit.”), the rule-based approach may result in errors
when extracting the most recent EDSS score, highlighting the
potential limitations of this approach and the need to evaluate
alternative models. We therefore trained separate convolutional
neural network (CNN) models to predict the 19 half-step
increments of the total EDSS score and the functional system
subscores. CNNs are artificial neural networks that are being
increasingly used for applications as varied as image detection
and natural language processing [27-29]. In the case of the latter,
text must first be converted into a numerical form known as a
word vector before it can be fed into a CNN model. To do this,
we experimented with various approaches, including
Bidirectional Encoder Representations from Transformers
(BERT) [30], BioBERT [31], deep contextualized word
representations (Embeddings from Language Models [ELMo])
[32], and pretrained Word2Vec (trained on PubMed, Wiki, and
PubMed Central) [33]. A comparison of these approaches found
that Word2Vec trained on our hospital data had superior
performance and runtime relative to the other approaches.
Moreover, Word2Vec embeddings trained on our data were
able to capture semantic relationships between MS-related terms.
For example, the terms RRMS (“relapsing-remitting multiple
sclerosis”), AMS (“active multiple sclerosis”), and CIS
(“clinically isolated syndrome”) are identified as nearest
neighbors of the term “MS,” using our approach. We therefore
trained a 200-dimensional Word2Vec embedding with all
neurologist specialty notes from the clinic using Gensim [34].
Word2Vec is a 2-layer neural network net that transforms
inputted text into numerical vectors, or embeddings, of a given
size (eg, 200 dimensions) that can be processed by CNNs [35].
This is done by grouping the vectors mathematically based on
word similarity, with similar words being closer to each other
when mapped in multidimensional space, while unrelated words
are separated by greater distance. For all of the CNN models,
we used 200-dimensional Word2Vec embeddings trained on
all clinical notes from the MS clinic. Word embeddings were
trained using a window size of 10 and a minimum count of 2,
yielding an embedding matrix with a dimension of 1000×200,
reflecting the maximum sequence length of 1000 words, that
acted as an embedding layer in the CNN models. We chose a
1000-word maximum sequence length based on premodeling
determinations of the word count of the consult notes comprising

our data set demonstrating that most notes fell within this limit.
The CNN model is based on a well-known CNN structure used
for sentence classification (Figure 1) [29]. First, a section of the
note is represented as a numeric feature (ie, word embedding
with a dimension of 1000×200). Next, convolutional layers with
multiple filters of different kernel sizes (sizes 3, 4, and 5) are
applied to obtain multiple features (with dropout rate 0.5 and
maximum pooling on each of the convolutions). Features are
then passed to a fully connected layer whose output is the
probability distribution over the list of EDSS classes. Therefore,
in addition to the embedding layer, CNN models also contained
convolutional layers with maximal pooling and fully connected
layers with Softmax output (Figure 1) [29]. We implemented
the model using Keras 2.0 API [36], and trained the model using
the RMSprop optimizer and early stopping to prevent overfitting
from too many iterations. We experimented with different
learning rates, epochs, batch sizes, and patience for early
stopping, choosing the hyperparameters that delivered the best
accuracy for our test data. We also tried shallow neural networks
(unigram features and a cutoff of 5000 features ordered by term
frequency) with term-frequency inverse document frequency
features and recurrent neural networks (RNNs) for our study.
In the case of the former, we found that these models did not
adequately represent word relations and context-based
information. Moreover, these approaches created extremely
high dimensional sparse input vectors. Although findings with
RNNs were comparable, we elected to proceed with the CNN
and Word2Vec approach because these models were faster to
train.

Finally, we used a keyword-CNN model to ascertain whether
the combination of the 2 approaches would yield better
performance metrics than either model alone. We reasoned that
a combined model would balance the strengths and limitations
of each model separately. Specifically, while CNN models
perform well with large data volumes and are less time-intensive
than rule-based approaches, these models typically lack
transparency and explainability, leaving users with little
understanding of how predictions and decisions are made.
Moreover, CNN models may not perform well when data
volumes are small, such as for patients at the highest extremes
of EDSS scores. In contrast, while rule-based approaches are
transparent and explainable (ie, extracted keyword patterns in
notes can be shown to users), and have good performance for
rare outcomes, they will predict mostly unknown results when
keywords are not explicitly found in the reference text. To
account for these strengths and weaknesses, we developed a
combined model that involves 2 steps. First, the model uses a
rule-based approach to detect whether the EDSS score is
explicitly written in a given note. In such a case, the model
outputs the extracted EDSS score. In the event that keywords
are not explicitly written, the note is passed on to the CNN,
which will provide a prediction for the EDSS score (Figure 2).
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Figure 1. Convolutional neural network model structure. EDSS: Expanded Disability Status Scale.

Figure 2. Combined rule-based–CNN model. CNN: convolutional neural network.

Statistical Analysis
After training, all models were evaluated on the 3493 notes
comprising the test set. Our primary outcome was the
performance of each model for abstracting and/or deriving the
total EDSS score. We determined the accuracy, precision, recall,
and F-score of each model compared with the reference
standard, which was the manually labeled EDSS scores in the
clinic database. Accuracy is the ratio of correct predictions made
(ie, true positives plus true negatives) to the total number of
predictions made (ie, sum of true positives, false positives, true
negatives, and false negatives). For total EDSS scores,
predictions were considered accurate if they were identical to
those recorded in patient records. For functional subscores,
predictions were considered accurate if they were within +/−1
of their referent values. Precision is calculated by dividing the
number of true positive predictions by the sum of true and false
positives, whereas recall is defined as the number of true
positives over the total number of positives (ie, sum of true
positives and false negatives). To determine precision and recall,
we considered each score as a class, and obtained true positive,

false positive, true negative, and false negative rates for each
class. Finally, the F-score is a metric that combines precision
and recall into a single number using the harmonic mean,
thereby taking both false positives and false negatives into
account. Compared with accuracy, the F1-score provides a more
robust measure of incorrectly classified cases in imbalanced
class settings such as ours. In all cases, we determined macro
average performance measures, obtained by first calculating
each class metric and then taking the average of these. We used
Pitman permutation tests to determine whether model differences
in accuracy and F1-scores were statistically significant [37]. In
secondary analyses, we determined the performance of each
model in abstracting functional system EDSS subscores. In a
sensitivity analysis, we replicated our analyses using 10-fold
cross-validation on the training set. For each fold, we used 90%
of the notes for training and 10% for validation, and then applied
the hyperparameters producing the best results in the
cross-validation toward evaluating the test set.
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Ethics Approval
This study was approved by the Research Ethics Board of Unity
Health Toronto, Toronto, Canada (reference #16-371).

Results

Our data set comprised 17,452 clinic notes for 4906 patients
seen at the MS clinic between June 2015 and July 2019. Overall,
the mean age of the patients was 49.5 (SD 12.4) years, and 3534
(72%) were female. The majority of notes (n=10,881, 62.3%)
had an EDSS score explicitly dictated. There was considerable
class imbalance in the EDSS labels, with 13,880 (79.5%) and
1386 (7.9%) scores being in the range of 0.0 to 4.0 and above
6.0, respectively.

In our main analysis, the rule-based model delivered greater
precision than the CNN model (0.91 vs 0.71) for predicting the
total EDSS score. Conversely, the CNN model had greater
accuracy (0.86 vs 0.57) and slightly better recall (0.70 vs 0.65)
relative to the rule-based model (Multimedia Appendix 1). In
a qualitative error analysis of the validation set (n=3493 notes),
the numbers and proportions of instances where the EDSS score
was captured by both models, captured only by the rule-based
method, captured only by the CNN, and missed by both models
were 1864 (53.4%), 122 (3.5%), 1155 (33.1%), and 352 (10.1%),
respectively. Model performance varied at the extremes of the
EDSS score, with the rule-based approach performing worse at
the lower ranges where patient disability is minimal, while the
CNN model underpredicted EDSS scores in patients with very
high levels of disability (Multimedia Appendix 2). Specifically,
the F-scores for the rule-based and CNN models at EDSS scores
of 0 to 4 were 0.69 and 0.89, respectively, while those for EDSS
scores greater than 4 were 0.78 and 0.54, respectively. We
observed similar patterns when comparing notes that did
(n=2172, 62.2%) and did not (n=1321, 37.8%) report an EDSS
score (Multimedia Appendix 3). For notes with an explicit EDSS
score, the accuracies of the rule-based and CNN models were
0.87 and 0.93, respectively, with the rule-based model achieving
greater performance at higher EDSS scores and slightly lower
performance at lower EDSS scores, in part because of lower
recall when the EDSS score is 0.0. For notes lacking an explicit
EDSS score, the accuracy of the CNN model was 0.74, while
the rule-based model was unable to return an EDSS score, with
all predictions being labeled as “unknown.”

When compared with each model individually, the combined
rule-based–CNN model performed best for predicting the total
EDSS score, with accuracy, precision, recall, and an F-score of
0.90, 0.82, 0.83, and 0.83, respectively (Multimedia Appendix
1). We obtained similar results for the combined model using
10-fold cross-validation, with accuracy and an F-score of 0.87
and 0.81, respectively. The differences in accuracy and F1-score
between the combined rule-based–CNN model and both the
rule-based and CNN models were statistically significant
(P<.001). The proportions of records with an unknown EDSS
score prediction with the rule-based model, CNN model, and
combined model were 44.43% (1552/3493), 3.06% (107/3493),
and 2.83% (99/3493), respectively.

Similar to the total EDSS score, the combined model performed
best for predicting EDSS functional system subscores
(Multimedia Appendix 1). However, relative to the total EDSS
score, functional system subscores had higher rates of unknown
values in patient records, ranging from 8.2% for the ambulation
subscore to 33.3% for the cerebral subscore. Consequently,
performance measures were generally lower for combined
models predicting EDSS functional system subscores relative
to the total score (Multimedia Appendix 1). We therefore
determined a post-hoc converted accuracy by excluding
unknown values from the analysis and calculating performance
metrics from notes with valid scores. The converted accuracy
exceeded 0.90 for all EDSS functional system subscores, ranging
from 0.94 for the sensory function subscore to 0.98 for brainstem
and bowel/bladder function subscores.

Discussion

In our study, we found that a combined rule-based–CNN natural
language processing approach can accurately extract the EDSS
score from the clinic notes of people with MS. Moreover, the
combined model was able to derive the EDSS score in notes
that did not explicitly contain this information using available
MS-specific variables. These results highlight the feasibility of
developing automated algorithms for the extraction of clinically
relevant information that would be otherwise challenging to
abstract manually from unstructured data sources.

Our work confirms and builds upon earlier work using natural
language processing methods in the field of MS in several ways
[9,17-24]. First, while previous studies have used rule-based
approaches to develop classification algorithms for identifying
patients with MS and extracting clinically relevant information
from electronic health records, we compared 3 separate natural
language processing models for extracting the EDSS score,
demonstrating that the combination of a CNN and rule-based
algorithm leverages the strengths of each method while
overcoming the limitations inherent in each approach.
Specifically, the rule-based model exhibited greater precision,
excelling when the keyword “EDSS” and an associated score
appeared explicitly in the note, but had lower recall, particularly
for patients at the lowest extreme of EDSS scores where
physicians may be more likely to provide a qualitative summary
of a patient’s disability status with no accompanying EDSS
score (eg, “neurological exam remains normal”). In such cases,
the rule-based approach will return an EDSS score of
“unknown,” signifying no extraction of any score. Additionally,
the rule-based approach struggled with cases where there were
multiple EDSS scores in the note (eg, “she previously had an
EDSS score of 5.0 and her current score is of 6.0”), or when
the EDSS score was written in a format not accounted for in
our rules (eg, “EDSS was three”). These limitations were
reduced by the CNN model, which derived an EDSS score using
high-level text features in the note and performed well in
predicting EDSS scores in the lower range. Conversely, class
imbalance in the higher range of EDSS scores undermined the
performance of the CNN model, resulting in underprediction
of the EDSS score among the very few patients with extremely
high scores (Multimedia Appendix 2). This weakness was
mitigated when combined with the rule-based model, which
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performed well for high EDSS scores by capturing relevant
keyword patterns. By combining the 2 models, we leveraged
the strengths of each to optimize performance for both low and
high EDSS scores.

Second, although previous studies have demonstrated that
natural language processing models can extract the EDSS score
and the related MS severity score from patient records
containing these data [9,21,23], we demonstrated that a
combined rule-based–CNN model could derive the EDSS score
from notes where this measure was not explicitly provided, a
phenomenon observed in approximately one-third of the notes
available for study. The ability to automate EDSS score
derivation using available clinical data may address issues of
missing data within electronic health records and facilitate the
use of these databases for quality improvement and research
purposes.

Finally, we examined whether natural language processing
models could extract functional EDSS subscores from electronic
health records. Our model was able to extract the subscores,
albeit with less precision than the total EDSS score. This is a
line of inquiry that has not been addressed in prior studies.

Our study has some limitations. Although there were a sufficient
number of notes available for ascertaining model performance
related to the total EDSS score, data were sparser for our
secondary analyses of the functional system subscores. These
findings should therefore be considered hypothesis generating,
and they warrant further evaluation with larger data sets. In
addition, our models were developed and validated using the
records of a single MS clinic embedded within a large academic
teaching hospital. Consequently, the portability of our models
is unknown. Finally, our models identify cross-sectional
associations and cannot be considered as algorithms that predict
disability progression in patients with MS. However, our models
may automate the extraction of this information for use as inputs
in future studies of machine learning approaches for predicting
outcomes in patients with MS.

In conclusion, we found that a combined rule-based–CNN model
was superior to either model alone for extracting and/or deriving
EDSS scores from the records of patients with MS. This
approach can be harnessed to establish and maintain clinical
and research databases of people with MS, which may otherwise
be too time-consuming and labor-intensive to maintain.

Acknowledgments
This study was funded by grants from St. Michael’s Hospital Foundation and Li Ka Shing Foundation, and an unrestricted research
grant from Roche (Canada).

Authors' Contributions
Conception and/or design of the study: ZY, CP-P, AJ, MB, DD, MM, JO, and TA; data acquisition/analysis: ZY, CPP, and AJ;
interpretation of results: ZY, CP-P, AJ, MB, DD, MM, JO, and TA; drafting of the manuscript: TA; revision of the manuscript:
ZY, CP-P, AJ, MB, DD, MM, JO, and TA; final approval of the manuscript: ZY, CP-P, AJ, MB, DD, MM, JO, and TA.

Conflicts of Interest
JO reports grants from MS Society of Canada, The Barford and Love MS Fund of St. Michael’s Hospital Foundation, National
MS Society, Brain Canada, Biogen-Idec, Roche, and EMD-Serono; and personal fees for consulting or speaking from Biogen-Idec,
EMD-Serono, Roche, Sanofi-Genzyme, Novartis, and Celgene.

Multimedia Appendix 1
Model performance for predicting the total Expanded Disability Status Scale score and functional system subscores.
[DOCX File , 19 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Perclass model performance for the rule-based, convolutional neural network, and combined models.
[DOCX File , 15 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Performance of the rule-based, convolutional neural network, and combined models stratified by the presence or absence of the
Expanded Disability Status Scale score in notes.
[DOCX File , 17 KB-Multimedia Appendix 3]

References

1. Murray TJ. Diagnosis and treatment of multiple sclerosis. BMJ 2006 Mar 04;332(7540):525-527 [FREE Full text] [doi:
10.1136/bmj.332.7540.525] [Medline: 16513709]

2. Compston A, Coles A. Multiple sclerosis. The Lancet 2008 Oct;372(9648):1502-1517. [doi: 10.1016/s0140-6736(08)61620-7]
3. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology

1983 Nov 01;33(11):1444-1452. [doi: 10.1212/wnl.33.11.1444] [Medline: 6685237]

JMIR Med Inform 2022 | vol. 10 | iss. 1 | e25157 | p. 6https://medinform.jmir.org/2022/1/e25157
(page number not for citation purposes)

Yang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v10i1e25157_app1.docx&filename=1be91f02f2f63a5e79ddcf3c5f55046b.docx
https://jmir.org/api/download?alt_name=medinform_v10i1e25157_app1.docx&filename=1be91f02f2f63a5e79ddcf3c5f55046b.docx
https://jmir.org/api/download?alt_name=medinform_v10i1e25157_app2.docx&filename=24c3385abe37581b47049ba1eef18f31.docx
https://jmir.org/api/download?alt_name=medinform_v10i1e25157_app2.docx&filename=24c3385abe37581b47049ba1eef18f31.docx
https://jmir.org/api/download?alt_name=medinform_v10i1e25157_app3.docx&filename=f424cd5928b5bebfb69075e23d79284b.docx
https://jmir.org/api/download?alt_name=medinform_v10i1e25157_app3.docx&filename=f424cd5928b5bebfb69075e23d79284b.docx
http://europepmc.org/abstract/MED/16513709
http://dx.doi.org/10.1136/bmj.332.7540.525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16513709&dopt=Abstract
http://dx.doi.org/10.1016/s0140-6736(08)61620-7
http://dx.doi.org/10.1212/wnl.33.11.1444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6685237&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


4. Meyer-Moock S, Feng Y, Maeurer M, Dippel F, Kohlmann T. Systematic literature review and validity evaluation of the
Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple
sclerosis. BMC Neurol 2014 Mar 25;14(1):58 [FREE Full text] [doi: 10.1186/1471-2377-14-58] [Medline: 24666846]

5. Uitdehaag BMJ. Disability Outcome Measures in Phase III Clinical Trials in Multiple Sclerosis. CNS Drugs 2018 Jun
20;32(6):543-558 [FREE Full text] [doi: 10.1007/s40263-018-0530-8] [Medline: 29926371]

6. Inojosa H, Schriefer D, Ziemssen T. Clinical outcome measures in multiple sclerosis: A review. Autoimmun Rev 2020
May;19(5):102512. [doi: 10.1016/j.autrev.2020.102512] [Medline: 32173519]

7. Rae-Grant A, Bennett A, Sanders AE, Phipps M, Cheng E, Bever C. Quality improvement in neurology: Multiple sclerosis
quality measures. Neurology 2015 Sep 02;85(21):1904-1908. [doi: 10.1212/wnl.0000000000001965]

8. Davis MF, Haines JL. The intelligent use and clinical benefits of electronic medical records in multiple sclerosis. Expert
Review of Clinical Immunology 2014 Dec 11;11(2):205-211. [doi: 10.1586/1744666x.2015.991314]

9. Davis MF, Sriram S, Bush WS, Denny JC, Haines JL. Automated extraction of clinical traits of multiple sclerosis in
electronic medical records. J Am Med Inform Assoc 2013 Dec 01;20(e2):e334-e340 [FREE Full text] [doi:
10.1136/amiajnl-2013-001999] [Medline: 24148554]

10. Kimia AA, Savova G, Landschaft A, Harper MB. An Introduction to Natural Language Processing. Pediatric Emergency
Care 2015;31(7):536-541. [doi: 10.1097/pec.0000000000000484]

11. Velupillai S, Suominen H, Liakata M, Roberts A, Shah AD, Morley K, et al. Using clinical Natural Language Processing
for health outcomes research: Overview and actionable suggestions for future advances. J Biomed Inform 2018 Dec;88:11-19
[FREE Full text] [doi: 10.1016/j.jbi.2018.10.005] [Medline: 30368002]

12. Kehl KL, Elmarakeby H, Nishino M, Van Allen EM, Lepisto EM, Hassett MJ, et al. Assessment of Deep Natural Language
Processing in Ascertaining Oncologic Outcomes From Radiology Reports. JAMA Oncol 2019 Oct 01;5(10):1421-1429
[FREE Full text] [doi: 10.1001/jamaoncol.2019.1800] [Medline: 31343664]

13. Yim W, Yetisgen M, Harris WP, Kwan SW. Natural Language Processing in Oncology: A Review. JAMA Oncol 2016
Jun 01;2(6):797-804. [doi: 10.1001/jamaoncol.2016.0213] [Medline: 27124593]

14. St-Maurice J, Kuo M, Gooch P. A Proof of Concept for Assessing Emergency Room Use with Primary Care Data and
Natural Language Processing. Methods Inf Med 2012 Dec 07;52(01):33-42. [doi: 10.3414/me12-01-0012]

15. Sterling NW, Patzer RE, Di M, Schrager JD. Prediction of emergency department patient disposition based on natural
language processing of triage notes. Int J Med Inform 2019 Sep;129:184-188. [doi: 10.1016/j.ijmedinf.2019.06.008]
[Medline: 31445253]

16. Fernandes M, Mendes R, Vieira SM, Leite F, Palos C, Johnson A, et al. Predicting Intensive Care Unit admission among
patients presenting to the emergency department using machine learning and natural language processing. PLoS One 2020
Mar 3;15(3):e0229331 [FREE Full text] [doi: 10.1371/journal.pone.0229331] [Medline: 32126097]

17. Krysko KM, Ivers NM, Young J, O'Connor P, Tu K. Identifying individuals with multiple sclerosis in an electronic medical
record. Mult Scler 2015 Feb 12;21(2):217-224. [doi: 10.1177/1352458514538334] [Medline: 24948683]

18. Middleton R, Akbari A, Lockhart-Jones H, Jones J, Owen C, Hughes S, et al. Clinical Validation of the UKMS Register
Minimal Dataset utilising Natural Language Processing. IJPDS 2017 Apr 18;1(1):268. [doi: 10.23889/ijpds.v1i1.288]

19. Ritchie MD, Denny JC, Crawford DC, Ramirez AH, Weiner JB, Pulley JM, et al. Robust replication of genotype-phenotype
associations across multiple diseases in an electronic medical record. Am J Hum Genet 2010 Apr 09;86(4):560-572 [FREE
Full text] [doi: 10.1016/j.ajhg.2010.03.003] [Medline: 20362271]

20. Palakal M, Bright J, Sebastian T, Hartanto S. A comparative study of cells in inflammation, EAE and MS using biomedical
literature data mining. J Biomed Sci 2007 Jan 3;14(1):67-85. [doi: 10.1007/s11373-006-9120-8] [Medline: 17082901]

21. Xia Z, Secor E, Chibnik LB, Bove RM, Cheng S, Chitnis T, et al. Modeling disease severity in multiple sclerosis using
electronic health records. PLoS One 2013 Nov 11;8(11):e78927 [FREE Full text] [doi: 10.1371/journal.pone.0078927]
[Medline: 24244385]

22. Chase HS, Mitrani LR, Lu GG, Fulgieri DJ. Early recognition of multiple sclerosis using natural language processing of
the electronic health record. BMC Med Inform Decis Mak 2017 Feb 28;17(1):24 [FREE Full text] [doi:
10.1186/s12911-017-0418-4] [Medline: 28241760]

23. Damotte V, Lizée A, Tremblay M, Agrawal A, Khankhanian P, Santaniello A, et al. Harnessing electronic medical records
to advance research on multiple sclerosis. Mult Scler 2019 Mar 09;25(3):408-418. [doi: 10.1177/1352458517747407]
[Medline: 29310490]

24. Nelson RE, Butler J, LaFleur J, Knippenberg K, Kamauu AWC, DuVall SL. Determining Multiple Sclerosis Phenotype
from Electronic Medical Records. J Manag Care Spec Pharm 2016 Dec;22(12):1377-1382. [doi:
10.18553/jmcp.2016.22.12.1377] [Medline: 27882837]

25. Natural language processing with Python. Natural Language Toolkit. URL: http://nltk.org [accessed 2020-09-24]
26. Neurostatus. URL: https://www.neurostatus.net/ [accessed 2021-12-08]
27. Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, et al. Deep convolutional neural networks for brain image

analysis on magnetic resonance imaging: a review. Artif Intell Med 2019 Apr;95:64-81. [doi: 10.1016/j.artmed.2018.08.008]
[Medline: 30195984]

JMIR Med Inform 2022 | vol. 10 | iss. 1 | e25157 | p. 7https://medinform.jmir.org/2022/1/e25157
(page number not for citation purposes)

Yang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://bmcneurol.biomedcentral.com/articles/10.1186/1471-2377-14-58
http://dx.doi.org/10.1186/1471-2377-14-58
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24666846&dopt=Abstract
http://europepmc.org/abstract/MED/29926371
http://dx.doi.org/10.1007/s40263-018-0530-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29926371&dopt=Abstract
http://dx.doi.org/10.1016/j.autrev.2020.102512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32173519&dopt=Abstract
http://dx.doi.org/10.1212/wnl.0000000000001965
http://dx.doi.org/10.1586/1744666x.2015.991314
http://europepmc.org/abstract/MED/24148554
http://dx.doi.org/10.1136/amiajnl-2013-001999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24148554&dopt=Abstract
http://dx.doi.org/10.1097/pec.0000000000000484
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(18)30201-6
http://dx.doi.org/10.1016/j.jbi.2018.10.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30368002&dopt=Abstract
http://europepmc.org/abstract/MED/31343664
http://dx.doi.org/10.1001/jamaoncol.2019.1800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31343664&dopt=Abstract
http://dx.doi.org/10.1001/jamaoncol.2016.0213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27124593&dopt=Abstract
http://dx.doi.org/10.3414/me12-01-0012
http://dx.doi.org/10.1016/j.ijmedinf.2019.06.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31445253&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0229331
http://dx.doi.org/10.1371/journal.pone.0229331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32126097&dopt=Abstract
http://dx.doi.org/10.1177/1352458514538334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24948683&dopt=Abstract
http://dx.doi.org/10.23889/ijpds.v1i1.288
https://linkinghub.elsevier.com/retrieve/pii/S0002-9297(10)00146-1
https://linkinghub.elsevier.com/retrieve/pii/S0002-9297(10)00146-1
http://dx.doi.org/10.1016/j.ajhg.2010.03.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20362271&dopt=Abstract
http://dx.doi.org/10.1007/s11373-006-9120-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17082901&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0078927
http://dx.doi.org/10.1371/journal.pone.0078927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24244385&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-017-0418-4
http://dx.doi.org/10.1186/s12911-017-0418-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28241760&dopt=Abstract
http://dx.doi.org/10.1177/1352458517747407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29310490&dopt=Abstract
http://dx.doi.org/10.18553/jmcp.2016.22.12.1377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27882837&dopt=Abstract
http://nltk.org
https://www.neurostatus.net/
http://dx.doi.org/10.1016/j.artmed.2018.08.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30195984&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


28. Hughes M, Li I, Kotoulas S, Suzumura T. Medical Text Classification Using Convolutional Neural Networks. Stud Health
Technol Inform 2017;235:246-250. [Medline: 28423791]

29. Kim Y. Convolutional neural networks for sentence classification. arXiv. 2014. URL: https://arxiv.org/pdf/1408.5882.pdf
[accessed 2021-04-07]

30. Devlin J, Chang M, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics. 2019 Jun Presented at: 2019 Conference of the North American Chapter of the Association for Computational
Linguistics; June 2019; Minneapolis, MN URL: https://www.aclweb.org/anthology/N19-1423/

31. Lee J, Yoon W, Kim S, Kim D, Kim S, So C, et al. BioBERT: a pre-trained biomedical language representation model for
biomedical text mining. Bioinformatics 2020 Feb 15;36(4):1234-1240 [FREE Full text] [doi: 10.1093/bioinformatics/btz682]
[Medline: 31501885]

32. Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, et al. Deep contextualized word representations. arXiv. 2018.
URL: https://arxiv.org/pdf/1802.05365.pdf [accessed 2021-04-07]

33. Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional semantics resources for biomedical text processing.
Biomedical natural language processing tools and resources. URL: https://bio.nlplab.org/pdf/pyysalo13literature.pdf
[accessed 2021-04-07]

34. Gensim Models — Word2vec Embeddings. Radim Řehůřek. URL: https://radimrehurek.com/gensim/models/word2vec.
html [accessed 2021-04-07]

35. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their
compositionalitys. arXiv. 2013. URL: https://arxiv.org/pdf/1310.4546.pdf [accessed 2021-04-07]

36. Chollet F. Keras: Deep learning for humans. GitHub. URL: https://github.com/keras-team/keras [accessed 2021-04-07]
37. Dror R, Baumer G, Shlomov S, Reichart R. The Hitchhiker's Guide to Testing Statistical Significance in Natural Language

Processing. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 2018 Presented at: 56th Annual Meeting of the Association for Computational Linguistics; July 2018; Melbourne,
Australia URL: https://www.aclweb.org/anthology/P18-1128/ [doi: 10.18653/v1/p18-1128]

Abbreviations
BERT: Bidirectional Encoder Representations from Transformers
CNN: convolutional neural network
EDSS: Expanded Disability Status Scale
MS: multiple sclerosis
RNN: recurrent neural network

Edited by C Lovis; submitted 20.10.20; peer-reviewed by M Torii, H Suominen; comments to author 18.12.20; revised version received
08.04.21; accepted 19.11.21; published 12.01.22

Please cite as:
Yang Z, Pou-Prom C, Jones A, Banning M, Dai D, Mamdani M, Oh J, Antoniou T
Assessment of Natural Language Processing Methods for Ascertaining the Expanded Disability Status Scale Score From the Electronic
Health Records of Patients With Multiple Sclerosis: Algorithm Development and Validation Study
JMIR Med Inform 2022;10(1):e25157
URL: https://medinform.jmir.org/2022/1/e25157
doi: 10.2196/25157
PMID:

©Zhen Yang, Chloé Pou-Prom, Ashley Jones, Michaelia Banning, David Dai, Muhammad Mamdani, Jiwon Oh, Tony Antoniou.
Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 12.01.2022. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR
Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on
https://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2022 | vol. 10 | iss. 1 | e25157 | p. 8https://medinform.jmir.org/2022/1/e25157
(page number not for citation purposes)

Yang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28423791&dopt=Abstract
https://arxiv.org/pdf/1408.5882.pdf
https://www.aclweb.org/anthology/N19-1423/
http://europepmc.org/abstract/MED/31501885
http://dx.doi.org/10.1093/bioinformatics/btz682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31501885&dopt=Abstract
https://arxiv.org/pdf/1802.05365.pdf
https://bio.nlplab.org/pdf/pyysalo13literature.pdf
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://arxiv.org/pdf/1310.4546.pdf
https://github.com/keras-team/keras
https://www.aclweb.org/anthology/P18-1128/
http://dx.doi.org/10.18653/v1/p18-1128
https://medinform.jmir.org/2022/1/e25157
http://dx.doi.org/10.2196/25157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

