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Abstract

Background: The emergency department (ED) triage system to classify and prioritize patients from high risk to less urgent
continues to be a challenge.

Objective: This study, comprising 80,433 patients, aims to develop a machine learning algorithm prediction model of critical
care outcomes for adult patients using information collected during ED triage and compare the performance with that of the
baseline model using the Korean Triage and Acuity Scale (KTAS).

Methods: To predict the need for critical care, we used 13 predictors from triage information: age, gender, mode of ED arrival,
the time interval between onset and ED arrival, reason of ED visit, chief complaints, systolic blood pressure, diastolic blood
pressure, pulse rate, respiratory rate, body temperature, oxygen saturation, and level of consciousness. The baseline model with
KTAS was developed using logistic regression, and the machine learning model with 13 variables was generated using extreme
gradient boosting (XGB) and deep neural network (DNN) algorithms. The discrimination was measured by the area under the
receiver operating characteristic (AUROC) curve. The ability of calibration with Hosmer–Lemeshow test and reclassification
with net reclassification index were evaluated. The calibration plot and partial dependence plot were used in the analysis.

Results: The AUROC of the model with the full set of variables (0.833-0.861) was better than that of the baseline model (0.796).
The XGB model of AUROC 0.861 (95% CI 0.848-0.874) showed a higher discriminative performance than the DNN model of
0.833 (95% CI 0.819-0.848). The XGB and DNN models proved better reclassification than the baseline model with a positive
net reclassification index. The XGB models were well-calibrated (Hosmer-Lemeshow test; P>.05); however, the DNN showed
poor calibration power (Hosmer-Lemeshow test; P<.001). We further interpreted the nonlinear association between variables
and critical care prediction.

Conclusions: Our study demonstrated that the performance of the XGB model using initial information at ED triage for predicting
patients in need of critical care outperformed the conventional model with KTAS.

(JMIR Med Inform 2021;9(9):e30770) doi: 10.2196/30770
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Introduction

Overcrowding in the emergency department (ED) has become
a major worldwide health care problem [1-3]. Therefore, most
EDs have a triage to manage growing patient volumes [2,4,5].
ED triage is the first risk assessment for prioritizing patients at
high risk and determining the course of ED care for patients
[5-8]. It is vital to accurately identify patients who need
immediate care at triage and provide rapid care to patients in
ED since delay in care may result in increased morbidity and
mortality for many clinical conditions [2,4,5,7,9,10].

Five-level triage systems, including the Canadian Triage and
Acuity Scale (CTAS), Manchester Triage System (MTS), and
emergency severity index (ESI), are widely used [2,8,9]. The
Korean Triage and Acuity Scale (KTAS) was developed in 2012
based on CTAS and has been used nationally as the ED triage
tool in Korea since 2016 [11-13]. Although five-level triage
systems are well established in ED, they need to be improved
because they heavily rely on healthcare providers’ subjective
judgment, resulting in high variability [5,7-10,12].

Machine learning algorithms such as extreme gradient boosting
(XGB) and deep neural networks (DNNs) have the advantage
of fitting nonlinear relationships between predictors and
outcomes in large data sets [10,14-17]. Recent literature has
shown machine learning prediction models using triage
information perform better than the baseline model using the
conventional approach of the five-level triage score for screening
ED patients at risk of hospitalization, intensive care unit (ICU)
admission, mortality, and critical care, which is defined as the
combined outcome of ICU admission and mortality
[3,6-10,12,17-20].

Clinical prediction models should be characterized by
discrimination, which indicates how well the model
differentiates patients who will have an event from those who
will not, and by calibration, which refers to the agreement
between predictions and the observed outcome [20-23].
Systematic reviews have reported that machine learning model
studies for clinical predictions almost always assessed
discriminative performance using the area under the receiver
operating characteristic (AUROC) curve, and the reliability of
risk prediction, namely calibration, was rarely evaluated [24-27].
In most of the previous studies for triage in ED, performance
metrics pertaining to discriminating power were provided, but
calibration, which assesses how close the prediction is to the
true risk, was rarely reported. Raita et al provided the AUROC
of ED triage prediction of critical care outcomes using four
machine learning algorithms [9]. Kwon et al evaluated the
discrimination of deep learning–based triage and acuity score
model for critically ill patients [12]. Goto et al [10] investigated
the discriminative performance of machine learning approaches
for predicting critical care outcomes for patients with asthma
and chronic obstructive pulmonary disease exacerbations in the
ED. However, the calibration of the models for critical care
outcomes was not included as a performance measure in the
studies reviewed. Poorly calibrated prediction algorithm models
can be misleading, which may result in incorrect and potentially
harmful clinical decisions [24,26-28]. Therefore, a study

including a performance evaluation of calibration in the
prediction model for patients with a critical illness at triage in
ED is required.

Moreover, no study has investigated the interpretability of
machine learning models for the triage in ED to date. The
interpretability of machine learning is defined as the degree to
which the machine learning user understands and interprets the
prediction made by a machine learning model [14-16]. The lack
of interpretation is the barrier to establishing clinicians’ trust
and the broader adoption of machine learning models in clinical
practices [14,15,29]. Explaining the justification of prediction
outcomes of the machine learning algorithm model ensuring
that the model makes the right predictions for the right reasons
is required to enhance clinicians’ buy-in [14-16,29]. Therefore,
in this study, we apply the partial dependence plot (PDP), a
global model-agnostic technique for explaining the relationship
between predictors and prediction results, to investigate the
interpretability of machine learning prediction for clinical care
in ED [15,16].

We developed and validated the machine learning prediction
model for critical care outcomes using routinely available triage
information. We hypothesized that applying a machine learning
algorithm to ED triage information could improve the
performance of critical care outcome prediction for patients
who visited an ED compared with the baseline KTAS model
using logistic regression.

Methods

Study Design, Setting, and Data Source
This was a retrospective study of patients that visited the
emergency department of an urban tertiary-care academic center
with an annual census of about 70,000 from January 1, 2016,
and December 31, 2018. We collected the demographics (age
and gender), mode of ED arrival, the time interval between
onset and ED visit, reason of ED visit, chief complaint, initial
vital sign measurements, KTAS score, and disposition results
(ED results and admission results). All data were acquired from
the Korean National Emergency Department Information
System.

Study Population
We considered adult patients (aged ≥18 years) who visited an
ED during the study period. We excluded patients who did not
need clinical outcomes prediction at triage, that is, cardiac arrest
or death upon ED arrival. Furthermore, we excluded patients
transferred to another hospital or those with uncompleted care
because it was impossible to ascertain their ED results. Patients
with missing or invalid information at triage were not included
(Table S1, Multimedia Appendix 1).

Outcome
The primary outcome in this study was critical care outcome,
defined as the composite of direct admission to ICU or
in-hospital mortality following previous studies [4,7,9].
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Variables and Preprocessing
For the prediction of critical care, we included a total of 13
variables: age, gender, mode of ED arrival, the time interval
between onset and ED arrival, reason of ED visit, chief
complaint, systolic blood pressure (SBP), diastolic blood
pressure (DBP), pulse rate (PR), respiratory rate (RR), body
temperature (BT), oxygen saturation, and level of consciousness
namely, alert, verbal, painful, and unresponsive (AVPU). The
mode of ED arrival was categorized into two options as either
ambulance use or not. The reason for the ED visit had two
values, either illness or injury. The chief complaints, which
were based on the Unified Medical Language System (UMLS),
were selected from the list of 547 codes. The preprocessing
details for the variables are described in Multimedia Appendix
1 (Table S1).

Model Development
The prediction model of critical outcome was developed by
using two modern prediction algorithms: XGB and DNN.

XGB algorithm is a cutting-edge machine learning application
of gradient boosting mechanisms [3,8,9,30]. The gradient
boosting is an ensemble algorithm with which new trees focus
on adjusting errors produced by the previous tree models
[8,30-32]. We implemented the XGB model on the training set
using five-fold cross-validation. The maximum depth of five
and a learning rate of 0.1 were selected from grid search for
tuning hyperparameter (Table S2, Multimedia Appendix 1). For
a DNN algorithm that equips the learning mechanism to fit
nonlinear relationships and high order interactions, [5,10,20,33],
we used three hidden layers selected from the grid search: (1)
a rectified linear unit as the activation function; (2) an adaptive
moment estimation as the optimizer; (3) a drop-out rate of 10%,
zero value for lambda, and binary cross-entropy as the loss
function (Table S2, Multimedia Appendix 1).

Random sampling was applied to split the entire data set into
training (80%) and validation sets (20%). The performance of
the prediction model was evaluated in the validation data set.

Statistical Analysis
For the characteristics of the study population according to
critical care, a two-tailed t test or Mann–Whitney U test was
conducted for the continuous variables, and the chi-square test
or Fisher’s exact test was performed for the categorical
variables.

The discriminating power as a primary measure was evaluated
by AUROC, which refers to how well the model differentiates
those at a higher risk of having an event from those at lower
risk [17,21]. We used the DeLong test to compare AUROC
between models [9]. Reclassification improvement was

evaluated using the net reclassification index (NRI) [9,10,21].
The NRI quantifies how well a new model reclassifies subjects
compared with the reference model [9,10,21]. Model calibration
was assessed with the Hosmer-Lemeshow test, a goodness-of-fit
measure for prediction models of binary outcomes [20,21,23,34].
Furthermore, the calibration was depicted on a reliability
diagram to represent the relationship between predicted
probability and observed outcomes [17,20,21,23,34]. The perfect
calibration should be in the 45-degree line [17,23,34]. The
sensitivity, specificity, positive predictive values (PPVs), and
negative predictive values (NPVs) were reported on performance
metrics. We used a sensitivity cutoff point of 85% for the
illustration of performance.

The variable importance of each prediction model was assessed
and determined using the approach of permutation variable
importance, which computes the importance by measuring the
decrease of model prediction performance (AUROC) when each
variable is permuted [35-38].

Finally, for the best prediction model, the PDP was visualized
for both the direction and effect size of each variable after
averaging out the effect of the other predictors in the model
[38-40]. More concretely, the partial dependence by calculating
the marginal effect of a single variable on the prediction
outcome demonstrates whether the association between a
variable and the prediction response is linear or nonlinear
[15,40,41].

A two-tailed P value of <.05 was considered statistically
significant, and a 95% CI was provided. All analyses were
performed using the R software (version 3.6.1, R Foundation
for Statistical Computing).

Ethics Statement
The Institutional Review Board of Seoul National University
Hospital approved this study, and they waived the requirement
for consent. All methods were performed in accordance with
the relevant guidelines and regulations.

Results

Characteristics of Study Subjects
There were 147,865 adult ED encounters from January 1, 2016,
to December 31, 2018. After excluding patients with cardiac
arrest or death upon ED arrival (n=401), those transferred to
another hospital (n=6230), discharged with uncompleted care
(n=2696), and with missing or invalid values (n=58,105), a total
of 80,433 ED adult patients were included in this study, with
3737 (4.6%) of them identified as experiencing critical care
(Figure 1).
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Figure 1. Study population. ED: emergency department. EMR: electronic medical record.

The study population of this study was split into two samples:
(1) a training data set, comprising 80% of the data set, with
64,346 patients and containing 3015 (4.7%) critical care patients,
and (2) a validation data set, consisting of the remaining 20%
of the data set, with 16,807 patients, including 722 (4.5%) of
them ascertained as receiving critical care. The characteristics
of the training and validation data sets were not significantly
different (Table S3, Multimedia Appendix 1).

The characteristics of the ED patients according to the study
outcome are presented in Table 1. Critically ill patients were
more likely to be female, older, call EMS, and have a higher

proportion of illness than those without critical care. The time
interval between onset and ED arrival was not significantly
different between patients with and without critical care. Initial
vital signs and levels of consciousness were significantly
different between the two groups. The most common chief
complaint among critically ill patients was dyspnea and fever
among those without critical care. The median of KTAS at ED
triage was 2 points (emergent level) for the critical care group
and 3 points (urgent level) for the noncritical care group. The
ED length of stay of patients was 6.4 hrs in the critical care
group and 4.0 hrs in the noncritical care group (Table 1).
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Table 1. Baseline characteristics of adult emergency patients according to critical care.

P valueCritical care (n=3737)EDa discharge (n=76,696)Total (N=80,433)Characteristic

<.001Gender, n (%)

2200 (58.9)37,010 (48.3)39,210 (48.7)Male

1537 (41.1)39,686 (51.7)41,223 (51.3)Female

<.00169.0 (58.0-77.0)61.0 (45.0-72.0)61.0 (46.0-73.0)Age, median (IQR)

.1723.1 (4.4-95.8)23.9 (3.8-96.0)23.9 (3.8-96.0)Interval between onset and ED arrival (hour),
median (IQR)

<.0012102 (56.2)17,162 (22.4)19,264 (24.0)Mode of ED arrival (EMSb use), n (%)

<.001Reason for ED visit, n (%)

3624 (97.0)70,021 (91.3)73,645 (91.6)Illness

113 (3.0)6675 (8.7)6788 (8.4)Injury

Initial vital sign data, median (IQR)

<.001133.0 (113.0-160.0)142.0 (126.0-165.0)141.0 (126.0-165.0)SBPc, mmHg

<.00175.0 (63.0-88.0)82.0 (72.0-92.0)81.0 (72.0-92.0)DBPd, mmHg

<.00194.0 (77.0-112.0)86.0 (74.0-101.0)86.0 (74.0-101.0)PRe, beats/min

<.00120.0 (18.0-24.0)18.0 (16.0-20.0)18.0 (16.0-20.0)RRf, breaths/min

<.00136.5 (36.3-37.0)36.5 (36.3-36.7)36.5 (36.3-36.7)BTg, °C

<.00197.0 (94.0-98.0)97.0 (96.0-98.0)97.0 (96.0-98.0)SpO2
h, %

<.001734 (19.6)2858 (3.7)3592 (4.5)Nonalert, n (%)

<.001Chief complaint, n (%)

912 (24.4)6793 (8.9)7705 (9.6)Dyspnea

284 (7.6)6991 (9.1)7275 (9.0)Fever

166 (4.4)5136 (6.7)5302 (6.6)Abdominal pain

555 (14.9)4487 (5.9)5042 (6.3)Chest pain

45 (1.2)3505 (4.6)3550 (4.4)Dizziness

1775 (47.5)49,784 (64.9)51,559 (64.1)Others

<.001KTASi level, n (%)

466 (12.5)404 (0.5)870 (1.1)1: Resuscitation

1954 (52.3)10,692 (13.9)12,646 (15.7)2: Emergent

1275 (34.1)46,702 (60.9)47,977 (59.6)3: Urgent

38 (1.0)16,599 (21.6)16,637 (20.7)4: Less urgent

4 (0.1)2299 (3.0)2303 (2.9)5: Nonurgent

<.0016.4 (3.7-10.4)4.0 (2.4-7.2)4.1 (2.4-7.3)ED LOSj (hour), median (IQR)

<.001ED disposition, n (%)

0 (0.0)57,014 (74.3)57,014 (70.9)ED discharge

493 (13.2)18,630 (24.3)19,123 (23.8)Ward admission

3170 (84.8)0 (0.0)3170 (3.9)ICUk admission

28 (0.7)1052 (1.4)1080 (1.3)ORl admission

46 (1.2)0 (0.0)46 (0.1)ED mortality

<.001804 (21.5)0 (0.0)804 (1.0)In-hospital mortality, n (%)

aED: emergency department.
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bEMS: emergency medical service.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
ePR: pulse rate.
fRR: respiratory rate.
gBT: body temperature.
hSpO2: oxygen saturation.
iKTAS: Korean Triage and Acute Scale.
jLOS: length of stay.
kICU: intensive care unit.
lOR: operating room.

Main Analysis
Classification results for the validation data set are presented
in Table 2. While the baseline model with a single variable of
KTAS had the lowest discriminative ability of AUROC 0.796
(95% CI 0.781-0.811), the machine learning models had higher
discriminative ability. When using triage information, age,
gender, mode of ED arrival, the time interval between onset
and ED arrival, reason of ED visit, chief complaints, the six
vital sign measurements, and level of consciousness, the XGB
algorithm yielded a higher AUROC of 0.861 (95% CI
0.848-0.874) than DNN of 0.833 (95% CI 0.819-0.848) for the
validation data set. The machine learning models achieved
higher reclassification improvement over the reference model
with positive NRI (P<.05). As Figure 2 depicted, the AUROCs
between the models with the full set of variables and the baseline
model were significantly different. (DeLong’s test for the
validation data set: P<.05) The XGB model showed good
calibration (Hosmer–Lemeshow test for the validation data set:
P>.05), and calibration of the DNN model was poor with
P<.001. The calibration plots on the validation data set were
illustrated in Figure 3. We selected the XGB model as the final
model in this study, considering discrimination, net
reclassification, and calibration.

The predictive performance metrics of the validation cohort,
including sensitivity, specificity, PPV, and NPV, are presented
in Table 3. The XGB and DNN model showed a higher
sensitivity of 0.85 than the baseline model (0.65, 95% CI
0.61-0.68) with a cutoff at the level of KTAS 2. As a trade-off,
the specificity of the conventional model using a single variable
of KTAS had a higher specificity of 0.85 (95% CI 0.84-0.86)
than that of the XGB model at 0.71 (95% CI 0.70-0.72) and the
DNN model at 0.64 (95% CI 0.64-0.65). Due to the low
prevalence of critical care outcomes, all models had high NPV
with a 95% CI ranging from 0.98 to 0.99.

The number of the actual and predicted outcomes according to
the level of KTAS is provided in Table 4. For the validation
data set, the baseline model correctly identified 469 patients
needing critical care in triage levels 1 and 2, which accounted
for 65.0% of all critical care outcomes. However, it overtriaged
2296 patients in these high acuity categories. Undertriaging
35% of patients in need of critical care, the conventional model
using a single variable of KTAS failed to predict all critical care
outcomes (253 cases) for triage levels 3 to 5. Compared to the
baseline model, the XGB model reduced false-positive cases
from 2296 to 1533 in KTAS levels 1 and 2 and the
false-negative cases from 253 to 80 in KTAS levels 3 to 5.

Table 2. Discrimination, reclassification, and calibration of critical care outcome prediction models for the validation cohort.

CalibrationReclassificationDiscriminationModel

H-Ld test, P valueP valueNRIc (95% CI)P valuebAUROCa (95% CI)

.80ReferenceReferenceReference0.796 (0.781-0.811)KTASe

.24<.0010.293 (0.219-0.366)<.0010.861 (0.848-0.874)XGBf

<.001<.0010.032 (0.024-0.041)<.0010.833 (0.819-0.848)DNNg

aAUROC: area under the receiver operating characteristic.
bP value for AUROC was calculated using DeLong’s test.
cNRI: net reclassification index.
dH-L: Hosmer-Lemeshow test.
eKTAS: Korean Triage and Acute Scale.
fXGB: extreme gradient boosting.
gDNN: deep neural network.
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Figure 2. Area under the receiver operating characteristic curve for validation data set. DNN: deep neural network; KTAS: Korean Triage and Acute
Scale; XGB: extreme gradient boosting.

Figure 3. Calibration plot for validation data set. DNN: deep neural network; H-L test: Hosmer-Lemeshow test; KTAS: Korean Triage and Acute
Scale; XGB: extreme gradient boosting. The observed probability of critical care with 95% CI is plotted against predicted probability by 10% interval.
The diagonal line, which is represented as ideal, means perfect prediction. Point size indicates the relative number of observations in each bin.

Table 3. Performance of critical care outcome prediction models in validation cohorts.

NPVf (95% CI)PPVe (95% CI)Specificity (95% CI)Sensitivity (95% CI)FNdTNcFPbTPaCutoff scoreModel

0.98 (0.98-0.98)0.17 (0.16-0.18)0.85 (0.84-0.86)0.65 (0.61-0.68)25313,06922964690.156hBaseline

KTASg

0.99 (0.99-0.99)0.12 (0.11-0.13)0.71 (0.70-0.72)0.85 (0.83-0.88)10610,88944766160.036XGBi

0.99 (0.99-0.99)0.10 (0.09-0.11)0.64 (0.64-0.65)0.85 (0.82-0.88)108989054756140.444DNNj

aTP: true positive.
bFP: false positive.
cTN: true negative.
dFN: false negative.
ePPV: positive predictive values.
fNPV: negative predictive values.
gKTAS: Korean Triage and Acute Scale.
hCutoff probability of 0.156 for the baseline model by logistic regression corresponds to KTAS score of 2.
iXGB: extreme gradient boosting.
jDNN: deep neural network.
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Table 4. The performance comparison of prediction models in validation cohorts according to the level of KTAS.

XGBb modelBaseline modelActual critical care, n (%)KTASa level

FNTNFPTPFNfTNeFPdTPc

23779600809898 (13.6)1: Resuscitation (n=178, 1.1%)

247601456347002216371371 (51.4)2: Emergent (n=2587, 16.1%)

7466932622170244931500244 (33.8)3: Urgent (n=9559, 59.4%)

63006297393303009 (1.2)4: Less urgent (n=3312, 20.6%)

04272400451000 (0.0)5: Nonurgent (n=451, 2.8%)

10610,889447661625313,0692296469722 (100)Total (n=16,086, 100%)

aKTAS: Korean Triage and Acute Scale.
bXGB: extreme gradient boosting.
cTP: true positive.
dFP: false positive.
eTN: true negative.
fFN: false negative.

Variable Importance and Partial Dependence Plot
We computed permutation-based variable importance for the
XGB and DNN model in Figure 4. The variable ranked as a top
priority was chief complaints for the XGB model and EMS use
for the DNN model. Despite the ranking difference in variable
importance between the XGB and DNN models, variables higher
in the list, including chief complaints, EMS use, age, AVPU,
PR, and RR, were identical.

For the XGB model defined as the final prediction model, the
relationship between each variable and the prediction outcome

for the validation data set is illustrated in Figure 5. The PDP
shows the marginal effect of a single variable on the prediction
outcome. The value of the y-axis on PDP is the predicted
probability for critical care. The nonlinear associations of all
vital sign variables to critical outcome predictions were
demonstrated. For age, RR, and SpO2, we found the pattern of
the critical care prediction in the XGB model, indicating the
probability of being classified as patients in need of critical care
increased with older age, higher RR, and lower SpO2. For SBP,
DBP, and PR, we observed a U-shaped relationship between
each vital sign and the critical care prediction.

Figure 4. Feature importance. The time interval denotes the time between onset and ED arrival. AUROC: area under the receiver operating characteristic
curve; AVPU: alert, verbal, painful, and unresponsive; BT: body temperature; DBP: diastolic blood pressure; DNN: deep neural network; ED: emergency
department; EMS: emergency medical service; PR: pulse rate; RR: respiratory rate; SBP: systolic blood pressure; SpO2: oxygen saturation; XGB:
extreme gradient boosting.
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Figure 5. Partial dependence plot. A. gender, B. age, C. time interval between onset and ED arrival, D. EMS use, E. reason of ED visit, F. SBP, G.
DBP, H. PR, I. RR, J. BT, K. SpO2, L. AVPU, and M. chief complaints. The partial dependence plot shows the marginal effect of a single variable on
the prediction outcome; the value of the y-axis is the predicted probability for critical care. AVPU: alert, verbal, pain, and unresponsive; BT: body
temperature; DBP: diastolic blood pressure; ED: emergency department; PR: pulse rate; RR: respiratory rate; SBP: systolic blood pressure; SpO2:
oxygen saturation; XGB: extreme gradient boosting.

Discussion

Principal Findings
In this study, based on the data of 80,433 ED adult patients, we
applied two modern machine learning approaches (ie, XGB and
DNN) to the routinely collected triage information (age, gender,
mode of ED arrival, the time interval between onset and ED
arrival, reason of ED visit, chief complaints, six vital signs, and
level of consciousness) for the critical care outcome prediction
in ED. The prediction models demonstrated superior
performance of discrimination from AUROC 0.833 to AUROC
0.861 for the validation cohort and net reclassification compared
to the conventional baseline model using KTAS (AUROC
0.796). The XGB model showed better discriminating power
(AUROC 0.861) than the DNN model. We revealed that the
XGB model was well-calibrated in predicting critical care
outcomes (Hosmer-Lemeshow test; P>.05).

The objective of this study was to accurately differentiate
high-risk patients from the less urgent patients at the triage stage
in the ED. Expedited evaluation and ED care of patients with
critical illnesses are crucial for maximizing clinical outcomes,
providing a strong rationale for their prediction at triage [7,42].
Previous studies have documented that current five-level triage
systems (eg, ESI, MTS, and KTAS) have a suboptimal ability
to identify patients at high risk, low inter-rater agreement, and
high variability within the same triage level [4,6-10]. Hence,
machine learning models incorporating variables of
demographics, mode of ED arrival, chief complaints, and vital
signs extracted from triage information have been investigated
to support accurate and rapid decision-making of ED clinicians.
This study extends the earlier research. The discriminative
performance gains of the critical care outcome prediction were
obtained from the XGB algorithm, which has the excellence to
handle nonlinear interactions between variables and the
prediction outcome.
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In this study, a large number (85.5%) of the patients without a
need of critical care were classified into KTAS levels 3 to 5
(83.2% of the entire population), while the majority (64.8%) of
the critically ill patient group was assigned into KTAS level 1
and 2 (16.8 % of all patients). We demonstrated that the XGB
model correctly detected critically ill patients who were
undertriaged into lower-acuity KTAS levels 3 to 5 in the
baseline model. The ability to reduce false-negative cases
provides a strong rationale for adopting the machine learning
algorithm model at ED triage, where the accurate and rapid
identification of patients at high risk is a matter of the utmost
importance. Furthermore, we observed that the XGB model
reduced the number of false-positive cases that were overtriaged
into high-acuity levels 1 to 2 in the baseline model, which may
prevent excessive resource utilization in ED practices.

This research proved that the XGB model had agreement
between the predicted probability and the observed proportion
of critical care occurrences. The calibration plot in Figure 3
visualized how well the forecast probabilities from the XGB
model were calibrated. Despite the importance of calibration in
the prediction model to support clinician decision, systematic
reviews have found that calibration is assessed far less than
discrimination [24,25,27], which is problematic since poor
calibration can make predictions misleading [24,26-28].
Machine learning algorithms are vulnerable to overfitting
[24,33,43]. Due to overfitting, most machine learning
algorithms, especially neural networks, are known to produce
poor calibration when validated with new data [24,33,44,45].
However, XGB controls the model complexity by embedding
a regularization term into the objective function to avoid
overfitting [40,46,47]. Our findings suggest that the probabilities
of the XGB model for predicting patients at high risk in ED
were reliable.

Explaining the predictions of block-box machine learning has
become highlighted. For the global interpretation of the model,
we visualized the nonlinear relationship between a variable and

outcome results in predicting critically ill patients using PDPs
(Figure 5). The XGB algorithm interpreted that, on average,
higher RR and lower SpO2 are associated with a high probability
of critical care outcomes, and there was a U-shaped relationship
between SBP, DBP, and PR and the outcome results. The
interpretation of the XGB model clearly reflected the
characteristics of vital signs and was in line with medical
knowledge. There are several interpretation techniques for global
and local levels of machine learning interpretation. A future
study of the multilevel interpretation of machine learning
algorithm predictions is warranted.

Using triage information and the XGB algorithm, the artificial
intelligent model for predicting patients at high risk in this study
can be implemented in the ED setting without additional burden,
which may support prompt and accurate clinician
decision-making at the early stage of ED triage, leading to the
improvement of patients’ health outcomes and contributing to
efficient ED resource allocation.

Limitations
This study has several limitations. First, we used the data from
a single ED of a tertiary-care university hospital; therefore,
external validation is needed for the generalization of the results.
Second, this study did not address how the prediction model
could be deployed into the clinical pathway; therefore, future
studies applying the prediction model during triage are
warranted.

Conclusions
This study demonstrated that using initial triage information
routinely collected in the ED, the machine learning model
improved the discrimination and net reclassification for
predicting patients in need of critical care in ED compared to
the conventional approach with KTAS. Moreover, we
demonstrated that the XGB model was well-calibrated and
interpreted nonlinear characteristics of vital sign predictors in
line with medical knowledge.
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