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Abstract

Background: The rapid growth of the biomedical literature makes identifying strong evidence a time-consuming task. Applying
machine learning to the process could be a viable solution that limits effort while maintaining accuracy.

Objective: The goal of the research was to summarize the nature and comparative performance of machine learning approaches
that have been applied to retrieve high-quality evidence for clinical consideration from the biomedical literature.

Methods: We conducted a systematic review of studies that applied machine learning techniques to identify high-quality clinical
articles in the biomedical literature. Multiple databases were searched to July 2020. Extracted data focused on the applied machine
learning model, steps in the development of the models, and model performance.

Results: From 3918 retrieved studies, 10 met our inclusion criteria. All followed a supervised machine learning approach and
applied, from a limited range of options, a high-quality standard for the training of their model. The results show that machine
learning can achieve a sensitivity of 95% while maintaining a high precision of 86%.

Conclusions: Machine learning approaches perform well in retrieving high-quality clinical studies. Performance may improve
by applying more sophisticated approaches such as active learning and unsupervised machine learning approaches.

(JMIR Med Inform 2021;9(9):e30401) doi: 10.2196/30401
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Introduction

Background and Significance
Evidence-based medicine (EBM) is identified by three key
elements: the best available clinical evidence, clinician expertise,

and application of the evidence with consideration of patients’
circumstances, values, and preferences [1]. EBM complements
or reduces reliance on expert opinion with a coherent and
structured framework for assessing and applying the best
evidence to patient care decisions [2]. An obvious and worsening
barrier to the implementation of EBM is the continuously
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growing body of medical literature. According to the National
Library of Medicine, over 900,000 new citations were indexed
in MEDLINE in 2020, very few of which were relevant to or
ready for clinical attention [3]. Searching for the best clinical
care evidence is a challenging task for researchers and clinicians,
and facilitation of the search process is a necessity [4].

Search Filters
Search filters, also referred to as hedges, allow researchers,
clinicians, and librarians to retrieve evidence from bibliographic
databases and journals by filtering searches to return reliable
and specific articles to address clinical questions, produce
systematic reviews, or inform clinical guidelines [5]. MEDLINE
search filters, for example, enable researchers to combine the
use of free text with controlled vocabularies like Medical Subject
Heading (MeSH) terms and other indexing features to improve
search results targeting the clinical question at hand [6,7]. There
are search filters that focus on the purpose of a study and its
methods or topical content areas [8]. Topical search filters help
identify articles based on particular clinical conditions using
terms related to that condition [8], while methodological search
filters comprise terms that identify articles based on their
research purpose [9]. For example, the Hedges project,
developed by the Health Information Research Unit at McMaster
University, provides search filters for MEDLINE, PsycINFO,
and EMBASE using the OVID syntax for a range of purpose
categories of articles such as treatment, diagnosis, and prognosis
and include methodological terms [4,10,11]. For searches
seeking articles on a treatment (purpose), the search hedge
includes methodological terms related to clinical or randomized
controlled trials (RCTs), while the diagnosis search hedge
includes methodological terms including sensitivity and
specificity [12].

These search filters were developed to identify high-quality
studies based on established critical appraisal criteria for
methodological rigor [13-15]. This was done by annotating
articles as meeting or not meeting criteria and using the
annotated dataset to evaluate the performance of search terms
to optimally retrieve the high-quality studies. For RCTs,
applying the Cochrane risk for bias tool includes assessing
randomization method, allocation concealment, follow-up data
for at least 80% of participants, blinding of participants, and
outcome assessors [14]. For the Hedges project, the criteria
applied to articles by purpose are available online [15].

Clinical search filters are intended to help clinicians, researchers,
and policymakers quickly access relevant studies and systematic
reviews in a way that can be tailored to the user’s demand [8].
The filters differ in their sensitivity and specificity according
to the terms used, databases searched, and precision of the filter
[16]. Some filters offer high specificity, which limits the
proportion of off-target articles that are retrieved. This is useful
for busy clinicians who value the most efficient use of their
time in finding relevant evidence quickly. Search filters may
also have the option to maximize sensitivity and identify all
potentially relevant articles at the cost of including a higher
proportion of off-target articles [17], an approach more suited
to the conduct of systematic literature reviews.

Although search filters, such as Clinical Queries in PubMed,
have been used since 1990 and have continued to work well
over the years [18], they have some limitations. One limitation
is their partial dependence on MeSH indexing terms, as the
process of indexing of articles within MEDLINE can take up
to a year for some articles [19]. For diagnostic studies, there is
large variability in designs and methods, which may result in
largely incomplete literature searches [7]. When applied in the
context of conducting a systematic review, the highly specific
filters result in missing evidence [7], and the high sensitivity
search filters will only partially reduce the time-consuming task
of screening retrieved titles and abstracts [20].

Overview of Machine Learning Applied for Text
Processing
Machine learning is a subset of artificial intelligence that refers
to a series of computational methods using experience to
improve performance or achieve accurate and precise
predictions. Experience, in this context, refers to the information
made available to the machine for the analysis [21]. A more
detailed definition was provided by Mitchell [22]: “A computer
program is said to learn from experience (E) with respect to
some class of tasks (T) and performance measure (P), if its
performance at tasks in T, as measured by P, improves with
experience E.”

Machine learning applications have become increasingly popular
and essential in health care [23], as the system generates an
enormous amount of data every day [24]. Machine learning can
identify relevant relations in large health care–generated datasets
and derive algorithms that generate accurate predictions [25,26].
For example, machine learning has been used to predict the risk
for nosocomial infection by leveraging data from electronic
health records [27-29]. A machine learning classifier is a
mathematical procedure responsible for identifying the patterns
and performing the prediction task on the dataset, while a
machine learning model is the output of the algorithm [30]. A
machine learning model represents the complete learning process
including the training of the algorithm and the used set of
features [30].

Another application of machine learning in the health care and
biomedical literature is text mining, which refers to the
discovery of previously unknown information from unstructured
textual data [31]. This is done by converting the text to
structured analyzable data using natural language processing
(NLP) [32]. With the exponential increase in the amount of
information available for clinicians and researchers, both in
biomedical literature and electronic health records [33], text
mining has been applied for text summarization [34], literature
retrieval [35], and evidence grading [36]. Machine learning has
also been applied to automate the screening process for
systematic reviews, identifying relevant articles while decreasing
workload and increasing efficiency [20,37,38]. Semantic
analysis, the process of understanding text by interpreting
meanings from the unstructured text [39], has been applied to
information extraction from the biomedical literature [40].

There are several types of machine learning determined by their
mathematical approach [41]. The basic machine learning
strategies are supervised learning, unsupervised learning, and
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reinforced learning [41,42]. Supervised learning relies on a
prelabeled training dataset to provide the machine with the
necessary input to make accurate predictions [41]. Decision tree
(DT), naïve Bayes (NB), and support vector machine (SVM)
are common supervised machine learning algorithms [43].
Unsupervised learning does not use labeled data and is mainly
used for structuring and organizing data rather than classification
[43]. In reinforced learning, the algorithm learns by reacting to
its environment and reaches predictions via a reward system
[42]. A common machine learning technique is ensemble
learning, which combines more than one classifier to perform
an individual prediction task. Boosting is one of the commonly
used ensemble learners, which combines multiple weak
classifiers and converts them into one strong classifier [41].
Neural networks are multilayer mathematical structures
consisting of an input layer, an output layer, and a hidden layer
(commonly more than one layer) in between [44]. In each layer
a series of calculations occurs, leading to better performance
[44]. Due to the multilayer nature of neural networks, their field
of study is known as deep learning. Neural networks can be
supervised, unsupervised, or reinforced [45].

Another appealing application of machine learning approaches
to the biomedical literature is to improve retrieval of clinically
relevant articles, building on and hopefully overcoming the
limitation faced by Boolean searching. Several studies have
been conducted to assess the performance of machine learning
classifiers to identify specific categories of published articles.
For example, Marshall and colleagues [46] applied machine
learning to identify RCTs. Del Fiol and colleagues [35] used
machine learning to extract only scientifically sound treatment
studies from PubMed. However, no systematic review of studies
objectively assessing the performance of such machine learning
models, ideally comparing their performance to traditional
evidence retrieval methods such as validated Boolean search
filters or manual critical appraisal by experts in the field, has
been performed to date. Such a systematic review would be of
critical value in driving future machine learning research aimed
at improving the delivery of relevant evidence to the point of
care.

Objective
The objective of this systematic review is to summarize the
nature (methods and approaches) and comparative performance
(eg, recall and precision) of machine learning approaches that
have been applied to retrieve high-quality evidence for clinical
consideration from the biomedical literature. High-quality is
defined as articles that meet established methodological critical
appraisal criteria, with annotated datasets that apply these criteria
considered the gold standard.

Methods

The following subsections describe in detail the steps that were
conducted to identify, screen, and abstract data from the included
studies.

Search Strategies
Nine databases were searched from inception to July 8, 2020,
to identify relevant articles: Web of Science (title, abstract);

MEDLINE; Embase; PsychINFO (title, abstract, keyword,
subject terms); Wiley Online Library; ScienceDirect (title,
abstract, keyword); CINAHL; IEEE (title, abstract, keywords),
and Association of Computer Machinery digital library (title,
abstract). The Multidisciplinary Digital Publishing Institute
(title, abstract) database was searched on November 17, 2020.
The search strategy was developed with a librarian (TN). Search
terms related to 4 concepts—machine learning, literature
retrieval, high research quality, and biomedical literature—were
combined using the AND Boolean operator. The OVID
MEDLINE search included the following terms, which were
translated for the other databases (mp = multipurpose, searching
within the title, original title, abstract, subject heading, name
of substance, and registry word fields):

• Machine learning: (neural networks/ or machine learning/
or natural language processing/ or data mining/ or support
vector machine/ or (“text categorization” or “text
classification” or “text analysis” or “literature mining” or
“text mining”).mp)

• Study objective or goal: (“Abstracting and Indexing”/ or
“information storage and retrieval”/ or (“article retrieval”
or “literature surveillance” or “literature screening” or
“article screening” or “evidence search” or “evidence
screening” or “evidence review” or “information retrieval”
or “literature survey” or “document classification” or
“review efficiency” or “citation screening” or “literature
databases”).mp.)

• High-quality: (“Sensitivity and Specificity”/ or
evidence-based medicine/ or (“quality” or “evidence” or
“high-quality” or “clinical trial” or “random*” or
“randomized controlled trial” or “sensitivity or specificity”
or “accuracy” or “precision”).mp.)

In the Association of Computer Machinery digital library and
Multidisciplinary Digital Publishing Institute search queries,
terms related to the biomedical literature were included:
(“PubMed” or “MEDLINE” or “medical literature” or
“Biomedical literature”).

Study Selection
Articles retrieved by our search queries were collected in a
single Research Information Systems file using JabRef software.
Deduplication was conducted using both JabRef automatic
deduping and Covidence automatic deduplication. We included
articles that met the following criteria:

• Reported on the use of a machine learning approach for the
retrieval of single studies or systematic reviews concerning
the management of health care problems in large biomedical
bibliographic databases such as MEDLINE and EMBASE

• Classified retrieved articles based on quality (using a gold
standard)

• Used a textual analysis machine learning approach
• Evaluated the performance of the machine learning

approach (ie, they present a comparison of retrieval methods
or other ways of appraising the performance of the machine
learning approach)

• Conducted within the biomedical literature domain
• Published in the English language
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Abstract and Full-Text Screening
Titles and abstracts of all the retrieved articles were screened
independently in Covidence.org by two members of the study
team. Articles were assessed as relevant, irrelevant, or maybe
relevant. The full texts of relevant and maybe relevant articles
were then reviewed in duplicate, with conflicts adjudicated by
a third team member.

Data Extraction
A data extraction spreadsheet was developed to gather data
regarding the methods of the machine learning approaches as
detailed by the survey by Agarwal and Mittal [47] and included
details on preprocessing steps, text representation, feature
selection, feature extraction, and classifiers used. Additionally,
we extracted data specific to the retrieval of high-quality articles
such as the quality gold standard, the comparators used to test

the machine learning models, and the performance of the
developed algorithms.

Results

Study Selection
Our search queries retrieved 3918 articles after 472 duplicates
were removed; 3632 were excluded during the title and abstract
screening for not applying a machine learning approach to
biomedical articles. A total of 286 were selected for full-text
screening, and 10 articles met our eligibility criteria (Figure 1)
[48]. Due to the heterogeneity in the population (retrieved
articles), index method (machine learning algorithm used), gold
standard, and outcomes (definition of high-quality study), we
did not perform a quantitative synthesis of the results.

Figure 1. PRISMA flow diagram of the studies identification process for the systematic review [48].

Quality Gold Standard
Each study used a quality gold standard database of original
studies or systematic reviews that were manually reviewed and
annotated by experts based on their scientific soundness and
clinical relevance (Table 1). Datasets of articles that met or did
not meet standards for quality and relevance were used to train

the machine learning models. Four studies used the American
College of Physicians (ACP) Journal Club as their quality gold
standard [49-52], 3 studies used the Clinical Hedges dataset
[4,35,36,53], 2 studies considered articles that were included
in treatment clinical guidelines as high quality [54,55], and 1
article used the Cochrane Library as their gold standard [56].
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Table 1. The quality standard used as the training dataset for developing the classifiers in the included studies.

Quality gold standardAuthor

ACPa Journal Club (treatment class)bAphinyanaphongs et al [49]

ACP Journal Club (treatment, diagnosis, etiology, prognosis)bAphinyanaphongs et al [50]

ACP Journal Club (treatment, diagnosis, etiology, prognosis)bAphinyanaphongs et al [51]

Clinical HedgesbKilicoglu et al [53]

ACP Journal Club (unspecified classes of articles)bLin et al [52]

Clinical HedgesbAfzal et al [36]

Articles cited in 11 clinical guidelines on the treatment of cardiac, autoimmune, and respiratory
diseases

Bian et al [54]

Clinical HedgesbDel Fiol et al [35]

Articles cited in 11 clinical guidelines on the treatment of cardiac, autoimmune, and respiratory
diseases

Bian et al [55]

Cochrane Library ReviewsAfzal et al [56]

aACP: American College of Physicians.
bHand searches of articles from approximately 125 clinical journals that were assessed by critical appraisal criteria; articles meeting criteria were then
judged by clinicians for clinical relevance. ACP Journal Club includes additional reviews by clinicians.

Preprocessing Methods
A matrix of the preprocessing steps that were applied to the
dataset before developing the classifiers as reported in the
included studies is presented in Table 2. Seven of the included
studies provided details of their preprocessing steps
[35,36,49-51,53,56], which included the conversion of text to

lowercase, word-stemming, and removal of stop words.
Additionally, 6 studies applied a term weighting method
[36,49-51,53,56] to express the importance of a word in each
document based on its frequency. Afzal et al [36] used
vocabulary pruning by removing off topic-specific frequent
terms and rarely occurring terms. Three studies did not specify
the steps for their preprocessing steps [52,54,55].

Table 2. Preprocessing steps applied to article data for preparing the datasets for machine learning algorithm development.

Unique preprocessing
considered

Weighting methodPorter- stemmingRemoval of
stop words

Removal of punctu-
ation

Text converted to
lowercase

Author

NRbLog frequency with
redundancy

✓✓✓✓aAphinyanaphongs et al
[49]

NRLog frequency with
redundancy

✓✓✓✓Aphinyanaphongs et al
[50]

Removed infrequent
words

Log frequency with
redundancy

✓✓✓✓Aphinyanaphongs et al
[51]

Removed infrequent
words

Information gain
measure

✓✓NR✓Kilicoglu et al [53]

NRNRNRNRNRNRLin et al [52]

Vocabulary pruningTF-IDFc✓✓NR✓Afzal et al [36]

NRNRNRNRNRNRBian et al [54]

Removed articles
without abstracts,
concatenated title, and
abstract words

NRNR✓NR✓Del Fiol et al [35]

NRNRNRNRNRNRBian et al [55]

Removed articles with
missing values

TF-IDFNRNRNR✓Afzal et al [56]

aApplied.
bNR: not reported.
cTF-IDF: term frequency–inverse document frequency.
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Feature Selection
Most of the included articles relied on the text as their features
(Multimedia Appendix 1). Seven articles used words from titles
and abstracts as their features [35,36,49-51,53,56]. Kilicoglu
et al [53] and Afzal et al [36] used article metadata features,
Unified Medical Language System features, SemRep semantic
prediction, and MeSH terms in combination with the words of
titles and abstracts features. Lin et al [52] selected specific
features from the citation dataset: journal impact factor, MeSH
terms, sample size, P value, and confidence intervals. Bian et
al [54,55] relied on MEDLINE metadata as well as bibliometric
features, which included citation count, journal impact factor,
number of comments on PubMed, Altmetric score, study sample
size, registration in ClinicalTrials.gov, and article age, and
assessed how each feature contributed to the classification. The
experiment by Bian et al [55] used only time-agnostic features
(features available at the time of an article’s publication), which
are journal impact factor, sample size, number of grants, number
of authors, number of clinically useful sentences, scientific
impact of authors’ institution, numbers of references, page count,
registration in ClinicalTrials.gov, and publication in PubMed
Central. Afzal et al [56] used automatic feature engineering
with RapidMiner software for the title and abstract text feature
extraction as part of the multilayer perceptron model.

Machine Learning Classifier
The majority of the included studies developed multiple
algorithms and selected the top-performing one for their main
classification tasks (Table 3). Aphinyanaphongs et al [49,50],
initially reported their results using SVM, NB, and boosting
algorithms in both their 2003 and 2005 experiments; however,
they ended up selecting SVM as their top-performing classifier
in a separate study [51]. Bian et al [54,55] and Afzal et al [36]
compared the performance of multiple classifiers (SVM, NB,
DT, k-nearest neighbors, random forest, multilayer perceptron)
and selected the best performing for their experiment in the
context of the same study (NB, DT, and SVM, respectively).
We refer to the classifier that was selected for the classification
task as the main classifier.

From the included articles, SVM was the most used classifier.
Five studies used an SVM algorithm as one of their main
experiment classifiers (Table 3), 2 studies used a neural network
as their main classifier; Del Fiol et al [35] used a convolutional
neural network (CNN), while Afzal et al [56] used a multilayer
feed-forward artificial neural network (ANN). DT algorithms
were used in 2 studies for their main text classification function
[52,55]. Four of the included studies applied multiple classifying
approaches [36,49,50,53].

Table 3. Types of machine learning classifiers used in the main experiment to assess performance in each of the included studies.

Neural networkEnsembleDecision treeSVMaNaïve BayesAuthor

StackingBoosting

N/AN/A✓N/Ac✓✓bAphinyanaphongs et al [49]

N/AN/A✓N/A✓✓Aphinyanaphongs et al [50]

N/AN/AN/AN/A✓N/AAphinyanaphongs et al [51]

N/A✓✓N/A✓✓Kilicoglu et al [53]

N/AN/AN/A✓N/AN/ALin et al [52]

N/AN/AN/AN/A✓N/AAfzal et al [36]

N/AN/AN/AN/AN/A✓Bian et al [54]

✓N/AN/AN/AN/AN/ADel Fiol et al [35]

N/AN/AN/A✓N/AN/ABian et al [55]

✓N/AN/AN/AN/AN/AAfzal et al [56]

aSVM: support vector machine.
bApplied.
cNot applied.

Comparator for Evaluating the Performance of the
Classifiers
As per our inclusion criteria, to evaluate the performance of the
machine learning method to classify articles appropriately,
articles had to report a comparison of their applied machine
learning model to a gold standard method such as gold standard
high-quality articles retrieval method, for example, search filters,
a manually annotated high-quality articles’dataset, or a baseline
machine learning model for high-quality articles retrieval (Table
4). Aphinyanaphongs et al [49-51] used Clinical Query filters

with sensitivity and specificity optimization [57]. The
experiment conducted by Kilicoglu et al [53] evaluated their
machine learning approach by applying it in a new dataset
annotated by experts. The NB high-quality algorithm by
Kilicoglu et al [53] was considered a comparator on its own for
its high recall and was used as such by Bian and colleagues
[54,55], who also used PubMed’s best match as a comparator.
Lin et al [52] used accuracy and k-value performance metrics
in comparison to the results of the critical appraisal process by
experts in the field. Also, Lin et al [52] has applied a comparison
between their classifier, which was a DT, to other known text
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classifiers like SVM and ANN. Afzal et al [36] have used a
SVM model for quality articles retrieval and compared its
performance to the SVM model proposed by Sarker et al [58],
reporting that their classifier achieved a higher performance
with their reported features selected.

Del Fiol et al [35] was the first study to incorporate the use of
deep learning in quality articles retrieval, relying on a CNN.
Del Fiol and colleagues [35] compared their proposed classifier
to the PubMed Clinical Queries broad filter since it achieves a
nearly perfect recall. Also, they compared their proposed model

to McMaster textword search and McMaster balanced search
filter created by the Clinical Hedges group to evaluate the
capabilities of their model of retrieving recently published
evidence and achieving a balance between recall and precision
[35]. Afzal et al [36], in their experiment using ANN, compared
their model’s results to the CNN results of Del Fiol et al [35],
the DT results of Bian et al [55], and their prior experiment
using an SVM for quality articles retrieval [35,56]. Also, Afzal
et al [56] compared their proposed ANN to well-known
algorithms used in the literature like NB, SVM, DT, and gradient
boosted trees.

Table 4. The gold standard comparator used for evaluating machine learning models in the included studies.

ComparatorAuthor

Aphinyanaphongs et al [49-51] • PubMed Clinical Query filter [57]

Kilicoglu et al [53] • Testing dataset of 2000 articles annotated by experts (held-out testing dataset to test model’s
generalization)

Lin et al [52] • Critical appraisal by domain expert
• SVMa

• Artificial neural network

Afzal et al [36] • SVM proposed in Sarker et al [58]

Bian et al [54] • Kilicoglu [53] high-quality classifier
• PubMed’s relevance sort

Del Fiol et al [35] • PubMed Clinical Query filter
• McMaster textword search
• McMaster balanced filter

Bian et al [55] • Kilicoglu et al [53] high-quality classifier
• PubMed relevance sort
• High-impact classifier with time-sensitive features included by Bian et al [54]

Afzal et al [56] • Well-known algorithms used in the literature: NBb, SVM, DTc, GBTd

• Models from past research by Del Fiol et al [35], Afzal et al [36], and Bian et al [55]

aSVM: support vector machine.
bNB: naïve Bayes.
cDT: decision tree.
dGBT: gradient boosted trees.

Performance Metrics
All included articles applied a supervised machine learning
model. Validation by applying a resampling k-fold approach
was used in 7 studies. Five used 10-fold cross-validation
[35,36,49,52,53], and 2 studies relied on 5-fold cross-validation
[50,51]. The most common performance metrics used in the
included studies were sensitivity (recall), specificity, accuracy,
area under the curve (AUC), F-measure, and precision (Table
5). The recall was generally high, above 85%, across all
experiment classifiers except the SVM by Kilicoglu et al [53],
and the NB and DT reported by Bian et al [54] and Bian et al
[55], respectively, as both had a recall below 30%. Precision
ranged from 9% to 86%, with the neural network of Afzal et al

[56] and the SVM by Kilicoglu et al [53] the highest. AUC was
measured in all studies and ranged from 0.73 to 0.99. Lin et al
[52] and Bian et al [54,55] used novel performance metrics in
their approaches. In the 2 studies by Bian and colleagues [54,55],
performance was primarily determined by calculating the top
20 precision which is the measure of the percentage of true
positive citations among the first 20 retrieved citations. Lin et
al [52] used Cohen kappa (k-value) as their performance metric,
which is the agreement between machine performance (observed
value) and gold standard (expected value) [59,60]. Bian et al
[54,55] reported a top 20 precision of 34% with their 2017 NB
classifier and 24% in their 2019 experiment using a DT
classifier. Lin et al [52] reported a k-value of 0.78 in their
experiment.
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Table 5. Highest reported performance characteristics of the main classifier algorithms reported in the included studies.

AccuracyfAUCeF-scoredPrecisioncSpecificitybRecallaClassifier and author

Support vector machine

0.8930.980.29g0.1690.870.967Aphinyanaphongs et al [49]

NRh0.970.30g0.180.860.96Aphinyanaphongs et al [50]

NR0.950.47g0.3050.880.98Aphinyanaphongs et al [51]

NR0.960.360.865NR0.229Kilicoglu et al [53]

0.7850.730.87NRNRNRAfzal et al [36]

Naïve Bayes

0.7870.950.17g0.0910.760.967Aphinyanaphongs et al [49]

NR0.95NRNRNRNRAphinyanaphongs et al [50]

NR0.820.240.138NR0.975Kilicoglu et al [53]

NRNR0.210.33NR0.23Bian et al [54]

Boosting

0.8040.960.18g0.0990.7860.967Aphinyanaphongs et al [49]

NR0.94NRNRNRNRAphinyanaphongs et al [50]

NR0.970.770.823NR0.729Kilicoglu et al [53]

Neural network

NRNR0.510.346NR0.969Del Fiol et al [35]

0.9730.990.90.863NR0.951Afzal et al [56]

Decision tree

0.854NRNRNRNRNRLin et al [52]

NRNR0.140.39NR0.09Bian et al [55]

Stacking

NR0.980.8010.747NR0.864Kilicoglu et al [53]

aRecall: proportion of correctly identified positives among the real positive.
bSpecificity: the proportion of actual negatives, which got predicted as the negative (or true negative).
cPrecision: proportion of correctly identified positives among all classified positives.
dF-score: harmonic mean of the precision and recall. F-score is equivalent to F1-score and used interchangeably.
eAUC: area under the curve traced out by graphing the true positive rate against the false positive rate. The higher the AUC, the better the classifier
prediction.
fAccuracy: number of correctly predicted documents out of all classified documents.
gCalculated as F-measure=(2*precision*recall)/(precision+recall) using recall and precision when available from the articles.
hNR: not reported.

Discussion

Summary
To our knowledge, this is the first systematic review of machine
learning approaches used to classify scientifically sound and
clinically relevant studies from the biomedical literature. All
included studies followed a supervised machine learning
technique in which the learning algorithm depends on prelabeled
data provided for training [41]. Despite the technological
advancements from 2003 to 2020 when the studies were
published, none reported applying unsupervised or active
learning approaches for the classification of articles based on
quality. Active learning is a subtype of machine learning in

which the learning algorithm is allowed to select the data from
which it learns by querying a human operator and can achieve
a performance comparable to the standard supervised learning
algorithms with fewer labeled data [21]. For example, active
learning was used in the recent work by Gates et al [61] and
Tsou et al [62], who used Abstrackr, a freely available active
machine learning tool that automates the screening of titles and
abstracts [63]. Abstrackr achieved 100% sensitivity after
screening only 31.8% of the citations in the dataset [63].

There is a limited range of quality standards comprising the
prelabeled training datasets across the included articles. ACP
Journal Club and the Clinical Hedges follow the same inclusion
and exclusion criteria for high-quality evidence [4].
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Aphinyanaphongs et al [49] considered an article as high-quality
if it were included in ACP Journal Club but considered only
those classified as treatment, which limits their results to RCTs.
The authors expanded their inclusion to articles tagged as
treatment, diagnosis, prognosis, and etiology in their subsequent
studies [50,51]. Having consistency across gold standard
databases in classifier development strengthens our ability to
compare performance. There are, however, limited manually
annotated datasets available as these are time consuming and
expensive to develop and require consistency and highly skilled
people. Using studies that are included in guidelines and
systematic reviews, as done by Bian et al [54,55] and Afzal et
al [56], leverages screening work that has already been
completed to a high standard; however, citations in guidelines
may include lower quality evidence in the training process [64].

The limited availability of high-quality dataset options was
highlighted by Afzal et al [56], and finding the ideal gold
standard training dataset was the most reported limitation in the
included studies. In our opinion, the ideal gold standard training
dataset should cover some criteria to overcome the limitations
reported in the articles. First, the gold standard should be defined
by precise criteria for methodological rigor that is created and
recognized by experts in the field [50]. Selection criteria for the
gold standard should be unbiased. Aphinyanaphongs et al [50]
described their concern toward the possibility of a selection bias
by the ACP Journal Club editors in a particular year toward a
certain topic. Second, the gold standard training dataset should
cover a large enough sample of the high-quality class to properly
train the model and overcome the class imbalance bias toward
the majority class of studies that are not of high quality [63,65].
Third, the gold standard training set should cover multiple health
care domains, as Lin et al [52] reported their high-quality dataset
was limited only to cardiovascular diseases and would not
perform as well if applied to another medical domain. Fourth,
the gold standard training dataset should be up to date as much
as possible, which was a limitation reported in both studies by
Bian et al [54] and Afzal et al [56].

Another possible constraint affecting accurate prediction is the
feature selection process. Del Fiol et al [35] stated that using
MeSH-based features instead of the sole reliance on text features
in their experiment could have improved the precision of their
neural network. In consensus with the recommendation of Del
Fiol et al [35], some of the included studies provided evidence
that the use of a combination of features improves the overall
performance of the classifiers. For example, in the experiment
by Afzal et al [36], the combination of publication type and
MeSH term features in addition to title and abstract features
produced the best and the most stable results. Also, Kilicoglu
et al [53] proved that the incorporation of MEDLINE citation
metadata and Unified Medical Language System features in
addition to words of titles and abstracts yielded the best
performance. Such important features may not be immediately
available at the time of indexing in MEDLINE [19], which
poses a challenge in identifying recently published evidence
[52,54].

There was a higher rate of incorporating SVM algorithms in
the experiments by the study authors. SVMs are known for their
high accuracy [66] and their low classification error [41],

making them ideal for linear classification. Afzal et al [56]
developed an ANN algorithm that had higher accuracy when
compared with their previous SVM classifier [36]. Further
applications of newer machine learning approaches will advance
the knowledge base on these quickly evolving methods. While
SVMs currently have good accuracy and low error rates,
emerging approaches may well outperform them.

The main purpose of using machine learning in the classification
of high-quality articles is to decrease the workload on those
performing manual classification without losing relevant articles
in the process. Recall, the proportion of correctly identified
high-quality articles from the high-quality pool, is the most
important metric to be used, followed by precision, the
proportion of correctly identified positive articles among all
those classified as positive. The included studies reported a
range of recall and precision some of which would not meet the
objective of identifying the high-quality articles correctly. For
example, the NB classifier developed by Bian et al [54]
performed significantly less than the NB by Kilicoglu et al [53]
and PubMed Best Match in terms of recall (23% vs 55% and
65%, respectively). Despite performing worse in recall, their
classifier achieved a higher precision (33% vs 5% and 4%) [54].

Additionally, accuracy, the number of correctly predicted
documents out of all classified documents, is considered a
common metric for evaluating classifiers; however, its use is
considered inappropriate to evaluate imbalanced dataset
classification [67]. For example, a classifier labeling all entries
as false (given that false is the majority class) would have high
accuracy but would fail to perform the needed task of accurately
classifying the passing articles (rare class), making it useless
[68]. The harmonic mean of the recall and precision
measurements is the F-score, and it is used to evaluate the
machine learning algorithms implemented on unbalanced
datasets [67]. F-score was first used in the study by Kilicoglu
et al [53] where the performance of the classifiers was reported
using recall, precision, F-score, and AUC, without including
accuracy. Additionally, Afzal et al [36] did not rely on recall to
compare between multiple classifiers; instead, they used the
F-score, precision, and accuracy. Also, they have applied a novel
approach to compare between the classifiers, in which they
summed the metrics for a classifier with a higher sum reflecting
better performance [36].

The highest reported recall in our review was 98% with the
SVM developed by Aphinyanaphongs and Aliferis [51],
however, the algorithm had low precision of 30.5%. The best
balance between recall and precision was achieved by the ANN
approach used by Afzal et al [56], which reported a high recall
of 95.1% and a high precision of 86.3%, thereby achieving the
target of not losing quality literature while decreasing the manual
classification workload.

The experiment by Kilicoglu et al [53] assesses the effect of
applying 3 different machine learning classifiers (SVM, NB,
boosting, and ensemble) trained using the same Clinical Hedges
dataset on the overall performance of the resulting models.
Using multiple feature set combinations, the highest recall was
achieved by the NB classifier, and the highest F-scores were
achieved by ensemble (0.80) and text-boosting (0.77) based
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models [53]. Only the studies by Aphinyanaphongs and
colleagues [49,50] and Kilicoglu et al [53] incorporated
ensemble techniques in the development of their main classifiers,
and their results suggest that using multiple classifiers in
combination can improve the balance between recall and
precision (the F-score).

Strengths and Limitations
This is the first systematic review to characterize the machine
learning approaches in high-quality article retrieval. When
narrowing our research question, we excluded other text
summarization and text categorization approaches being used
in the biomedical literature. These include but are not limited
to studies concerned with the automation of the systematic
review process [69,70], biomedical literature summarization
[71], and semantic models’ applications in the biomedical
literature [72]. Given the technical nature of the application of
machine learning approaches for text classification, we expanded
our search beyond clinical bibliographic databases to include
those which index technical articles.

Across the included studies, some steps were not fully reported
in the methods, including preprocessing steps, cross-validation
folds, and features selected. To our knowledge, there are no
reporting guidelines for machine learning approaches being
applied for literature retrieval. The Equator Network includes
6 reporting guidelines for machine learning approaches;
however, all 6 are focused on articles applying machine learning
in clinical settings [73]. For example, the most recently
published guideline focuses on the reporting of interventions
involving artificial intelligence in clinical trial protocols [74].
The lack of reporting guidance for the NLP component of
machine learning being applied in the biomedical literature
creates a noticeable gap in reporting the steps of the applied
approach, features used and justification for their use, and
inconsistency in the reported performance achieved by the
machine. As a result, there was a lack of consistency in the
reporting of results and methods provided by the authors, which
also limits our ability to compare the performance of the
classifiers. Also, one of the limitations developing the review

was the inability to directly compare the performance of the
models across the included studies because of the different
training datasets and the applied settings. Finally, a challenge
with machine learning is that the algorithms are considered as
being derived in a black box; an enigmatic interpretation that
the machines provide findings and predictions without any
accompanying explanation [75].

Conclusion
Despite the longevity of research for the identification of
high-quality literature using machine learning, evidence is still
scarce and slowly progressing over time, and determining the
most reliable approach is difficult as the field is quickly
evolving. This slow progression in the field may have been
caused by the lack of publicly available standard benchmarks
for the identification of high-quality articles biomedical literature
to compare the performance of the proposed methods. A similar
problem was addressed in the molecular machine learning
domain by creating MolecularNet, a large-scale, open-source,
and high-quality benchmark for molecular learning algorithms
[76]. Our review provides a summary of current approaches
and performance of machine learning models applied to retrieve
high-quality evidence for clinical consideration from the
biomedical literature and highlights the importance of selecting
optimal quality gold standard data for training. The findings
include that the use of different feature sets in combination with
text features is likely to improve the performance of machine
learning models. There is a lack of reporting consistency in the
literature which makes replication of the experiments difficult.
Supervised machine learning has been the focus to date. The
rapid development in the field of NLP and the availability of
new state of the art techniques such as Bidirectional Encoder
Representations from Transformers (BERT) for language
understanding [77] and bio-BERT for biomedical text mining
[78] hold promise for future advances in the field of information
extraction from the biomedical literature. Considering the
increasingly available data to apply these approaches to, we
anticipate that the performance of classifiers to identify
high-quality evidence will continue to grow.
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