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Abstract

Background: Intraoperative hypotension has an adverse impact on postoperative outcomes. However, it is difficult to predict
and treat intraoperative hypotension in advance according to individual clinical parameters.

Objective: The aim of this study was to develop a prediction model to forecast 5-minute intraoperative hypotension based on
the weighted average ensemble of individual neural networks, utilizing the biosignals recorded during noncardiac surgery.

Methods: In this retrospective observational study, arterial waveforms were recorded during noncardiac operations performed
between August 2016 and December 2019, at Seoul National University Hospital, Seoul, South Korea. We analyzed the arterial
waveforms from the big data in the VitalDB repository of electronic health records. We defined 2s hypotension as the moving
average of arterial pressure under 65 mmHg for 2 seconds, and intraoperative hypotensive events were defined when the 2s
hypotension lasted for at least 60 seconds. We developed an artificial intelligence–enabled process, named short-term event
prediction in the operating room (STEP-OP), for predicting short-term intraoperative hypotension.

Results: The study was performed on 18,813 subjects undergoing noncardiac surgeries. Deep-learning algorithms (convolutional
neural network [CNN] and recurrent neural network [RNN]) using raw waveforms as input showed greater area under the
precision-recall curve (AUPRC) scores (0.698, 95% CI 0.690-0.705 and 0.706, 95% CI 0.698-0.715, respectively) than that of
the logistic regression algorithm (0.673, 95% CI 0.665-0.682). STEP-OP performed better and had greater AUPRC values than
those of the RNN and CNN algorithms (0.716, 95% CI 0.708-0.723).

Conclusions: We developed STEP-OP as a weighted average of deep-learning models. STEP-OP predicts intraoperative
hypotension more accurately than the CNN, RNN, and logistic regression models.

Trial Registration: ClinicalTrials.gov NCT02914444; https://clinicaltrials.gov/ct2/show/NCT02914444.
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Introduction

Intraoperative hypotension due to low blood pressure during
surgery may cause acute kidney injury, myocardial injury, and
mortality [1,2]. Researchers have found evidence of a causal
relationship between hypotension during surgery and organ
dysfunction [3]. Therefore, reducing the frequency and duration
of hypotension during surgery could prevent adverse
postoperative outcomes. Intraoperative hypotension is defined
as a mean arterial pressure <65 mmHg during surgery. Real-time
prediction of hypotension may help anesthesiologists detect and
intervene earlier during surgery, leading to a better prognosis.
During surgery, the anesthesiologist interprets hemodynamic
parameters, and immediately uses cardioactive drugs and fluid
resuscitation to treat hypotension. However, it is difficult to
predict the occurrence of hypotension through continuous
intensive intraoperative monitoring.

Researchers have utilized various statistical methods, machine
learning, and deep-learning techniques to predict hypotension
[4-6]. In particular, the hypotension prediction index (HPI) is
utilized as an on-the-shelf product based on high-fidelity arterial
waveform data from the operating room (OR) [4]. The HPI uses
the Flotrac algorithm to preprocess the arterial waveform and
extract features for the logistic regression model.

Real-time automated data acquisition of multiple biosignals in
the OR has facilitated the implementation of various
deep-learning technologies to predict intraoperative events. For
example, invasive arterial waveform-based convolutional neural
network (CNN) has yielded remarkable results in intraoperative
hypotension prediction [6] and stroke volume estimation [7].
Recurrent neural network (RNN) for time-series prediction has
successfully predicted in-hospital cardiac arrest and respiratory
failure [8,9] owing to the time-dependent nature of the biosignals
[9,10].

A CNN consists of convolution layers and pooling layers;
convolution layers filter input data to produce feature maps
indicating the locations and strength of detected features in the
input data, and pooling layers downsample the feature maps by
summarizing the presence of features in patches of the feature
map [11]. By contrast, RNNs are designed to process sequential

inputs such as language or time-dependent signals. An RNN
processes an input sequence one at a time, retaining information
in a hidden state vector. Specifically, long short-term memory
(LSTM) networks use special hidden units, which act as gated
leaky neurons, thus remembering the input for a long time.
LSTM networks are known to be more effective than
conventional RNNs [11]. Both CNNs and RNNs can process
signal data and are hence suitable for analyzing biosignals. A
CNN focuses on specific patterns in the signal, whereas an RNN
processes temporal information found in the sequences of the
signals.

The logistic regression model has been outperformed by
deep-learning models in terms of various medical applications,
including in-hospital cardiac arrest prediction [9], aortic valve
calcification prediction [12], and stroke prediction [13].

In this study, we propose the short-term event prediction in the
operating room (STEP-OP) hypotension prediction system based
on the weighted average ensemble of individual neural networks
that utilizes biosignals recorded during noncardiac surgery. To
this end, the arterial waveforms of 18,813 patients were selected,
segmented, and labeled autonomously according to a criterion
that enabled the construction and extension of deep-learning
models with big data from real-time recording systems.

Methods

Overview
STEP-OP was developed to predict intraoperative hypotension
5 minutes before it occurs based on big data from the VitalDB
[14] repository of electronic health records and intraoperative
biosignals. The records were collected by VitalRecorder, a
software for automatically recording time-synchronized
physiological data, including arterial waveform and
electrocardiogram data [15].

The process flow of STEP-OP consists of (i) patient selection,
(ii) data construction with automatic segmentation of biosignals
and data cleaning, (iii) automatic labeling, and (iv) construction
of the prediction model (Figure 1). Details of each process are
described below.
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Figure 1. Process flow and criteria of short-term event prediction in the operating room (STEP-OP) for constructing the prediction model of intraoperative
hypotension using VitalDB. CNN: convolutional neural network; RNN: recurrent neural network; NaN: missing values.

Subject Selection
We selected all patients whose arterial waveforms were recorded
during noncardiac operations performed between August 2016
and December 2019, at Seoul National University Hospital,
Seoul, South Korea. A total of 21,321 patients were enrolled in
this retrospective study for constructing the prediction model
of intraoperative hypotension. The study was approved by the
institutional review board of Seoul National University Hospital
(H-2008-175-1152) and is registered at ClinicalTrials.gov
(NCT02914444).

Data Construction
The arterial waveforms were recorded at 100 or 500 Hz and
were downsampled to 100 Hz. Each 60-second segment was
observed paired with a 20-second segment that occurred 5
minutes previously.

To detect artifacts in the arterial waveforms, we excluded
waveforms clearly beyond the physiological range according

to the following criteria: (1) segments with missing values, (2)
segments with blood pressure over 200 mmHg or under 20
mmHg, (3) segments with a difference between the maximum
and minimum pressure value under 20 mmHg, and (4) segments
with a difference between adjacent values over 30 mmHg
(pressure gradient over 3000 mmHg/second). The 20- or
60-second segment of the arterial waveforms that met any of
the criteria listed above was excluded from the dataset. No
modifications were made to the extracted waveform segments.

Among the 21,321 patients, 2508 patients were excluded from
the study after failing the data cleaning step according to the
criteria. In total, the data segmentation process produced
2,041,805 segments from 18,813 patients. Patients were
randomly split into 70/30 training and validation sets. Further,
1,428,553 segments from 13,178 patients’ data were used for
algorithm development, and 613,252 segments from 5635
patients’ data were used for internal validation (Figure 2).
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Figure 2. CONSORT diagram with flow of data construction.

Data Labeling
STEP-OP predicts hypotension 5 minutes before its onset based
on 20-second arterial waveforms. First, we defined 2s
hypotension as the moving average of arterial pressure under
65 mmHg for 2 seconds, and the intraoperative hypotensive
event was defined as the case in which the 2s hypotension lasts
for at least 60 seconds. Accordingly, 20-second segments of
the arterial waveform 5 minutes before the event were selected
and labeled “positive instances.” If the 2-second moving average
was maintained over 75 mmHg for at least 60 seconds, it would
be considered a nonhypotensive event. The 20-second segments
5 minutes before the onset were selected and labeled “negative.”

Algorithm Development
We developed an ensemble average model from two distinct
deep-learning layers of a CNN and RNN. The combination of
multiple neural networks can outperform individual networks
while offering the advantage of generalization [16]. The
combination of heterogeneous deep neural networks, especially
CNNs and RNNs, has shown better performance in various
applications [17,18]. Figure 3 depicts the process of STEP-OP
model construction with data preprocessing and the ensemble

average model of neural networks. The CNN is composed of
1D convolution, batch normalization, pooling, and fully
connected layers for the input of scaled 20-second arterial
pressure (array with a length of 2000). The RNN is composed
of three stacked bidirectional LSTM networks for the input of
30×100 tensors derived from the scaled 20-second arterial
waveform (array with a length of 2000). To preprocess the
arterial waveform, the array was sliced into individual cardiac
cycles using peak detection algorithms, and each cycle was
interpolated to an array with a length of 100. Thus, each cardiac
cycle represents a time step. If the 20-second segment had more
or less than 30 time steps (cardiac cycles), it was pretruncated
or prepadded with zero vectors, respectively (Figure 3).

The final stage of model construction computes the ensemble
average prediction value, P(α)=αPRNN+(1–α)PCNN, where α is
a weighting factor, and PRNN and PCNN are the output prediction
values of the RNN and CNN, respectively. We derived α by
evaluating the area under the precision-recall curve (AUPRC)
of P(α) on 10% of the training data. Finally, the performance
of the ensemble average was evaluated on the validation set
using the α derived from 10% of the training data.
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Figure 3. Short-term event prediction in the operating room (STEP-OP) model construction. K×F denotes the kernel size and number of filters. ReLU
activation was used after each convolution layer, and the sigmoid was used for the final activation. Normalization, pooling, and dropout layers are
omitted in the figure. LSTM: long short-term memory; FC: fully connected layer.

We used the Pytorch deep-learning framework [19], the AdamW
optimizer with β1=0.9 and β2=0.99, and the binary cross entropy

for the loss function with the learning rate set to 10–4. To prevent
the model from being biased toward the majority class, losses
with weights of 1 and 20 were used for the negative and positive
data points, respectively. We chose the optimal hyperparameters
by training deep-learning models on 90% of the training data

and chose the models that performed the best on the remaining
10%.

We evaluated the performance of the proposed model by
comparing it with the logistic regression model based on the
feature set of 12 features from the 20-second arterial waveforms
(Table 1).

Table 1. Features from the arterial waveform segments.

DescriptionFeature symbol

Average time of cardiac cycleMean_beat_length

Average MAP of cardiac cycleMAPa

Maximum value among pulse pressurePPb_max

Minimum value among pulse pressurePP_min

PP_max–PP_minPP_range

Average pulse pressurePP_avg

(PP_max–PP_min)×2.0/(PP_max+PP_min)PPVc

Average systolic timeSystolic_time_avg

Average systolic pressureSystolic_pressure_avg

Difference between maximum systolic pressure and minimum systolic pressureSystolic_pressure_range

Average diastolic pressureDiastolic_pressure_avg

Average of area under cardiac cyclesBeat_area_avg

aMAP: mean arterial pressure.
bPP: pulse pressure.
cPPV: pulse pressure variation.

We performed robust scaling after extracting the features, as
xi′=xi–Qi,2/Qi,3–Qi,1, where xi, xi′, and Qi,j denotes the value of
the ith feature, the scaled value of the ith feature, and the jth
quartile value of the ith feature, respectively.

The logistic regression model with five-fold cross-validation
was implemented using scikit-learn [20].

The prediction models of an imbalanced dataset are evaluated
in terms of the performance metrics AUPRC, area under the
receiver operating characteristic curve, precision, and sensitivity
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(recall) since the negative data points significantly outnumbered
positive data points [21,22]. Precision was evaluated at
thresholds at which the sensitivity is 0.6, 0.7, and 0.8. For
performance evaluation, we used the bootstrap method to
estimate the 95% CI, resampling 50% of the dataset 1000 times
randomly.

Results

The proposed method helped us to select 18,813 patients for
the study. The mean age of the group was 58.5 (SD 15.3) years.

Approximately 49.3% of patients in the group were male. The
training cohort (n=13,178) presented 1,373,378 negative
segments and 55,175 positive segments (total 476,184 minutes).
The validation cohort (n=5635) presented 587,413 negative
segments and 25,839 positive segments (total 204,417 minutes).
Table 2 compares the demographic characteristics between the
training and validation cohorts.

Table 3 summarizes the statistical results of 12 features extracted
from the arterial waveform segments.

Table 2. Study population characteristics.

P valueValidation cohortTraining cohortTotalCharacteristic

N/Aa563513,17818,813Number of patients

.1358.2 (15.4)58.6 (15.2)58.5 (15.3)Age (years), mean (SD)

.6863.4 (12.8)63.5 (12.8)63.4 (12.8)Weight (kg), mean (SD)

.07162.4 (9.9)162.2 (10.0)162.2 (10.0)Height (cm), mean (SD)

.012854 (50.65)6416 (48.69)9270 (49.27)Male, n (%)

.47ASAb score, n (%)

1268 (22.50)3084 (23.40)4352 (23.14)I

3458 (61.37)7970 (60.48)11,428 (60.75)II

844 (14.98)1980 (15.03)2824 (15.01)III

59 (1.05)137 (1.04)196 (1.04)IV

6 (0.11)7 (0.05)13 (0.07)IV

aN/A: not applicable.
bASA: American Society of Anesthesiologists.

Table 3. Feature characteristics.

P valueNegative event, mean (SD)Positive event, mean (SD)Feature symbol

<.0010.89 (0.17)0.82 (0.19)Mean_beat_length (s)

<.00190 (12)64 (12)MAPa (mmHg)

<.00160 (15)55 (16)PPb_max (mmHg)

<.00150 (14)45 (16)PP_min (mmHg)

<.0019.8 (9.8)10.0 (10.7)PP_range (mmHg)

<.00155 (14)50 (15)PP_avg (mmHg)

<.0010.20 (0.25)0.23 (0.29)PPVc

<.0010.14 (0.04)0.13 (0.04)Systolic_time_avg (s)

<.001125 (18)98 (19)Systolic_pressure_avg (mmHg)

<.00110.4 (9.0)10.7 (10.2)Systolic_pressure_range (mmHg)

<.00171 (11)49 (10)Diastolic_pressure_avg (mmHg)

<.00179 (18)53 (16)Beat_area_avg (mmHg×s)

aMAP: mean arterial pressure.
bPP: pulse pressure.
cPPV: pulse pressure variation.
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Figure 4 shows the configuration of the weight for the ensemble
in STEP-OP and the corresponding performance of STEP-OP
and other methods. Figure 4A shows the optimal weight value
αmax, which maximizes the AUPRC value. AUPRC reached its
highest value when α was 0.65. Thus, we evaluated the ensemble
average PSTEP-OP=0.65×PRNN+0.35×PCNN on the validation set.

Figure 4B illustrates the performance of the prediction models
with respect to the AUPRC. Deep-learning algorithms using
raw waveform as input (CNN, RNN) achieved higher AUPRC
scores than the logistic regression algorithm. STEP-OP obtained
the best performance, with a higher AUPRC than either the
CNN or RNN algorithm (see Table 4).

Figure 4. (A) Optimal weight value α on 10% of the training set. (B) Precision-recall curve of developed models. AUPRC: area under the precision-recall
curve; CNN: convolutional neural network; RNN: recurrent neural network; STEP-OP: short-term event prediction in the operating room.

Table 4. Performance of each algorithm in the internal validation cohort.

Precisionc (95% CI)Sensitivityc (95% CI)AUROCb

(95% CI)
AUPRCa

(95% CI)

Algorithm

0.80.70.60.80.70.6

0.502

(0.495-0.509)

0.647

(0.640-0.655)

0.742

(0.733-0.751)

0.800

(0.793-0.806)

0.700

(0.692-0.708)

0.600

(0.591-0.609)

0.961

(0.959-0.962)

0.716

(0.708-0.723)
STEP-OPd

0.466

(0.459-0.472)

0.615

(0.606-0.622)

0.717

(0.709-0.726)

0.800

(0.793-0.806)

0.700

(0.692-0.708)

0.600

(0.591-0.608)

0.955

(0.953-0.957)

0.698

(0.690-0.705)

Convolutional
neural network

0.488

(0.481-0.495)

0.639

(0.631-0.647)

0.738

(0.729-0.746)

0.800

(0.793-0.806)

0.700

(0.692-0.708)

0.600

(0.591-0.608)

0.958

(0.956-0.959)

0.706

(0.698-0.715)

Recurrent neu-
ral network

0.481

(0.474-0.487)

0.622

(0.614–0.630)

0.711

(0.703-0.720)

0.800

(0.793-0.807)

0.700

(0.691-0.708)

0.600

(0.592-0.609)

0.948

(0.946-0.950)

0.673

(0.665-0.682)

Logistic regres-
sion

aAUPRC: area under the precision-recall curve.
bAUROC: area under the receiver operating characteristic curve.
cSensitivity and precision values were evaluated at the thresholds for sensitivity of 0.6, 0.7, and 0.8.
dSTEP-OP: short-term event prediction in the operating room.

Figure 5 illustrates the STEP-OP prediction values and arterial
pressure of a validation cohort patient. Arterial pressure denotes
the 2-second moving average of a waveform. After a gradual
decrease, the patient’s arterial pressure stabilized around 75
mmHg. The pressure then plummeted abruptly, resulting in a

hypotensive event at the 14th minute. The STEP-OP prediction
scores were consistently above 0.6 from 7 minutes and started
to increase from 9 minutes (ie, 5 minutes before the hypotensive
event). Two minutes before the hypotensive event, STEP-OP
prediction values peaked at over 0.8.
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Figure 5. Example of a patient record depicting the arterial pressure and STEP-OP prediction values over time. Arterial pressure denotes the 2-second
moving average of the arterial pressure. STEP-OP: short-term event prediction in the operating room.

Discussion

Medical Artificial Intelligence Systems Utilizing Big
Data
In this retrospective observational study, we developed
deep-learning and machine-learning algorithms to predict an
intraoperative hypotension event 5 minutes before its onset by
leveraging a big data repository from an automatic recording
system in the OR. Processing big data introduces several
methodological challenges and opportunities in medical research
[23]. We performed automatic data segmentation, cleaning, and
labeling techniques on a large volume of biosignals according
to the expert knowledge–based criteria of the target disease. By
defining the hypotensive events and artifacts, we extracted
several data points without manually labeling research data.
This is essential for building artificial intelligence systems based
on big medical data.

Comparison With Previous Work
This study extends previous work on the HPI using an identical
input of the high-fidelity 20-second arterial waveform. The HPI
is the only algorithm currently used for predicting intraoperative
hypotension [24]. It is based on a logistic regression and uses
engineered features derived from the 20-second arterial

waveform as input [4]. Other researchers have attempted to
predict postinduction hypotension using either machine- or
deep-learning technologies [5,25]. However, conventional
machine-learning technologies require manually engineered
features extracted from raw data because they lack the ability
to process raw data [11]. Hence, the HPI requires separate
preprocessing algorithms (eg, Flo-trac, CO-Trek) to calculate
and process various features from the waveform [4]. In contrast,
deep learning can automatically learn discriminative features
from data [11]. The only preprocessing methods the CNN and
RNN algorithms used in this study require are scaling and
slicing.

Deep-learning algorithms may detect subtle changes in the
arterial waveform, which predict sudden drops in the arterial
pressure. These changes are likely to be masked or diminished
when represented as features. As shown in Table 3, the CNN
and RNN models using raw waveform data performed better
than the logistic regression model using the calculated features.

Finally, the ensemble average of CNN and RNN predicted
hypotension more accurately than each deep-learning model.
In this study, the optimal weights for the ensemble of LSTM
and CNN outputs were 0.65 and 0.35, respectively. This
showcases the improved intraoperative hypotension prediction
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by the hybrid model STEP-OP over a single deep-learning model
or logistic regression model.

Limitations
This approach has a few limitations. First, we defined
hypotension arbitrarily (2-second pressure moving average
under 65 mmHg for hypotensive events, and 2-second moving
average over 75 mmHg for nonhypotensive events). Prospective
research must be performed to observe the effect of these criteria
on the performance of the algorithms. Second, although a
relatively large (N>10,000) cohort of patient data was used, it
was retrieved from a single database. Future research will
include external validations of different population distributions
and settings. Finally, the threshold values and corresponding
response of clinicians according to the STEP-OP prediction
value must be determined for practical use in the OR.

Prospective studies in actual clinical practice are needed to solve
these limitations.

Conclusion
We developed STEP-OP utilizing a big data repository and
constructed a prediction model of short-term intraoperative
hypotension. The weighted average of the deep-learning models
performed the best in the prediction of hypotension. The
proposed algorithms use only the 20-second arterial waveform
without requiring separate feature computations. Consequently,
they can be easily implemented in scenarios with the possibility
of invasive blood pressure monitoring and can replace the HPI
algorithm in those situations. The proposed solution can be
extended and practically used for the real-time prediction of
adverse events in the OR or intensive care units. This in turn is
expected to improve clinical outcomes and reduce the burden
of medical staff.
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