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Abstract

Background: In the case of Korean institutions and enterprises that collect nonstandardized and nonunified formats of electronic
medical examination results from multiple medical institutions, a group of experienced nurses who can understand the results
and related contexts initially classified the reports manually. The classification guidelines were established by years of workers’
clinical experiences and there were attempts to automate the classification work. However, there have been problems in which
rule-based algorithms or human labor–intensive efforts can be time-consuming or limited owing to high potential errors. We
investigated natural language processing (NLP) architectures and proposed ensemble models to create automated classifiers.

Objective: This study aimed to develop practical deep learning models with electronic medical records from 284 health care
institutions and open-source corpus data sets for automatically classifying 3 thyroid conditions: healthy, caution required, and
critical. The primary goal is to increase the overall accuracy of the classification, yet there are practical and industrial needs to
correctly predict healthy (negative) thyroid condition data, which are mostly medical examination results, and minimize
false-negative rates under the prediction of healthy thyroid conditions.

Methods: The data sets included thyroid and comprehensive medical examination reports. The textual data are not only
documented in fully complete sentences but also written in lists of words or phrases. Therefore, we propose static and contextualized
ensemble NLP network (SCENT) systems to successfully reflect static and contextual information and handle incomplete sentences.
We prepared each convolution neural network (CNN)-, long short-term memory (LSTM)-, and efficiently learning an encoder
that classifies token replacements accurately (ELECTRA)-based ensemble model by training or fine-tuning them multiple times.
Through comprehensive experiments, we propose 2 versions of ensemble models, SCENT-v1 and SCENT-v2, with the
single-architecture–based CNN, LSTM, and ELECTRA ensemble models for the best classification performance and practical
use, respectively. SCENT-v1 is an ensemble of CNN and ELECTRA ensemble models, and SCENT-v2 is a hierarchical ensemble
of CNN, LSTM, and ELECTRA ensemble models. SCENT-v2 first classifies the 3 labels using an ELECTRA ensemble model
and then reclassifies them using an ensemble model of CNN and LSTM if the ELECTRA ensemble model predicted them as
“healthy” labels.

Results: SCENT-v1 outperformed all the suggested models, with the highest F1 score (92.56%). SCENT-v2 had the second-highest
recall value (94.44%) and the fewest misclassifications for caution-required thyroid condition while maintaining 0 classification
error for the critical thyroid condition under the prediction of the healthy thyroid condition.

Conclusions: The proposed SCENT demonstrates good classification performance despite the unique characteristics of the
Korean language and problems of data lack and imbalance, especially for the extremely low amount of critical condition data.
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The result of SCENT-v1 indicates that different perspectives of static and contextual input token representations can enhance
classification performance. SCENT-v2 has a strong impact on the prediction of healthy thyroid conditions.

(JMIR Med Inform 2021;9(9):e30223) doi: 10.2196/30223
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Introduction

In South Korea, a large portion of medical services are
maintained and operated under the public health insurance
system [1-4], and the Korean National Health Insurance
Corporation conducts biannual national health screening
examinations. Apart from government-sponsored biannual health
examination services, which are different from the health
insurance system in the United States, Korean companies
provide regular medical checkups to their employees annually
according to Article 43 of the Occupational Safety and Health
Act [5]. The entrusted companies conduct the examination in
partnership with affiliated examination centers in large hospitals
or professional examination centers and collect the results from
individual medical institutions to provide follow-up health care
services to the clients.

Electronic medical records (EMRs) and other forms of medical
documentation are designed to focus on the convenience of
work for medical personnel in line with the primary use of
patient care. The text records of any examination numerical
values and comprehensive findings provided by more than 1
examination institution are not standardized and are written in
nonunified formats with different periods and health
professionals. Thus, to ensure that consistent services are
offered, a group of experienced nurses in examination work has
been established using classification guidelines based on
important keywords and by manually classifying individual test
results to organize these results into a single unified format. In
this study, thyroid ultrasonography and hormone tests were
selected among the various measurements for the application
of ensemble language models. The following sections are
targeted for this study: individual text diagnosis of thyroid
diseases, 3 numeric variables for thyroid hormone examination
results, and comprehensive medical examination reports,
including doctors’ comments.

When the rule-based text classification is considered for the
analysis of contents in EMRs, repetitive classification and
human labor–intensive verification can be required for an
extensive rule set, regular expression, and branch logic because
of a data model that is not designed for secondary usage of text
data or sharing and interworking between multiple agencies
[6-8]. However, various implementations in medical natural
language processing (NLP) and applications of diverse language
models can be considered with recent advances in NLP and
techniques based on artificial neural networks [9-16] for data
extraction, early detection of diseases, diagnostic support, and
prediction of outcomes. Deep learning (DL) models represent
intricate structures in large data sets by updating the internal
parameters from backpropagation. Such learning techniques

produce promising results in various tasks in processing images,
videos, audio, and text data [17].

The data sets in our study are textual data that describe the
findings and doctors’ comments from thyroid ultrasonography
and additional comprehensive medical examination results.
Such textual data can be considered and processed using NLP
methods in DL. Referring to Wu et al [9], the most widely used
DL model is recurrent neural network (RNN) variants, while
Word2Vec [18] is the most common in embedding architectures.
Among their reviewed papers, text classification has the highest
percentage (41.5%) for clinical NLP tasks, followed by
bidirectional encoder representations from transformers (BERT)
[19]. BERT can be used by either training from scratch, directly
using fixed pretrained models, or fine-tuning it.

In this study, we initially developed multiple
single-architecture–based deep neural network models in NLP
not only by using the efficiently learning an encoder that
classifies token replacements accurately (ELECTRA) [20]
model, which is a pretrained model with open Korean corpus
data sets [21] in our study, but also by inventing a convolutional
neural network (CNN) [22] model and long short-term memory
(LSTM) [23] model. We chose the ELECTRA language model,
which has an identical structure to BERT, because it achieves
better performance on various NLP benchmarks than BERT
and verifies that different pretraining methods are more effective
for downstream NLP tasks. However, ELECTRA has a sequence
limitation of 512 input tokens; thus, the LSTM structure is
employed to capture the full length of contextual representations
of input words. For the ELECTRA model, we propose a
keyword-based trimming method for the comprehensive medical
examination section of the input data sets to reflect
thyroid-related information, which could be compulsively
truncated because of limitations, effectively for the contextual
representations.

Furthermore, we investigate and establish ensemble
classification models based on the CNN, LSTM, and ELECTRA
models. The combination of static and contextual NLP models
is required not only to capture different perspectives of static
and contextual word representations from the same input
sequences but also to consider the characteristics of the data.
The format of the data sets is not standardized or unified; thus,
they can be prepared as complete sentences, lists of
terminology-based words or phrases with or without numbering
them, and groups of numerous medical examination
measurements. Such aspects can be an obstacle, particularly for
training the contextual relationships between input word tokens.
Consequentially, we propose ensemble models to capture static
and contextualized input word representations of textual
examination data and classify them into 3 labels: healthy,
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caution required, and critical thyroid conditions. We construct
2 ensemble models and call them static and contextualized
ensemble NLP network (SCENT) systems. SCENT version 1,
SCENT-v1, is an ensemble or soft voting method for the CNN
and ELECTRA ensemble models. SCENT-v2 is a hierarchical
ensemble of CNN, LSTM, and ELECTRA ensemble models.

SCENT-v2 initially classifies the 3 thyroid conditions using the
ELECTRA ensemble model and reclassifies the selected labels,
only if the ELECTRA ensemble model predicted them as
“healthy” thyroid conditions, using an ensemble of CNN and
LSTM ensemble models (Figure 1).

Figure 1. Overall flow of our proposed ensemble approach. T3: triiodothyronine; Free-T3: free triiodothyronine; T4: thyroxine; Free-T4: free thyroxine;
TSH: thyroid stimulating hormone; ELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements Accurately; Uni-LSTM: unidirectional
long short-term memory; CNN: convolution neural network; SCENT: Static and Contextualized Ensemble NLP-neTworks; -v1: version 1; -v2: version
2.

Methods

Data Labeling Using Thyroid Ultrasonography
Keywords
Thyroid glands are butterfly-shaped endocrine glands located
in the lower front of the neck and are responsible for the
production of thyroid hormone [24]. Thyroid nodules are lumps
produced by abnormal growth of thyroid cells that appear as
either solid (hard lumps) or cystic (water lumps). If nodules are
found in the thyroid gland during a medical examination, thyroid
ultrasonography can be performed to check for signs of cancer.
It is also possible to check thyroid hormone levels and conduct
blood tests on thyroid antibodies to identify other types of
thyroid disorders [25]. Thyroid nodules typically do not cause
symptoms or require treatment, but a small number of thyroid
nodules can be diagnosed as cancerous. Thyroid cancer is mainly
detected and diagnosed using blood tests and thyroid
ultrasonography. Thyroid ultrasonography may show the size
and shape (solid or liquid-filled cysts) of thyroid nodules.

For our experimental data sets, to minimize classification errors,
an experienced nurse with expertise in the field of health
examination performed the first labeling task, and a member of
another nurse group performed the second labeling of each
entry. After that, reclassification proceeded through group

discussions on the parts with differences in classification. In
this study, the final classification tags for each entry were used
as labels. The basic test results classification criteria are defined
as follows:

• Healthy: no abnormalities (normal), simple cyst, tubular
cyst, thyroid resection (thyroidectomy), benign calcification.

• Caution required: hypothyroidism, unequal parenchyma,
internal thyroid disease, thyroiditis, nodule, thyromegaly,
hyperechoic lesion, hypoechoic lesion, hyperechoic nodules,
hypoechoic nodules, cystic lesions.

• Critical: tumor, malignant, biopsy, fine-needle aspiration
cytology.

Data Preprocessing
The data sets, which consist of individual text diagnosis of
thyroid diseases, comprehensive medical examination text
reports including doctors’comments, and 3 categorical variables
for individual hormone examination results, were classified as
healthy, caution required, and critical labels in total. The
categories of hormone examination results were classified as
normal or abnormal by comparing the results of the numerous
subtests for triiodothyronine (T3), free triiodothyronine (Free
T3), thyroxine (T4), free thyroxine (Free T4), and
thyroid-stimulating hormone with the reference range for each
device and test. A total of 122,581 textual data were collected
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in the free form of EMRs from 284 health care institutions in
the Republic of Korea between January 2015 and May 2020;
thus, data clearing was compulsory. The data sets were written
in Korean with numerous English biological and chemical
terminologies, including various special characters. Many
special characters and measurement units with brackets such as
“blood pressure 120/80 mm/Hg”, “microalbuminuria is less
than 30 mg/g”, and “renal cyst (left side 1.4 cm)” can increase
vocabulary size and lengthen the sequence of input texts
unnecessarily. Therefore, Korean, English, numerical characters,
and only selected special characters, such as “%”, “'”, “/”, “~”,
“²”, “-”, “,”, and “.” remained after preprocessing. In addition,
the 3 dummy variables of hormone examination were converted
concisely into 3 sentences before tokenization: “hormone
examination results were normal,” hormone examination results
were abnormal,” and “hormone examination was not
conducted.”

Among the total sample size of 122,581 text data, 84,111
samples, 37,220 samples, and 1250 samples were labeled as
healthy, caution required, and critical conditions, respectively.
The extreme data imbalance can be troublesome for training or

fine-tuning the DL models, so the least amount of critical
condition data was initially divided into 7:1:2 ratios for training,
validation, and test data sets. The training data were then
augmented by splitting sentences and each sentence was attached
one by one starting from the first sentence to the last. For
instance, a sample datum with 3 consecutive sentences was
multiplied into 3 samples with the first 1 sentence, the first 2
sentences, and the entire 3 sentences each from the original
sample data. During the augmentation, the order of sentences
was preserved as the original sample data because split sentences
were added in the order of original sequences. Consequently,
the critical condition data sets were split and then augmented,
and the healthy and caution-required condition data sets were
only divided according to the ratio of prepared data (Table 1).
The training data sets for the critical condition were augmented
from 875 to 29,174 samples. After that, the entire prepared
training data sets were randomly shuffled. Relatively short
examples of data and translations for each class are listed in
Table 2. The data sets consist of a sequential combination of
individual diagnosis, hormone examination results, and
comprehensive medical examination reports. Comprehensive
reports are occasionally omitted.

Table 1. Numbers of divided sample data sets. Only train data for critical thyroid condition are augmented and the original amount of data before the
augmentation is given in brackets (N=122,581).

Total number of prepared data setsThyroid conditions

Total, n (%)Test (n=42,237), n (%)Validation (n=21,119), n (%)Train (n=87,524), n (%)

84,111 (68.62)36,624 (86.71)18,312 (86.71)29,175 (33.33)Healthy

37,220 (30.36)5363 (12.70)2682 (12.70)29,175 (33.33)Caution required

1250 (1.02)250 (0.59)125 (0.59)29,174 [875] (33.33)Critical
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Table 2. Short examples and English translations for each thyroid condition.

ContentsExamples

Healthy condition

정상. 호르몬 검사 수치 정상입니다. uibc 감소, 철 증가, 총 콜레스테롤 증가, glucose증가, 골다공증.Original

Normal. Hormone examination results were normal. UIBC decreases, iron increases, total cholesterol increases,
glucose increases, osteoporosis.

Translation

정상. 호르몬 검사 수치 미 판정입니다. 체중 관리에 주의 가 필요합니다. 총 콜레스테롤 수치가 높습니
다. 중성지방수치가 높습니다. 저밀도 콜레스테롤 수치 가 높습니다 .

Original

Normal. Hormone examination was not conducted. Please be aware of weight management. Total cholesterol
level is high. Neutral fat level is high. Low-density lipoprotein cholesterol level is high.

Translation

Caution-required condition

갑상선염. 호르몬 검사 수치 정상입니다. b형 간염 항체 미 형성. 갑상선염. 고 음영 유방, 유방 양성 석
회화 양측.

Original

Thyroiditis. Hormone examination results were normal. Hepatitis B antibody not formed. Thyroiditis. Dense
breast, positive calcification for both.

Translation

갑상선염 의심 또는 치유 반흔. 호르몬 검사 수치 정상입니다. 양측 치밀 유방 2. 갑상선염 의심 또는 치
유 반흔 3. 담낭 결석 및 콜레스테롤 용종 4. 위염 5. 자궁경부 염 6. a형간염 항체 없음.

Original

Suspect thyroiditis or scars. Hormone examination results were normal. Dense breasts for both. 2. Suspect thy-
roiditis or scars 3. Gallstone and cholesterol polyps 4. Gastritis 5. Cervicitis 6. No antibody for hepatitis A.

Translation

Critical condition

갑상선 초음파 검사상 좌엽 결절 2.78 cm 소견입니다. 세침 흡인 세포검사를 받으시 길 권유합니다. 호
르몬 검사 수치 미 판정입니다.

Original

Thyroid ultrasonography shows 2.78 cm of left nodule. We recommend taking a fine needle aspiration cytology.
Hormone examination was not conducted.

Translation

갑상선 좌측부에 10.2mm 크기의 저 에코결절이 1개 있으며 감별 진단을 위해 세침검사로 확인 요망됨.
결론은 좌측 부 갑상선 결절. 요망 세침검사로 확인 및 의사와 상담 요망. 호르몬 검사 수치 정상입니다.
위장 조영촬영결과 유 소견입니다. 갑상선 초음파 검사 결과 유 소견입니다.

Original

There is 10.2mm size of 1 hypoechoic nodule in left-sided thyroid and requires fine needle aspiration cytology
for differential diagnosis. Left-sided thyroid nodule in the conclusion. Have consultations with doctors and
confirm with fine needle aspiration cytology. Hormone examination results were normal. Blood sugar level
before a meal is high. Upper gastrointestinography results were abnormal. Thyroid ultrasonography results were
abnormal.

Translation

Tokenization
Korean is an agglutinative language and one of the
morphologically rich [26] and typologically diverse [27]
languages; a character is composed of consonants and vowels
of the Korean alphabets in 3 positional forms: choseong (syllable
onset), jungseong (syllable nucleus), and jongseong (syllable
coda). The positional forms are displayed in the lexicographic
order of Korean alphabets as follows:

Choseong: ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎ

Jungseong: ㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢ
ㅣ

Jongseong: (None)ㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂ
ㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ

One of the common challenges in text preprocessing for Koreans
is the ambiguity of word spacing, unlike other languages. For
example, an English phrase “Be able to do” is translated into a
grammatically accurate Korean phrase “할 수 있다,” which has
2-word spaces. When not strictly aware of Korean orthography,
it can also be written as “할수 있다” (Beable todo) with 1-word
space or “할수있다” (Beabletodo) without any word space.

Furthermore, various postpositions or particles, which means
“helping words” in English, are immediately attached after
nouns or pronouns without any white space. For instance,
English phrases “I am” and “You and me” become “Iam” and
“Youand me” in Korean phrases. This can make it difficult to
decompose sentences into distinguishable morphemes; for
example, the same noun(s) or pronoun(s) can be tokenized into
multiple tokens, even if their actual meaning may not differ.
Such inconsistent grammatical errors and unique grammatical
aspects can cause the same expression of word-level texts to be
tokenized into different tokens, which may result in difficulty
in training NLP models.

To resolve such problems, we used the MeCab-ko [28]
tokenizer, which was originally introduced as MeCab for
Japanese morphological analysis by Kudo et al [29]. The
variation for the Korean tokenizer yields good performance to
handle such problems by reconstructing and unifying a
grammatical structure with a relatively faster speed than other
Korean tokenizers [30]. WordPiece [31-33], which was
originally introduced for Japanese/Korean segmentation, was
employed for the transformer [34] encoder–based models such
as BERT and ELECTRA for various purposes. One of the major
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advantages is that it can increase the robustness against the
out-of-vocabulary (OOV) problem with a relatively small
vocabulary size by disassembling words into subword units
using a given text corpus. Therefore, in this study, we used the
combination of MeCab-ko and WordPiece to pretrain the thyroid
text data sets to fine-tune the ELECTRA [21] model, which
was pretrained with a Korean open-source corpus. The input
sentences were initially identified and reconstructed into possible
grammatical morphemes by MeCab-ko and then segmented
into divisible subwords that maximize the log likelihood of a
language model by WordPiece. For instance, “임상적으로,”
which means “clinically” in English, can eventually be tokenized
into “임상,” “##적,” “으로” as “clinic,” “##al,” and “ly,” where

the last part was initially separated by MeCab-ko and the first
and second parts were segmented by WordPiece after that.

The average and maximum lengths of the input sequence
resulting from different tokenizers are listed in Table 3. All
input tokens from every sample had right-skewed (positive
skewness) distributions. To reduce the sequence length,
especially for the ELECTRA model, which has a limitation of
512 tokens, only comprehensive examination reports were
trimmed for every sample. Based on the first sentence containing
the word “thyroid,” all subsequent sentences including 1
previous sentence were extracted and then recombined with
individual text diagnosis of thyroid diseases and textualized
hormone examination results. Original comprehensive text
reports were used when the word “thyroid” does not exist.

Table 3. Comparison of different tokenizers and the numbers of input tokens.

Maximum number of tokensAverage number of tokensTokenizer

TestValidTrainTestValidTrain

224022192227520.1522.3494.2MeCab-ko

417129434096695.9698.7664.7WordPiece for BERTa

250024722656593.7596.3564.9WordPiece for ELECTRAb

243524312608567.6570.0540.6MeCab-ko and WordPiece

221622192162418.8419.6370.4MeCab-ko (trimmedc)

241224312365456.6457.6404.9MeCab-ko and WordPiece (trimmedc)

aBERT: bidirectional encoder representations from transformers.
bELECTRA: efficiently learning an encoder that classifies token replacements accurately.
cTrimmed: The data sets were trimmed based on the keyword “thyroid” in the comprehensive medical examination text part.

Proposed Framework

Overview
In this study, we propose ensemble models, SCENT-v1 and
SCENT-v2, which can reduce generalization errors of the
prediction and reflect static and contextual perspectives of word
representations in accordance with thyroid and general
examination reports. Our proposed ensemble models consist of
multiple single-architecture–based ensemble models from CNN,
LSTM, and transformer encoder architectures as shown in
Figures 1 and 2. We initially created a CNN with batch
normalization (BN) [35] transform approach, LSTM with 2
shortcut connections [36] including an attention mechanism
[37], and ELECTRA models. Each model was trained or

fine-tuned 10 times with different settings of epochs, learning
rates, and batch sizes. Subsequently, each
single-architecture–based model was trained or fine-tuned 10
times and then combined into an ensemble model. In other
words, 3 respective CNN, LSTM, and ELECTRA ensemble
models were constructed by combining each of the 10 model’s
prediction averages from softmax functions, or simply by
performing soft voting, to stabilize the variances of classification
performance. Based on the experimental results of
single-architecture–based ensemble models, we selected the
CNN-Word2Vec, Uni-LSTM, and ELECTRA-v2 ensemble
models for further ensemble approaches. The 3 distinct models
were CNN with trainable Word2Vec embedding, unidirectional
LSTM with trainable Word2Vec embedding, and the second
version of ELECTRA fine-tuned with trimmed data sets.
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Figure 2. The architecture of the proposed ensemble models. Each model is trained or fine-tuned ten times for each ensemble model. Best viewed in
color. CNN: convolution neural network; Batch Norm.: batch normalization transforms; LSTM: long short-term memory; ELECTRA: Efficiently
Learning an Encoder that Classifies Token Replacements Accurately; Norm.: layer normalization.

The final predictions for the thyroid condition classification
were then determined using ensemble and hierarchical ensemble
methods, namely, SCENT-v1 and SCENT-v2, respectively. In
this experiment, static word representations were captured from
the CNN-Word2Vec ensemble model, and contextualized word
representations were captured from the Uni-LSTM ensemble
model with the ELECTRA-v2 ensemble model, which
exclusively considers the initial 512 token sequences in the
trimmed data sets. SCENT-v1 is an ensemble of CNN and
ELECTRA ensemble models, and SCENT-v2 is a hierarchical
ensemble of CNN-Word2Vec, Uni-LSTM, and ELECTRA-v2
ensemble models (Figure 1). The multilabel classification in
SCENT-v2 was based on the 3 thyroid condition predictions
from the ELECTRA-v2 ensemble model and reclassified the
selected labels using an ensemble of CNN-Word2Vec and
Uni-LSTM ensemble models, where only the ELECTRA-v2

ensemble model predicted “healthy” thyroid conditions. In other
words, SCENT-v2 kept the decisions from the ELECTRA-v2
ensemble model for “caution required” and “critical” thyroid
condition predictions, and then made final decisions from an
ensemble of CNN-Word2Vec and Uni-LSTM ensemble models
only for the “healthy” thyroid conditions, which were predicted
by the ELECTRA-v2 ensemble model.

Our proposed SCENT-v2 is designed for the industrial purpose
in that it saves time and cost by reducing the number of manual
thyroid condition classification steps required and human
misclassification errors. Perfect overall classification accuracy
for current and future data sets must be the ideal solution.
However, there are numerous obstacles such as imbalanced
numbers of data sets and the difficulty level of the problem.
This hierarchical ensemble method, therefore, was pursued to
minimize the numbers of false negatives and maximize the
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numbers of true negatives as depicted in Figure 3. It primarily
aimed to correctly predict an exceedingly high number of
healthy thyroid conditions with 100% precision of healthy
(negative) thyroid labels and leave the remaining data sets for
manual classification to provide precise health care services
and reduce the human classification workloads. This approach
was proposed to take into account aspects of practical and
industrial usage efficiency by sacrificing the overall accuracy
but reducing the large manual workloads. Based on the

validation data sets, among the 3 single-architecture–based
ensemble models, the ELECTRA-v2 ensemble model indicates
a relatively low number of false positives, and the 2
CNN-Word2Vec and Uni-LSTM ensemble models show a
relatively small number of false negatives in the prediction of
healthy thyroid conditions (Figure 3). Accordingly, we
constructed SCENT-v2 for the hierarchical ensemble model in
this study.

Figure 3. A confusion matrix for healthy thyroid condition datasets. TN: true negative; FP: false-positive; FN: false-negative; TP: true positive.

Embedding
Word embedding is a way of expressing words that are
converted into distributed vector representations. Mikolov et al
[18] introduced Word2Vec embedding, which provides
remarkable performance for capturing syntactic and semantic
word relationships. Continuous bag of words (CBOW) and
Skip-gram methods were proposed with several loss function
approaches in their paper, and we used skip-gram with negative
sampling (SGNS) Word2Vec in our NLP models. For a given
corpus sequence T length of words w1, ... , wt–1, wt, wt+1, ..., wT,
where the training context size is c, CBOW predicts the
probability of the current word wt as P(wt|wt-c, ..., wt+c). By
contrast, the skip-gram method predicts the probability of the
context words as P(wt–c, ..., wt–1, wt+1, ..., wt+c|wt) by the softmax
function calculated as

where vw and v w are the input and output word vector
representations, respectively; |V| is the vocabulary size; and wO

and wI refer to the target word representations and the given
word representations, respectively. Negative sampling is
suggested as an alternative to the initially used hierarchical
softmax function because of the cost of computing the

vocabulary size. It is defined by the objective function calculated
as

where every logP(wO|wI) in the objective is replaced. The

probability Pn(wi)=f(wi)
3/4⁄∑j=0[f(wj)

3/4] is a unigram distribution
that allows the use of a selected number of n negative samples
instead of the number of vocabulary sizes. To use the SGNS
Word2Vec, we initially predefined 5 context sizes, 5 negative
samples, and 300 dimensions for each vector representation.
The embedding was then pretrained unsupervised using
Wikipedia corpus data [38], which contain 162,861 articles on
various topics. The grammatical expressions in the corpus data
were restructured and prepared using the MeCab-ko tokenizer
before pretraining. This method helps convert the ith word wi

to a fixed length of 300-dimensional word vector xi, and thus,
can be calculated algebraically; for instance, vector(“한국

Korea”)–vector(“서울Seoul”)+vector(“도쿄Tokyo”) results in a
vector representation with most similarity of the word 일본Japan

(the subscripts are English translation).

Word embeddings for transformer-based models BERT and
ELECTRA have a different approach for establishing word
vocabulary because of the tokenizer called WordPiece. Rather
than the n-gram strategy in Word2Vec, this approach initializes
the vocabulary with its size to include all character
representations in each corpus by using a greedy
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longest-match-first [39] approximation, which picks the longest
subwords or prefixes inside the corpus. It selects a new word
piece that maximizes the log likelihood for the corpus when the
word piece is added to the language model. For example, a word
piece “un” is added to the vocabulary if the probability of “un”
divided by “u” and “n” is higher than other subword units. After
the preparation of token embeddings, both transformer-based
models create their input representations by summing up the
token, segment, and position embeddings. Two special tokens
were used to distinguish sentences. A special classification
token (CLS) was inserted as the first token of all sentences for
the classification task, and a special separator token (SEP) was
used to distinguish sentence pairs as the first and second
sentences, where the segment embedding distinguishes them.
The position embedding shows the location of each token as

PE(p,2i)=sin(p⁄100002i/d) and PE(p,2i+1)=cos(p⁄100002i/d), where
p indicates the location of the embedding vector in the input
sentence; and i is the index of the dimension within the
embedding vector. A hyperparameter d=768 indicates the
dimensions of all corresponding embedding vectors and encoder
layers of the transformer.

Convolution Neural Networks
CNN can be described as a structure that is originally designed
for processing images to identify patterns of features by weight
sharing and local connectivity. CNN can be used for NLP as
well and extracts the same features regardless of positions by
sliding CNN filters over consecutive tokens with a fixed window
size. CNNs have become an essential method in computer vision
tasks [40-42] and produce good results on sentence classification
tasks [43]. In this study, we suggest deep CNN feature–learning
methods to determine how static word vector representations
are achieved in text classification. The model, which is depicted
at the top of Figure 2, considers input word tokens through
pretrained Word2Vec, where the maximum length of input
sequences is set to 2240 tokens. The CNN model initially
vectorizes input word tokens through word embeddings with a
dimensionality of 300 for each vector representation. A
convolution operation then generates a feature map c=f(Wx+b),
where W and b are the weight and bias parameters of the model,
respectively, and f(·) is a nonlinear function such as rectified
linear units [44] and ReLU(x)=max(0, x). We employed the BN
transform in the convolutional operation before the nonlinearity
function. In this study, we used the BN transform in the CNN
operations because it [35] can reduce the necessity for dropout
[45], and other methods such as L2 regularization become
ineffective when combined with BN, but only influence learning
rates [46].

Starting from the lower layers of the CNN model, we conducted
the summation of 2 consecutive 3 kernel sizes of convolution

layers with BN and 1 kernel size of the convolution layer
without BN from pretrained SGNS Word2Vec. The word vectors
with a dimensionality of 300 are represented as local features
of word vectors with 250 dimensions. The structure then
connects to a max-pooling combination consisting of size 3 and
stride 2 of max-pooling, 2 consecutive 3 kernel sizes of
convolution layers with BN, and a simple shortcut connection
with a consistency of 250 dimensionality. The combination was
repeated 6 times to determine deep representations of static
word features, and a global max-pooling operation extracted
the maximum values over the dimensions. The penultimate
layer was then connected to the softmax computation layer for
the label prediction using BN with a dropout rate of 0.5. The
CNN model was constructed with 3 variants of word embedding:
CNN-random, CNN-fixed-Word2Vec, and CNN-Word2Vec.
The only difference is that the parameters of the embedding
part were randomly initialized, transferred from pretrained
SGNS Word2Vec, maintained nontrainable, and fine-tuned
pretrained SGNS Word2Vec during model training.

Long Short-term Memory
RNN can be described as a neural network that learns from
sequential data such as time-series data. It has a recurrent
structure that learns temporal or sequential patterns and makes
the information persistent. However, gradient vanishing is a
significant problem while training RNN-based models, and it
can cause a long-range dependency when a long input sequence
is given. LSTM is a form of RNN structure with added gates
in the LSTM interface (Figure 4). Memory cell block alleviates
long-term dependency problems. In a unit of LSTM, the forget
gate ft=σ[Wf(ht–1, xt)+bf] decides how much to neglect when the
previous hidden state and the vector xt at time t are given. The
new memory node gt=tanh[Wg(ht–1, xt)+bg] stores new
information from the previous hidden state and the vector xt.
The input gate it=σ[Wi(ht–1, xt)+bi] decides how much new
information can be accommodated by element-wise
multiplication of the new memory cell. The output gate
ot=σ[Wo(ht–1, xt)+bo] determines how much information is
delivered to the hidden state ht at time t. In conclusion, the
hidden state ht=ot·tanh(ct) is produced with the element-wise
multiplication of the output gate and memory cell of ct, where
the memory cell ct=ft·ct–1+it·gt is produced by the summation
of the element-wise multiplication of the forget gate with
previous memory cell of ct–1 and element-wise multiplication

of the input gate with the new memory node. σ(x)=1/(1+e–x) is

a sigmoid function, tanh(x)=(e2x–1)/(e2x+1) is a hyperbolic
tangent function, and W and b are distinguishable weight and
bias parameters, respectively.
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Figure 4. One sample unit of long short-term memory. x: vector; h: hidden state; f: forget gate; i: input gate; g: memory node; o: output gate; c: memory
cell; σ: sigmoid function; tanh: hyperbolic tangent function.

As shown in the middle of Figure 2, for the contextual LSTM
model, we constructed 5 unidirectional LSTM layers with 650
units per layer with 2 shortcut connections and a 50% dropout
rate on the nonrecurrent connections for every LSTM layer.
The bidirectional LSTM model follows the same structure, but
each forward and reverse LSTM has 310 units, and 620 units
are concatenated per layer. The 2 shortcut connections, which
can help prevent the models from overfitting, are linked from
the first to the third LSTM layers and from the third to the fifth
LSTM layers. We then apply an attention mechanism that can
measure the importance of the given tokens before thyroid
classification. A hidden representation ui=tanh(Wu·hi+bu) from
the last hidden layers of LSTM is calculated, and a weighted
summation vector v=∑iαihi is determined by attention as
follows:

where Wu and bu are the weight and bias parameters,
respectively; and uc is a context vector that is randomly
initialized and jointly learned. The weighted vector then passes
to the last layer of this model to compute the softmax
probabilities of each thyroid condition. Both Uni-LSTM and
Bi-LSTM models vectorize input tokens using the MeCab-ko
tokenizer and use trainable pretrained SGNS Word2Vec
embedding.

Transformer
RNN-based models take a long time to compute input sentences
because the calculations are performed sequentially. However,
transformer processes input sentences in parallel and capture
various relationships between words in a sentence with the help
of a multihead self-attention mechanism. Because the input

tokens are not computed sequentially, transformer includes
special position embedding that reflects position information
in the attention mechanism to construct word-to-word
importance and dependency. The BERT and ELECTRA models
are based on the transformer. The authors of the transformer
proposed the architecture of encoder and decoder with a unique
attention mechanism. Both BERT and ELECTRA, which are
pretrained BERT and ELECTRA, respectively, in our study,
use multiple encoder layers of the transformer exclusively, as
shown at the bottom of Figure 2. After summing up the 3 tokens,
segments, and position embeddings as described above, the
transformer encoder obtains linear projections of key, query,
and value for each input representation. The scaled dot-product
attention is calculated through

Attention scores are obtained from each query projection by
keys, attention weight distribution is computed through a
softmax function, and the final values are obtained through the
product of the value projection. This attention step is repeated

A=12 times and concatenated to Concate(head1, ..., head12)W
O

from heada=attention(KWa
K, QWa

Q, VWa
V), where the

dimensions are dk=dq=dv=64, and the distinguishable weights

are WO, Wa
K, Wa

Q, and Wa
V. This can help train the model in

which the same input tokens can be represented from multiple
perspectives. The results from multihead attention are then
connected to 2 layers of feed-forward neural networks
FFNN=ReLU(0, xW1+b1)W2+b2, where the shape of W1 is
(d=768, dff=3072) and W2 is (dff=3072, d=768), and processed
with residual connection and layer normalization, as depicted
with arrows in Figure 2. In conclusion, these encoder layers are
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stacked 12 times and then connected to the penultimate layer,
which is a dense layer with 768 units. Then, the softmax
probabilities are computed for predicting the 3 thyroid
conditions. The 2 transformer encoder-based models are
pretrained with different learning methods: random masking
procedures [19] for BERT and replaced token detection [20]
for ELECTRA.

Experimental Settings
The hyperparameters of the different NLP models are listed in
Table 4. CNN- and LSTM-based models were trained for 30

epochs with adaptive learning rates by monitoring validation
loss; the learning rate decays by a factor of 0.7 if the validation
loss is not improved (decreased) within 1 epoch. Transformer
encoder–based models, which were initially pretrained with the
open-source Korean corpus data, were fine-tuned for 15 epochs
with a fixed learning rate. Adam [47] optimizer, where β1=0.9,
β2=0.999, and ε=1e–8, is considered for all NLP models. The
experiments were implemented with TensorFlow [48], PyTorch
[49], and Hugging Face [50] libraries, and a GeForce RTX 2080
Ti 11-GB graphic processor unit.

Table 4. Detailed information about different NLP models.

Batch sizeInitial learning rateNumber of parametersEmbedding vocabulary sizeTokenizerModels

641e–332 million100,000MeCab-koConvolution neural network

322e–446 million100,000MeCab-koUnidirectional long short-term
memory

322e–440 million100,000MeCab-koBidirectional long short-term

memory

82e–592 million8002WordPieceBidirectional encoder representa-
tions from transformers

82e–5110 million32,200WordPieceELECTRAa-version 1

82e–5112 million35,000MeCab-ko &
WordPiece

ELECTRA-version 2

aELECTRA: efficiently learning an encoder that classifies token replacements accurately.

Results

According to Table 5 and Figure 5, the macroaveraged precision,
recall, and F1 scores are calculated due to the imbalance of
multilabel data sets and confusion matrices, respectively. For
the single-architecture–based ensemble models, in general, we
observed that CNN-Word2Vec achieved the highest F1 score
among the ensemble models, and Uni-LSTM outperformed
Bi-LSTM by achieving slightly higher F1 scores. Performance
degradation was observed in the CNN-Word2Vec and
Uni-LSTM models while training with trimmed data sets, but
improvement was observed in ELECTRA-v2. The LSTM
architecture has the characteristics of an RNN, and it has

connections between units along a temporal sequence. Thus,
we assume that there must be a difficulty in learning contextual
representations owing to the inconsistency of the data structure:
lists of words or phrases and full complete sentences. Although
both BERT and ELECTRA models have recorded
state-of-the-art results on multiple NLP benchmarks, it is
surprising that fine-tuned transformer encoder layer–based
models do not achieve the highest F1 score in this classification
task even with the highest number of parameters. This is likely
because there must be an information loss by input sequence
truncation even after the keyword-based trimming method or
quality issues about these data sets themselves and the data
clearing part.
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Table 5. Experimental results from different NLP models. The test results are macroaverage classification values.

F1 score (%)Recall (%)Precision (%)Methods (model name) and models

Convolution neural network (CNN)

89.9190.6789.33CNN-randoma

90.4393.1288.01CNN-fixed-Word2Vecb

92.3392.8792.01CNN-Word2Vecc

Long short-term memory

90.3293.8987.23Unidirectional long short-term memory

90.0992.4887.97Bidirectional long short-term memory

Transformer encoder

87.9989.6986.44Bidirectional encoder representations from transformers

89.8292.1287.73ELECTRAd-version 1

91.6092.3391.03ELECTRA-version 2

Data trimming

91.9893.5690.59CNN-Word2Vec (trimmede)

88.6193.3084.77Unidirectional long short-term memory (trimmed)

91.9294.4789.63ELECTRA-v2 (trimmed)

Ensemble combination

91.7694.2489.53CNN-Word2Vec + Uni-LSTM

92.5694.1891.10SCENTf-v1: CNN-Word2Vec + ELECTRA-v2 (trimmed)

91.7694.2489.53Unidirectional long short-term memory + ELECTRA-v2 (trimmed)

92.5294.1991.02CNN-Word2Vec + unidirectional long short-term memory + ELECTRA-v2 (trimmed)

Hierarchical ensemble

91.9292.8691.30CNN-Word2Vec and unidirectional long short-term memory + ELECTRA-v2 (trimmed)

90.0993.8886.83Unidirectional long short-term memory and CNN-Word2Vec + ELECTRA-v2 (trimmed)

91.5894.4489.04SCENT-v2: ELECTRA-v2 (trimmed) and CNN-Word2Vec + unidirectional long short-
term memory

aRandom: randomly initialized embedding.
bFixed-Word2Vec: nontrainable pretrained Word2Vec embedding.
cWord2Vec: trainable pretrained Word2Vec embedding.
dELECTRA: efficiently learning an encoder that classifies token replacements accurately.
eTrimmed: data sets are trimmed based on the keyword “thyroid” in the comprehensive medical examination text part.
fSCENT: static and contextualized ensemble NLP network.
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Figure 5. Confusion matrices of multi-label thyroid classification results from the test datasets. All single-architecture-based models are trained or
fine-tuned to each ensemble model. The models are (a) CNN-Word2Vec (b) Uni-LSTM (c) ELECTRA-v2 with trimmed data (d) CNN-Word2Vec +
Uni-LSTM + ELECTRA-v2 with trimmed data (e) SCENT-v1 (f) SCENT-v2.

SCENT-v1 shows the best performance by calculating the
average softmax values, or simply soft voting, from the
unnormalized prediction logits of the 2 ensemble models among
the NLP models. SCENT-v1 results in 0 misclassifications of
healthy thyroid conditions under the prediction of critical thyroid
conditions. SCENT-v2 substantially reduced the number of
misclassifications of caution-required thyroid condition to the
minimum under the prediction of healthy thyroid condition
while maintaining 0 misclassifications of critical thyroid
condition. According to Figure 5, SCENT-v2 records the highest
precision value for the “healthy” thyroid condition among all
models, including hierarchical ensemble models. In
“Hierarchical Ensemble” section of Table 5, the word “and”
distinguishes the base model and the combined model. The base
model initially classifies the 3 labels and the other combined
model reclassifies selected labels where only the base model is
predicted as having “healthy” labels.

The classification results based on tokenizing Korean input
sequences into subwords with or without morphological analysis
by MeCab-ko differ as represented in the transformer encoder
section by the variants of ELECTRA. It may be argued that the
number of vocabulary sizes is different in ELECTRA-v1 and
-v2; however, the WordPiece tokenizer has a strong effect on
OOV, and approximately a 2% increase in F1 score is worthy
of close attention. The parameters of word embedding are
randomly initialized and pretrained from CNN-random and
CNN-Word2Vec, and there are increases in the macroaveraged
precision, recall, and F1 scores observed from CNN-random to

CNN-Word2Vec. This verifies that transfer learning from a
pretrained architecture is an effective and convincing technique
for developing deep neural network models. Unlike the
validation results in which the false negatives for the healthy
thyroid condition (Figure 3) are relatively lower in
CNN-Word2Vec and Uni-LSTM ensemble models, the numbers
of false negatives from the CNN-Word2Vec, Uni-LSTM, and
ELECTRA-v2 (trimmed) ensemble models in the test data sets
do not differ. The false positives from the ELECTRA-v2
(trimmed) ensemble model were still lower than those from the
other ensemble models. Overall, all ensemble models, including
SCENT-v1 and SCENT-v2, showed poor performance in
classifying healthy thyroid conditions under the prediction of
the caution-required thyroid condition data sets.

Discussion

Limitations
The experiments were originally intended to use only the
medical results of the individual thyroid diagnoses. However,
the full results of individual text diagnosis of thyroid diseases
with hormone examination results and comprehensive medical
examination text reports, including doctors’ comments, simple
body checkups, health care–related guides, and so on, are used
as inputs of the models to reduce human curation as much as
possible. If the results are labeled as healthy, the keyword
“normal” may be mentioned in the reports. In some cases, the
results of the examination, which are supposed to be classified
as caution required, are labeled as healthy based on the phrase
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“no change” compared with reports of previous years (1 or 2
years). This can be one of the reasons as to why the number of
misclassifications does not dramatically decrease in every
experimental model. Furthermore, it cannot guarantee that data
clearing was perfectly conducted over the entire nonstandardized
122,581 data sets from 284 health care institutions. It is highly
expected that systematic improvement of data quality may
enhance all models’ performance.

The amount of information in each data varies, and individual
or comprehensive finding reports cannot be directly used as a
single unit during manual classification. Accordingly, the final
decisions were concluded by considering all the data sets. The
comprehensive text reports may contain information about
thyroid tests regardless of the flow in context, and some are
typed manually on a case-by-case basis or automatically filled
by enumerating predefined text phrases or sentences depending
on the institutions and medical professionals, such as sample
data of healthy and caution-required thyroid conditions in Table
2. Depending on the experts, the selection and order of
predefined texts may differ for the same thyroid diagnosis. This
is partly considered advantageous in deciding thyroid
classification by only considering numerous static word
representations rather than full contextual word representations
and their relationships based on such fragmentary compositions
of keywords or phrases in the data sets. This can be a reason as
why the single-architecture–based CNN ensemble model
achieves the highest F1 score compared with other
single-architecture ensemble models of Uni-LSTM and
ELECTRA-v2 with trimmed data. However, both contextual
models recorded higher recall scores than the static model.

Trimming sentences based on the keyword “thyroid” in
comprehensive examination reports because of the limitation
of 512 tokens shows an improvement in recall and F1-scores
in the ELECTRA-v2 ensemble model. This simple
preprocessing, however, cannot guarantee whether the optimal
data corresponding to thyroid ultrasonography are used as inputs.
We find that the improvement in ELECTRA-v2 indicates that
preparing a more suitable data set is meaningful under the
sequence length limitations. It is highly expected that the
performance of the ELECTRA ensemble model can be further
enhanced if the limitation is addressed, and the thyroid
ultrasound–related contents can be accurately summarized from
comprehensive examination reports. However, performance
degradation was observed in the CNN-Word2Vec and
Uni-LSTM ensemble models when the same trimming procedure
was conducted. This proves that other examination reports in
addition to thyroid ultrasound data may have valuable
information that can help in the classification of thyroid

conditions. This allows us to assume that the decline in health
conditions caused by thyroid disease can have an effect related
to a person’s physical and biological vitality.

Conclusions and Future Research
Our SCENT models show meaningful results despite the lack
of data, especially for the critical condition and unique
characteristics of Korean, such as auxiliary, adverbial case
markers, and word spacing inconsistency. Additionally, our
ensemble model methodologies can be applied to data sets with
diverse languages and different sequence lengths if only the
WordPiece tokenizer is used. Our SCENT models can not only
automate the classification of large-scale text data sets at a high
speed while maintaining multiclassification performance, but
also reduce the human labor force. For SCENT-v1,
misclassifying the “critical” case as “caution required” is much
less damaging than misclassifying it as “healthy” in this study.
However, this model cannot be directly adopted in real-life
applications because both type 1 and 2 errors must be
considered. Specifically, the false-positive errors under the
prediction of caution-required thyroid conditions are too high
to be used.

To consider SCENT models for practical use, we preferentially
aim to correctly predict the healthy condition labels, which
constitute the largest portion among the 3-class data sets. The
model SCENT-v2, which is a hierarchical ensemble of
CNN-Word2Vec, Uni-LSTM, and ELECTRA-v2 with trimmed
data ensemble models, can reduce the number of incorrect
classifications of caution-required condition data to a minimum
compared with other approaches, while maintaining the number
of misclassified critical condition data set to 0 under the healthy
thyroid condition prediction. For further studies, the receiver
operating characteristic (ROC) and area under the curve (AUC)
algorithms, or simply the AUC–ROC curve, can be considered.
For the healthy (negative) thyroid classification, the best or
optimal threshold value for the classifier based on rest (positive)
conditions can be calculated for suitable healthy thyroid
prediction performance. Furthermore, as discussed above, the
keyword-based trimming method shows that incorporating
additional medical results, which are relevant to disease
diagnosis and other physical examinations, may enable us to
build classification models to outperform the current models
that consider only selected examination results: individual text
diagnosis of thyroid diseases, hormone examination results, and
comprehensive medical examination text reports, including
doctors’ comments. We may also consider developing DL
models that can reflect the results derived from the existing
interdisease correlation study [51-53] or causality study [54-57].
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