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Abstract

The use of machine learning to develop intelligent software tools for the interpretation of radiology images has gained widespread
attention in recent years. The development, deployment, and eventual adoption of these models in clinical practice, however,
remains fraught with challenges. In this paper, we propose a list of key considerations that machine learning researchers must
recognize and address to make their models accurate, robust, and usable in practice. We discuss insufficient training data,
decentralized data sets, high cost of annotations, ambiguous ground truth, imbalance in class representation, asymmetric
misclassification costs, relevant performance metrics, generalization of models to unseen data sets, model decay, adversarial
attacks, explainability, fairness and bias, and clinical validation. We describe each consideration and identify the techniques used
to address it. Although these techniques have been discussed in prior research, by freshly examining them in the context of medical
imaging and compiling them in the form of a laundry list, we hope to make them more accessible to researchers, software
developers, radiologists, and other stakeholders.

(JMIR Med Inform 2021;9(9):e28776)   doi:10.2196/28776
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Introduction

Although radiology imaging has emerged as an indispensable
tool in diagnostic medicine, there is a worldwide shortage of
qualified radiologists to read, interpret, and report these images
[1,2]. The volume of images is growing faster than the number
of radiologists. The high workload that this causes leads to
errors in diagnosis because of human fatigue, unacceptable
delays in reporting, and stress and burnout in radiologists. On
the other hand, artificial intelligence (AI) and machine learning
models have shown remarkable performance in the automated
evaluation of medical images [3-5]. In this situation, hospitals
are increasingly drawn toward adopting computer-aided
detection technologies for processing scans. These technologies
show considerable promise in improving diagnostic accuracy,
reducing reporting time, and boosting radiologist productivity.

Supervised machine learning, the most common form of
machine learning, works in two phases. In the first phase, the
algorithm implemented as a software reads a training data set
consisting of images along with their corresponding labels. It
processes these data, extracts patterns from it, and learns a
function that maps an input image to its corresponding label.
The learned mapping function along with the extracted patterns
are mathematically represented in the form of the trained model.
This is called the training phase. In the second phase, called
the inference phase, the trained model is used to read input
images and make predictions. Artificial neural networks are a
class of machine learning algorithms; artificial neural networks
with many layers are called deep neural networks. In the
literature, the terms deep learning, AI, and artificial neural
networks tend to be used interchangeably. In this paper, we use
machine learning to broadly refer to all the terms mentioned
earlier in addition to conventional machine learning algorithms,
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such as linear regression, support vector machines, decision
trees, and random forests.

The development of machine learning models for radiology
involves many challenges. High-quality training data are vital
for good model performance [6] but are difficult to obtain.
Available data may lack volume or diversity. It may be scattered
across multiple hospitals. Even if the image data are available,
they may not be labeled. Radiology scans suffer from a high
degree of interreader variability, where 2 or more radiologists
label the data inconsistently [7,8]; this may lead to noise or
uncertainty in the ground truth labels. The distribution of target
classes may be heavily skewed, especially for rare pathologies.
This imbalance in class representation is often accompanied by
unequal misclassification costs across classes. Care must be
taken when dealing with imbalanced data sets, and this
sometimes requires using special performance measures [9]. A
model that works well on data from one hospital may perform
poorly on data from a different hospital [10]. Similarly, a model
deployed in practice at a hospital may experience a gradual
decay in performance at the same hospital [11]. Machine
learning models have been shown to be vulnerable to malicious
exploits and attacks [12-14]. To support adoption by
radiologists, the deployed models should be able to explain their
decisions [15], and they should not discriminate patients on the
basis of gender, ethnicity, age, income, among others [16].

This study has a simple structure. In the Key Considerations
section, we enumerate the key considerations that machine
learning researchers should acknowledge and address. For each
consideration, we describe the common challenges and their
significance before suggesting solutions to overcome them. In
the Conclusions section, we discuss other overarching
limitations that hinder the adoption of machine learning in
clinical radiology practice.

Key Considerations

Insufficient Training Data
Machine learning models are data hungry, and their performance
depends heavily on the characteristics of the data used to train
them [6]. The training set size has a direct and significant effect
on the performance of the models. However, the heterogeneity
and diversity of the training data influence the ability of the
models to generalize to unseen data sources [17]. To develop
robust machine learning models, researchers need access to
large medical data sets that adequately represent data diversity
in terms of population features such as age, gender, ethnicity,
and medical conditions and imaging features such as equipment
manufacturers, image capture settings, and patient posture. Most
available data sets in medical imaging do not meet these
requirements [18-20]. As many critical conditions have low
rates of occurrence, very little data are available for them.
Machine learning models trained using these scanty data to
diagnose rare conditions fail to perform well in practice even
if they demonstrate good performance in retrospective
evaluations.

Several methods have been proposed for dealing with
insufficient data for training models. Data augmentation

techniques including geometric transformations and color-space
transformations can enhance the quantity and variety of training
data [21]. Generative adversarial networks have shown success
in generating synthetic images for rare pathologies, which can
be further used for model training [22]. Although these
techniques allow models to be trained on scarce data by
artificially increasing the variation in the data set, they cannot
serve as a substitute for high-quality data.

Decentralized Data Sets
Many medical data sets are naturally distributed across multiple
storage devices connected to networks owned by different
institutions. In traditional machine learning settings, these data
sets need to be consolidated into a single repository before
training the models. Moving large volumes of data across
networks poses several logistical and legal challenges [23].
Government policies such as the General Data Protection
Regulation [24], the Health Insurance Portability and
Accountability Act [25], and the Singapore Personal Data
Protection Act [26] also stipulate restrictions on sharing and
movement of data across national borders.

Privacy-preserving distributed learning techniques such as
federated learning [27] and split learning [28] enable machine
learning models to train on decentralized data sets at multiple
client sites without moving the data and compromising privacy.
Implementing these techniques, however, entails additional
overheads, which may render the exercise unfeasible. These
overheads include the high cost of developing software that
supports these technologies, the high network communication
bandwidth required, the orchestration effort in deploying it at
multiple sites, and the possibly reduced performance of the
predictive models [29]. Federated learning generates a global
shared model for all clients, leading to situations where, for
some clients, the local models trained on their private data
perform better than the global shared model. In such situations,
additional personalization techniques may be required to
fine-tune the global model individually for each client [30].

High Cost of Annotations
Supervised machine learning requires the annotation of
radiology images before they can be used to train the model.
Image-level annotations classify each image into one or more
classes, whereas region-level annotations highlight regions
within an image and classify each region into one or more
classes. As the predictive performance of the model is directly
influenced by the quality of the annotations, it is imperative that
the data are annotated by qualified radiologists or medical
practitioners [31]. This makes the process of annotation
exorbitantly expensive in many cases.

Several efforts have been made to use natural language
processing (NLP) techniques to automatically annotate images
by extracting labels from radiology text reports [32-34].
Semisupervised approaches can be used when a small amount
of labeled data are available along with a larger amount of
unlabeled data [35,36]. As manual annotations are expensive,
AI-based automated image annotation techniques can be
considered [37].
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Ambiguous Ground Truth
As hospital data sets usually contain images accompanied by
their text reports, many projects are kickstarted by using NLP
techniques to automatically annotate the images using the
reports. Radiology reports, however, vary widely in their
comprehensiveness, style, language, and format [38]. Even if
state-of-the-art NLP manages to accurately extract all the
findings from the text report, the report itself may not mention
all the findings. Olatunji et al [39] showed that there is a large
discrepancy between what radiologists see in an image and what
they mention in the report; reporting radiologists usually
document only those findings that are relevant to the immediate
clinical context and are likely to miss reporting nonactionable
or borderline findings.

Radiology images suffer from significant interreader variability,
where 2 or more experts may disagree on the findings from a
scan [7,8,40-43]. Sakurada et al [44], for instance, report low
interreader κ values ranging from 0.24 to 0.63 for assessment
of different pathologies from chest radiographs. In practice,
annotation workflows generally engage a single reader to assign
ground truth labels to images. An improvement over this
involves engaging multiple independent readers and considering
their majority vote as the ground truth label. However, single
reader or majority vote approaches may miss labeling
challenging but critical findings.

This risk can be mitigated by using multiphase reviews [45] or
expert adjudication [46] to create high-quality labels.
Majkowska et al [46] showed that adjudication improved the
consensus among radiologists to 96.8% compared with 41.8%
after the first independent readings when assessing chest
radiographs. Raykar et al [47] proposed a probabilistic approach
to determine the hidden ground truth from labels assigned by
multiple radiologists and demonstrated that this method is
superior to majority voting. In some clinical settings, radiology
imaging is used for initial screening before conducting
subsequent confirmatory tests. For example, chest x-ray scans
may be used as a first-line test before subsequently conducting
a computed tomography scan, laboratory tests, or biopsy. Data
from these subsequent tests, if available, should be used to
validate and correct the labels assigned to the images from the
screening test. In situations where human-labeled ground truth
is noisy or ambiguous, developing a process to reduce variability
and improve label quality may yield better models than attempts
to improve model performance on the original labels by other
means.

Imbalance in Class Representation
Class imbalance occurs when all label classes are not equally
represented in the training data set [48]. This is a common
situation when building binary classifiers for medical data sets
where the number of normal examples in which the target
abnormality is absent is many times larger than the number of
abnormal examples in which it is present. As machine learning
models are usually trained by optimizing a loss function across
all training examples, the trained models tend to favor the
majority class over the minority class. Researchers have
empirically evaluated the adverse effect of class imbalance on
classification performance in several studies [9,49-53].

Class imbalance can be handled at the data level or the
algorithmic level. Resampling strategies can be used to address
imbalances in the training data by either undersampling the
majority classes or oversampling the minority classes. Many
comparative evaluations of these approaches exist, sometimes
with contradictory conclusions. Drummond et al [54], for
instance, argued that undersampling works better than
oversampling, whereas Batista et al [55] reported superior
performance using oversampling. However, we caution the
reader against hasty generalizations and note that these
comparisons are highly dependent on the data set, the machine
learning algorithm, the sampling technique used, and the
parameters of the experiments. Chawla et al [56] proposed the
synthetic minority oversampling technique, a technique to
generate synthetic examples to balance the data set, and showed
that the combination of synthetic minority oversampling
technique and undersampling performs better than plain
undersampling or oversampling. Similarly, oversampling can
also be performed using geometric augmentations, color-space
augmentations, or generative models to produce synthetic
images. An imbalance in the number of examples can also be
addressed at the algorithmic level using methods such as
one-class classification, outlier or anomaly detection, regularized
ensembles, and custom loss functions [9,57-60].

Asymmetric Misclassification Costs
Standard machine learning settings assume that all
misclassifications between classes are equal and incur the same
penalty. This assumption is not true for many medical imaging
problems. For example, the cost of classifying a normal scan
as abnormal may be very different from the cost of classifying
an abnormal scan as normal.

This asymmetrical nature of the classification problem can be
handled either at the time of deployment or during development.
The trained model can be tuned to achieve higher sensitivity or
specificity according to the requirements at deployment time.
Alternatively, the variation in misclassification penalties can
be represented as a cost matrix, where each element C(i,j)
represents the penalty of misclassifying an example of class i
as class j. The model can then be trained by minimizing the
overall cost as defined by the asymmetrical loss function. For
more details, we refer the reader to the literature on
cost-sensitive learning [9,61,62].

Relevant Performance Measures
Machine learning researchers and practitioners tend to ignore
the question of how model performance should be evaluated in
cases of imbalanced data sets and asymmetric misclassification
costs. Most binary classification models produce a
continuous-valued output score. This score is converted into
discrete binary labels using a cutoff threshold. Owing to its
simplicity, it is tempting to use accuracy, defined as the
percentage of predictions that are correct, as a measure of
performance. However, in the case of imbalanced data sets,
accuracy is ineffective and provides an incomplete and often
misleading picture of the ability of the classifier to discriminate
between the two classes [63,64].
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Using two or more measures such as sensitivity, specificity,
and precision, provides a better picture of the discriminative
performance of a classifier [65]. However, these measures
depend on the cutoff threshold mentioned earlier. Furthermore,
the decision to set the threshold is often guided not by
technology but by business or domain concerns. Comparing the
two models by considering multiple performance measures
across different operating thresholds is challenging. The receiver
operating characteristic curve, on the other hand, captures the
model performance at all threshold operating points. The area
under the receiver operating characteristic curve (AUROC) thus
serves as a single numerical score that represents the

performance of the model across all operating threshold points.
This has made AUROC a metric of choice for reporting the
classification performance of machine learning models.
Unfortunately, AUROC too can be deceptive when dealing with
imbalanced data sets and may provide an overly optimistic view
of performance [9]. The precision-recall curve and the area
under it are more suitable for describing classification
performance when data sets are imbalanced [66,67]. Drummond
and Holte proposed cost curves that describe the classification
performance over asymmetric misclassification costs and class
distributions [68,69]. Table 1 shows how accuracy can be
misleading because of imbalanced data sets.

Table 1. Example illustrating how accuracy can be misleading in case of imbalanced data sets.

TotalPredicted as positivePredicted as negative

901080Actual negative

1055Actual positive

1001585Total

In the confusion matrix mentioned earlier, of 100 test examples,
90 are negative and 10 are positive. The classifier predicts 85
of them as negative and 15 as positive. This gives a high
accuracy of 0.85 and a high specificity of 0.89. However, the
complete picture is seen when we consider the low sensitivity
of 0.50 and precision of 0.33.

Generalization of Models to Unseen Data Sets
Machine learning models are routinely evaluated on a hold-out
set taken from the same source as the training set [70]. The
available data are divided into two parts. One part is used to
train and validate the models. The second part, called the test
set or hold-out set, is used to estimate the final performance of
the trained model when deployed. The underlying premise is
that the data used to train the model are representative of the
data that the model will encounter during clinical use. This
assumption is often violated in practice, and this makes the
performance on the hold-out set an unreliable indicator of future
performance in clinical deployment.

Poor generalization of models to diverse patient groups is one
of the biggest hurdles for the adoption of AI and machine
learning in health care. One reason for the poor generalization
is the difference in the image characteristics between images
from the training sites and those from the deployment site. This
variation, also known as data set shift, can occur because of
differences in hospital procedures, equipment manufacturers,
image acquisition parameters, disease manifestations, patient
populations, among others. Owing to the data set shift, models
trained using data from one hospital may perform poorly on
data from another hospital [71]. We note here that this inability
to generalize to data sets from an unseen origin is different from
the problem of overfitting, where the model shows poor
performance even on test sets from the same origin. Learning
irrelevant confounders instead of relevant features is another
reason why models fail to generalize to data from unseen origins.
Machine learning models are notorious for exploiting
confounders in the training data. For example, Zech et al [72]
showed that a pneumonia classification model trained on data

from 2 hospitals learned to leverage the difference between
prevalence rates at the 2 hospitals instead of the relevant visual
features.

Data augmentation can improve model generalization by
increasing the variations in the training set [73]. Image
processing techniques, including standardization, normalization,
reorientation, registration, and histogram matching, can be used
to harmonize images sourced from different origins and remove
domain bias. However, Glocker et al [74] showed that even
with a state-of-the-art image preprocessing pipeline, these
techniques for harmonization were unable to remove
scanner-specific bias, and machine learning models were easily
able to discriminate between the different origins of the data.

Domain adaptation techniques can be used to fine-tune models
to a new target domain by narrowing the gap between the source
and target domains in a domain-invariant feature space [75-79].
On the other hand, domain generalization techniques attempt
to train models that are sensitive only to features relevant to the
classification task but insensitive to confounding features that
differentiate between the domains [80-85].

Model Decay
Model decay refers to the phenomenon in which the performance
of a deployed machine learning model deteriorates over time
[11]. Supervised machine learning algorithms extract patterns
from the training data to learn a mapping between independent
input variables and a dependent target variable. This process
involves making an implicit assumption that the data
encountered in deployment will be stationary and will not
change over time; this assumption is often violated in practice
because of the changes in hospital workflows, imaging
equipment, patient groups, evolving adoption of AI solutions,
among others.

Model decay occurs owing to changes in the underlying data.
These changes can be broadly classified into three types: (1)
covariate shift occurs when there are changes in the distribution
of the independent input variables (eg, the average age of the
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population increases over time); (2) prior probability shift occurs
when there are changes in the distribution of the dependent
target variables (eg, the prevalence of a particular disease in the
target population may change because of seasonality or an
epidemic); and (3) concept drift occurs when there are changes
in the relationship between the independent and dependent
variables (eg, changes in a hospital’s diagnostic protocols or a
radiologist’s interpretation regarding which visual manifestations
should or should not be considered indicative of a pathology).
These changes can be sudden, gradual, or cyclic.

Detecting model decay requires continuous monitoring of the
deployment time performance against a human-labeled
subsample of the data. If the performance drops below a
predetermined threshold, an alarm is triggered, and the model
is retrained or fine-tuned using the most recent data. This
retraining can also be conducted periodically as a routine
maintenance activity. For more details, including theoretical
frameworks for understanding model decay or practical
solutions, readers can refer to additional reviews [11,86-89].

Adversarial Attacks
An adversarial example is constructed by deliberately injecting
perturbations in the original image to trick the model into
misclassifying the label for that image [12]. Machine learning
models are susceptible to manipulation using such adversarial
examples [90,91]. Data poisoning attacks [13] introduced
adversarial examples in the training data to manipulate the
diagnosis of the model being developed. On the other hand,
evasion attacks [14] use adversarial examples to influence
predictions during deployment. Health care is a huge economy,
and many decisions regarding diagnosis, reimbursements, and
insurance may be governed or assisted by algorithms in the near
future. Hence, the discovery of these vulnerabilities has raised
pressing concerns regarding the safety and usability of machine
learning models in clinical practice.

Qayyum et al [92] provided a detailed taxonomy of defensive
techniques against adversarial attacks by grouping them into
three broad categories: (1) reconstructing the training or testing
data to make it more difficult to manipulate [90,93-96], (2)
modifying the model to make it more resilient to adversarial
examples [97-101], and (3) using auxiliary models or ensembles
to detect and neutralize adversarial examples [102-106].
Adversarial attacks and their countermeasures are an evolving
research area, and there are excellent reviews for the same
[107-109].

Explainability
The power of neural networks to uncover hidden relationships
between variables and use them to make predictions is tempered
by one disadvantage: the exact process the neural network uses
to arrive at a decision is unclear to humans. This is why neural
networks are sometimes called black boxes whose inner
workings cannot be observed. To what extent can we delegate
decision-making to machines while we remain unaware of how
the machine arrives at a decision is a key question that stands
in the way of adopting algorithms in many industries, including
autonomous vehicles, law, finance, among others.

Algorithmic explainability is especially important in medicine,
where stakes are high, and the field is prone to litigation. In the
context of radiology, explainability can be improved by using
localization models that highlight the region of interest within
the scan that is suspected to contain the abnormality instead of
classification models that only indicate the presence or absence
of an abnormality. However, the development of localization
models also requires training data to have region-based
annotations in the form of bounding boxes or free-form masks.
Where region-based annotations are not available, saliency maps
[110] and explainability frameworks [111] can be used to
identify a region within the image that most contributes to a
particular decision. Another way to improve the user’s trust in
the models is to predict a confidence score in addition to the
prediction. For example, instead of merely stating the prediction
“Probability of Tuberculosis: 75%,” the system should also state
the model’s confidence “Probability of Tuberculosis: 75%,
Confidence in this prediction: Low.” Deployment settings where
predictive models are used to autonomously make decisions
demand more stringent conditions of explainability than settings
where the models are used to guide humans who make the final
decisions. A comprehensive analysis of explainers in the domain
of computer vision was performed by Buhrmester et al [112].

There have been calls to limit the use of AI and machine
learning only to rule-based systems in fields where algorithmic
decisions affect human lives [113]. These systems are
transparent and can trace the relationship between the input and
the output as a sequence of rules that humans can understand.
We find two problems with this approach. First, one of the chief
advantages of using neural networks is that they can model
complex relationships that humans cannot understand, and this
is precisely what makes them so effective. Second, making
decision systems transparent and explainable also makes them
vulnerable to malicious attacks. A transparent rule-based method
to make decisions can be hacked, gamed, or exploited more
easily than a black box system [114,115].

Fairness and Bias
Algorithmic systems play a key role in guiding decisions that
impact the delivery of health care to patients. Therefore, it is
desirable that these systems are free of societal biases and their
decisions are fair and equitable. Unfortunately, many existing
data sets [18,43] reflect the biases of the societies that they
represent [116], and it is difficult to detect and remove bias
inherent in the training data. Obermeyer et al [16] showed, for
example, that a widely used algorithmic system exhibited racial
bias against Black patients, which reduced the number of Black
patients eligible for extra care by more than half.

In principle, a predictive model is considered fair if it does not
discriminate patients on the basis of sensitive variables such as
gender, ethnicity, disability, and income. However, translating
this seemingly simple principle into practice is a challenging
issue. Researchers have developed numerous mathematical
definitions of fairness and techniques to implement them [117].
One technique, for example, excludes sensitive variables from
the input when training the model. Another technique is to tune
the model so that it demonstrates the same level of performance
as measured by sensitivity, specificity, among others, across all
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groups defined by the sensitive variables. Corbett-Devies and
Goel [118] show that although appealing, these techniques suffer
from significant statistical limitations and may adversely affect
the same groups they were designed to protect. Pleiss et al [119]
show how different definitions of fairness can be mutually
incompatible, and a model designed to comply with one
definition may violate another equally valid definition.

Algorithmic bias and fairness are evolving fields of research
that lie at the intersection of machine learning, public policy,
law, and ethics. We believe that fairness is not inherently a
technological problem but a societal one. Coercing technology
to solve it can lead to automated systems that tick the right boxes
for some arbitrary definition of fairness but eventually end up
worsening social inequality and discrimination behind a veneer
of technical neutrality [120].

Clinical Validation
A comprehensive evaluation to assess the predictive
performance and clinical utility of a model must be conducted
before it can be deployed in clinical practice. When a model is
evaluated on a hold-out set collected from the same sources
from which the training data are collected, the evaluation is
called an internal validation. When a data set from an unseen
source is used to evaluate the model, the evaluation is called
external validation. As described earlier in the section
Generalization of Models to Unseen Data Sets, the lack of
generalization to unseen data sources is one of the biggest
challenges in the adoption of machine learning in practice.
Despite this, only a fraction of the published studies report the
results of an external validation [121]. Mahajan et al [122]
presented examples to advocate the case for independent
external validation of models before deployment and described
a framework for the same. Park et al [31] proposed a
methodology with a checklist for evaluating the clinical
performance of the models. The TRIPOD statement [123]
provides guidelines for transparent reporting of the development
and validation of prediction models for prognosis and diagnosis
models. Although retrospective evaluations allow machine
learning developers to test their models on large and diverse
data sets, prospective evaluations allow testing in real-world
environments; both types of evaluations are equally important
and should be meticulously carried out before full-scale
adoption.

Conclusions

We identify the key challenges that researchers face in
developing accurate, robust, and usable machine learning models
that can create value in clinical radiology practice. These
challenges and the techniques to overcome them have been
discussed previously in a piecemeal manner in prior research
literature. In this study, we re-examined them in the context of
medical imaging. By compiling them in the form of a laundry
list, we hope to make this research more readily accessible.

Hospital workflows and practices vary widely from one hospital
to another, even within the same geography. This increases the
difficulty of seamlessly integrating predictive models into
hospital workflows. The nonuniformity in workflows also raises
the question of whether the reported performance of a model is
reproducible in a different clinical context. This is an ongoing
research, and satisfactory solutions are yet to be found.

The ultimate objective of diagnostic machine learning models
is to improve patient outcomes. However, improvement in
diagnostic performance does not, by itself, cause an
improvement in patient outcomes [31]. Radiological diagnosis
is only one of the many steps that eventually leads to treatment.
Therefore, a computerized diagnostic system must be placed
appropriately in the workflow. How the system presents the
results to the reporting radiologist and what action the radiologist
takes on receiving them are important factors that influence the
usefulness of the system in practice.

On the one hand, medical imaging is a broad and complex field
that encompasses numerous imaging modalities, pathological
conditions, and diagnostic protocols. On the other hand, machine
learning is an active area of research with thousands of new
techniques published every year. The combined diversity of
both fields along with nonuniform hospital practices, regulatory
restrictions on data sharing, and lack of standardized reporting
of results make it difficult to clearly assess the role and potential
of machine learning applications in medical imaging. We believe
that machine learning has great potential in improving diagnostic
accuracy, lowering reporting times, reducing radiologist
workloads, and ultimately improving the delivery of health care.
To realize this potential, however, a concerted across-the-board
effort will be required from physicians, radiologists, patients,
hospital administrators, data scientists, software developers,
and other stakeholders.
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Abstract

Physician burnout in the United States has been growing at an alarming rate, and health care organizations are beginning to invest
significant resources in combating this phenomenon. Although the causes for burnout are multifactorial, a key issue that affects
physicians is that they spend a significant proportion of their time interacting with their electronic health record (EHR) system,
primarily because of the need to sift through increasing amounts of patient data, coupled with a significant documentation burden.
This has led to physicians spending increasing amounts of time with the EHR outside working hours trying to catch up on
paperwork (“pajama time”), which is a factor linked to burnout. In this paper, we propose an innovative model of EHR training
using high-fidelity EHR simulations designed to facilitate efficient optimization of EHR use by clinicians and emphasize the
importance of both lifelong learning and physician well-being.

(JMIR Med Inform 2021;9(9):e29374)   doi:10.2196/29374
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Introduction

Physician burnout is a significant problem in the United States
today. One study has suggested that over 50% of physicians
have experienced at least one symptom of burnout; alarmingly,
the authors also noted that the frequency of burnout increased
by 10% in just three years (2011-2014) [1].

The risk of burnout has only intensified because of the additional
stress on physicians caused by the COVID-19 pandemic [2],
further underscoring the urgent need to find a way to mitigate
this professional crisis.

Is There a Relationship Between
Electronic Health Record Use and
Burnout?

While the etiology is multifactorial, the electronic health record
(EHR) has been strongly implicated in physician burnout [3],
particularly because physicians spend a substantial proportion
of their workday using the EHR. For example, primary care
physicians spend more than half of their workday (nearly 6
hours) interacting with the EHR, both during and after regular
patient care hours [4].

Commercial EHRs tend to be large, complex, clunky software
that are often not praised for their ease of use. Needless to say,
physician satisfaction with their EHR is generally low [5]. As
many as 70% of EHR users have reported health information
technology–related stress and a substantial proportion of
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physicians are unable to complete many of their EHR-related
tasks when at work. Therefore, they end up spending an
excessive amount of time [6] catching up on EHR “paperwork”
(the irony of using this word in the context of the EHR is not
lost on us) at home. The implications for this are significant:
physicians who reported moderately high or excessive time
spent on EHRs at home had almost twice the risk of burnout
[7].

Why Do Physicians Spend So Much Time
Catching Up on EHR Work After Hours?

The emphasis on clinical workflow efficiency (a phenomenon
that has seen a sharp increase in attention after the advent of
the EHR) coupled with the increasing complexity of the medical
record has led to an exponential increase in the amount of patient
data recorded in the EHR. Not only do primary care physicians
spend half their working day at the computer, about half their
time in the EHR is spent engaging in clerical and administrative
tasks (eg, documentation, order entry, billing, and coding) and
about a quarter of the remainder of their EHR time is spent
managing their inbox [8]. The clerical burden associated with
EHR use, a consequence of compliance and regulatory
requirements, may play a key role in promoting physician
burnout [9,10]. The amount of EHR time may increase with the
inclusion of more genomic and consumer data into the patient
record. Combine this with a rapid rise in the use of patient
portals due to the COVID-19 pandemic and the result is a
“perfect storm” of excessive data and cognitive burden [11].
Some of this can be mitigated by reducing administrative
requirements using regulation directed from the federal level
and optimizing clinical workflows. However, the continual
increase in the information needs of physicians highlights the
importance of ensuring that physicians are effectively trained
in how to use the EHR to effectively and efficiently perform
these tasks, thus minimizing pain points [12,13].

What Is the Root of the Problem?

One primary issue is that current models of EHR training are
limited. As EHR use has become ubiquitous in health care,
organizations have typically focused on providing initial training
on EHR use to clinicians. These initial training offerings
typically focus on basic EHR use but do not provide
opportunities to gain workflow proficiency. One study has
suggested that 43% of clinician users considered initial EHR
training to be “less than adequate” and almost 95% felt that it
could be improved [14].

Once they have completed basic EHR training, physicians then
learn EHR skills on the job and typically improve their EHR
use by the process of trial and error while interacting with the
system interface, by gleaning nuggets of best practices from
their peers, or by gaining additional insight when there is a
significant system update that typically necessitates rolling out
a new wave of EHR training. This is not only inefficient, but
also offers no certainty that what is gleaned in this on-the-job
fashion is truly the best way to use the system.

Additionally, current EHR training models are typically not
tailored to a physician’s unique workflow and information
needs—in essence, the type of information, the way information
is retrieved, and the specifics of documentation are different
for, for example, an ambulatory obstetrician, a medical
intensivist, and a trauma surgeon. The current model of EHR
training, relying on a one-size-fits-all approach, is unable to
accommodate for these variations in clinical workflows between
specialties and locations.

What Interventions Have Been Proposed?

Areas for potential interventions include the following: (1)
improving EHR-related training, (2) remodeling clinical
workflows, and (3) redesigning the EHR to better reflect optimal
workflows. In this paper, we present a viable model for
transforming EHR education.

Some organizations have attempted to mitigate gaps in EHR
training by organizing additional sessions to optimize clinician
use of the EHR, either through refresher courses or retreats [15].
One organization has combined this with a structured, rapid
assessment of workflow patterns and designed training that is
informed by clinician feedback [16]. Others have used
one-on-one or group proficiency training to improve
self-reported EHR efficiency [10,17], while another organization
described an individualized learning plan for physicians to
improve their use of the EHR [18].

However, these solutions are, in essence, rescue therapies
designed to “undo” the damage of poor initial training. They
are also time intensive and for the most part focus on one
specific domain, usually centered around improving efficiency
in documentation or optimizing charge capture, and do not
encompass the full spectrum of EHR activities encountered in
a physician’s specialty and workflow.

What Is Our Model of EHR Training?

Overview
Over the past few years, we have conducted substantial research
in the area of optimizing EHR use using simulations. We
pioneered the use of high-fidelity simulation cases that replicate
clinical cognitive loads and maintain EHR interface and
documentation customizations created by the provider in their
clinical environment. This allows learners to use the EHR just
as they would when they deliver clinical care [19]. We then
developed an intelligent simulation model to facilitate EHR
training, which involved the use of an environment that
replicated real-world EHR use [20] We also studied clinician
interaction with the EHR by using eye tracking systems to assess
EHR use during patient simulations [21].

Informed by our research, we have been able to show the utility
of EHR-based simulation to improve efficiency and
documentation in the patient record in a sustained manner [22]
and identify and correct information gathering issues
experienced by clinical end users [23]. Another key success
factor is the importance of organizational investment in EHR
training [24], particularly those that emphasize standards and
personalization [25].
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The results of our research coupled with those of others have
allowed us to articulate a model of EHR training that allows
efficient optimization of EHR use by clinicians while
emphasizing the importance of both lifelong learning and
physician well-being (Figure 1).

The model reorganizes EHR training into four levels, each
capable of inducing a progressively higher degree of proficiency

with respect to EHR use, and uses a stratified approach to the
training process that compensates for prior EHR-related
experience and proficiency (Figure 2). We believe that this
model represents a paradigm shift in the EHR training universe,
one that is more adaptive and responsive to clinician needs.
This new model is currently being implemented at our
institution.

Figure 1. Levels of electronic health record training. EHR: electronic health record.

JMIR Med Inform 2021 | vol. 9 | iss. 9 | e29374 | p.17https://medinform.jmir.org/2021/9/e29374
(page number not for citation purposes)

Mohan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Algorithm for determining level of electronic health record training for physicians. EHR: electronic health record.

Level 1: Basic Computer Training
A surprising number of clinical end users struggle with the EHR
because they lack basic computer skills—for example, a provider
who exclusively uses Apple products as a consumer may have
difficulty navigating the EHR because they are unfamiliar with
the Windows operating system. These users may need to
participate in learning that builds basic skills. This level of
training can easily be delivered asynchronously, using online
training modules that learners can complete on their own.
Software-based solutions can also be used to correct some basic
computer-related deficiencies (eg, improving the speed and
accuracy of typing skills).

Level 2: General EHR Training
Second-level EHR training uses the typical one-to-many
instructional model as commonly seen in EHR initial training
sessions offered by most health care organizations. These are
typically delivered in the classroom by EHR trainers and focus
on explanations of basic features and functionality, as well as
a demonstration of the fundamentals of EHR navigation,
documentation, and order entry. Basic EHR training is an
opportunity to emphasize standardized approaches to EHR use;
training may also include highlighting high yield screens that
clinicians can navigate to in order to optimize their EHR use
[26]. Level 2 training is an appropriate entry point for all new
users to an EHR system; however, the training should also allow
a “test out” option for physicians who may be new to the
organization but not to the EHR to avoid repetition of
fundamentals.

Level 3: Workflow-Specific Training Using the EHR
Level 3 training integrates specialty-specific workflows and
best practices related to clinical domains and patient safety.
This is best achieved by using high-fidelity EHR simulations,
where the clinical complexity of the environment can be
duplicated in a replicable manner without endangering patient
safety, as might occur if using real patient records in a
production environment. Small groups of physicians complete
simulation-based training sessions led by clinical informaticians,
using specialty- and workflow-appropriate patient charts that
have been imported into the simulation EHR environment prior
to the activity. This model allows for instant debriefing as well
as formative and summative feedback and coaching, and
promotes retention of concepts learned during the session [22].
Coupling clinically relevant content to workflows familiar to
the learner during EHR training is critical to successfully
implementing this stage [27].

Level 4: One-on-one Training and Retraining
This level is characterized by tailored one-on-one EHR training
and is typically reserved for providers who are identified as
needing additional assistance. Level 4 sessions can be provided
on demand or be scheduled to minimally disrupt the provision
of clinical care by the learner. We use a simulated clinical case
relevant to the provider’s clinical specialty to impart this level
of EHR training, coupled with observation and eye tracking and
keylogging software to differentiate information retrieval from
cognitive issues that the provider may be encountering [23].
The session typically involves running through EHR use
activities such as reviewing charts prior to rounding,
documenting an encounter, and completing orders. One-on-one
observations by the trainer (usually a clinical informatician or
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expert EHR user familiar with the clinical context) coupled with
EHR use data recorded by the eye tracking and/or keylogging
software allows the simulation team to effectively analyze EHR
use, identify specific deficiencies, and prescribe a bespoke
training solution to “diagnose and treat” EHR use issues.

Final Thoughts

The addition of an instructional designer to the training team
greatly improves the quality of learning materials, particularly
those that are offered asynchronously. We are obtaining
continuing medical education and Maintenance of Certification
credits for our EHR training, which promote compliance.

Importation of simulation cases into the training environment
can be challenging, and the value of a team member who is
trained in data importation into the EHR is critical to the success
of any simulation-based training program.

COVID-19 has led to the virtualization of most nonclinical
activities conducted by health care organizations, including
EHR training. We believe that some forms of simulation-based
training can only be provided in the face-to-face setting.

Finally, securing organizational commitment and allocation of
adequate resources are often the most challenging elements in
developing and deploying a comprehensive EHR training plan,
but we believe these are also the most critical factors to ensure
success.
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Abstract

Background: Increasingly popular in the health care domain, electronic personal health records (PHRs) have the potential to
foster engagement toward improving health outcomes, achieving efficiencies in care, and reducing costs. Despite the touted
benefits of PHRs, their uptake is lackluster, with low adoption rates.

Objective: This paper reports findings from an empirical investigation of the sociotechnical factors affecting the adoption of
PHRs.

Methods: A research model comprising personal and technological determinants of PHR adoption was developed and validated
in this study. Demographic, technographic, and psychographic data pertaining to the use of PHRs were collected through a
web-based questionnaire for past, current, and potential users. Partial least squares-based structural equation modeling was used
to estimate a structural model of cognitive and affective factors impacting intentions to use PHRs.

Results: The analysis revealed that in addition to the expected positive impact of a PHR system’s usefulness and usability,
system integration also positively affects consumers’ intention to adopt. The results also suggest that higher levels of perceived
usability and integration do not translate into higher levels of perceived usefulness. The study also highlights the importance of
subjective norms, technology awareness, and technology anxiety as direct antecedents of the intention to adopt PHRs. The
differential effects of the adoption factors are also discussed.

Conclusions: We hope that our study will contribute to the understanding of consumer adoption of PHRs and help improve the
design and delivery of consumer-centric health care technologies. After discussing the implications for research, we provide
suggestions and guidelines for PHR technology developers and constituents in the health care delivery chain.

(JMIR Med Inform 2021;9(9):e30322)   doi:10.2196/30322

KEYWORDS

electronic personal health records; PHR; patient facing information systems; technology adoption; technology acceptance;
consumer health informatics

Introduction

Background
Within the realm of health systems and applications, electronic
personal health records (PHRs) represent a burgeoning
technology that is gaining traction in many countries worldwide

[1-5]. As a consumer-centric technology, a PHR can be defined
as “an electronic application through which individuals can
access, manage, and share their health information and that of
others for whom they are authorized, in a private, secure, and
confidential environment” [6]. In this regard, PHR systems
comprise information and communication technologies that can
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potentially help all types of end users maintain health and
wellness [7], and specifically facilitate patients to manage their
ongoing illnesses [8].

In this paper, we characterize PHR technologies as those
specifically pertaining to digitally stored health care information
about an individual patient under the control of that patient or
their caregiver [5,9]. This is in contrast to other technologies,
such as electronic medical records (EMRs) and electronic health
records (EHRs) that are typically maintained by health care
providers or payor organizations [10]. Furthermore, our
discussion applies to various forms of PHR systems identified
in the extant literature, including stand-alone PHRs that require
users to manually enter their health data and medical history
[8,11,12], tethered PHRs that are offered as an extension of a
health institution’s back-end EHR or EMR [8,11,13], and
interconnected PHRs that offer interoperability across various
health information systems (HISs) [11,14].

Industry analysts have predicted great market potential for
PHR-related technologies. For instance, according to studies
conducted by the Markle Foundation, over 70% of US health
care consumers believe that PHRs can improve health care
quality [6,15]. Similarly, a study by Deloitte [16] highlighted
that more than half of the US adult population may be interested
in using web-based PHR services.

At the macro level, leveraging the potential value of PHRs in
facilitating patient engagement and improving consumer health
outcomes has been a key constituent of several government
eHealth initiatives around the world. For example, in the United
States, the Health Information Technology for Economic and
Clinical Health Act established a meaningful use incentive
program offering financial support to providers and health
systems adopting EHR-related technologies [17]. Meaningful
use stage 2 specifically calls for technologies that facilitate
patient engagement in terms of personal health information
management and care coordination, whereas stage 3 extends
the requirements for these systems to include patient
communication functions, patient education features, and
interoperability with back-end EHRs [17,18]. Similarly, the
European Union has funded several eHealth infrastructure
projects with the aim of supporting personalized medicine,
including the p-medicine EU project and the eHealthMonitor
project [5]. Along similar lines in Canada, the Canada Health
Infoway sponsors several federally funded projects to promote
the adoption of consumer-focused digital health technologies
ranging from health information records to patient-physician
communication and remote patient monitoring [19].

Notwithstanding the industry forecasts about abundant consumer
interest and government commitments to PHR technologies,
the adoption of these technologies has been much slower than
originally expected [4,20]. This disconnect between active
interest and low actual use has been termed the PHR paradox
[21]. Various reasons for lackluster adoption have been cited
in the extant literature, often contradicting intuition, and
sometimes with inconsistent findings across studies [22-25].
Consequently, many researchers have called for further studies
in the area of consumer adoption of PHRs [21,22,25-27]. Our

research aims to answer this call and further explore and clarify
the role of sociotechnical factors in the adoption of PHRs.

In delineating the scope of investigation of this study, we would
like to highlight our deliberate use of the term consumer instead
of patient throughout the discussion. Our objective is to
investigate factors that impact the adoption of PHRs from the
perspective of all users who may be current as well as potential
users of these systems. Toward this, we aim to include not only
users who are currently receiving active care (patients), but also
those who may simply be interested in maintaining their health
information and medical history, or in using other nonclinical
functionalities of PHRs (consumers). Other academic researchers
and industry analysts have also commented on the distinction
between patients and consumers, noting that consumers may
include both current and prospective patients [28]. Moreover,
consumers often have more decision-making flexibility than
patients because the latter are primarily concerned with the
management of their specific medical conditions [29-31].

By virtue of its orientation, this research study is principally
situated in the field of consumer health informatics (CHI), a
field concerned with health and health care-related preferences
and information needs of consumers and associated medical
and public health practitioners [32,33]. Technology applications
such as PHRs, which can help empower consumers to manage
their own health, constitute an important focus of attention in
the CHI field [14,26,34]. In this study, we seek to explore
various personal and technological factors that can affect the
adoption of PHR tools and applications, identifying with the
broad objectives for CHI research toward analyzing, modeling,
and integrating consumer preferences into medical information
systems (ISs) [35].

Related Work
Researchers who have investigated user adoption of PHRs have
suggested that possible adoption barriers may be related to
technology factors, such as privacy and security concerns,
system usability, and poor integration with health care provider
systems [36,37]. Furthermore, personal factors, such as
inadequate technology competency, low technology awareness,
unrealistic expectations, and presence of chronic medical
conditions, have also been linked to the likelihood of adoption
of these technologies [38-40]. Some of these factors have been
empirically validated, but the results across investigations are
often inconsistent [23-26,41-43].

Consequently, researchers have called for further empirical
studies to explore and validate the role of specific PHR adoption
factors. Multimedia Appendix 1 [8,22,24-26,39,41,44-57]
provides a chronological summary of research studies in the
area of PHR adoption and outlines key takeaways from each
study. Specific calls for further research in each study are also
highlighted.

Our review of the extant literature indicates that patients with
chronic illnesses or disabilities, their caregivers, and people
caring for older persons are more likely to adopt and use PHR
technologies [15,44-46,58-61]. These groups of users will find
PHR technologies useful as a communication tool to obtain
personalized care from their clinicians [7,47-50,59] and as an
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organizational tool to help track patient health conditions,
maintain medication lists, write patient diaries, and keep notes
from physician consultations [7,8,41,49,50,60,62].

Current research also shows that factors such as computer
anxiety, security and privacy concerns, and perceptions of
usefulness are key determinants of PHR adoption across
different consumer strata [22-24,43,51-54,63]. In contrast,
research on several adoption factors, such as usability
perceptions, consumer health literacy, and user self-efficacy,
has shown varied and inconsistent results in the extant literature.
For example, in multiple studies, Archer and Cocosila found
different results pertaining to the impact of health-information
seeking preferences and self-efficacy of individuals on the
adoption of PHR systems [22,23,51].

In terms of key areas for further exploration, our review
indicates the need for more research on PHR adoption along
several lines. From the perspective of personal factors, there is
a significant lack of empirical evidence on the role of social
influence processes in PHR adoption. In our review, we found
only two studies that investigated the role of subjective norms
in the adoption of PHRs [52,64]. On the technology side, very
few studies have empirically validated the role of usability
perceptions and system integration attributes as part of the
cognitive instrumental processes that impact PHR adoption.
With respect to the former, only a few studies have investigated
usability through the limited lens of perceived ease of use
[24,52,55,56] despite anecdotal evidence and expert opinion
that suggests that PHR usability includes additional dimensions
[25,26,65]. Our study aims to address these gaps in the extant
literature by conceptualizing these key factors and their
relationships with other PHR adoption determinants. The next

section describes our research model and its underlying
constructs and hypotheses.

Research Model and Theoretical Underpinnings

Overview
Notwithstanding the differences in results across some studies,
researchers continue to investigate factors impacting consumer
adoption of PHRs with the aim of improving our cumulative
understanding of this phenomenon. As such, additional research
in this area has been recommended by many researchers to
further explore the impact of personal, technological,
organizational, and environmental factors on consumer
acceptance of PHR technologies, including patients and their
caregivers [21,24,25,48,66].

This paper answers the call by theorizing and validating the role
of various personal and technological factors as possible
determinants of PHR adoption. We aim to contribute to the
body of knowledge on the adoption of PHR systems by
exploring sociotechnical factors that not only further clarify or
complement those previously studied by other researchers, but
also offer new avenues of inquiry. The scope of our investigation
includes the study of subjective norms, technology awareness,
and technology anxiety as personal factors affecting PHR
adoption, and system integration, perceived usefulness, and
perceived usability as technological antecedents of PHR
adoption. These constructs and their definitions are provided
in Table 1, and their posited interrelationships are shown in
Figure 1. The theoretical justification for all research model
constructs and hypotheses is outlined in the following
subsections.

Table 1. Research model constructs.

Conceptual definitionTheme and constructs

Personal factors (determinants)

Subjective norm • The degree to which users perceive that most people who are important to them
think they should or should not use the system [67,68]

Technology awareness • An individual’s familiarity with the purpose and benefits of the technology [69,70]

Technology anxiety • An individual’s apprehension or fear when confronted with the use of technology
[71,72]

Technology factors (determinants)

System integration • Extent of connection and interoperability among technology components and sub-
systems [73]

Perceived usefulness • The degree to which users believes that using the system will help them toward
achieving their desired goals [68,74]

Perceived usability (ease of use and accessibility) • The degree of ease associated with the system [68,74]
• Intuitive interface and information structure that is comprehensible and available

when needed [75,76]

Adoption outcome (consequent)

Behavioral intention • The degree to which a person has formulated conscious plans to perform or not
perform some specified future behavior [68]
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Figure 1. Research model and construct definitions.

Subjective Norm
In technology adoption studies, the concept of subjective norm
is appropriated to account for social influences that impact a
potential user’s decision to adopt and use a technology. The
concept of subjective norm has its theoretical underpinnings in
the theory of reasoned action, which defines it as “person’s
perception that most people who are important to him think he
should or should not perform the behavior in question” [67]. In
technology adoption studies, subjective norm represents
perceived social pressure to use a new technology [68,71] and
has been shown to be a significant determinant of behavioral
intention to use a technology [77,78].

In the context of PHR system adoption, there is a dearth of
research exploring the role of social influence on a user’s
decision to adopt these technologies. In our literature review,
we identified one study that investigated subjective norms in
the context of hardware-based (USB) PHRs within the specific
regional context of Taiwan [52], and one study in Thailand, in
which social influence was key in influencing the use of PHR
[64]. As such, we expect subjective norms to play an even
greater role as an antecedent of adoption for web-based PHRs,
given that web-based technologies are likely to diffuse faster
than hardware technologies. In addition, in this study, we aim
to investigate whether subjective norm has only a direct impact
on use intention, or whether it also plays an important role in
internalizing the benefits of PHR technologies by affecting

individual perceptions of the usefulness of these technologies.
The following hypotheses related to subjective norms are posited
in our research model:

• H1: Favorable subjective norms pertaining to the use of
PHR technologies have a positive effect on the behavioral
intention to use PHRs.

• H2: Favorable subjective norms pertaining to the use of
PHR technologies have a positive effect on the perceived
usefulness of PHRs.

Technology Awareness
Despite PHR technologies having been introduced more than
a decade ago, research has found that there is a lack of awareness
about them among many potential end users [49,54,56,79-82],
thus inhibiting their use. This lack of awareness about PHR
technologies has also been attributed to people having unrealistic
expectations of these technologies [26,39,83], leading to their
abandonment. A report by the Office of the National Coordinator
for Health Information Technology [80] also found that people
in the United States were especially unaware of stand-alone
PHR offerings because they do not get similar promotional
exposure as to health care institution-sponsored tethered PHR
systems. Given the repercussions the lack of awareness can
have on PHR adoption, several researchers have stated the need
to address this research gap [26,79,84], and further posit calls
for further research into the promotion of PHRs [82,85],
including strategic wording [86] and educational or training
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programs [54,81]. Toward this, we draw upon the consideration
of adoption studies conducted in the realm of other technologies
to explore the role of technology awareness as a prerequisite to
the development of perceptions about PHR usefulness [69,78].

In addition to exploring the role of technology awareness as a
direct antecedent of perceived usefulness, we also explored its
relationship with subjective norms. Research literature on the
diffusion of innovation considers interpersonal relationships as
an effective channel for creating awareness about an innovation
[87,88]. These interpersonal channels can help create awareness
by emphasizing the personal value of an innovation to a potential
adopter [69]. We expect this to be the case for PHR
technologies. The following two hypotheses related to
technology awareness were tested in our research model:

• H3: Favorable subjective norms pertaining to the use of
PHR technologies have a positive effect on technology
awareness of PHRs.

• H4: Greater technology awareness of PHR technologies
has a positive effect on the perceived usefulness of PHRs.

Technology Anxiety
Previous research in ISs shows technology anxiety to be a
significant barrier to the adoption of new technologies [71,89],
and the same findings have been echoed in research on the
adoption of PHR systems [22,51]. However, a majority of PHR
research to date simply considers the direct impact of technology
anxiety on a user’s intention to adopt PHRs without exploring
its indirect effect on adoption through other key antecedents
such as perceived ease of use. Past IS research shows technology
anxiety to be an emotional anchor that leads to negative
expectations of a technology [90], especially during the initial
stages of its adoption. Previous IS studies have validated the
importance of anxiety as an antecedent of perceived ease of use
[91,92].

To address this gap in PHR adoption research, our model posits
technology anxiety as an affective construct that affects the
adoption of PHRs. We explored the direct link between anxiety
and behavioral intention and its indirect effect on perceptions
of usability (ease of use and accessibility). In doing so, our
model attempts to capture the varying causes and effects of
anxiety expressed in the extant literature on PHR adoption.
These include inadequate technology literacy [27,59,81],
individual uneasiness with setup of in-person authentication for
tethered PHRs, lack of technical ability to integrate multiple
data sources into stand-alone PHRs [80], or a general fear of
technology [48,53]. In summary, we propose that technology
anxiety potentially plays an important role in shaping cognitive
responses toward PHR systems and directly affects behavioral
intention to use these technologies. The following two
hypotheses related to technology anxiety are proposed:

• H5: A higher level of technology anxiety has a negative
effect on the perceived usability of PHRs.

• H6: A higher level of technology anxiety has a negative
effect on the behavioral intention to use PHRs.

System Integration
Among the various contemporary PHR architectures, one may
expect greater consumer interest in interconnected PHRs rather
than stand-alone PHRs or even tethered PHRs. It is our position
that with greater access to health and medical information
available through multiple sources, consumers may be more
motivated to use PHR systems. Such systems are likely to garner
more interest through their one-stop shopping appeal, offering
users a unified view of their health and medical information
across the health care delivery chain.

Although many researchers and industry experts have
commented on the lack of interoperability as a major barrier to
consumer adoption [11,12,93-96], our literature review did not
reveal any empirical substantiation of this conjecture. To address
this issue, our research model incorporates system integration
as a posited antecedent of perceived usefulness, as well as a
direct determinant of behavioral intention. By exploring these
relationships, we aim to investigate whether system integration
aspects of PHRs are internalized through gradual system use,
hence shaping user perceptions of usefulness, or whether the
system integration factor is more prominent as an upfront reason
to adopt or reject a PHR system. We offer the following two
hypotheses related to system integration:

• H7: Greater system integration in PHR technologies has a
positive impact on the perceived usefulness of PHRs.

• H8: Greater system integration in PHR technologies has a
positive impact on the behavioral intention to use PHRs.

Perceived Usefulness
The extensive body of knowledge on the technology acceptance
model (TAM) [74,97] shows that perceived usefulness is one
of the strongest determinants of technology adoption [68,71,78].
Therefore, we expect perceived usefulness to be a strong
determinant of PHR system adoption. Previous research on PHR
adoption has validated the important role of perceived usefulness
as a predictor of adoption [23,45,51,84,98]. In our model, we
use perceived usefulness to signify performance expectancy in
the use of PHRs, that is, the belief that using PHR will help in
managing personal health. Furthermore, we also appropriately
perceived usefulness as a cognitive response construct that is
affected by other personal and technological determinants of
PHR adoption. In addition to the previously posited hypotheses
with perceived usefulness as the consequence (H2, H4, H7), we
retained the conventional TAM hypothesis:

• H9: The higher perceived usefulness of PHR technologies
has a positive impact on the behavioral intention to use
PHRs.

Perceived Usability
Our final technological construct in the research model is
theorized as a multidimensional factor consisting of the
dimensions of perceived ease of use and perceived accessibility.
The perceived usability construct in our model aims to capture
the notion of effort expectancy associated with PHR systems,
that is, the degree of ease associated with using PHRs.

The traditional view of the perceived ease of use construct in
TAM also signifies effort expectancy [68,71]. However, research
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has shown that effort expectancy is usually a combination of
ease of use and other contextual factors that shape end user
perceptions about the relative difficulty of understanding and
using the system [71]. In the context of PHR technologies, we
believe that accessibility is a contextual factor that impinges
effort expectancy. Research on PHR adoption factors indicates
that aspects related to the intuitiveness of the user interface,
understandability of information, availability through multiple
channels (eg, desktop, web and mobile), and convenience of
anytime anywhere access are important factors that affect
individual perceptions of usability of PHR systems
[8,65,99,100]. As such, our conceptualization of perceived
accessibility attempts to assess the significance of these elements
in determining end user perceptions of the usability of PHR
technologies. To our knowledge, no previous research on PHR
adoption has corroborated the role of accessibility in the
acceptance of these technologies.

In conceptualizing perceived usability, we retain ease of use as
an underlying dimension because it relates directly to other
aspects of software usability, including end user efficiency and
learnability with the system [101,102]. Furthermore, although
previous research on PHRs has commented on the importance
of ease of use for PHR adoption [53,56,83,95,96,103,104], very
few studies have explored its role in the nomological network
of other cognitive, affective, and behavioral factors [52,105].
On the basis of our multidimensional conceptualization of
perceived usability, we propose the following two hypotheses:

• H10: Greater perceived usability of PHR technologies has
a positive impact on the perceived usefulness of PHRs.

• H11: Greater perceived usability of PHR technologies has
a positive impact on the behavioral intention to use PHRs.

Behavioral Intention
To characterize the adoption of PHRs, we used behavioral
intention as the ultimate downstream construct in our research
model. As a critical outcome of various cognitive and affective
antecedents, this construct has its original basis within the theory
of reasoned action [67], which conceptualizes it as a
consequence of individual beliefs and as an antecedent of actual
behavior. The construct has been commonly deployed in the IS
literature to study the adoption of various types of technologies
[74,97] including PHRs [22,23]. Furthermore, within the context
of health behaviors, past research indicates that behavioral
intention is significantly correlated with actual use [106-108].
Therefore, we expect greater behavioral intention to correspond
to higher levels of actual use of PHR systems.

Overall, our research model aims to offer an inclusive basis for
validating the role of three different types of determinants on
PHR adoption—(1) individual differences, (2) system
characteristics, and (3) social influence. Research models that
include these categories of factors have been recommended as
a practical foundation for investigating the adoption of new
technologies [109]. It should be noted here that although we
intend to be inclusive of these categories, we do not claim to
be exhaustive over all possible adoption factors. As such, other
adoption factors such as security and privacy concerns and
health literacy have already been investigated in previous

research studies, with largely consistent findings about the
importance of these factors [22,51,84,110].

In terms of organization, our empirical methodology is described
in terms of key procedures, and the results of our investigation
are outlined. Finally, the discussion and conclusion sections
offer an interpretation of the results, especially with respect to
their implications for research and practice.

Methods

Survey Questionnaire Content
The research model posited in the previous section was validated
through a quantitative empirical investigation using a web-based
survey instrument. Details of the survey content, measurement
scales, analysis procedures, and data collection techniques are
presented below.

The survey comprised demographic information questions about
the respondents’ age, gender, and country of residence;
technographic behavioral items related to respondents’
experience and interest in using PHR technologies, as well as
their preferences for different PHR features and functions, and
psychographic questions pertaining to different constructs in
the research model. For the latter, each construct in the research
model was operationalized using multi-item psychometric scales
with Likert-scale questions. Where possible, the items for a
construct were adapted from previously validated measurement
scales. We created new items for system integration and
perceived accessibility constructs and modified the wording of
items related to other constructs to align with the context of
PHR systems.

To develop the two new scales, various qualitative and
quantitative content validity assessment procedures were used,
including concept elicitation interviews with subject matter
experts (n=7) to generate representative and relevant
measurement items; cognitive interviews with potential
respondents from the target sampling frame (n=5) to ensure
item relevance and clarity, and the final selection of
measurement indicators based on item relevance ratings of
subject matter experts, which were subsequently used to
calculate item-level content validity indices (I-CVI). Drawing
upon recommendations from the extant literature [111-113], a
conservative cutoff value of 0.80 was used for item-level content
validity indices to select items for the new scales. The 7 people
in the subject matter expert panel included 2 faculty members
from the health informatics domain at the authors’ home
institution, 1 health information technology business analyst
working in a government agency, 2 doctoral students
specializing in health information technology interoperability,
one experienced end user of a PHR system, and a website
manager of a patient portal of a health care institution.

At the end of the survey, participants were also invited to
optionally respond to this open-ended question about PHR use:
“Do you have any other comments about the use of personal
health records (PHRs)? What factors do you consider to be
important in your decision to start using or keep using
technologies such as PHRs?”
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The complete survey instrument was assessed for face validity
through consultations with other HIS researchers, and construct
validity for each theoretical construct was assessed through
exploratory factor analysis of the pilot survey responses (n=20).
Multimedia Appendix 2 [70,71] lists the final survey
measurement items used for each construct in the research
model.

Data Collection
Data for this study were collected through a web-based survey
administered to actual and potential users of PHR technologies.
Screening questions were asked at the beginning of the survey
to determine different classes of respondents, and a brief
overview of PHR technologies was offered to ensure qualified
responses. As outlined in Multimedia Appendix 2, two
alternative versions of questions were used to elicit responses
from potential and actual (past or current) users of PHR systems.

The sampling techniques used were primarily based on
convenience and self-selection. We recruited respondents who
had basic familiarity with PHRs or similar tools for health care
self-management. We used a two-pronged approach for data
collection to ensure a cross section of potential PHR consumers.
First, we solicited participation from current and past users of
a PHR portal sponsored and supported by a teaching hospital
(tethered PHR) in Ontario, Canada. In distributing our call for
participation, we emphasized our interest in obtaining responses
from current and past users of the PHR system. Second, calls
for participation were also communicated through various
web-based forums and social media groups dedicated to the
discussion of health-related topics. To ensure a diverse selection
of respondents, our sampling frame included both general health
and wellness sites, as well as sites for chronic illness support
groups. Once again, we underlined our goal of including
responses from existing and potential users of PHR technologies.

Permission was sought from site administrators or forum
moderators before posting our call for participation. In the case
of the hospital PHR, our call for participation was distributed
by the administrator to a mailing list of PHR users who had
opted to receive news and information from the website at the
time of their registration with the portal. No respondent
incentives were offered for completing the survey.

The survey responses were collected over a 4-week period, with
one reminder posted at each site with the original call for
participation. Key suggestions from the Dillman tailored design
method [114] were used to promote response rates for the
survey. These included customizing the call for participation
according to each site and posting personalized answers to any
questions posted by potential respondents in a timely fashion.
An interactive approach to collecting web-based survey data
has been suggested by various researchers [115,116].

Because partial least squares (PLS) was the planned multivariate
statistical analysis procedure in this study, the minimum sample
size heuristic for PLS studies [117,118] was used for an a priori
calculation of the required sample size. Using this heuristic, the
minimum target sample size for this study was determined to
be 60 valid responses. The heuristic suggests that the minimum
sample size requirement for PLS- based models is determined
by finding the larger of the following values: (1) 10 times the
largest number of antecedent variables that affect any
consequent in the model, or (2) 10 times the number of
maximum indicators (manifest variables) in a latent variable in
the model [117,118]. For the theoretical model under
investigation, the Behavioral Intention construct has 5 direct
antecedents, whereas Perceived Usability has the most indicators
assigned to its measurement, specifically 6 items as shown in
Multimedia Appendix 2. Therefore, the minimum target sample
size for this study was determined to be 60 valid responses.

Analysis Procedures
Responses to demographic and technographic questions were
analyzed using descriptive statistics and nonparametric statistical
tests, and testing of research model constructs and hypotheses
was conducted through exploratory factor analysis and
PLS-based structural equation modeling (SEM) techniques. The
PLS approach for SEM was selected for this study because of
its suitability for small-sample exploratory research [119] and
its flexibility with multivariate normality assumptions [120].

Testing for common method bias was achieved by using three
different procedures—(1) the Harman post hoc one-factor test
[121], (2) verification of latent variable correlations as
recommended by Pavlou et al [122], and (3) the PLS-based
common latent factor test suggested by Liang et al [123].

Results

Overview
A total of 224 responses were collected from various sources,
including the hospital PHR portal, web-based forums, and social
media groups in our sampling frame. After discarding partial
responses, 168 responses were retained for further statistical
analysis. This exceeded our minimum sample size target, as
specified above. The results from our analysis of the survey
responses are detailed in the following subsections.

Demographic and Technographic Highlights
Table 2 provides a summary of the basic demographic and
technographic information from the survey responses analyzed.
A significant proportion of respondents indicated familiarity
with PHR technologies, with many respondents indicating
current or past use of PHRs. Overall, 62% of the respondents
self-identified themselves as either patients or caregivers.
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Table 2. Key highlights from the respondent sample (n=168).

Frequency, n (%)Demographic and technographic factors

Gender

96 (57.1)Female

72 (42.9)Male

Age (years)

22 (13.1)18-25

31 (18.5)26-35

66 (39.3)36-45

28 (16.7)46-55

21 (12.5)55 or older

Respondents source

59 (35.1)PHRa portal

109 (64.9)Online health communities

PHR familiarity and use

116 (69.1)Familiar

64 (38.1)Current use

30 (17.9)Past use

Health status identification

66 (39.3)Patients

39 (23.2)Caregivers

aPHR: personal health record.

On the survey question pertaining to the importance of various
health care issues, respondents consistently identified better
clinical health care outcomes as the top priority for them. These
were followed by issues surrounding better delivery of health
care, including access and cost of health care, as well as better
communication with physicians. Multimedia Appendix 3 shows
the top 5 issues identified in our survey based on the mean
importance of each health care issue. In addition, the figure
shows the top 10 PHR features identified in our survey. On the
basis of the mean utility scores ranging from 1 to 7, we can see
that content-based features that allow consumers to exercise
control over their medical information take precedence for most
people, followed by connectivity features that facilitate
patient-provider and patient-physician communication.
Juxtaposed alongside each other, the health care issues that are
top priority seem to be drivers for the use of many PHR features,
for example, system features related to the management of
chronic illnesses through tracking of health information and
medical history were deemed extremely important overall.

The next section outlines the results of the assessment of
psychographic variables in the posited research model.
Following the two-step approach for SEM analysis suggested
by Anderson et al [124], an examination of the measurement
model was conducted before testing the structural model. Both
the measurement and structural models were estimated using
the SEM facilities of Smart PLS [125].

Measurement Model Assessment
The measurement model was assessed through a combination
of exploratory factor analysis procedures and various tests for
discriminant and convergent validities for the constructs in the
research model.

We assessed our multidimensional operationalization of the
perceived usability construct through exploratory factor analysis.
Using principal axis factoring with promax rotation, a two-factor
model emerged with 3 out of 7 items loading on the first factor
and 3 on the second factor, all above the threshold of 0.70. One
item that did not load well on either factor was dropped, and
the scale was recalibrated with the remaining items, three
corresponding to perceived ease of use, and three loadings on
perceived accessibility. Subsequently, perceived usability was
operationalized as a reflective higher-order factor structure in
our model. To this end, we applied the repeated indicators
(superblock) technique [126], which is the most commonly used
approach for estimating hierarchical component models in PLS
[127].

For our main measurement model, we inspected the loading
and cross-loading of the indicators, as presented in Multimedia
Appendix 4, Table S1. The highest loading for each
measurement item (shown in bold) corresponds to its respective
latent variable, and these loading values were higher in
comparison to the item cross-loading on other model constructs.
Moreover, except in one case, the substantive loading of each
item on its construct exceeded the recommended threshold of
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0.70, indicating item reliability [118]. In the case of item
T_Anx_3, where the loading was slightly below the threshold,
because the loading was rounded up to 0.70, the item was
retained to ensure content validity. Overall, the assessment of
loading and cross-loading demonstrated satisfactory reliability
and discriminant validity at the item level.

We also followed the Fornell and Larcker guidelines [128] to
ensure that the theoretical model constructs were all distinct. A
visual inspection of Multimedia Appendix 4, Table S2 shows
that for each construct, the square root of the average variance
extracted (AVE; shown in bold on the diagonal) exceeds other
interconstruct correlations. This demonstrates the discriminant
validity of our measurement model at the construct level.

Various tests of convergent validity were performed through
an assessment of quality indices, as shown in Multimedia
Appendix 4, Table S3. As shown, the AVE value for each
construct is higher than 0.5, indicating that at least 50% of the
variance in each block of indicators can be attributed to the
pertinent latent variables [118,128]. Moreover, the values of
the Cronbach α are in the range of .60 or higher, thus
demonstrating the internal reliability consistency of each
construct [119]. Finally, the composite reliability values for
each construct are higher than .70, which is the recommended
cutoff to validate the internal reliability consistency of each
construct relative to all other constructs in the model [128].

Finally, as part of the measurement model, we assessed the
possibility of the common method bias using three different
procedures.

First, the Harman post hoc one-factor test [121] was conducted.
Principal component factor analysis (unrotated solution)
revealed 6 factors extracted, with the first factor accounting for
27.3% of the variance. Common method bias was not deemed
to be a serious problem with the data because multiple factors
emerged, and no single factor accounted for a majority of the
variance [121,129].

We subsequently applied the procedure specified by [122] and
examined the latent variable correlation matrix from our PLS

analysis. Usually, interconstruct correlations of over 0.90
indicate common method variance. In our data, the positive
correlations ranged from 0.02 to 0.63, with no observed
correlations exceeding the 0.90 threshold. Furthermore, the
existence of several low correlations below 0.10 among some
of the model constructs indicated that there was no single factor
that influenced all constructs [122].

Finally, we used the PLS-based common method bias test
suggested by Liang et al [123]. A method factor measured using
indicators from all model constructs was added to the research
model, and the variance of each item was then explained by its
principal construct and method factor. Our results showed that
the average variance explained by the principal constructs was
65.2%, whereas the average variance explained by the method
factor was 21.5%. The ratio of substantive variance to method
variance was approximately 3:1, suggesting that although there
may be some common method variance, it does not account for
the majority of the variance explained by the model.

Overall, the assessment of the measurement model was deemed
satisfactory in terms of item reliability and discriminant validity,
and the model constructs were considered to be internally
consistent as a measurement scale.

Structural Model Assessment
Following the measurement model assessment, the structural
model was estimated to provide details of the strengths of the
relationships among the latent constructs and the overall
predictability of the endogenous latent variables in the model.

To estimate the structural model, path coefficients and
significance levels were obtained by running PLS with
bootstrapping using 1000 resamples. The structural model and
P values are presented in Figure 2, with path β coefficients
depicted along each path. As shown in Figure 2, 8 of the 11
hypotheses were supported with high degrees of confidence,
and the model emerged as a good predictor of intention to adopt

PHRs, as evidenced by the coefficient of determination (R2)
value of 0.69 for the ultimate criterion variable. The results are
discussed next.
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Figure 2. Estimated structural model. *P<.05, **P<.01, P<.001; n.s.: not significant at the .05 level.

With respect to personal factors, a significant relationship was
validated between subjective norm and behavioral intention to
adopt PHR technologies (H1 supported). In addition, as
predicted, subjective norm had a significant positive effect on
perceived usefulness and technology awareness (H2 and H3
supported). The path from technology awareness to perceived
usefulness was also supported by the model (H4 supported). In
terms of the effects of technology anxiety with PHRs, no
significant association was found with perceived usability (H5
not supported), but a direct relationship with behavioral intention
to use PHR technologies was validated (H6 supported).

The results pertaining to technology factors indicate that,
contrary to expectations, system integration did not have a direct
effect on the perceived usefulness of PHR technologies (H7 not
supported). However, system integration was shown to have a
direct impact on the user behavioral intention to adopt PHR
technologies (H8 supported). As expected, perceived usefulness
was shown to be a strong predictor of behavioral intention (H9
supported). With respect to perceived usability, we found an
unexpected result of no significant relationship with perceived
usefulness (H10 not supported). However, the direct effect of
perceived usability on behavioral intention was validated in our
model (H11 supported). Further comments on these results are
provided in the Discussion section.

To determine the efficacy of the model in terms of predictability
and goodness of fit (GoF), the coefficients of determination

(R2) and average communality (AVE) for each construct were

evaluated. Together, these measures were used to calculate the
global criterion of GoF, as recommended by several researchers

[130,131]. Multimedia Appendix 4, Table S4 provide the R2

values for all inner model constructs along with their average
communalities and the calculated GoF index.

The R2 values suggest that the model performed well for the
endogenous variables pertaining to technology awareness,
perceived usefulness, and behavioral intention. These

coefficients of determination (R2) explain the proportion of a
construct’s variance that can be predicted by antecedent
constructs in the model. Most endogenous variables in the model
compellingly exceed the minimum threshold of 0.10, indicating
the usefulness of that variable in the model [132]. In terms of
the ultimate criterion variable in the model, that is, behavioral
intention to use PHRs, a significant portion of its variance
(around 69%) can be explained by the posited research model.

To calculate the GoF index, the average communality of each
construct is calculated as a weighted average of communality
(AVE) based on the number of items in each construct taken as
its weight [131]. Once calculated, the geometric mean of the

average communality and the average R2 can be calculated as
specified in the GoF formula [131] in Multimedia Appendix 4,
Table S4. The suggested baseline values for GoF are 0.1, 0.25,
and 0.36 indicating small, medium, or large effect sizes,
respectively [133]. As shown in Multimedia Appendix 4, Table
S4, the GoF value of our model is 0.480, which exceeds the
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cutoff value of 0.36 for large effect sizes, allowing us to infer
that the model performs well compared with the baseline values
of effect sizes. Hence, it can be inferred that the structural model
performed well overall.

On the basis of the evaluation of the measurement model validity
and reliability, as well as the verification of predictive relevance
and GoF of the structural model, we believe that the structural
equation model was able to establish a strong basis for
relationships posited in the research model hypotheses. Overall,
the proposed model acts as an adequate predictor of behavioral
intention to use PHRs.

Content Analysis of Open-ended Responses
As outlined earlier, we asked survey respondents to optionally
provide comments about PHRs through textual responses to the
question, “Do you have any other comments about the use of
personal health records (PHRs)? What factors do you consider

to be important in your decision to start using or keep using
technologies such as PHRs?”

A total of 63 responses were submitted, and these were analyzed
using simple content analysis techniques at the manifest level.
In coding and classifying the qualitative data, we searched for
themes or concepts related to the adoption of PHRs. An
emergent coding technique was used whereby two researchers
independently reviewed the responses and created a list of
themes and codes. The list was consolidated after mutual
consultation. Table 3 summarizes the comments that were
classified using this procedure. In the table, we have only shown
the three themes that are relevant to our research study—(1)
consumer interest in PHR technology as a whole, (2) user
interest in specific PHR features (grouped into categories), and
(3) user concerns and potential barriers to adoption. It should
be noted that each respondent could have contributed to multiple
categories through their responses. Therefore, the frequency
counts should be interpreted with caution.

Table 3. Content analysis summary for open-ended survey responses (n=63).

Frequency, n (%)Themes and comments

40 (64)General consumer interest in PHRsa

16 (25)Support the idea of PHRs looking forward to their wider availability

12 (19)PHRs are useful as they provide control or options to patients and their families

14 (22)PHRs useful for chronic illness patients

4 (6)Willing to pay or subscribe for PHR technologies

16 (25)Interest in different PHR features (grouped into categories)

8 (13)Medical information patient and provider records

6 (10)Contact and communication with physician or provider

4 (6)Decision support tools

3 (5)Shared access and social networks

18 (29)Concerns and barriers to adoption

12 (19)Prefer data integration; unwilling to do manual data entry

11 (18)Security and privacy concerns

6 (10)Should be available through mobile apps

aPHR: personal health record.

On the whole, many respondents commented on the usefulness
of PHR technologies as a whole and indicated their support and
anticipation in adopting these technologies. Features related to
the maintenance of medical information and online
communication with physicians emerged as the most commonly
cited PHR functions of interest. Interoperability, security, and
privacy issues were frequently mentioned as key factors in the
PHR adoption decision. Finally, some respondents stated their
interest in using PHR technologies through mobile apps, hence
alluding to the notion of accessibility as an important
consideration for them.

Discussion

Overview
The results outlined in the previous section corroborate the
general premise that a combination of personal and technological
factors plays a role in determining the adoption of PHR
technologies. In exploring these factors, our study has attempted
to integrate constructs related to social influence beliefs
(subjective norm), individual affective states (awareness and
anxiety), and cognitive instrumental perceptions (system
integration, perceived usability, and perceived usefulness) that
potentially impact adoption behavior (behavioral intention)
toward PHR technologies. This section provides an
interpretation of the results and discusses the implications for
research and practice.
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Personal Factors
Our results indicate that a person’s judgment of subjective norms
pertaining to the use of PHR systems plays an important role
in the adoption of these technologies through multiple cognitive
and affective processes. Its direct impact on behavioral intention
suggests that social influence plays a role in people’s decision
to adopt PHR technologies. The relatively weak association
between subjective norms and behavioral intention can also be
explained with reference to past research that shows that
subjective norm does not factor prominently as a direct
antecedent of behavioral intention in situations where the use
of technology is voluntary [68]. This is certainly the case for
most users of PHRs. In comparison, there is a stronger
association between subjective norm and perceived usefulness,
which suggests that internalization of social influence plays a
far more important role in the context of PHR adoption.
Internalization refers to the process by which a user incorporates
the beliefs of an important referent into one’s own belief
structure [134]. What this means in the case of PHRs is that the
consumers are more likely to develop their own perceptions
about the usefulness of these technologies through information
they receive from other important people, and this in turn can
foster their intention to use PHR systems. Our model also shows
that social influence through favorable subjective norms can
improve an individual’s awareness of PHR technologies.
Overall, subjective norms seem to be an important factor in
cognitive and affective mechanisms that allow an individual to
make sense of the purpose and benefits of PHR systems.

The positive impact of technology awareness on perceived
usefulness also alludes to a process of internalization whereby
consumers’ familiarity with the various use cases of PHR
technologies allows them to develop beliefs about the
technology’s overall usefulness to them. Because the use of
PHR systems is voluntary, it is reasonable to assume that
consumers would take time to discover and understand the
technology before deciding to adopt it. Once again, the
relationship between subjective norms and technology awareness
implies that observations and interactions with other people
play an important role in this process.

Our results also support the critical role of technology anxiety
as a determinant of PHR system adoption. Although no
significant relationship emerged between technology anxiety
and perceived usability, the construct exhibited a significant
direct impact on behavioral intention to adopt PHR technologies.
With respect to the former, although recent IS studies have
shown anxiety to be an important antecedent of perceived ease
of use [91,92], our study did not support this relationship. This
finding can be attributed to a difference in the type of technology
being investigated, as previous studies have generally focused
on mandatory use or hedonic technologies. In the case of PHR
applications, the technologies are expressly voluntary and
instrumental for most consumers. It should also be noted that
in adopting the current conceptualization of technology anxiety
from the extant IS literature, we might have overlooked the
multidimensional nature of anxiety as a psychological construct.
Aligned with the IS literature, our construct conceptualization
is reflective of anticipatory anxiety (apprehension preceding
the use of PHR systems) rather than situational anxiety (distress

during the use of PHR systems). The latter may indeed exhibit
a relationship with perceived usability. Therefore, we
recommend that the multidimensional nature of technology
anxiety and its role in the adoption of PHR systems be
investigated in future research.

Technology Factors
The construct of system integration was theorized in our research
to measure the importance that users confer on interoperability
(among PHRs and other back-end EHR or EMR systems) in
their decisions to adopt PHR technologies. Our results
demonstrate a positive association between consumer beliefs
about PHR interoperability and the intention to adopt these
technologies. However, the lack of support for the relationship
between system integration features and perceptions of the
usefulness of PHR technologies is counterintuitive. In the
context of PHRs, it can be expected that better functionality of
these systems in terms of connection and interoperability with
other back-end systems would translate into better perceptions
of the system’s usefulness. This posture is supported by current
research on PHR systems that consider a lack of integration
between patient-facing systems and back-end eHealth systems
as a barrier to adoption for both consumers and health care
professionals [21,135].

These differential effects of system integration beliefs can be
explained in the context of user expectations. It may be the case
that given today’s vast user experience with web-based tools
and the pervasive deployment of web services linking different
web-based systems, users simply expect PHR systems to be
interoperable at the outset. Their common perception about
PHRs would align with tethered and interconnected system
models of PHRs, and it is these types of technologies that users
are interested in adopting. Consumers may factor in these
aspects of interoperability only during the initial stages of
adoption, and these features are not internalized over time into
higher-order cognitive states that represent perceptions of the
usefulness of the system. As such, in our research model, the
system integration construct is conceptualized in the form of
initial expectations pertaining to PHR technologies, and it does
not capture or measure aspects of assimilation of these
technologies. Therefore, we suggest that future studies use a
different approach to model the relationship between system
integration and perceived usefulness. One possibility may be
to draw upon the experience-disconfirmation theory, which has
its roots in consumer behavior research [136], and posits that
beliefs and behaviors result from the congruence between
expectations and experiences [137].

Unlike many studies investigating technology adoption, our
study did not find a significant relationship between perceived
usability and perceived usefulness. Although this finding may
be at odds with the general IS literature, the findings are not
completely surprising in the specific context of PHR system
adoption. Previous studies on PHR technology adoption have
also shown varied results regarding the effects of perceived ease
of use. Some studies confirm construct relationships as defined
in the original TAM [107], whereas others contradict them
[138]. We offer a possible explanation for this lack of a
significant relationship by noting that PHR systems are
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characterized by their voluntary and instrumental use by
potential end users, which requires an extended commitment
on the part of end users to keep the system up-to-date and
relevant and useful over time. Such systems have recently been
the subject of IS research under the category of high
maintenance ISs [139]. Initial research on high maintenance
ISs contends that usability or ease of use may not be a prominent
determinant of usefulness and behavioral intention, as its effect
is usually superseded by the effect of other variables such as
perceived maintenance effort [139]. In the case of PHR
technologies, we expect a greater role for a construct, such as
perceived maintenance effort, and future studies should
incorporate this variable in their models.

In terms of direct effects on behavioral intention to adopt PHR
systems, our results are consistent with the extant research
literature. The role of perceived usability and perceived
usefulness as antecedents of behavioral intention to adopt PHR
systems was validated. Furthermore, having demonstrated
internal reliability and construct validity, our integrated
conceptualization of perceived usability as a combination of
perceived ease and accessibility shows promise in the context
of studying PHR technologies. Conceptualization lends support
to many researchers’ viewpoints on the synergistic relationship
between usability and accessibility [2,65,99].

Responses to technographic questions and the open-ended
questions in our survey also reveal consumer preferences for
specific PHR features and functions. Our findings contribute
to answering the call by other researchers, such as [57], who
had asked future researchers to verify their own findings that
consumers prefer health care process management support
functions, such as communication and contact tools, more than
other types of PHR tools. Our research verifies that these tools
are among the most preferred tools, along with the category of
tools that facilitate the maintenance of patient and provider
records. Our findings show patient and provider records in PHRs
to be the most preferred category of features, followed by
communication and contact features. However, at least until the
time when PHR adoption reaches its tipping point, we agree
with other research studies that tools related to messaging,
appointments, and prescription refills will remain the top-priority
features for potential adopters of PHR technologies [140,141].

Implications for Research
Future studies should further investigate the role of norm
internalization and technology assimilation as individual
psychological processes affecting behavior toward PHR
technologies. We suggest that the relationships among
sociotechnical constructs reflect a gradual process in the
development of beliefs about PHR technologies and their
consequent adoption. For example, in this study, our results
suggest that subjective norm and technology awareness are key
constructs that affect the consolidation of individual and social
values into higher-order cognitive beliefs about the purpose of
the benefits of PHR technologies, that is, the internalization
process. In the same vein, technology attributes, such as system
integration and usability, feature more prominently in the
affective and cognitive processes pertaining to technology
assimilation. As a possible avenue for future investigations, we

believe that incorporating mediating constructs from
experience-disconfirmation theory could provide potentially
valuable insights into PHR adoption research.

Future research should also seek to explore and validate the
potentially multidimensional nature of some of the personal
constructs posited in our theoretical model. Specifically,
technology anxiety should be studied in terms of anticipatory
and situational anxiety. We believe that both of these dimensions
play an important role during the different stages of adoption
of PHR technologies. Similarly, on the technology side, system
integration should be operationalized through specific attributes
of integration, such as single window patient information access,
system-to-system health data sharing, and information
communication capabilities, such as patient-physician
exchanges. Doing so would also have the added benefit of
deconstructing the specific needs and preferences of consumers
in terms of their expectations of integration features and
functions between PHR technologies and other HISs.

Our research also provides opportunities to improve health
technology assessments. The conceptualization of the two new
technology factors of system integration and perceived usability
offered in our study may help enhance future systematic
evaluations of health care technology. As highlighted earlier,
our research shows that functionality, ease of use, and
accessibility all play an important role in the adoption of PHR
technologies.

Implications for Practice
In terms of practical implications, our research offers
recommendations for PHR technology developers and designers,
solution vendors, clinicians, and health policy makers.

Our study highlights the importance of system integration as a
significant element affecting the initial decision to adopt PHRs.
Technology developers should aim to incorporate
interoperability as much as possible. Given the various
challenges that exist in achieving seamless point-to-point
integration across various types of HISs, developers and vendors
should consider the use of health information exchanges as a
viable alternative. Industry research suggests that health
information exchanges may provide a practical solution to
ensuring consumer access to comprehensive longitudinal health
records from across the health care delivery chain [80,94].

PHR technology designers should also strive to incorporate
accessibility as an element of overall PHR usability. In addition
to being easy-to-learn and efficient-to-use, PHR tools should
be available through a variety of channels, such as desktop,
web, and mobile. Furthermore, PHR systems should facilitate
help options and learning pathways to assist end user interactions
with the technology features of PHR systems and to support a
gradual learning curve. Technology should be developed in
such a way as to mitigate anticipatory and situational anxiety
with PHR technologies, and it should help end users feel in
control of the system. A delineation of basic versus advanced
features, context-sensitive suggestions for tasks and actions,
and readily available technical support may help alleviate user
anxiety and support the adoption of PHR systems [100].
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Technology vendors can also help improve the uptake of their
PHR systems by influencing personal affective and cognitive
beliefs that influence behavior toward PHR technologies. For
example, technology awareness can be improved and technology
anxiety can be reduced by incorporating additional aspects of
trialability and observability in PHR offerings. The availability
of free trial versions or free subscriptions, interactive
demonstration vignettes and how-to-use videos, access to a
community of end users, and spotlights on positive consumer
stories can provide useful mechanisms to help alleviate
challenges pertaining to technology anxiety and awareness.

Health care providers and practitioners can help improve the
uptake of PHR technologies by integrating these tools into
clinical encounters and by engaging patients with the technology
along various touchpoints in care delivery. The long-term
benefits expected from the effective use of these technologies
could potentially outweigh any increase in the short-term
workload experienced by practitioners in helping promote these
technologies to their patients.

From a policy perspective, relevant government agencies can
prioritize training and development initiatives for people to
become more proficient with the use of PHR systems. The target
audience for such programs could include both consumers and
health care professionals. The latter factor into the technology
adoption process as key influencers as their engagement with
patients and their endorsement of relevant PHR applications
can accelerate the uptake of these technologies.
Government-sponsored technology demonstrations can be

administered at community centers or libraries to help improve
literacy about PHR technologies, thereby improving consumer
awareness, reducing anticipatory anxiety, and leading to greater
adoption of these systems. Finally, at the infrastructure level,
governments can accelerate the development of interoperability
and health data interchange standards that would help make
these systems more attractive to consumers and enable faster
mainstream adoption.

Applicability Checks
To further confirm the relevance of our research to the health
care sector, we performed applicability checks with several
health care professionals, including two physicians, one hospital
administrator, one system developer, and one health policy
analyst. Applicability checks have been recommended as a
useful method for researchers to improve communication
between research and practice [142] and substantiate the
practical relevance of research [143]. In conducting applicability
checks for this research, we sought feedback on our research
findings from health care professionals and asked them to
comment on the importance of the issues identified in our
research. A summary of key comments from the applicability
check participants is included in Table 4. Overall, the
participants indicated that research studies such as ours could
potentially help improve the effective uptake of PHRs and
produce efficiencies in the health care system. Furthermore,
they commented on the potential of our research to help
overcome PHR adoption barriers through actionable guidelines
for the health care sector.
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Table 4. Applicability checks and comments from health care professionals.

Key commentsPerspectiveHealth care professional

PHRa adoption for improved
clinical health outcomes

General practitioner
(family medicine)

• “PHRs can be great tools to allow patients to become more informed about their
conditions and treatments.”

• “I believe that we can help patients get familiar with the benefits of PHRs and also
help them get over their initial hesitation in using these tools.”

PHR adoption for improved
clinical health outcomes

Primary care physician
(pediatrics)

• “I think PHR tools can be great for parents to keep track of their children’s medical
history. The information can later be handed over to children once they are able to
manage it themselves.”

• “Once the technical hurdles are resolved, I think clinicians can play an important
role in encouraging people to use these technologies. However, we [physicians]
have to start using them too and lead by example.”

PHR adoption for ensuring
continuity of care

Hospital administrator
(director of operations)

• “We currently provide access to patients to a limited part of their medical records.
Having an integrated medical record across healthcare organizations can be very
useful for timely interventions.”

• “As pointed out in this research, there are many technical obstacles to providing an
integrated medical record and this probably hurts overall adoption.”

Functionality and usability re-
quirements for PHR adoption

Systems developer

(EHRb systems; mobile
health apps)

• “Providing access to patient information across organizations is a challenge. Various
industry standards are attempting to resolve this issue. Once the problems are re-
solved, we can expect more user interest in these technologies.”

• “I agree that usability is more than just thinking about user-friendliness. Users today
expect anytime anywhere access to information. This applies to PHRs as well.”

eHealth initiatives and PHR
adoption

Health policy analyst
(digital health strategies)

• “There is a lot of work going on at the national and provincial levels to create the
right conditions to support potential applications of PHR technologies.”

• “Suggestions made in this research can be useful in creating more awareness at the
user level. Ultimately, we would like to see PHRs as a technology for all citizens.”

aPHR: personal health record.
bEHR: electronic health record.

Study Limitations
As an exploratory study, our research has inherent limitations
in terms of the posited research model. This includes hypotheses
that did not emerge as significant. Another limitation of our
study pertains to the use of convenience and self-selection
sampling techniques. This may limit the generalizability of the
results of this study. Furthermore, most of the respondents
comprised a relatively younger age demographic from North
America, and the results may not be representative of the general
population.

We also note that by virtue of soliciting responses from a current
PHR portal site, health information websites, and forums, our
data were collected from respondents with some level of
previous interest in health self-management. This limits our
findings to current internet users with potentially higher health
literacy and may not accurately account for the population of
users with less exposure to health information or with less access
to computing resources. Future research should include potential
and actual users of PHR technologies through more diversified
sources and utilize recruitment mechanisms to alleviate sampling
bias.

Conclusions
Advancing the use of technologies in all walks of life is also
increasing people’s expectations of user-centered health care
technologies. Consequently, consumer demand for PHR systems
is likely to remain strong in the upcoming years. Recent

academic and industry research on PHR systems has affirmed
abundant consumer interest in these technologies [4,80,94].

The empirical research findings reported in this paper aim to
contribute to the body of knowledge on consumer adoption of
PHRs. To this end, we have attempted to explore and analyze
possible factors contributing to what has been termed the PHR
paradox [21], that is, despite their predicted benefits and
considerable consumer interest, the adoption of PHRs has
generally remained low. Our study also answers the call for
researchers to investigate the facilitators and inhibitors of PHR
adoption at multiple levels, including personal and technological
[2,21,51,66].

By developing and validating a parsimonious research model
comprising personal and technological determinants of PHR
adoption, we were able to obtain several insights into the social
influence and cognitive instrumental processes that impact
consumer adoption of PHRs. Our results indicate that subjective
norms, technology awareness, and technology anxiety are
important factors that predict individual attitudes and beliefs
about the usefulness of PHR systems and the ultimate adoption
of these technologies. Our study also shows the differential
effects of system integration capabilities and perceived usability
on perceived usefulness and behavioral intention to adopt PHRs.
Our characterization of PHR technologies in terms of their
voluntary, instrumental, and high maintenance attributes has
allowed us to make sense of some of the seemingly
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counterintuitive findings about technology antecedents of PHR
adoption.

As such, our findings support the viewpoint of other researchers
who contend that PHR technologies are complex innovations
in which perceived attributes of technology are neither stable
features nor sure determinants of adoption [21,95]. We
encourage future research to examine the adoption of PHRs in
a longitudinal fashion, exploring the role of different

sociotechnical factors affecting users’ cognitive and behavioral
processes during the stages of internalization, assimilation, and
maintenance of PHR systems.

We hope that the takeaways from our study will prove to be
constructive in helping align PHR offerings more closely with
consumer beliefs and attitudes, as well as their informational
needs and functional requirements. This should help alleviate
the risk of PHR technology rejection or abandonment.
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Abstract

Background: Twitter is a real-time messaging platform widely used by people and organizations to share information on many
topics. Systematic monitoring of social media posts (infodemiology or infoveillance) could be useful to detect misinformation
outbreaks as well as to reduce reporting lag time and to provide an independent complementary source of data compared with
traditional surveillance approaches. However, such an analysis is currently not possible in the Arabic-speaking world owing to
a lack of basic building blocks for research and dialectal variation.

Objective: We collected around 4000 Arabic tweets related to COVID-19 and influenza. We cleaned and labeled the tweets
relative to the Arabic Infectious Diseases Ontology, which includes nonstandard terminology, as well as 11 core concepts and
21 relations. The aim of this study was to analyze Arabic tweets to estimate their usefulness for health surveillance, understand
the impact of the informal terms in the analysis, show the effect of deep learning methods in the classification process, and identify
the locations where the infection is spreading.

Methods: We applied the following multilabel classification techniques: binary relevance, classifier chains, label power set,
adapted algorithm (multilabel adapted k-nearest neighbors [MLKNN]), support vector machine with naive Bayes features
(NBSVM), bidirectional encoder representations from transformers (BERT), and AraBERT (transformer-based model for Arabic
language understanding) to identify tweets appearing to be from infected individuals. We also used named entity recognition to
predict the place names mentioned in the tweets.

Results: We achieved an F1 score of up to 88% in the influenza case study and 94% in the COVID-19 one. Adapting for
nonstandard terminology and informal language helped to improve accuracy by as much as 15%, with an average improvement
of 8%. Deep learning methods achieved an F1 score of up to 94% during the classifying process. Our geolocation detection
algorithm had an average accuracy of 54% for predicting the location of users according to tweet content.

Conclusions: This study identified two Arabic social media data sets for monitoring tweets related to influenza and COVID-19.
It demonstrated the importance of including informal terms, which are regularly used by social media users, in the analysis. It
also proved that BERT achieves good results when used with new terms in COVID-19 tweets. Finally, the tweet content may
contain useful information to determine the location of disease spread.

(JMIR Med Inform 2021;9(9):e27670)   doi:10.2196/27670
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Introduction

Background
Although millions of items of data appear every day on social
media, artificial intelligence through natural language processing
(NLP) and machine learning (ML) algorithms offers the chance
to automate their analysis across many different areas, including
health. In the area of health informatics and text mining, social
media data, such as Twitter data, can be analyzed to calculate
large-scale estimates of the number of infections and the spread
of diseases, or help to predict epidemic events [1]; this field is
known as infodemiology, and the systematic monitoring of
social media posts and Internet information for public health
purposes is known as infoveillance. However, previous research
has focused almost exclusively on English data.

Time is clearly an important factor in the health surveillance
domain. In other words, discovering infectious diseases as
quickly as possible is beneficial for many organizations and
populations, as we have seen internationally with COVID-19.
It is also important to have multiple independent sources to
corroborate evidence of the spread of infectious diseases.

Twitter is one of the main real-time platforms that can be used
in health monitoring. However, it contains noisy and unrelated
information; hence, there is a crucial need for information
gathering, preprocessing, and filtering techniques to discard
irrelevant information while retaining useful information. One
key task is to differentiate between tweets written for different
reasons where someone is infected or worried about a disease,
taking into account the figurative usage of some words related
to a disease or spread of infection [2].

While such tasks are obviously relevant globally, there is little
previous research for Arabic-speaking countries. There are some
characteristics of the Arabic language that make it more difficult
to analyze compared with other languages, and NLP resources
and methods are less well developed for Arabic than for English.
Arabic, which has more than 26 dialects, is spoken by more
than 400 million people around the world [3]. We hypothesize
that Arabic speakers will use their own dialects in informal
discourse when they express their pain, concerns, and feelings
rather than using modern standard Arabic [4]. Table 1 describes
some examples of Arabic words related to health that may
represent different meanings owing to dialect differences. For

instance, the word can be understood as influenza in Najdi
dialect and feeling cold in Hejazi dialect [3].
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Table 1. Some examples of Arabic words that have different meaning.

Potential meaning confusion setsWord in Arabic

Influenza (cold)/feeling cold

Vaccination/reading supplication

Runny nose/nosebleed

Ointment/paint

Sneezing (cold)/filter the liquid thing/be nominated for a position

Antibiotic/opposite

Tablets/pimples/some kind of food

X-ray/sunlight

Weakness/double

Painkiller/home

Prescription/method

Medicine (like vitamin C fizz)/sparkling spring (fizz)

The real-world motivation of this work is to reduce the lag time
and increase accuracy in detecting mentions of infectious
diseases in order to support professional organizations in
decreasing the spread, planning for medicine roll out, and
increasing awareness in the general population. We also wish
to show that Arabic tweets on Twitter can provide valuable data
that may be used in the area of health monitoring by using
informal, nonstandard, and dialectal language, which represents
social media usage more accurately.

We focused on COVID-19 and influenza in particular owing to
their rapid spread during seasonal epidemics or pandemics in
the Arabic-speaking world and beyond. Most people recover
within a week or two. However, young children, elderly people,
and those with other serious underlying health conditions may
experience severe complications, including infection,
pneumonia, and death [5]. While it takes specialized medical
knowledge to distinguish between the people infected by
COVID-19 and influenza as the symptoms are similar, tracing
and planning vaccination and isolation are important for both
diseases. In addition, there may be some infected people who

do not take the test because of personal concerns and lack of
availability of tests in their city, or those who need support to
self-isolate.

The overall question being answered in this paper is how NLP
can improve the analysis of the spread of infectious diseases
via social media. Our first main contribution is the creation of
a new Arabic Twitter data set related to COVID-19 and
influenza, which was labeled with 12 classes, including 11
originating from the Arabic Infectious Disease Ontology [6]
and a new infection category. We used this ontology since there
are no existing medical ontologies, such as International
Classification of Diseases (ICD) and/or Systematized
Nomenclature of Medicine-Clinical Terms (SNOMED),
available that originate in Arabic [1]. Crucially, we also showed
for the first time the usefulness of informal nonstandard
disease-related terms using a multilabel classification
methodology to find personal tweets related to COVID-19 or
influenza in Arabic. We comparatively evaluated our results
with and without the informal terms and showed the impact of
including such terms in our study. Moreover, we showed the
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power of ML and deep learning algorithms in the classification
process. Finally, we developed methods to identify the locations
of the infectious disease spread using tweet content, and this
also helped to inform dialect variants and choices.

Related Work
Previous studies have proven that NLP techniques can be used
to analyze tweets for monitoring public health [7-12]. These
studies have analyzed social media articles that support the
surveillance of diseases in different languages such as Japanese,
Chinese, and English. Diseases that were analyzed included
listeria, influenza, swine flu, measles, meningitis, and others.
As justified in the previous section, we will focus on previous
work related to monitoring influenza and COVID-19 using
Twitter data.

Influenza-Related Research
The Ailment Topic Aspect Model (ATAM) is a model designed
by Paul and Dredze [13]. It uses Twitter messages to measure
influenza rates in the United States. It was later extended to
consider over a dozen ailments and apply several tasks such as
syndromic surveillance and geographical disease monitoring.
Similarly, an influenza corpus was created from Twitter [8].
The tweets needed to meet the following two conditions to
include them in the training data with infected people and
timing: (1) the person tweeting or a close contact is infected
with the flu and (2) the tense should be the present tense or
recent past tense.

The goal of a previous study [2] was to distinguish between flu
tweets from infected individuals and others worried about
infection in order to improve influenza surveillance. It applied
multiple features in a supervised learning framework to find
tweets indicating flu. Likewise, a sentiment analysis approach
was used [14] to classify tweets that included 12 diseases,
including influenza. A forecasting word model was designed
[15] using several words, such as symptoms, that appear in
tweets before epidemics to predict the number of patients
infected with influenza.

A previous study [16] used unsupervised methods based on
word embeddings to classify health-related tweets. The method
achieved an accuracy of 87.1% for the classification of tweets
being related or unrelated to a topic. Another study [17]
concluded that there is a high correlation between flu tweets
and Google Trends data.

A recent survey study [1] showed how ontologies may be useful
in collecting data owing to the structured information they
contain. However, there were serious challenges as medical
ontologies may consist of medical terms, while the text itself
may contain slang terms. The study suggested the inclusion of
informal language from social media in the analysis process in
order to improve the quality of epidemic intelligence in the
future, but this was not implemented.

COVID-19–Related Research
Many researchers in computer science have made extensive
efforts to show how they can help during pandemics. In terms
of NLP and social media, there are various studies that support
different languages with multiple goals. These goals include

defining topics discussed in social media, detecting fake news,
analyzing sentiments of tweets, and predicting the number of
cases [18].

There have been multiple Arabic data sets published recently
[19,20]. The authors explained the ways of collecting tweets,
such as time period, keywords, and software library used in the
search process, and summed up the statistics for the collected
tweets. However, they only included statistical analysis and
clustering to generate summaries with some suggestion of future
work. Yet, there are some studies with specific goals, such as
analysis of the reaction of citizens during a pandemic [21] and
identification of the most frequent unigrams, bigrams, and
trigrams of tweets related to COVID-19 [22]. In addition,
considering the study by Alanazi et al [23] that identified the
symptoms of COVID-19 from Arabic tweets, the authors noted
the limitation that they used modern standard Arabic keywords
only, and it would be important to consider dialectical keywords
in order to better catch tweets on COVID-19 symptoms written
in Arabic, because some Arab users post on social media in
their own local dialect.

In a previous study, we analyzed COVID-19 tweets in the
following three different ways: (1) identifying the topics
discussed during the period, (2) detecting rumors, and (3)
predicting the source of the tweets in order to investigate
reliability and trust [24].

Critically, none of the above studies utilized the Arabic language
for monitoring the spread of diseases. There are some Arabic
studies that used Twitter with the goal of determining the
correctness of health information [25], analyzing health services
[26], and proving that Twitter is used by health professionals
[27]. Moreover, other studies, which did not involve Arabic,
used only formal language terminologies when collecting tweets,
and we would argue that this is not representative of the
language usage in social media posts.

Arabic Named Entity Recognition–Related Research
Previous research on named entity recognition (NER) aimed to
accomplish the following two key goals: (1) the identification
of named entities and (2) the classification of these entities,
usually into coarse-grained categories, including personal names
(PER), organizations (ORG), locations (LOC), and dates and
times (DATE). In this study, our interest was in estimating one
of these categories, which is the location element of the
information on Twitter. NER methods use a variety of
approaches, including rule-based, ML-based, deep
learning–based, and hybrid approaches. These approaches can
be used for Arabic, although specific issues arise, such as lack
of capitalization, nominal confusability, agglutination, and
absence of short vowels [28,29]. In addition, there are more
challenges in terms of social media content, which includes
Arabic dialects and informal terms. There is a lack of annotated
data for NER in dialects. The application of NLP tools,
originally designed for modern standard Arabic, on dialects
leads to considerably less efficiency, and hence, we see the need
to develop resources and tools specifically for Arabic dialects
[29].
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The goal of a previous study [30] was to illustrate a new
approach for the geolocation of Arabic and English language
tweets based on content by collecting contextual tweets. It
proved that only 0.70% of users actually use the function of
geospatial tagging of their own tweets; thus, other information
should be used instead.

Data Collection and Filtering
There is a lack of an available and reliable Twitter corpora in
Arabic in the health domain, which makes it necessary for us
to create our own corpus. We obtained the data using the Twitter
application programming interface (API) for the period between
September 2019 and October 2020, and collected around 6
million tweets that contained influenza or COVID-19 keywords.
The keywords are in the code that we will release on GitHub
[31]. We collected the tweets weekly since the Twitter API does
not otherwise allow us to retrieve enough historical tweets. We
utilized keywords related to influenza and COVID-19 from the
Arabic Infectious Diseases Ontology [6], which includes
nonstandard terminology. We used a disease ontology because

it has been shown to help in finding all the terms and synonyms
related to the disease [14].

A previous survey [1] suggested the inclusion of informal text
used in social media in medical ontologies and search processes
when collecting data in order to improve the quality of epidemic
intelligence. Therefore, we hypothesize that informal terms may
help to find the relevant tweets related to diseases. Additionally,
in the Arabic scenario, we hypothesize that we need to account
for dialectal terms.

We filtered the tweets by excluding duplicates, advertisements,
and spam. Using Python, we also cleaned the tweets by
removing symbols, links, non-Arabic words, URLs, mentions,
hashtags, numbers, and repeating characters. From the resulting
data set, we took a sample of about 4000 unique tweets (2000
tweets on influenza and 2000 tweets on COVID-19). Then, we
used a suite of approaches for preprocessing the tweets, applying
the following processes in sequence: tokenization,
normalization, and stop-word removal. Table 2 shows the
number of tweets with each label from the ontology after
filtering and preprocessing.

Table 2. The number of tweets in each label.

Tweetsa, nLabel

COVID-19Influenza

17951544Name of the disease

327456Slang term of the disease

789398Symptom

530178Cause

209666Prevention

1551Infection

2022Organ

97152Treatment

225Diagnosis

41517Place of the disease spread

1252Infected category

915907Infected with

aEach tweet can have multiple labels.

Manual Coding
In order to create a gold standard corpus, our process started
with tweet labeling by two Arabic native speakers, including
the first author of the paper, following the guidelines of the
annotation process described in Multimedia Appendix 1. We
manually annotated each tweet with 1 or 0 to indicate Arabic
Infectious Diseases Ontology classes, which are infectious

disease name (ie, influenza and COVID-19 in our case), slang
term, symptom, cause, prevention, infection, organ, treatment,
diagnosis, place of disease spread, and infected category. We
also labeled each tweet as 1 if the person who wrote the tweet
was infected with influenza or COVID-19 and 0 if not. Table
3 describes some examples of Arabic influenza and COVID-19
tweets with their labels.
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Table 3. Examples of tweets with their assigned labels (1 or 0).

In-
fect-
ed
with

Infect-
ed cat-
egory

Place
of dis-
ease
spread

Diag-
nosis

Treat-
ment

Or-
gan

Infec-
tion

Pre-
ven-
tion

CauseSymp-
tom

Slang
name

NameTweet in En-
glish

Tweet in Arabic

1b00000000111aWhat is the
solution with
flu, fever and
cold killed me

000000010001Influenza vac-
cination cam-
paign in coop-
eration with
King Khalid
Hospital in
Al-Kharj

100000000001Flu morning

000101001110When you
have symp-
toms of a flu
or cold, Does
the clinic take
a sample of
nose and
throat to check
if its bacteria
or a virus

100001001101My experi-
ence with after
my infection
with the
Covid-19
virus was con-
firmed, I did
not initially
care about eat-
ing food,
enough water,
and also food
supplements,
because the
symptoms
were slight, I
noticed that
the virus
works in
stages, at first
I noticed
sweating,
headache, and
then eye pain.

000000010010Washing
hands with
soap and wa-
ter, and wear-
ing a medical
mask ... Here
are a number
of precaution-
ary measures
that are still
the best ways
to prevent
Corona
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In-
fect-
ed
with

Infect-
ed cat-
egory

Place
of dis-
ease
spread

Diag-
nosis

Treat-
ment

Or-
gan

Infec-
tion

Pre-
ven-
tion

CauseSymp-
tom

Slang
name

NameTweet in En-
glish

Tweet in Arabic

100001000101The first thing
that struck me
was lethargy,
pain in the
bones and
muscles, a
strange
headache that
was not
painful but
bothersome,
and then had
diarrhea. I did
not expect
Corona be-
cause the
symptoms
were mild, not
like what peo-
ple say. But I
was sure when
my sleep be-
came strange,
as if I woke up
not asleep,
and after that
I fell asleep
for an hour or
two, and
sometimes I
did not sleep.
.

aWe labeled each tweet with 1 or 0 to indicate Arabic Infectious Diseases Ontology classes.
bWe labeled each tweet as 1 if the person who wrote the tweet was infected and 0 if not.

Interrater Reliability
We used the Krippendorff alpha coefficient statistic, which
supports multilabel input, to test the robustness of the
classification scheme for both data sets [32]. The result showed
that the Krippendorff alpha score was 0.84 in the influenza data
set and 0.91 in the COVID-19 data set, which indicates strong
agreement between the two manual coders. The remaining
disagreement between the annotators was due to informal terms

and Arabic dialects found in social media. For instance, can
be understood as “cold is playing with us,” which represents
that an uninfected person or flu is playing with us (indicating

an infected person). Another example is , which in English
means “get along with Corona is easier than the lockdown.”
This may be classified as an infected person or an uninfected

person because the word has various meanings.

Methods

Overview
In order to create methods to find individuals who have been
self-identified as infected and to determine their geolocation in

the Twitter data set, we applied multiple supervised learning
algorithms on the labeled data set and used NER on the tweet
content.

Multilabel Classification
The overall architecture of our pipeline for finding infected
people is shown in Figure 1. Using a supervised paradigm, we
first annotated the corpus with labeling information as described
above, before moving on to classify the tweets by applying
machine and deep learning algorithms. We used this method
for both the influenza and COVID-19 case studies. Each tweet
has different labels assigned to it. For instance, the first example

in Table 3 contains the labels influenza name ( ), slang term

of influenza ( ), and symptom ( ). It also represents that the
person is infected with influenza. Therefore, we assigned a value
of 1 to these labels. On the other hand, the tweet does not include
the labels cause, prevention, infection, organ, treatment,
diagnosis, place of disease spread, and infected category. Thus,
these were marked with 0.
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Figure 1. System architecture. API: application programming interface; AraBERT: transformer-based model for Arabic language understanding; BERT:
bidirectional encoder representations from transformers; MLKNN: multilabel adapted k-nearest neighbors; NBSVM: support vector machine with naive
Bayes features.

From Table 3, we can see that we have a multilabel classification
problem where multiple labels are assigned to each tweet.
Basically, the following three methods can be used to solve the
problem: problem transformation, adapted algorithm, and
ensemble approaches. For each method, there are different
techniques that can be used. We applied the following
algorithms, which represent ML and deep learning algorithms,
to classify the tweets: (1) binary relevance, which treats each
label as a separate single class classification problem; (2)
classifier chains, which treats each label as a part of a
conditioned chain of single-class classification problems, and
it is useful to handle the class label relationships; (3) label power
set, which transforms the problem into a multiclass problem
with one multiclass classifier that is trained on all unique label
combinations found in the training data; (4) adapted algorithm
(MLKNN), which is a multilabel adapted k-nearest neighbors
(KNN) classifier with Bayesian prior corrections; (5) support
vector machine with naive Bayes features (NBSVM), which
combines generative and discriminant models together by adding
NB log-count ratio features to SVM [33]; (6) bidirectional
encoder representations from transformers (BERT), which is a
condition where all left and right meanings in both layers are
used to pretrain deep bidirectional representations from

unlabeled text [34]; and (7) transformer-based model for Arabic
language understanding (AraBERT), which is a pretrained
BERT model designed specifically for the Arabic language [35].

Since some labels were 0 for most tweets, we removed these
labels in order to avoid overfitting. In other words, we removed
the labels that did not appear in most tweets as shown in Table
3. The remaining important labels were determined depending
on the disease case study because they represented different
values for different tweets as justified in Table 2. For influenza,
they are influenza name, slang term of influenza, symptom,
prevention, treatment, and infected with. While for COVID-19,
they are name, slang term of COVID-19, symptom, cause, place,
and infected with. We also repeated the experiment twice to
show the effectiveness of the informal terms in the results. One
of them had the labels “disease name,” “slang term of infectious
disease,” and “infected with,” and the other had all labels, except
“slang term of infectious disease” in both case studies.

In our study, we used the Python scikit-multilearn [36] and
ktrain [37] libraries and applied different models. To extract
the features from the processed training data, we used a word
frequency approach. We split the entire sample into 75% training
and 25% testing sets.
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NER
We followed NER systems that used ML algorithms to learn
NE tag decisions from annotated text. We used the conditional
random fields (CRF) algorithm because it achieved better results
than other supervised NER ML techniques in previous studies
[29].

There were three phases in our geolocation detection algorithm
as shown in Figure 2. In phase 1, the infected person was
specified from the multilabel classification algorithm described
in the previous section. Then, we retrieved the historical tweets
of this person (around 3000 tweets per person on average) and
passed them to the next phase.

Figure 2. Three phases of the geolocation detection algorithm.

Phase 2 consisted of two consecutive stages. First, the tweets
were submitted to a named entity detection algorithm to select
location records from multiple corpora and gazetteers, including
ANERCorp [38,39], and ANERGazet [40]. A set of location
names needs to be filtered out from the general names and

ambiguous ones. For example, the word (Bali in English)
can be a province in Indonesia or “my mind” as an informal
term in Arabic. This step is important in order to ensure that all
unrelated location names are not included in the final phase.
Second, the identified locations were determined by applying
our new entity detection gazetteer, which represents Saudi
Arabia regions, cities, and district. The data, which will be
released on GitHub [31], are public data collected from the
Saudi Post website [41].

In phase 3, common features were identified, such as the most
frequent locations, as well as other features, such as occurrence
time, which gives a higher score for locations within the last 6

months. Then, each location is scored by a number, which allows
us to rank the list and determine the best estimated main location
of the user.

After each tweet set with a predictable location, we compared
this location with the location field mentioned in the user
account, which is not always set by the user because it is an
optional field. Here, we kept only users with valuable location
information in either the location or description fields.

Ethical Considerations
Although Twitter has obtained informed consent from users to
share information, there was a need to obtain research ethics
approval from our university, especially considering our focus
on health-related topics [42]. Ethical approval for this study
was obtained from Lancaster University on June 21, 2019 [43].
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Results

Multilabel Classification
A multilabel classification problem is more complex than binary
and multiclass classification problems. Therefore, various
performance measures were calculated to evaluate the
classification process, such as accuracy, F1 score, recall,
precision, area under the receiver operating characteristic curve
(AUC), and Hamming loss [44]. For all these measures, except
Hamming loss, higher scores are better. For Hamming loss,
smaller values reflect better performance. It is important to note
that the accuracy score function in multilabel classification
computes only subset accuracy, which means a sample of labels
will be taken in the calculation process, as mentioned previously
[36].

Table 4 illustrates the performance measures of the seven models
on our training data set with six, five, and three labels for the
influenza case study. In the six labels, which are “influenza
name,” “slang term of influenza,” “symptom,” “prevention,”
“treatment,” and “infected with,” the classifier chains algorithm
achieved the highest results in most measures compared with
the other algorithms. It had an F1 score of 86.1%, recall of
81.0%, precision of 91.8%, AUC of 88.6%, accuracy of 56.2%,
and Hamming loss of 8.9%. The label power set algorithm
provided a result slightly lower than the classifier chain by
around 2%. The lowest F1 score was observed for NBSVM,
which was 58.9%.

The repeated experiment results for the seven models on our
training data set with three labels, which were “influenza name,”

“slang term of influenza,” and “infected with,” and five labels,
which were “influenza name,” “symptom,” “prevention,”
“treatment,” and “infected with,” are described in Table 4. There
was up to 20% enhancement for accuracy in the seven
algorithms. The highest F1 score was achieved by the classifier
chains algorithm, which was 88.8%. The recall and precision
ranged from 60% to 92%. Consequently, informal terms were
shown to represent key factors in the classification process.

Table 5 shows the performance measures of the seven models
on our training data set with six, five, and three labels for the
COVID-19 case study. Here, the six labels were different from
those in the previous case study because they were determined
according to the results from the number of tweets in each label
as explained in Table 2. The six labels were “COVID-19 name,”
“slang term of COVID-19,” “symptom,” “cause,” “place of
disease spread,” and “infected with category.” The best results
were achieved by the BERT algorithm with an F1 score of
88.2%, recall of 86.7%, precision of 89.7%, AUC of 90.3%,
accuracy of 62.0%, and Hamming loss of 8.8%.

The repeated experiment results for the seven models on our
training data set with three labels, which were “COVID-19
name,” “slang term of COVID-19,” and “infected with,” and
five labels, which were “COVID-19 name,” “symptom,”
“cause,” “place of disease spread,” and “infected with category”
are described in Table 5. There was up to 20% enhancement
for accuracy in the seven algorithms. The highest F1 score was
achieved by the BERT algorithm, which was 94.8%, followed
by AraBERT, which was 93.3%. The informal terms in the
COVID-19 case study showed around 15% enhancement in the
evaluation results.
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Table 4. Training results of the seven algorithms with six, five, and three labels for the influenza case study.

Hamming loss (%)Accuracy (%)AUCa (%)Precision (%)Recall (%)F1 score (%)Number of labels and multilabel classification
techniques

Sixb

18.739.679.771.974.473.1Binary relevance

8.956.288.691.881.086.1Classifier chains

9.756.288.787.683.885.7Label power set

15.539.982.378.475.576.9Adapted algorithm (MLKNNc)

13.738.985.473.483.478.1BERTd

12.549.283.988.272.779.7AraBERTe

18.926.870.981.246.358.9NBSVMf

Fiveg

18.345.180.774.176.975.5Binary relevance

8.564.990.290.585.788.0Classifier chains

8.963.990.089.286.287.6Label power set

14.047.984.083.976.479.9Adapted algorithm (MLKNN)

10.357.588.085.083.184.1BERT

9.064.390.088.486.387.3AraBERT

20.226.872.081.249.761.6NBSVM

Threeh

18.860.481.281.780.080.8Binary relevance

10.772.489.392.285.788.8Classifier chains

11.670.888.488.688.088.3Label power set

19.854.080.277.584.780.9Adapted algorithm (MLKNN)

11.768.188.982.193.987.6BERT

13.166.986.890.981.585.9AraBERT

17.159.982.184.375.179.5NBSVM

aAUC: area under the receiver operating characteristic curve.
bThe six labels are “influenza name,” “slang term of influenza,” “symptom,” “prevention,” “treatment,” and “infected with.”
cMLKNN: multilabel adapted k-nearest neighbors.
dBERT: bidirectional encoder representations from transformers.
eAraBERT: transformer-based model for Arabic language understanding.
fNBSVM: support vector machine with naive Bayes features.
gThe five labels are “influenza name,” “symptom,” “prevention,” “treatment,” and “infected with.”
hThe three labels are “influenza name,” “slang term of influenza,” and “infected with.”
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Table 5. Training results of the seven algorithms with six, five, and three labels for the COVID-19 case study.

Hamming loss (%)Accuracy (%)AUCa (%)Precision (%)Recall (%)F1 score (%)Number of labels and multilabel classification
technique

Sixb

33.315.664.056.652.854.6Binary relevance

32.318.564.258.749.853.9Classifier chains

31.822.266.557.959.458.6Label power set

32.410.064.458.451.054.5Adapted algorithm (MLKNNc)

8.862.090.389.786.788.2BERTd

13.650.586.079.884.482.0AraBERTe

21.720.773.185.051.764.3NBSVMf

Fiveg

35.915.863.158.156.057.0Binary relevance

35.118.363.359.953.056.2Classifier chains

34.822.065.058.463.460.8Label power set

35.710.463.158.754.656.5Adapted algorithm (MLKNN)

10.959.088.986.787.987.3BERT

12.153.988.680.792.786.3AraBERT

28.017.967.986.440.655.2NBSVM

Threeh

30.836.969.268.069.068.5Binary relevance

28.739.971.271.468.169.7Classifier chains

28.340.171.671.569.070.3Label power set

27.141.472.872.670.771.6Adapted algorithm (MLKNN)

5.193.294.993.396.494.8BERT

6.585.393.591.994.893.3AraBERT

24.246.575.486.559.670.6NBSVM

aAUC: area under the receiver operating characteristic curve.
bThe six labels are “COVID-19 name,” “slang term of COVID-19,” “symptom,” “cause,” “place of the disease spread,” and “infected with category.”
cMLKNN: multilabel adapted k-nearest neighbors.
dBERT: bidirectional encoder representations from transformers.
eAraBERT: transformer-based model for Arabic language understanding.
fNBSVM: support vector machine with naive Bayes features.
gThe five labels are “COVID-19 name,” “symptom,” “cause,” “place of the disease spread,” and “infected with category.”
hThe three labels are “COVID-19 name,” “slang term of COVID-19,” and “infected with.”

NER
A key point to be noted is that our geolocation detection
evaluation is based on the location of users where they were
tweeting. We filtered tweets that did not have any information
in the location field and/or had nonplausible locations, such as
moon and space. We created a manually annotated set from the
information in the location field in order to demonstrate greater
accuracy. This is due to the ambiguous information in the
location field that can be detected by hand. For instance, we

found some adjectives of the location, like and ,
referring to Jeddah city in Saudi Arabia.

In the influenza study, around 907 users were classified as
infected with influenza, and 397 of these users provided valuable
information in their accounts that could be used to identify the
location. As a result, our algorithm achieved an accuracy of
45.8% for predicting locations.

Regarding the COVID-19 study, 915 people were considered
to be infected, and around 358 user accounts had useful
information about the location. Therefore, after applying the
algorithm, the accuracy was up to 63.6% for identifying the
locations of the infected users.
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Discussion

Principal Findings
To understand the effect of deep learning algorithms on the
classification process, we needed to compare the results of the
ML algorithms with deep learning ones in the two case studies
for influenza and COVID-19. In the influenza study, the results
of deep learning algorithms and ML ones were close to each
other. In other words, there was no improvement in the results
when applying deep learning methods, such as BERT and
AraBERT. On the other hand, in the COVID-19 case study,
there was up to a 25% enhancement in the results when applying
BERT and/or AraBERT. These results helped to confirm that
deep learning methods show good returns when dealing with
new terms or unknown vocabularies that represent COVID-19
terms.

By applying our previous work [45], which classified the sources
of the tweets into the following five types: academic, media,
government, health professional, and public, we found that
informal language was used in the public type (examples 1, 3,
and 7 in Table 3), while the other types (academic, media,

government, and health professional) utilized more formal styles
(examples 2, 4, 5, and 6 in Table 3). Hence, disease-related
slang names or other symptoms play an important role in
detecting the disease mentions in social media. People not only
used slang terms but also expressed their feelings using other

terms such as metaphors [46]. For example, “ ,” which means
“hi flu,” shows that the person, who wrote the tweet, was
affected by flu. Here, 71.9% of the tweets proved that there was
a relationship among the informal language used by flu-infected
people.

We also found that there was a relationship among the
“symptom,” “prevention,” and “infected with” labels. Overall,
64.3% of people infected by influenza sent tweets mentioning
symptoms, such as sneezing, headache, coughing, and fever.
Among tweets about prevention, 69.3% were written by a person
who was not infected with influenza. However, there were a
number of tweets that broke these patterns. In other words, we
observed tweets written about symptoms that did not represent
an infected person or tweets written about prevention that
represented an infected person. Table 6 shows some examples
of the tweets that described these relationships.

Table 6. Examples of tweets describing the relationships among the symptom, prevention, place, and infected with labels.

DescriptionTweet in EnglishTweet in Arabic

The relationship between symptom and infected
with influenza

Flu headache is bad

The relationship between symptom and infected
with influenza

I think I will die from flu; I sneeze 10 times from
the time I wake up

The relationship between prevention and noninfect-
ed with influenza

The flu vaccine does not prevent colds, as some
believe, but it prevents serious influenza A and B
infections that kill large numbers around the world

The relationship between symptom and infected
with COVID-19

Corona, what did you do for me? For two weeks, I
will not be able to feel the taste of something

The relationship between place and noninfected
with COVID-19

Riyadh records 320 new coronavirus cases and 15
deaths

The relationship between prevention and noninfect-
ed with COVID-19

Adhere to the precautions and prevention from
Corona, as the wave has really started, so wear
masks, stay away from gatherings, and sterilize and
wash your hands with soap and water for a period
of no less than thirty seconds

The study by Saker et al [47], which was published recently,
proved that users who tested positive for COVID-19 also
reported their symptoms using Twitter. Alanazi et al [23]
described the most common COVID-19 symptoms from Arabic
tweets in their study. These symptoms can be further evaluated
in clinical settings and used in a COVID-19 risk estimate in
near real time.

There are many ways to know the location of the Twitter user,
such as geocoordinates, place field, user location, and tweet
content. The most accurate method is using the network
geolocation system for either the tweet or the user. However,
because it is an optional field, less than 3% of users provide
this information [19,48]. In addition, there is noisy information
in the user location field because users can type anything like
“home” or “in the heart of my dad.” As a result, we used the

tweet content by assuming that users mentioned helpful
information when they tweeted.

On the other hand, some researchers have tried to predict the
location of the user using dialect identification from the tweet
content [49]. Although this may prove fruitful, in our scenario,
it may not reflect the current location that would be required,
since a person may tweet in the Egyptian dialect but live in
Saudi Arabia.

Conclusion
This paper has, for the first time, shown that Arabic social media
data contain a variety of suitable information for monitoring
influenza and COVID-19, and crucially, it has improved on
previous research methodologies by including informal language
and nonstandard terminology from social media, which have
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been shown to help in filtering unrelated tweets. It should be
noted that we are not trying to provide a single source of
information for public health bodies to use, but want to provide
a comparable information source through which to triangulate
and corroborate estimates of disease spread against other more
traditional sources.

We also introduced a new Arabic social media data set for
analyzing tweets related to influenza and COVID-19. We labeled
the tweets for categories in the Arabic Infectious Disease
Ontology, which includes nonstandard terminology. Then, we
used multilabel classification techniques to replicate the manual
classification. The results showed a high F1 score for the
classification task and showed how nonstandard terminology
and informal language are important in the classification process,

with an average improvement of 8.8%. The data set, including
tweet IDs, manually assigned labels, and other resources used
in this paper, have been released freely for academic research
purposes, with a DOI via Lancaster University’s research portal
[50].

Moreover, we applied an NER algorithm on the tweet content
to determine the location and spread of infection. Although the
number of users was limited, the results showed good accuracy
in the analysis process.

There are several further directions to enhance the performance
of the system in the future, including expanding the data used
to train the classifier, analyzing different infectious diseases,
and using more NLP techniques and linguistic features.
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Abstract

Background: In the case of Korean institutions and enterprises that collect nonstandardized and nonunified formats of electronic
medical examination results from multiple medical institutions, a group of experienced nurses who can understand the results
and related contexts initially classified the reports manually. The classification guidelines were established by years of workers’
clinical experiences and there were attempts to automate the classification work. However, there have been problems in which
rule-based algorithms or human labor–intensive efforts can be time-consuming or limited owing to high potential errors. We
investigated natural language processing (NLP) architectures and proposed ensemble models to create automated classifiers.

Objective: This study aimed to develop practical deep learning models with electronic medical records from 284 health care
institutions and open-source corpus data sets for automatically classifying 3 thyroid conditions: healthy, caution required, and
critical. The primary goal is to increase the overall accuracy of the classification, yet there are practical and industrial needs to
correctly predict healthy (negative) thyroid condition data, which are mostly medical examination results, and minimize
false-negative rates under the prediction of healthy thyroid conditions.

Methods: The data sets included thyroid and comprehensive medical examination reports. The textual data are not only
documented in fully complete sentences but also written in lists of words or phrases. Therefore, we propose static and contextualized
ensemble NLP network (SCENT) systems to successfully reflect static and contextual information and handle incomplete sentences.
We prepared each convolution neural network (CNN)-, long short-term memory (LSTM)-, and efficiently learning an encoder
that classifies token replacements accurately (ELECTRA)-based ensemble model by training or fine-tuning them multiple times.
Through comprehensive experiments, we propose 2 versions of ensemble models, SCENT-v1 and SCENT-v2, with the
single-architecture–based CNN, LSTM, and ELECTRA ensemble models for the best classification performance and practical
use, respectively. SCENT-v1 is an ensemble of CNN and ELECTRA ensemble models, and SCENT-v2 is a hierarchical ensemble
of CNN, LSTM, and ELECTRA ensemble models. SCENT-v2 first classifies the 3 labels using an ELECTRA ensemble model
and then reclassifies them using an ensemble model of CNN and LSTM if the ELECTRA ensemble model predicted them as
“healthy” labels.

Results: SCENT-v1 outperformed all the suggested models, with the highest F1 score (92.56%). SCENT-v2 had the second-highest
recall value (94.44%) and the fewest misclassifications for caution-required thyroid condition while maintaining 0 classification
error for the critical thyroid condition under the prediction of the healthy thyroid condition.

Conclusions: The proposed SCENT demonstrates good classification performance despite the unique characteristics of the
Korean language and problems of data lack and imbalance, especially for the extremely low amount of critical condition data.
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The result of SCENT-v1 indicates that different perspectives of static and contextual input token representations can enhance
classification performance. SCENT-v2 has a strong impact on the prediction of healthy thyroid conditions.

(JMIR Med Inform 2021;9(9):e30223)   doi:10.2196/30223

KEYWORDS

deep learning; natural language processing; word embedding; convolution neural network; long short-term memory; transformer;
ensemble; thyroid; electronic medical records

Introduction

In South Korea, a large portion of medical services are
maintained and operated under the public health insurance
system [1-4], and the Korean National Health Insurance
Corporation conducts biannual national health screening
examinations. Apart from government-sponsored biannual health
examination services, which are different from the health
insurance system in the United States, Korean companies
provide regular medical checkups to their employees annually
according to Article 43 of the Occupational Safety and Health
Act [5]. The entrusted companies conduct the examination in
partnership with affiliated examination centers in large hospitals
or professional examination centers and collect the results from
individual medical institutions to provide follow-up health care
services to the clients.

Electronic medical records (EMRs) and other forms of medical
documentation are designed to focus on the convenience of
work for medical personnel in line with the primary use of
patient care. The text records of any examination numerical
values and comprehensive findings provided by more than 1
examination institution are not standardized and are written in
nonunified formats with different periods and health
professionals. Thus, to ensure that consistent services are
offered, a group of experienced nurses in examination work has
been established using classification guidelines based on
important keywords and by manually classifying individual test
results to organize these results into a single unified format. In
this study, thyroid ultrasonography and hormone tests were
selected among the various measurements for the application
of ensemble language models. The following sections are
targeted for this study: individual text diagnosis of thyroid
diseases, 3 numeric variables for thyroid hormone examination
results, and comprehensive medical examination reports,
including doctors’ comments.

When the rule-based text classification is considered for the
analysis of contents in EMRs, repetitive classification and
human labor–intensive verification can be required for an
extensive rule set, regular expression, and branch logic because
of a data model that is not designed for secondary usage of text
data or sharing and interworking between multiple agencies
[6-8]. However, various implementations in medical natural
language processing (NLP) and applications of diverse language
models can be considered with recent advances in NLP and
techniques based on artificial neural networks [9-16] for data
extraction, early detection of diseases, diagnostic support, and
prediction of outcomes. Deep learning (DL) models represent
intricate structures in large data sets by updating the internal
parameters from backpropagation. Such learning techniques

produce promising results in various tasks in processing images,
videos, audio, and text data [17].

The data sets in our study are textual data that describe the
findings and doctors’ comments from thyroid ultrasonography
and additional comprehensive medical examination results.
Such textual data can be considered and processed using NLP
methods in DL. Referring to Wu et al [9], the most widely used
DL model is recurrent neural network (RNN) variants, while
Word2Vec [18] is the most common in embedding architectures.
Among their reviewed papers, text classification has the highest
percentage (41.5%) for clinical NLP tasks, followed by
bidirectional encoder representations from transformers (BERT)
[19]. BERT can be used by either training from scratch, directly
using fixed pretrained models, or fine-tuning it.

In this study, we initially developed multiple
single-architecture–based deep neural network models in NLP
not only by using the efficiently learning an encoder that
classifies token replacements accurately (ELECTRA) [20]
model, which is a pretrained model with open Korean corpus
data sets [21] in our study, but also by inventing a convolutional
neural network (CNN) [22] model and long short-term memory
(LSTM) [23] model. We chose the ELECTRA language model,
which has an identical structure to BERT, because it achieves
better performance on various NLP benchmarks than BERT
and verifies that different pretraining methods are more effective
for downstream NLP tasks. However, ELECTRA has a sequence
limitation of 512 input tokens; thus, the LSTM structure is
employed to capture the full length of contextual representations
of input words. For the ELECTRA model, we propose a
keyword-based trimming method for the comprehensive medical
examination section of the input data sets to reflect
thyroid-related information, which could be compulsively
truncated because of limitations, effectively for the contextual
representations.

Furthermore, we investigate and establish ensemble
classification models based on the CNN, LSTM, and ELECTRA
models. The combination of static and contextual NLP models
is required not only to capture different perspectives of static
and contextual word representations from the same input
sequences but also to consider the characteristics of the data.
The format of the data sets is not standardized or unified; thus,
they can be prepared as complete sentences, lists of
terminology-based words or phrases with or without numbering
them, and groups of numerous medical examination
measurements. Such aspects can be an obstacle, particularly for
training the contextual relationships between input word tokens.
Consequentially, we propose ensemble models to capture static
and contextualized input word representations of textual
examination data and classify them into 3 labels: healthy,
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caution required, and critical thyroid conditions. We construct
2 ensemble models and call them static and contextualized
ensemble NLP network (SCENT) systems. SCENT version 1,
SCENT-v1, is an ensemble or soft voting method for the CNN
and ELECTRA ensemble models. SCENT-v2 is a hierarchical
ensemble of CNN, LSTM, and ELECTRA ensemble models.

SCENT-v2 initially classifies the 3 thyroid conditions using the
ELECTRA ensemble model and reclassifies the selected labels,
only if the ELECTRA ensemble model predicted them as
“healthy” thyroid conditions, using an ensemble of CNN and
LSTM ensemble models (Figure 1).

Figure 1. Overall flow of our proposed ensemble approach. T3: triiodothyronine; Free-T3: free triiodothyronine; T4: thyroxine; Free-T4: free thyroxine;
TSH: thyroid stimulating hormone; ELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements Accurately; Uni-LSTM: unidirectional
long short-term memory; CNN: convolution neural network; SCENT: Static and Contextualized Ensemble NLP-neTworks; -v1: version 1; -v2: version
2.

Methods

Data Labeling Using Thyroid Ultrasonography
Keywords
Thyroid glands are butterfly-shaped endocrine glands located
in the lower front of the neck and are responsible for the
production of thyroid hormone [24]. Thyroid nodules are lumps
produced by abnormal growth of thyroid cells that appear as
either solid (hard lumps) or cystic (water lumps). If nodules are
found in the thyroid gland during a medical examination, thyroid
ultrasonography can be performed to check for signs of cancer.
It is also possible to check thyroid hormone levels and conduct
blood tests on thyroid antibodies to identify other types of
thyroid disorders [25]. Thyroid nodules typically do not cause
symptoms or require treatment, but a small number of thyroid
nodules can be diagnosed as cancerous. Thyroid cancer is mainly
detected and diagnosed using blood tests and thyroid
ultrasonography. Thyroid ultrasonography may show the size
and shape (solid or liquid-filled cysts) of thyroid nodules.

For our experimental data sets, to minimize classification errors,
an experienced nurse with expertise in the field of health
examination performed the first labeling task, and a member of
another nurse group performed the second labeling of each
entry. After that, reclassification proceeded through group

discussions on the parts with differences in classification. In
this study, the final classification tags for each entry were used
as labels. The basic test results classification criteria are defined
as follows:

• Healthy: no abnormalities (normal), simple cyst, tubular
cyst, thyroid resection (thyroidectomy), benign calcification.

• Caution required: hypothyroidism, unequal parenchyma,
internal thyroid disease, thyroiditis, nodule, thyromegaly,
hyperechoic lesion, hypoechoic lesion, hyperechoic nodules,
hypoechoic nodules, cystic lesions.

• Critical: tumor, malignant, biopsy, fine-needle aspiration
cytology.

Data Preprocessing
The data sets, which consist of individual text diagnosis of
thyroid diseases, comprehensive medical examination text
reports including doctors’comments, and 3 categorical variables
for individual hormone examination results, were classified as
healthy, caution required, and critical labels in total. The
categories of hormone examination results were classified as
normal or abnormal by comparing the results of the numerous
subtests for triiodothyronine (T3), free triiodothyronine (Free
T3), thyroxine (T4), free thyroxine (Free T4), and
thyroid-stimulating hormone with the reference range for each
device and test. A total of 122,581 textual data were collected
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in the free form of EMRs from 284 health care institutions in
the Republic of Korea between January 2015 and May 2020;
thus, data clearing was compulsory. The data sets were written
in Korean with numerous English biological and chemical
terminologies, including various special characters. Many
special characters and measurement units with brackets such as
“blood pressure 120/80 mm/Hg”, “microalbuminuria is less
than 30 mg/g”, and “renal cyst (left side 1.4 cm)” can increase
vocabulary size and lengthen the sequence of input texts
unnecessarily. Therefore, Korean, English, numerical characters,
and only selected special characters, such as “%”, “'”, “/”, “~”,
“²”, “-”, “,”, and “.” remained after preprocessing. In addition,
the 3 dummy variables of hormone examination were converted
concisely into 3 sentences before tokenization: “hormone
examination results were normal,” hormone examination results
were abnormal,” and “hormone examination was not
conducted.”

Among the total sample size of 122,581 text data, 84,111
samples, 37,220 samples, and 1250 samples were labeled as
healthy, caution required, and critical conditions, respectively.
The extreme data imbalance can be troublesome for training or

fine-tuning the DL models, so the least amount of critical
condition data was initially divided into 7:1:2 ratios for training,
validation, and test data sets. The training data were then
augmented by splitting sentences and each sentence was attached
one by one starting from the first sentence to the last. For
instance, a sample datum with 3 consecutive sentences was
multiplied into 3 samples with the first 1 sentence, the first 2
sentences, and the entire 3 sentences each from the original
sample data. During the augmentation, the order of sentences
was preserved as the original sample data because split sentences
were added in the order of original sequences. Consequently,
the critical condition data sets were split and then augmented,
and the healthy and caution-required condition data sets were
only divided according to the ratio of prepared data (Table 1).
The training data sets for the critical condition were augmented
from 875 to 29,174 samples. After that, the entire prepared
training data sets were randomly shuffled. Relatively short
examples of data and translations for each class are listed in
Table 2. The data sets consist of a sequential combination of
individual diagnosis, hormone examination results, and
comprehensive medical examination reports. Comprehensive
reports are occasionally omitted.

Table 1. Numbers of divided sample data sets. Only train data for critical thyroid condition are augmented and the original amount of data before the
augmentation is given in brackets (N=122,581).

Total number of prepared data setsThyroid conditions

Total, n (%)Test (n=42,237), n (%)Validation (n=21,119), n (%)Train (n=87,524), n (%)

84,111 (68.62)36,624 (86.71)18,312 (86.71)29,175 (33.33)Healthy

37,220 (30.36)5363 (12.70)2682 (12.70)29,175 (33.33)Caution required

1250 (1.02)250 (0.59)125 (0.59)29,174 [875] (33.33)Critical
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Table 2. Short examples and English translations for each thyroid condition.

ContentsExamples

Healthy condition

정상. 호르몬 검사 수치 정상입니다. uibc 감소, 철 증가, 총 콜레스테롤 증가, glucose증가, 골다공증.Original

Normal. Hormone examination results were normal. UIBC decreases, iron increases, total cholesterol increases,
glucose increases, osteoporosis.

Translation

정상. 호르몬 검사 수치 미 판정입니다. 체중 관리에 주의 가 필요합니다. 총 콜레스테롤 수치가 높습니
다. 중성지방수치가 높습니다. 저밀도 콜레스테롤 수치 가 높습니다 .

Original

Normal. Hormone examination was not conducted. Please be aware of weight management. Total cholesterol
level is high. Neutral fat level is high. Low-density lipoprotein cholesterol level is high.

Translation

Caution-required condition

갑상선염. 호르몬 검사 수치 정상입니다. b형 간염 항체 미 형성. 갑상선염. 고 음영 유방, 유방 양성 석
회화 양측.

Original

Thyroiditis. Hormone examination results were normal. Hepatitis B antibody not formed. Thyroiditis. Dense
breast, positive calcification for both.

Translation

갑상선염 의심 또는 치유 반흔. 호르몬 검사 수치 정상입니다. 양측 치밀 유방 2. 갑상선염 의심 또는 치
유 반흔 3. 담낭 결석 및 콜레스테롤 용종 4. 위염 5. 자궁경부 염 6. a형간염 항체 없음.

Original

Suspect thyroiditis or scars. Hormone examination results were normal. Dense breasts for both. 2. Suspect thy-
roiditis or scars 3. Gallstone and cholesterol polyps 4. Gastritis 5. Cervicitis 6. No antibody for hepatitis A.

Translation

Critical condition

갑상선 초음파 검사상 좌엽 결절 2.78 cm 소견입니다. 세침 흡인 세포검사를 받으시 길 권유합니다. 호
르몬 검사 수치 미 판정입니다.

Original

Thyroid ultrasonography shows 2.78 cm of left nodule. We recommend taking a fine needle aspiration cytology.
Hormone examination was not conducted.

Translation

갑상선 좌측부에 10.2mm 크기의 저 에코결절이 1개 있으며 감별 진단을 위해 세침검사로 확인 요망됨.
결론은 좌측 부 갑상선 결절. 요망 세침검사로 확인 및 의사와 상담 요망. 호르몬 검사 수치 정상입니다.
위장 조영촬영결과 유 소견입니다. 갑상선 초음파 검사 결과 유 소견입니다.

Original

There is 10.2mm size of 1 hypoechoic nodule in left-sided thyroid and requires fine needle aspiration cytology
for differential diagnosis. Left-sided thyroid nodule in the conclusion. Have consultations with doctors and
confirm with fine needle aspiration cytology. Hormone examination results were normal. Blood sugar level
before a meal is high. Upper gastrointestinography results were abnormal. Thyroid ultrasonography results were
abnormal.

Translation

Tokenization
Korean is an agglutinative language and one of the
morphologically rich [26] and typologically diverse [27]
languages; a character is composed of consonants and vowels
of the Korean alphabets in 3 positional forms: choseong (syllable
onset), jungseong (syllable nucleus), and jongseong (syllable
coda). The positional forms are displayed in the lexicographic
order of Korean alphabets as follows:

Choseong: ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎ

Jungseong: ㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢ
ㅣ

Jongseong: (None)ㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂ
ㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ

One of the common challenges in text preprocessing for Koreans
is the ambiguity of word spacing, unlike other languages. For
example, an English phrase “Be able to do” is translated into a
grammatically accurate Korean phrase “할 수 있다,” which has
2-word spaces. When not strictly aware of Korean orthography,
it can also be written as “할수 있다” (Beable todo) with 1-word
space or “할수있다” (Beabletodo) without any word space.

Furthermore, various postpositions or particles, which means
“helping words” in English, are immediately attached after
nouns or pronouns without any white space. For instance,
English phrases “I am” and “You and me” become “Iam” and
“Youand me” in Korean phrases. This can make it difficult to
decompose sentences into distinguishable morphemes; for
example, the same noun(s) or pronoun(s) can be tokenized into
multiple tokens, even if their actual meaning may not differ.
Such inconsistent grammatical errors and unique grammatical
aspects can cause the same expression of word-level texts to be
tokenized into different tokens, which may result in difficulty
in training NLP models.

To resolve such problems, we used the MeCab-ko [28]
tokenizer, which was originally introduced as MeCab for
Japanese morphological analysis by Kudo et al [29]. The
variation for the Korean tokenizer yields good performance to
handle such problems by reconstructing and unifying a
grammatical structure with a relatively faster speed than other
Korean tokenizers [30]. WordPiece [31-33], which was
originally introduced for Japanese/Korean segmentation, was
employed for the transformer [34] encoder–based models such
as BERT and ELECTRA for various purposes. One of the major

JMIR Med Inform 2021 | vol. 9 | iss. 9 | e30223 | p.64https://medinform.jmir.org/2021/9/e30223
(page number not for citation purposes)

Shin et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


advantages is that it can increase the robustness against the
out-of-vocabulary (OOV) problem with a relatively small
vocabulary size by disassembling words into subword units
using a given text corpus. Therefore, in this study, we used the
combination of MeCab-ko and WordPiece to pretrain the thyroid
text data sets to fine-tune the ELECTRA [21] model, which
was pretrained with a Korean open-source corpus. The input
sentences were initially identified and reconstructed into possible
grammatical morphemes by MeCab-ko and then segmented
into divisible subwords that maximize the log likelihood of a
language model by WordPiece. For instance, “임상적으로,”
which means “clinically” in English, can eventually be tokenized
into “임상,” “##적,” “으로” as “clinic,” “##al,” and “ly,” where

the last part was initially separated by MeCab-ko and the first
and second parts were segmented by WordPiece after that.

The average and maximum lengths of the input sequence
resulting from different tokenizers are listed in Table 3. All
input tokens from every sample had right-skewed (positive
skewness) distributions. To reduce the sequence length,
especially for the ELECTRA model, which has a limitation of
512 tokens, only comprehensive examination reports were
trimmed for every sample. Based on the first sentence containing
the word “thyroid,” all subsequent sentences including 1
previous sentence were extracted and then recombined with
individual text diagnosis of thyroid diseases and textualized
hormone examination results. Original comprehensive text
reports were used when the word “thyroid” does not exist.

Table 3. Comparison of different tokenizers and the numbers of input tokens.

Maximum number of tokensAverage number of tokensTokenizer

TestValidTrainTestValidTrain

224022192227520.1522.3494.2MeCab-ko

417129434096695.9698.7664.7WordPiece for BERTa

250024722656593.7596.3564.9WordPiece for ELECTRAb

243524312608567.6570.0540.6MeCab-ko and WordPiece

221622192162418.8419.6370.4MeCab-ko (trimmedc)

241224312365456.6457.6404.9MeCab-ko and WordPiece (trimmedc)

aBERT: bidirectional encoder representations from transformers.
bELECTRA: efficiently learning an encoder that classifies token replacements accurately.
cTrimmed: The data sets were trimmed based on the keyword “thyroid” in the comprehensive medical examination text part.

Proposed Framework

Overview
In this study, we propose ensemble models, SCENT-v1 and
SCENT-v2, which can reduce generalization errors of the
prediction and reflect static and contextual perspectives of word
representations in accordance with thyroid and general
examination reports. Our proposed ensemble models consist of
multiple single-architecture–based ensemble models from CNN,
LSTM, and transformer encoder architectures as shown in
Figures 1 and 2. We initially created a CNN with batch
normalization (BN) [35] transform approach, LSTM with 2
shortcut connections [36] including an attention mechanism
[37], and ELECTRA models. Each model was trained or

fine-tuned 10 times with different settings of epochs, learning
rates, and batch sizes. Subsequently, each
single-architecture–based model was trained or fine-tuned 10
times and then combined into an ensemble model. In other
words, 3 respective CNN, LSTM, and ELECTRA ensemble
models were constructed by combining each of the 10 model’s
prediction averages from softmax functions, or simply by
performing soft voting, to stabilize the variances of classification
performance. Based on the experimental results of
single-architecture–based ensemble models, we selected the
CNN-Word2Vec, Uni-LSTM, and ELECTRA-v2 ensemble
models for further ensemble approaches. The 3 distinct models
were CNN with trainable Word2Vec embedding, unidirectional
LSTM with trainable Word2Vec embedding, and the second
version of ELECTRA fine-tuned with trimmed data sets.
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Figure 2. The architecture of the proposed ensemble models. Each model is trained or fine-tuned ten times for each ensemble model. Best viewed in
color. CNN: convolution neural network; Batch Norm.: batch normalization transforms; LSTM: long short-term memory; ELECTRA: Efficiently
Learning an Encoder that Classifies Token Replacements Accurately; Norm.: layer normalization.

The final predictions for the thyroid condition classification
were then determined using ensemble and hierarchical ensemble
methods, namely, SCENT-v1 and SCENT-v2, respectively. In
this experiment, static word representations were captured from
the CNN-Word2Vec ensemble model, and contextualized word
representations were captured from the Uni-LSTM ensemble
model with the ELECTRA-v2 ensemble model, which
exclusively considers the initial 512 token sequences in the
trimmed data sets. SCENT-v1 is an ensemble of CNN and
ELECTRA ensemble models, and SCENT-v2 is a hierarchical
ensemble of CNN-Word2Vec, Uni-LSTM, and ELECTRA-v2
ensemble models (Figure 1). The multilabel classification in
SCENT-v2 was based on the 3 thyroid condition predictions
from the ELECTRA-v2 ensemble model and reclassified the
selected labels using an ensemble of CNN-Word2Vec and
Uni-LSTM ensemble models, where only the ELECTRA-v2

ensemble model predicted “healthy” thyroid conditions. In other
words, SCENT-v2 kept the decisions from the ELECTRA-v2
ensemble model for “caution required” and “critical” thyroid
condition predictions, and then made final decisions from an
ensemble of CNN-Word2Vec and Uni-LSTM ensemble models
only for the “healthy” thyroid conditions, which were predicted
by the ELECTRA-v2 ensemble model.

Our proposed SCENT-v2 is designed for the industrial purpose
in that it saves time and cost by reducing the number of manual
thyroid condition classification steps required and human
misclassification errors. Perfect overall classification accuracy
for current and future data sets must be the ideal solution.
However, there are numerous obstacles such as imbalanced
numbers of data sets and the difficulty level of the problem.
This hierarchical ensemble method, therefore, was pursued to
minimize the numbers of false negatives and maximize the
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numbers of true negatives as depicted in Figure 3. It primarily
aimed to correctly predict an exceedingly high number of
healthy thyroid conditions with 100% precision of healthy
(negative) thyroid labels and leave the remaining data sets for
manual classification to provide precise health care services
and reduce the human classification workloads. This approach
was proposed to take into account aspects of practical and
industrial usage efficiency by sacrificing the overall accuracy
but reducing the large manual workloads. Based on the

validation data sets, among the 3 single-architecture–based
ensemble models, the ELECTRA-v2 ensemble model indicates
a relatively low number of false positives, and the 2
CNN-Word2Vec and Uni-LSTM ensemble models show a
relatively small number of false negatives in the prediction of
healthy thyroid conditions (Figure 3). Accordingly, we
constructed SCENT-v2 for the hierarchical ensemble model in
this study.

Figure 3. A confusion matrix for healthy thyroid condition datasets. TN: true negative; FP: false-positive; FN: false-negative; TP: true positive.

Embedding
Word embedding is a way of expressing words that are
converted into distributed vector representations. Mikolov et al
[18] introduced Word2Vec embedding, which provides
remarkable performance for capturing syntactic and semantic
word relationships. Continuous bag of words (CBOW) and
Skip-gram methods were proposed with several loss function
approaches in their paper, and we used skip-gram with negative
sampling (SGNS) Word2Vec in our NLP models. For a given
corpus sequence T length of words w1, ... , wt–1, wt, wt+1, ..., wT,
where the training context size is c, CBOW predicts the
probability of the current word wt as P(wt|wt-c, ..., wt+c). By
contrast, the skip-gram method predicts the probability of the
context words as P(wt–c, ..., wt–1, wt+1, ..., wt+c|wt) by the softmax
function calculated as

where vw and v w are the input and output word vector
representations, respectively; |V| is the vocabulary size; and wO

and wI refer to the target word representations and the given
word representations, respectively. Negative sampling is
suggested as an alternative to the initially used hierarchical
softmax function because of the cost of computing the
vocabulary size. It is defined by the objective function calculated
as

where every logP(wO|wI) in the objective is replaced. The

probability Pn(wi)=f(wi)
3/4⁄∑j=0[f(wj)

3/4] is a unigram distribution
that allows the use of a selected number of n negative samples
instead of the number of vocabulary sizes. To use the SGNS
Word2Vec, we initially predefined 5 context sizes, 5 negative
samples, and 300 dimensions for each vector representation.
The embedding was then pretrained unsupervised using
Wikipedia corpus data [38], which contain 162,861 articles on
various topics. The grammatical expressions in the corpus data
were restructured and prepared using the MeCab-ko tokenizer
before pretraining. This method helps convert the ith word wi

to a fixed length of 300-dimensional word vector xi, and thus,
can be calculated algebraically; for instance, vector(“한국

Korea”)–vector(“서울Seoul”)+vector(“도쿄Tokyo”) results in a
vector representation with most similarity of the word 일본Japan

(the subscripts are English translation).

Word embeddings for transformer-based models BERT and
ELECTRA have a different approach for establishing word
vocabulary because of the tokenizer called WordPiece. Rather
than the n-gram strategy in Word2Vec, this approach initializes
the vocabulary with its size to include all character
representations in each corpus by using a greedy
longest-match-first [39] approximation, which picks the longest
subwords or prefixes inside the corpus. It selects a new word
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piece that maximizes the log likelihood for the corpus when the
word piece is added to the language model. For example, a word
piece “un” is added to the vocabulary if the probability of “un”
divided by “u” and “n” is higher than other subword units. After
the preparation of token embeddings, both transformer-based
models create their input representations by summing up the
token, segment, and position embeddings. Two special tokens
were used to distinguish sentences. A special classification
token (CLS) was inserted as the first token of all sentences for
the classification task, and a special separator token (SEP) was
used to distinguish sentence pairs as the first and second
sentences, where the segment embedding distinguishes them.
The position embedding shows the location of each token as

PE(p,2i)=sin(p⁄100002i/d) and PE(p,2i+1)=cos(p⁄100002i/d), where
p indicates the location of the embedding vector in the input
sentence; and i is the index of the dimension within the
embedding vector. A hyperparameter d=768 indicates the
dimensions of all corresponding embedding vectors and encoder
layers of the transformer.

Convolution Neural Networks
CNN can be described as a structure that is originally designed
for processing images to identify patterns of features by weight
sharing and local connectivity. CNN can be used for NLP as
well and extracts the same features regardless of positions by
sliding CNN filters over consecutive tokens with a fixed window
size. CNNs have become an essential method in computer vision
tasks [40-42] and produce good results on sentence classification
tasks [43]. In this study, we suggest deep CNN feature–learning
methods to determine how static word vector representations
are achieved in text classification. The model, which is depicted
at the top of Figure 2, considers input word tokens through
pretrained Word2Vec, where the maximum length of input
sequences is set to 2240 tokens. The CNN model initially
vectorizes input word tokens through word embeddings with a
dimensionality of 300 for each vector representation. A
convolution operation then generates a feature map c=f(Wx+b),
where W and b are the weight and bias parameters of the model,
respectively, and f(·) is a nonlinear function such as rectified
linear units [44] and ReLU(x)=max(0, x). We employed the BN
transform in the convolutional operation before the nonlinearity
function. In this study, we used the BN transform in the CNN
operations because it [35] can reduce the necessity for dropout
[45], and other methods such as L2 regularization become
ineffective when combined with BN, but only influence learning
rates [46].

Starting from the lower layers of the CNN model, we conducted
the summation of 2 consecutive 3 kernel sizes of convolution
layers with BN and 1 kernel size of the convolution layer

without BN from pretrained SGNS Word2Vec. The word vectors
with a dimensionality of 300 are represented as local features
of word vectors with 250 dimensions. The structure then
connects to a max-pooling combination consisting of size 3 and
stride 2 of max-pooling, 2 consecutive 3 kernel sizes of
convolution layers with BN, and a simple shortcut connection
with a consistency of 250 dimensionality. The combination was
repeated 6 times to determine deep representations of static
word features, and a global max-pooling operation extracted
the maximum values over the dimensions. The penultimate
layer was then connected to the softmax computation layer for
the label prediction using BN with a dropout rate of 0.5. The
CNN model was constructed with 3 variants of word embedding:
CNN-random, CNN-fixed-Word2Vec, and CNN-Word2Vec.
The only difference is that the parameters of the embedding
part were randomly initialized, transferred from pretrained
SGNS Word2Vec, maintained nontrainable, and fine-tuned
pretrained SGNS Word2Vec during model training.

Long Short-term Memory
RNN can be described as a neural network that learns from
sequential data such as time-series data. It has a recurrent
structure that learns temporal or sequential patterns and makes
the information persistent. However, gradient vanishing is a
significant problem while training RNN-based models, and it
can cause a long-range dependency when a long input sequence
is given. LSTM is a form of RNN structure with added gates
in the LSTM interface (Figure 4). Memory cell block alleviates
long-term dependency problems. In a unit of LSTM, the forget
gate ft=σ[Wf(ht–1, xt)+bf] decides how much to neglect when the
previous hidden state and the vector xt at time t are given. The
new memory node gt=tanh[Wg(ht–1, xt)+bg] stores new
information from the previous hidden state and the vector xt.
The input gate it=σ[Wi(ht–1, xt)+bi] decides how much new
information can be accommodated by element-wise
multiplication of the new memory cell. The output gate
ot=σ[Wo(ht–1, xt)+bo] determines how much information is
delivered to the hidden state ht at time t. In conclusion, the
hidden state ht=ot·tanh(ct) is produced with the element-wise
multiplication of the output gate and memory cell of ct, where
the memory cell ct=ft·ct–1+it·gt is produced by the summation
of the element-wise multiplication of the forget gate with
previous memory cell of ct–1 and element-wise multiplication

of the input gate with the new memory node. σ(x)=1/(1+e–x) is

a sigmoid function, tanh(x)=(e2x–1)/(e2x+1) is a hyperbolic
tangent function, and W and b are distinguishable weight and
bias parameters, respectively.
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Figure 4. One sample unit of long short-term memory. x: vector; h: hidden state; f: forget gate; i: input gate; g: memory node; o: output gate; c: memory
cell; σ: sigmoid function; tanh: hyperbolic tangent function.

As shown in the middle of Figure 2, for the contextual LSTM
model, we constructed 5 unidirectional LSTM layers with 650
units per layer with 2 shortcut connections and a 50% dropout
rate on the nonrecurrent connections for every LSTM layer.
The bidirectional LSTM model follows the same structure, but
each forward and reverse LSTM has 310 units, and 620 units
are concatenated per layer. The 2 shortcut connections, which
can help prevent the models from overfitting, are linked from
the first to the third LSTM layers and from the third to the fifth
LSTM layers. We then apply an attention mechanism that can
measure the importance of the given tokens before thyroid
classification. A hidden representation ui=tanh(Wu·hi+bu) from
the last hidden layers of LSTM is calculated, and a weighted
summation vector v=∑iαihi is determined by attention as
follows:

where Wu and bu are the weight and bias parameters,
respectively; and uc is a context vector that is randomly
initialized and jointly learned. The weighted vector then passes
to the last layer of this model to compute the softmax
probabilities of each thyroid condition. Both Uni-LSTM and
Bi-LSTM models vectorize input tokens using the MeCab-ko
tokenizer and use trainable pretrained SGNS Word2Vec
embedding.

Transformer
RNN-based models take a long time to compute input sentences
because the calculations are performed sequentially. However,
transformer processes input sentences in parallel and capture
various relationships between words in a sentence with the help
of a multihead self-attention mechanism. Because the input
tokens are not computed sequentially, transformer includes

special position embedding that reflects position information
in the attention mechanism to construct word-to-word
importance and dependency. The BERT and ELECTRA models
are based on the transformer. The authors of the transformer
proposed the architecture of encoder and decoder with a unique
attention mechanism. Both BERT and ELECTRA, which are
pretrained BERT and ELECTRA, respectively, in our study,
use multiple encoder layers of the transformer exclusively, as
shown at the bottom of Figure 2. After summing up the 3 tokens,
segments, and position embeddings as described above, the
transformer encoder obtains linear projections of key, query,
and value for each input representation. The scaled dot-product
attention is calculated through

Attention scores are obtained from each query projection by
keys, attention weight distribution is computed through a
softmax function, and the final values are obtained through the
product of the value projection. This attention step is repeated

A=12 times and concatenated to Concate(head1, ..., head12)W
O

from heada=attention(KWa
K, QWa

Q, VWa
V), where the

dimensions are dk=dq=dv=64, and the distinguishable weights

are WO, Wa
K, Wa

Q, and Wa
V. This can help train the model in

which the same input tokens can be represented from multiple
perspectives. The results from multihead attention are then
connected to 2 layers of feed-forward neural networks
FFNN=ReLU(0, xW1+b1)W2+b2, where the shape of W1 is
(d=768, dff=3072) and W2 is (dff=3072, d=768), and processed
with residual connection and layer normalization, as depicted
with arrows in Figure 2. In conclusion, these encoder layers are
stacked 12 times and then connected to the penultimate layer,
which is a dense layer with 768 units. Then, the softmax
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probabilities are computed for predicting the 3 thyroid
conditions. The 2 transformer encoder-based models are
pretrained with different learning methods: random masking
procedures [19] for BERT and replaced token detection [20]
for ELECTRA.

Experimental Settings
The hyperparameters of the different NLP models are listed in
Table 4. CNN- and LSTM-based models were trained for 30
epochs with adaptive learning rates by monitoring validation

loss; the learning rate decays by a factor of 0.7 if the validation
loss is not improved (decreased) within 1 epoch. Transformer
encoder–based models, which were initially pretrained with the
open-source Korean corpus data, were fine-tuned for 15 epochs
with a fixed learning rate. Adam [47] optimizer, where β1=0.9,
β2=0.999, and ε=1e–8, is considered for all NLP models. The
experiments were implemented with TensorFlow [48], PyTorch
[49], and Hugging Face [50] libraries, and a GeForce RTX 2080
Ti 11-GB graphic processor unit.

Table 4. Detailed information about different NLP models.

Batch sizeInitial learning rateNumber of parametersEmbedding vocabulary sizeTokenizerModels

641e–332 million100,000MeCab-koConvolution neural network

322e–446 million100,000MeCab-koUnidirectional long short-term
memory

322e–440 million100,000MeCab-koBidirectional long short-term

memory

82e–592 million8002WordPieceBidirectional encoder representa-
tions from transformers

82e–5110 million32,200WordPieceELECTRAa-version 1

82e–5112 million35,000MeCab-ko &
WordPiece

ELECTRA-version 2

aELECTRA: efficiently learning an encoder that classifies token replacements accurately.

Results

According to Table 5 and Figure 5, the macroaveraged precision,
recall, and F1 scores are calculated due to the imbalance of
multilabel data sets and confusion matrices, respectively. For
the single-architecture–based ensemble models, in general, we
observed that CNN-Word2Vec achieved the highest F1 score
among the ensemble models, and Uni-LSTM outperformed
Bi-LSTM by achieving slightly higher F1 scores. Performance
degradation was observed in the CNN-Word2Vec and
Uni-LSTM models while training with trimmed data sets, but
improvement was observed in ELECTRA-v2. The LSTM
architecture has the characteristics of an RNN, and it has

connections between units along a temporal sequence. Thus,
we assume that there must be a difficulty in learning contextual
representations owing to the inconsistency of the data structure:
lists of words or phrases and full complete sentences. Although
both BERT and ELECTRA models have recorded
state-of-the-art results on multiple NLP benchmarks, it is
surprising that fine-tuned transformer encoder layer–based
models do not achieve the highest F1 score in this classification
task even with the highest number of parameters. This is likely
because there must be an information loss by input sequence
truncation even after the keyword-based trimming method or
quality issues about these data sets themselves and the data
clearing part.
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Table 5. Experimental results from different NLP models. The test results are macroaverage classification values.

F1 score (%)Recall (%)Precision (%)Methods (model name) and models

Convolution neural network (CNN)

89.9190.6789.33CNN-randoma

90.4393.1288.01CNN-fixed-Word2Vecb

92.3392.8792.01CNN-Word2Vecc

Long short-term memory

90.3293.8987.23Unidirectional long short-term memory

90.0992.4887.97Bidirectional long short-term memory

Transformer encoder

87.9989.6986.44Bidirectional encoder representations from transformers

89.8292.1287.73ELECTRAd-version 1

91.6092.3391.03ELECTRA-version 2

Data trimming

91.9893.5690.59CNN-Word2Vec (trimmede)

88.6193.3084.77Unidirectional long short-term memory (trimmed)

91.9294.4789.63ELECTRA-v2 (trimmed)

Ensemble combination

91.7694.2489.53CNN-Word2Vec + Uni-LSTM

92.5694.1891.10SCENTf-v1: CNN-Word2Vec + ELECTRA-v2 (trimmed)

91.7694.2489.53Unidirectional long short-term memory + ELECTRA-v2 (trimmed)

92.5294.1991.02CNN-Word2Vec + unidirectional long short-term memory + ELECTRA-v2 (trimmed)

Hierarchical ensemble

91.9292.8691.30CNN-Word2Vec and unidirectional long short-term memory + ELECTRA-v2 (trimmed)

90.0993.8886.83Unidirectional long short-term memory and CNN-Word2Vec + ELECTRA-v2 (trimmed)

91.5894.4489.04SCENT-v2: ELECTRA-v2 (trimmed) and CNN-Word2Vec + unidirectional long short-
term memory

aRandom: randomly initialized embedding.
bFixed-Word2Vec: nontrainable pretrained Word2Vec embedding.
cWord2Vec: trainable pretrained Word2Vec embedding.
dELECTRA: efficiently learning an encoder that classifies token replacements accurately.
eTrimmed: data sets are trimmed based on the keyword “thyroid” in the comprehensive medical examination text part.
fSCENT: static and contextualized ensemble NLP network.

JMIR Med Inform 2021 | vol. 9 | iss. 9 | e30223 | p.71https://medinform.jmir.org/2021/9/e30223
(page number not for citation purposes)

Shin et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Confusion matrices of multi-label thyroid classification results from the test datasets. All single-architecture-based models are trained or
fine-tuned to each ensemble model. The models are (a) CNN-Word2Vec (b) Uni-LSTM (c) ELECTRA-v2 with trimmed data (d) CNN-Word2Vec +
Uni-LSTM + ELECTRA-v2 with trimmed data (e) SCENT-v1 (f) SCENT-v2.

SCENT-v1 shows the best performance by calculating the
average softmax values, or simply soft voting, from the
unnormalized prediction logits of the 2 ensemble models among
the NLP models. SCENT-v1 results in 0 misclassifications of
healthy thyroid conditions under the prediction of critical thyroid
conditions. SCENT-v2 substantially reduced the number of
misclassifications of caution-required thyroid condition to the
minimum under the prediction of healthy thyroid condition
while maintaining 0 misclassifications of critical thyroid
condition. According to Figure 5, SCENT-v2 records the highest
precision value for the “healthy” thyroid condition among all
models, including hierarchical ensemble models. In
“Hierarchical Ensemble” section of Table 5, the word “and”
distinguishes the base model and the combined model. The base
model initially classifies the 3 labels and the other combined
model reclassifies selected labels where only the base model is
predicted as having “healthy” labels.

The classification results based on tokenizing Korean input
sequences into subwords with or without morphological analysis
by MeCab-ko differ as represented in the transformer encoder
section by the variants of ELECTRA. It may be argued that the
number of vocabulary sizes is different in ELECTRA-v1 and
-v2; however, the WordPiece tokenizer has a strong effect on
OOV, and approximately a 2% increase in F1 score is worthy
of close attention. The parameters of word embedding are
randomly initialized and pretrained from CNN-random and
CNN-Word2Vec, and there are increases in the macroaveraged
precision, recall, and F1 scores observed from CNN-random to

CNN-Word2Vec. This verifies that transfer learning from a
pretrained architecture is an effective and convincing technique
for developing deep neural network models. Unlike the
validation results in which the false negatives for the healthy
thyroid condition (Figure 3) are relatively lower in
CNN-Word2Vec and Uni-LSTM ensemble models, the numbers
of false negatives from the CNN-Word2Vec, Uni-LSTM, and
ELECTRA-v2 (trimmed) ensemble models in the test data sets
do not differ. The false positives from the ELECTRA-v2
(trimmed) ensemble model were still lower than those from the
other ensemble models. Overall, all ensemble models, including
SCENT-v1 and SCENT-v2, showed poor performance in
classifying healthy thyroid conditions under the prediction of
the caution-required thyroid condition data sets.

Discussion

Limitations
The experiments were originally intended to use only the
medical results of the individual thyroid diagnoses. However,
the full results of individual text diagnosis of thyroid diseases
with hormone examination results and comprehensive medical
examination text reports, including doctors’ comments, simple
body checkups, health care–related guides, and so on, are used
as inputs of the models to reduce human curation as much as
possible. If the results are labeled as healthy, the keyword
“normal” may be mentioned in the reports. In some cases, the
results of the examination, which are supposed to be classified
as caution required, are labeled as healthy based on the phrase
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“no change” compared with reports of previous years (1 or 2
years). This can be one of the reasons as to why the number of
misclassifications does not dramatically decrease in every
experimental model. Furthermore, it cannot guarantee that data
clearing was perfectly conducted over the entire nonstandardized
122,581 data sets from 284 health care institutions. It is highly
expected that systematic improvement of data quality may
enhance all models’ performance.

The amount of information in each data varies, and individual
or comprehensive finding reports cannot be directly used as a
single unit during manual classification. Accordingly, the final
decisions were concluded by considering all the data sets. The
comprehensive text reports may contain information about
thyroid tests regardless of the flow in context, and some are
typed manually on a case-by-case basis or automatically filled
by enumerating predefined text phrases or sentences depending
on the institutions and medical professionals, such as sample
data of healthy and caution-required thyroid conditions in Table
2. Depending on the experts, the selection and order of
predefined texts may differ for the same thyroid diagnosis. This
is partly considered advantageous in deciding thyroid
classification by only considering numerous static word
representations rather than full contextual word representations
and their relationships based on such fragmentary compositions
of keywords or phrases in the data sets. This can be a reason as
why the single-architecture–based CNN ensemble model
achieves the highest F1 score compared with other
single-architecture ensemble models of Uni-LSTM and
ELECTRA-v2 with trimmed data. However, both contextual
models recorded higher recall scores than the static model.

Trimming sentences based on the keyword “thyroid” in
comprehensive examination reports because of the limitation
of 512 tokens shows an improvement in recall and F1-scores
in the ELECTRA-v2 ensemble model. This simple
preprocessing, however, cannot guarantee whether the optimal
data corresponding to thyroid ultrasonography are used as inputs.
We find that the improvement in ELECTRA-v2 indicates that
preparing a more suitable data set is meaningful under the
sequence length limitations. It is highly expected that the
performance of the ELECTRA ensemble model can be further
enhanced if the limitation is addressed, and the thyroid
ultrasound–related contents can be accurately summarized from
comprehensive examination reports. However, performance
degradation was observed in the CNN-Word2Vec and
Uni-LSTM ensemble models when the same trimming procedure
was conducted. This proves that other examination reports in
addition to thyroid ultrasound data may have valuable
information that can help in the classification of thyroid

conditions. This allows us to assume that the decline in health
conditions caused by thyroid disease can have an effect related
to a person’s physical and biological vitality.

Conclusions and Future Research
Our SCENT models show meaningful results despite the lack
of data, especially for the critical condition and unique
characteristics of Korean, such as auxiliary, adverbial case
markers, and word spacing inconsistency. Additionally, our
ensemble model methodologies can be applied to data sets with
diverse languages and different sequence lengths if only the
WordPiece tokenizer is used. Our SCENT models can not only
automate the classification of large-scale text data sets at a high
speed while maintaining multiclassification performance, but
also reduce the human labor force. For SCENT-v1,
misclassifying the “critical” case as “caution required” is much
less damaging than misclassifying it as “healthy” in this study.
However, this model cannot be directly adopted in real-life
applications because both type 1 and 2 errors must be
considered. Specifically, the false-positive errors under the
prediction of caution-required thyroid conditions are too high
to be used.

To consider SCENT models for practical use, we preferentially
aim to correctly predict the healthy condition labels, which
constitute the largest portion among the 3-class data sets. The
model SCENT-v2, which is a hierarchical ensemble of
CNN-Word2Vec, Uni-LSTM, and ELECTRA-v2 with trimmed
data ensemble models, can reduce the number of incorrect
classifications of caution-required condition data to a minimum
compared with other approaches, while maintaining the number
of misclassified critical condition data set to 0 under the healthy
thyroid condition prediction. For further studies, the receiver
operating characteristic (ROC) and area under the curve (AUC)
algorithms, or simply the AUC–ROC curve, can be considered.
For the healthy (negative) thyroid classification, the best or
optimal threshold value for the classifier based on rest (positive)
conditions can be calculated for suitable healthy thyroid
prediction performance. Furthermore, as discussed above, the
keyword-based trimming method shows that incorporating
additional medical results, which are relevant to disease
diagnosis and other physical examinations, may enable us to
build classification models to outperform the current models
that consider only selected examination results: individual text
diagnosis of thyroid diseases, hormone examination results, and
comprehensive medical examination text reports, including
doctors’ comments. We may also consider developing DL
models that can reflect the results derived from the existing
interdisease correlation study [51-53] or causality study [54-57].
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Abstract

The capabilities of natural language processing (NLP) methods have expanded significantly in recent years, and progress has
been particularly driven by advances in data science and machine learning. However, NLP is still largely underused in
patient-oriented clinical research and care (POCRC). A key reason behind this is that clinical NLP methods are typically developed,
optimized, and evaluated with narrowly focused data sets and tasks (eg, those for the detection of specific symptoms in free texts).
Such research and development (R&D) approaches may be described as problem oriented, and the developed systems perform
specialized tasks well. As standalone systems, however, they generally do not comprehensively meet the needs of POCRC. Thus,
there is often a gap between the capabilities of clinical NLP methods and the needs of patient-facing medical experts. We believe
that to increase the practical use of biomedical NLP, future R&D efforts need to be broadened to a new research paradigm—one
that explicitly incorporates characteristics that are crucial for POCRC. We present our viewpoint about 4 such interrelated
characteristics that can increase NLP systems’ suitability for POCRC (3 that represent NLP system properties and 1 associated
with the R&D process)—(1) interpretability (the ability to explain system decisions), (2) patient centeredness (the capability to
characterize diverse patients), (3) customizability (the flexibility for adapting to distinct settings, problems, and cohorts), and (4)
multitask evaluation (the validation of system performance based on multiple tasks involving heterogeneous data sets). By using
the NLP task of clinical concept detection as an example, we detail these characteristics and discuss how they may result in the
increased uptake of NLP systems for POCRC.

(JMIR Med Inform 2021;9(9):e18471)   doi:10.2196/18471
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Introduction

Health informatics is an emerging interdisciplinary field that
has undergone considerable evolution over recent years. This
evolution has largely been driven by the availability of big data
and progress in artificial intelligence, machine learning, and
data science [1]. Big data from electronic health records (EHRs)
have enabled researchers to train and execute neural
network–based machine learning (eg, deep learning) algorithms
for targeted problems, which have sometimes achieved
performances that are comparable to those of human experts
[2,3]. Clinical natural language processing (NLP)—one of the
most complex subfields of health informatics—has also
undergone rapid progress recently, which has been propelled
by advanced machine learning, including deep learning [4] and
text representation methods [5,6]. Clinical NLP holds particular
promise for improving evidence-based, patient-oriented clinical
research and care (POCRC), since significant volumes of
knowledge regarding patients and research evidence are
encapsulated in the form of free text [7,8]. Patient-centered
medicine and patient-oriented research focus on the unique
needs and characteristics of patients in addition to the specialized
skills of domain experts and the best available research evidence
[9-13]. Due to its emphasis on outcomes that are important to
patients, the POCRC model has been suggested to be superior
in terms of quality compared to disease-oriented models, which
focus on surrogate end points such as laboratory measurements
and physical signs [13-17]. There has therefore been a
continuous push, particularly in the practice of evidence-based
medicine, to promote POCRC.

NLP tools and methods are traditionally optimized and evaluated
based on their abilities to perform specialized, problem-specific,
site-specific technical tasks. Such methods typically lack the
capabilities to go beyond the problems that they are developed
for and are unable to describe the relevant diverse characteristics
of individual patients or help medical experts with
patient-oriented decision-making. For example, studies on the
fundamental NLP task of clinical concept detection (ie, concepts
from EHRs or other sources) are typically designed to detect or
extract small sets of disease-specific or problem-specific
homogeneous concepts and are evaluated intrinsically via
metrics such as accuracy and the F-measure. Such concepts, for
example, include health conditions such as obesity [18], bleeding
[19], and drug reactions [20] and behavioral patterns such as
tobacco [21] and alcohol [22] use. Velupillai et al [23] explained
that although such systems may show high performances in
intrinsic evaluation, they may have reduced value at the higher
patient level. When the abovementioned problem-oriented NLP
models are viewed through the lens of the well-defined model
of patient-centered health care [9], they appear to be analogous
to disease-oriented, evidence-based medicine models, as they
focus on a particular disease or problem instead of holistically
taking patients into account. Such problem-oriented NLP
research and development (R&D) has resulted in the creation
of state-of-the-art models for many clinical text processing tasks
and is essential for incorporating NLP progress into health
informatics. However, NLP methods’ inability to meet the
diverse requirements of medical experts has restricted their

utility in POCRC. In a clinical scenario, particularly at the point
of care, it is generally unrealistic to expect medical experts to
customize and use multiple complex NLP methods to fully
characterize patients based on the free-text information in
patients’ EHRs. As a consequence of these limitations, the
transition of clinical NLP systems from their R&D environments
to regular use by medical experts has been slow and limited
[24,25]. By building on recent advances, clinical NLP R&D
has the potential to progress from the use of disease- and
problem-oriented models to the use of patient-oriented models,
provided that the needs from an NLP perspective are clearly
defined. The gap between the capabilities of NLP systems and
the POCRC needs of medical experts may be due to the lack of
specification regarding what a patient-oriented perspective for
clinical NLP should comprise and how patient-oriented clinical
NLP systems can complement traditional problem-oriented
systems. There have been little to no formal schemes,
definitions, or discussions in medical informatics literature about
the aspects of patient-orientedness for NLP. Given the explosive
recent advances in NLP, it is now crucial to establish the
building blocks of the requirements of patient-oriented NLP,
so that methodological research may be targeted to directly
improve POCRC. In the following paragraphs, we attempt to
formulate what aspects should be considered when developing
patient-oriented NLP systems.

Key NLP Needs for POCRC

Interpretability as a Core System Component
(Interpretability)
Recent advances in machine learning, particularly in deep
learning, have resulted in their successful application to specific
clinical tasks [26,27], and while most studies have relied on
structured data from EHRs, some have used free-text
information [4,28,29]. Some studies have even generated patient
representations based on the nonlinear transformations of all
encoded information in EHRs [30]. Despite the excellent results
obtained by these systems in some cases, an obstacle to using
these systems for POCRC—specifically when free text is
involved—is the lack of interpretability. In fact, understanding
how deep neural networks make their decisions is an area of
active research in computer science [31,32]. Automation without
interpretability means that the basis of a forecast or decision
that is made by a system cannot be deciphered or explained by
a medical expert. The inability to interpret the reasons behind
automated systems’ decisions results in the inability of
patient-facing medical experts to communicate these reasons
to patients for tasks such as shared decision-making.

When designing and developing clinical NLP systems,
informaticians must consider interpretability as a necessary
constraint. Black-box models may be effective for a given task,
but unless the decisions of a system are traceable in the desired
manner, their application may not evolve beyond the
problem-specific task for which they were developed [33]. One
method for potentially addressing this issue is integrating
reporting mechanisms with machine learning models, so that
the outputs of a task are not only predictions and numeric
performance metrics but also modular reports that attempt to
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explain the reasons behind the predictions (eg, “which span of
text in the note did the system think matched with concept X?”
or “what were the top features that contributed to the system’s
decision?”). The hypothetical framework depicted in Figure 1
illustrates the generation of reports by a system alongside other
outputs, such as performance metrics. Such reporting

mechanisms are uncommon in current clinical NLP systems,
as the focus of R&D is almost invariably on some type of
problem-specific performance metric. This is one aspect in
which involving clinical stakeholders in the development process
is essential, as clinical interpretability needs may be distinct
from mathematical or statistical interpretability needs [31,34].

Figure 1. An outline of a patient-oriented NLP framework illustrating (1) the ability of the caregiver to input the required criteria via an interface that
is decoupled from the technical NLP modules and (2) outputs, including reports for ensuring interpretability. NLP: natural language processing.

Broadening the Scopes of Clinical NLP Systems
(Patient Centeredness)
We envision that clinical NLP systems will see greater adoption
and use by medical experts for POCRC if their scopes are
broader and are centered on patients rather than problems. For
example, in the task of clinical concept detection, the ideal NLP
systems for domain experts (and, hence, the patients they serve)
would be those designed to detect ad hoc clinical concepts in
free text (as specified by the expert) rather than a set of
homogenous concepts. Using the current problem-oriented NLP
systems perhaps adds to the burden imposed on experts, such
as the burden of the “4000 clicks per shift” [35] problem, and
contributes to burnout [36]. In practice, patient-oriented
researchers and caregivers require a holistic view of a patient,
and from the perspective of clinical concept detection, such a
representation of patients requires the detection of diverse
information from patients’ EHRs. Such information may range
from typical concepts that past NLP research has focused on,
such as diseases or symptoms, to atypical concepts such as
descriptions of daily life interactions that affect the mental and
physical well-being of a patient. This is perhaps the key reason
why structured EHR data are preferred and are commonly used
for patient-level analytical and predictive tasks. Such data
present a varied set of information that, when combined,
provides a detailed representation of a patient [37].

Future clinical NLP research that complements the existing
advances in problem-based models should thus focus on
developing frameworks that enable generalization at the patient
level. For concept detection, this means enabling the
specification of arbitrary clinical concepts of interest and
detecting these concepts in the free-text portions of EHRs, which
would result in the characterization of target patients based on
these concepts. Since uncertainty is an inherent aspect of free
text mining, instead of representing patient characteristics as
binary variables, they can be represented by using continuous
variables that represent the likelihood of a patient exhibiting
specific characteristics (eg, the likelihood of viral exposure for
a patient) [38]. Such a framework for concept detection can, for
example, facilitate the construction of research cohorts or be
used to identify eligible subjects for study enrollment based on
the diverse subject information that is encoded in free text. We
have seen some recent research in clinical NLP naturally evolve
to take this approach to concept detection and patient
characterization. For example, Stubbs et al [39] defined 13
variables, which involved diverse concepts that ranged from
drug abuse to specified ranges of hemoglobin A1c levels, for
identifying patients who meet the selection criteria for a clinical
trial. Although this approach to patient characterization via NLP
was not explicitly described by the authors as patient centered
and contrasted with typical problem-focused approaches, it
represents a natural evolution toward patient-oriented NLP
systems because its parameter flexibility can be used for
practical tasks. Ideally, the technical complexities of the NLP
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algorithms for concept detection (or other purposes) should be
decoupled from the interface that medical experts use, so that
they may focus on specifying their patient-oriented needs (eg,
ad hoc clinical concepts) without having to learn how to use
multiple systems or how to execute such algorithms in multiple
environments. Building NLP systems that are generalizable in
such a manner is not trivial by any means, but we believe that
the time is now right for designing and developing clinical NLP
frameworks that incorporate such broader scopes.

Flexible Systems Are More Likely to Stand the Test
of Time (Customizability)
A problem that has been plaguing clinical NLP systems is the
lack of customizability and adaptability. Many systems are so
specialized to the problem-specific task for which they were
designed that substantial effort is needed to adapt them to other
tasks or data sources [24,40]. The complexities of most clinical
NLP systems, particularly those of recent systems that involve
resource-heavy language models and intricate machine learning
codes (eg, systems written in TensorFlow [41]), are difficult
for medical experts with non-NLP educational backgrounds to
comprehend. As such, even for very similar tasks, such experts
cannot customize previously developed systems to address the
needs of new studies. We suspect that in most cases clinician
researchers and caregivers do not even consider the possibility
of diving deep into system source codes (eg, those of potentially
customizable tools such as the Clinical Language Annotation,
Modeling, and Processing Toolkit [42]) and customizing them
according to the specific needs of a study, as they are already
burdened with information overload [43].

Clinical NLP systems should thus focus on simplicity and
customizability. Incorporating these aspects into the R&D of
clinical NLP systems is also not trivial. However, they may be
achieved by adhering to typical software development best
practices. This may include using layered architectures, in which
complexities are hidden under simple interfaces that expose
users to customizable options. Such an architecture is shown in
Figure 1. In terms of clinical concept detection, the
customizability of clinical NLP systems should enable medical
experts to not only specify ad hoc concepts but also tune the
system for different patient-oriented tasks (eg, cohort selection)
by modifying system inputs, configurations, or parameters.
Improving the customizability and simplicity of clinical NLP
systems will undoubtedly increase their use in POCRC.

System Evaluations Using Multiple Data Sets With
Heterogeneous Information (Multitask Evaluation)
System performance metrics obtained via evaluations based on
a single data set can be misleading. Typical EHR-based free-text

data sets are often constrained to small sets of patients with
similar conditions, clinical settings, and social determinants,
thereby causing systems that are built and evaluated based on
such data sets to be overfit to the problem being studied [44].
Furthermore, the unique characteristics of the site from which
the EHRs originated, such as the focus of the entity (eg, an
urban children’s hospital referral center) and the educational
and training backgrounds of the note writers (eg, primary care
physicians vs subspecialists), also influence how free text
components are written. To gauge the true performances of
clinical NLP methods, including performances associated with
the three previously mentioned aspects, evaluations must be
conducted based on multiple data sets with differing
characteristic. The reuse utility of a system is substantially
diminished if it is overfit to the characteristics of a specific data
set. Reporting a system’s performance metrics (eg, the
F-measure for concept detection) based solely on intrinsic
evaluations of such specialized data sets may also be potentially
perilous, since future users may incorrectly assume that the
system will exhibit similar performances on other data sets.
Consequently, the evaluation of systems based on multiple data
sets with distinct characteristics is imperative for ensuring the
robustness of systems.

Conclusion

To facilitate the greater adoption of NLP in POCRC, R&D
models need to build on problem-oriented approaches and
transition to patient-oriented ones. In this paper, we outlined
the fundamental characteristics of patient-oriented NLP system
design and development. We discussed 4 interrelated factors
(Figure 2) that are essential—(1) interpretability, (2) patient
centeredness, (3) customizability, and (4) multitask evaluation.
We believe that given the rapid recent advances in data science,
it is time to initiate a new paradigm for NLP R&D—one with
a patient-oriented focus—in order to increase the impact that
NLP R&D has on health care. Such a paradigm shift will require
overcoming many barriers, which include, but are not limited
to, challenges posed by informal texts, diversities in
health-related languages [24], the scarcity of annotated or
labeled data, and difficulties that inhibit NLP systems’progress
from processing texts to understanding them [45]. Recent
advances in NLP, such as low-shot learning [46], have the
potential to aid researchers with the development of systems
that are patient-oriented and, consequently, increase the impact
of NLP in health care. This paradigm shift will be necessarily
incremental, as researchers will build on and improve initial
systems over time.
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Figure 2. The four foundational components of patient-oriented NLP. NLP: natural language processing.
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Abstract

Background: The emergency department (ED) triage system to classify and prioritize patients from high risk to less urgent
continues to be a challenge.

Objective: This study, comprising 80,433 patients, aims to develop a machine learning algorithm prediction model of critical
care outcomes for adult patients using information collected during ED triage and compare the performance with that of the
baseline model using the Korean Triage and Acuity Scale (KTAS).

Methods: To predict the need for critical care, we used 13 predictors from triage information: age, gender, mode of ED arrival,
the time interval between onset and ED arrival, reason of ED visit, chief complaints, systolic blood pressure, diastolic blood
pressure, pulse rate, respiratory rate, body temperature, oxygen saturation, and level of consciousness. The baseline model with
KTAS was developed using logistic regression, and the machine learning model with 13 variables was generated using extreme
gradient boosting (XGB) and deep neural network (DNN) algorithms. The discrimination was measured by the area under the
receiver operating characteristic (AUROC) curve. The ability of calibration with Hosmer–Lemeshow test and reclassification
with net reclassification index were evaluated. The calibration plot and partial dependence plot were used in the analysis.

Results: The AUROC of the model with the full set of variables (0.833-0.861) was better than that of the baseline model (0.796).
The XGB model of AUROC 0.861 (95% CI 0.848-0.874) showed a higher discriminative performance than the DNN model of
0.833 (95% CI 0.819-0.848). The XGB and DNN models proved better reclassification than the baseline model with a positive
net reclassification index. The XGB models were well-calibrated (Hosmer-Lemeshow test; P>.05); however, the DNN showed
poor calibration power (Hosmer-Lemeshow test; P<.001). We further interpreted the nonlinear association between variables
and critical care prediction.

Conclusions: Our study demonstrated that the performance of the XGB model using initial information at ED triage for predicting
patients in need of critical care outperformed the conventional model with KTAS.

(JMIR Med Inform 2021;9(9):e30770)   doi:10.2196/30770

KEYWORDS

triage; critical care; prediction; XGBoost; explainable machine learning; interpretable artificial intelligence; machine learning;
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Introduction

Overcrowding in the emergency department (ED) has become
a major worldwide health care problem [1-3]. Therefore, most
EDs have a triage to manage growing patient volumes [2,4,5].
ED triage is the first risk assessment for prioritizing patients at
high risk and determining the course of ED care for patients
[5-8]. It is vital to accurately identify patients who need
immediate care at triage and provide rapid care to patients in
ED since delay in care may result in increased morbidity and
mortality for many clinical conditions [2,4,5,7,9,10].

Five-level triage systems, including the Canadian Triage and
Acuity Scale (CTAS), Manchester Triage System (MTS), and
emergency severity index (ESI), are widely used [2,8,9]. The
Korean Triage and Acuity Scale (KTAS) was developed in 2012
based on CTAS and has been used nationally as the ED triage
tool in Korea since 2016 [11-13]. Although five-level triage
systems are well established in ED, they need to be improved
because they heavily rely on healthcare providers’ subjective
judgment, resulting in high variability [5,7-10,12].

Machine learning algorithms such as extreme gradient boosting
(XGB) and deep neural networks (DNNs) have the advantage
of fitting nonlinear relationships between predictors and
outcomes in large data sets [10,14-17]. Recent literature has
shown machine learning prediction models using triage
information perform better than the baseline model using the
conventional approach of the five-level triage score for screening
ED patients at risk of hospitalization, intensive care unit (ICU)
admission, mortality, and critical care, which is defined as the
combined outcome of ICU admission and mortality
[3,6-10,12,17-20].

Clinical prediction models should be characterized by
discrimination, which indicates how well the model
differentiates patients who will have an event from those who
will not, and by calibration, which refers to the agreement
between predictions and the observed outcome [20-23].
Systematic reviews have reported that machine learning model
studies for clinical predictions almost always assessed
discriminative performance using the area under the receiver
operating characteristic (AUROC) curve, and the reliability of
risk prediction, namely calibration, was rarely evaluated [24-27].
In most of the previous studies for triage in ED, performance
metrics pertaining to discriminating power were provided, but
calibration, which assesses how close the prediction is to the
true risk, was rarely reported. Raita et al provided the AUROC
of ED triage prediction of critical care outcomes using four
machine learning algorithms [9]. Kwon et al evaluated the
discrimination of deep learning–based triage and acuity score
model for critically ill patients [12]. Goto et al [10] investigated
the discriminative performance of machine learning approaches
for predicting critical care outcomes for patients with asthma
and chronic obstructive pulmonary disease exacerbations in the
ED. However, the calibration of the models for critical care
outcomes was not included as a performance measure in the
studies reviewed. Poorly calibrated prediction algorithm models
can be misleading, which may result in incorrect and potentially
harmful clinical decisions [24,26-28]. Therefore, a study

including a performance evaluation of calibration in the
prediction model for patients with a critical illness at triage in
ED is required.

Moreover, no study has investigated the interpretability of
machine learning models for the triage in ED to date. The
interpretability of machine learning is defined as the degree to
which the machine learning user understands and interprets the
prediction made by a machine learning model [14-16]. The lack
of interpretation is the barrier to establishing clinicians’ trust
and the broader adoption of machine learning models in clinical
practices [14,15,29]. Explaining the justification of prediction
outcomes of the machine learning algorithm model ensuring
that the model makes the right predictions for the right reasons
is required to enhance clinicians’ buy-in [14-16,29]. Therefore,
in this study, we apply the partial dependence plot (PDP), a
global model-agnostic technique for explaining the relationship
between predictors and prediction results, to investigate the
interpretability of machine learning prediction for clinical care
in ED [15,16].

We developed and validated the machine learning prediction
model for critical care outcomes using routinely available triage
information. We hypothesized that applying a machine learning
algorithm to ED triage information could improve the
performance of critical care outcome prediction for patients
who visited an ED compared with the baseline KTAS model
using logistic regression.

Methods

Study Design, Setting, and Data Source
This was a retrospective study of patients that visited the
emergency department of an urban tertiary-care academic center
with an annual census of about 70,000 from January 1, 2016,
and December 31, 2018. We collected the demographics (age
and gender), mode of ED arrival, the time interval between
onset and ED visit, reason of ED visit, chief complaint, initial
vital sign measurements, KTAS score, and disposition results
(ED results and admission results). All data were acquired from
the Korean National Emergency Department Information
System.

Study Population
We considered adult patients (aged ≥18 years) who visited an
ED during the study period. We excluded patients who did not
need clinical outcomes prediction at triage, that is, cardiac arrest
or death upon ED arrival. Furthermore, we excluded patients
transferred to another hospital or those with uncompleted care
because it was impossible to ascertain their ED results. Patients
with missing or invalid information at triage were not included
(Table S1, Multimedia Appendix 1).

Outcome
The primary outcome in this study was critical care outcome,
defined as the composite of direct admission to ICU or
in-hospital mortality following previous studies [4,7,9].
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Variables and Preprocessing
For the prediction of critical care, we included a total of 13
variables: age, gender, mode of ED arrival, the time interval
between onset and ED arrival, reason of ED visit, chief
complaint, systolic blood pressure (SBP), diastolic blood
pressure (DBP), pulse rate (PR), respiratory rate (RR), body
temperature (BT), oxygen saturation, and level of consciousness
namely, alert, verbal, painful, and unresponsive (AVPU). The
mode of ED arrival was categorized into two options as either
ambulance use or not. The reason for the ED visit had two
values, either illness or injury. The chief complaints, which
were based on the Unified Medical Language System (UMLS),
were selected from the list of 547 codes. The preprocessing
details for the variables are described in Multimedia Appendix
1 (Table S1).

Model Development
The prediction model of critical outcome was developed by
using two modern prediction algorithms: XGB and DNN.

XGB algorithm is a cutting-edge machine learning application
of gradient boosting mechanisms [3,8,9,30]. The gradient
boosting is an ensemble algorithm with which new trees focus
on adjusting errors produced by the previous tree models
[8,30-32]. We implemented the XGB model on the training set
using five-fold cross-validation. The maximum depth of five
and a learning rate of 0.1 were selected from grid search for
tuning hyperparameter (Table S2, Multimedia Appendix 1). For
a DNN algorithm that equips the learning mechanism to fit
nonlinear relationships and high order interactions, [5,10,20,33],
we used three hidden layers selected from the grid search: (1)
a rectified linear unit as the activation function; (2) an adaptive
moment estimation as the optimizer; (3) a drop-out rate of 10%,
zero value for lambda, and binary cross-entropy as the loss
function (Table S2, Multimedia Appendix 1).

Random sampling was applied to split the entire data set into
training (80%) and validation sets (20%). The performance of
the prediction model was evaluated in the validation data set.

Statistical Analysis
For the characteristics of the study population according to
critical care, a two-tailed t test or Mann–Whitney U test was
conducted for the continuous variables, and the chi-square test
or Fisher’s exact test was performed for the categorical
variables.

The discriminating power as a primary measure was evaluated
by AUROC, which refers to how well the model differentiates
those at a higher risk of having an event from those at lower
risk [17,21]. We used the DeLong test to compare AUROC
between models [9]. Reclassification improvement was

evaluated using the net reclassification index (NRI) [9,10,21].
The NRI quantifies how well a new model reclassifies subjects
compared with the reference model [9,10,21]. Model calibration
was assessed with the Hosmer-Lemeshow test, a goodness-of-fit
measure for prediction models of binary outcomes [20,21,23,34].
Furthermore, the calibration was depicted on a reliability
diagram to represent the relationship between predicted
probability and observed outcomes [17,20,21,23,34]. The perfect
calibration should be in the 45-degree line [17,23,34]. The
sensitivity, specificity, positive predictive values (PPVs), and
negative predictive values (NPVs) were reported on performance
metrics. We used a sensitivity cutoff point of 85% for the
illustration of performance.

The variable importance of each prediction model was assessed
and determined using the approach of permutation variable
importance, which computes the importance by measuring the
decrease of model prediction performance (AUROC) when each
variable is permuted [35-38].

Finally, for the best prediction model, the PDP was visualized
for both the direction and effect size of each variable after
averaging out the effect of the other predictors in the model
[38-40]. More concretely, the partial dependence by calculating
the marginal effect of a single variable on the prediction
outcome demonstrates whether the association between a
variable and the prediction response is linear or nonlinear
[15,40,41].

A two-tailed P value of <.05 was considered statistically
significant, and a 95% CI was provided. All analyses were
performed using the R software (version 3.6.1, R Foundation
for Statistical Computing).

Ethics Statement
The Institutional Review Board of Seoul National University
Hospital approved this study, and they waived the requirement
for consent. All methods were performed in accordance with
the relevant guidelines and regulations.

Results

Characteristics of Study Subjects
There were 147,865 adult ED encounters from January 1, 2016,
to December 31, 2018. After excluding patients with cardiac
arrest or death upon ED arrival (n=401), those transferred to
another hospital (n=6230), discharged with uncompleted care
(n=2696), and with missing or invalid values (n=58,105), a total
of 80,433 ED adult patients were included in this study, with
3737 (4.6%) of them identified as experiencing critical care
(Figure 1).
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Figure 1. Study population. ED: emergency department. EMR: electronic medical record.

The study population of this study was split into two samples:
(1) a training data set, comprising 80% of the data set, with
64,346 patients and containing 3015 (4.7%) critical care patients,
and (2) a validation data set, consisting of the remaining 20%
of the data set, with 16,807 patients, including 722 (4.5%) of
them ascertained as receiving critical care. The characteristics
of the training and validation data sets were not significantly
different (Table S3, Multimedia Appendix 1).

The characteristics of the ED patients according to the study
outcome are presented in Table 1. Critically ill patients were
more likely to be female, older, call EMS, and have a higher

proportion of illness than those without critical care. The time
interval between onset and ED arrival was not significantly
different between patients with and without critical care. Initial
vital signs and levels of consciousness were significantly
different between the two groups. The most common chief
complaint among critically ill patients was dyspnea and fever
among those without critical care. The median of KTAS at ED
triage was 2 points (emergent level) for the critical care group
and 3 points (urgent level) for the noncritical care group. The
ED length of stay of patients was 6.4 hrs in the critical care
group and 4.0 hrs in the noncritical care group (Table 1).
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Table 1. Baseline characteristics of adult emergency patients according to critical care.

P valueCritical care (n=3737)EDa discharge (n=76,696)Total (N=80,433)Characteristic

<.001Gender, n (%)

2200 (58.9)37,010 (48.3)39,210 (48.7)Male

1537 (41.1)39,686 (51.7)41,223 (51.3)Female

<.00169.0 (58.0-77.0)61.0 (45.0-72.0)61.0 (46.0-73.0)Age, median (IQR)

.1723.1 (4.4-95.8)23.9 (3.8-96.0)23.9 (3.8-96.0)Interval between onset and ED arrival (hour),
median (IQR)

<.0012102 (56.2)17,162 (22.4)19,264 (24.0)Mode of ED arrival (EMSb use), n (%)

<.001Reason for ED visit, n (%)

3624 (97.0)70,021 (91.3)73,645 (91.6)Illness

113 (3.0)6675 (8.7)6788 (8.4)Injury

Initial vital sign data, median (IQR)

<.001133.0 (113.0-160.0)142.0 (126.0-165.0)141.0 (126.0-165.0)SBPc, mmHg

<.00175.0 (63.0-88.0)82.0 (72.0-92.0)81.0 (72.0-92.0)DBPd, mmHg

<.00194.0 (77.0-112.0)86.0 (74.0-101.0)86.0 (74.0-101.0)PRe, beats/min

<.00120.0 (18.0-24.0)18.0 (16.0-20.0)18.0 (16.0-20.0)RRf, breaths/min

<.00136.5 (36.3-37.0)36.5 (36.3-36.7)36.5 (36.3-36.7)BTg, °C

<.00197.0 (94.0-98.0)97.0 (96.0-98.0)97.0 (96.0-98.0)SpO2
h, %

<.001734 (19.6)2858 (3.7)3592 (4.5)Nonalert, n (%)

<.001Chief complaint, n (%)

912 (24.4)6793 (8.9)7705 (9.6)Dyspnea

284 (7.6)6991 (9.1)7275 (9.0)Fever

166 (4.4)5136 (6.7)5302 (6.6)Abdominal pain

555 (14.9)4487 (5.9)5042 (6.3)Chest pain

45 (1.2)3505 (4.6)3550 (4.4)Dizziness

1775 (47.5)49,784 (64.9)51,559 (64.1)Others

<.001KTASi level, n (%)

466 (12.5)404 (0.5)870 (1.1)1: Resuscitation

1954 (52.3)10,692 (13.9)12,646 (15.7)2: Emergent

1275 (34.1)46,702 (60.9)47,977 (59.6)3: Urgent

38 (1.0)16,599 (21.6)16,637 (20.7)4: Less urgent

4 (0.1)2299 (3.0)2303 (2.9)5: Nonurgent

<.0016.4 (3.7-10.4)4.0 (2.4-7.2)4.1 (2.4-7.3)ED LOSj (hour), median (IQR)

<.001ED disposition, n (%)

0 (0.0)57,014 (74.3)57,014 (70.9)ED discharge

493 (13.2)18,630 (24.3)19,123 (23.8)Ward admission

3170 (84.8)0 (0.0)3170 (3.9)ICUk admission

28 (0.7)1052 (1.4)1080 (1.3)ORl admission

46 (1.2)0 (0.0)46 (0.1)ED mortality

<.001804 (21.5)0 (0.0)804 (1.0)In-hospital mortality, n (%)

aED: emergency department.
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bEMS: emergency medical service.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
ePR: pulse rate.
fRR: respiratory rate.
gBT: body temperature.
hSpO2: oxygen saturation.
iKTAS: Korean Triage and Acute Scale.
jLOS: length of stay.
kICU: intensive care unit.
lOR: operating room.

Main Analysis
Classification results for the validation data set are presented
in Table 2. While the baseline model with a single variable of
KTAS had the lowest discriminative ability of AUROC 0.796
(95% CI 0.781-0.811), the machine learning models had higher
discriminative ability. When using triage information, age,
gender, mode of ED arrival, the time interval between onset
and ED arrival, reason of ED visit, chief complaints, the six
vital sign measurements, and level of consciousness, the XGB
algorithm yielded a higher AUROC of 0.861 (95% CI
0.848-0.874) than DNN of 0.833 (95% CI 0.819-0.848) for the
validation data set. The machine learning models achieved
higher reclassification improvement over the reference model
with positive NRI (P<.05). As Figure 2 depicted, the AUROCs
between the models with the full set of variables and the baseline
model were significantly different. (DeLong’s test for the
validation data set: P<.05) The XGB model showed good
calibration (Hosmer–Lemeshow test for the validation data set:
P>.05), and calibration of the DNN model was poor with
P<.001. The calibration plots on the validation data set were
illustrated in Figure 3. We selected the XGB model as the final
model in this study, considering discrimination, net
reclassification, and calibration.

The predictive performance metrics of the validation cohort,
including sensitivity, specificity, PPV, and NPV, are presented
in Table 3. The XGB and DNN model showed a higher
sensitivity of 0.85 than the baseline model (0.65, 95% CI
0.61-0.68) with a cutoff at the level of KTAS 2. As a trade-off,
the specificity of the conventional model using a single variable
of KTAS had a higher specificity of 0.85 (95% CI 0.84-0.86)
than that of the XGB model at 0.71 (95% CI 0.70-0.72) and the
DNN model at 0.64 (95% CI 0.64-0.65). Due to the low
prevalence of critical care outcomes, all models had high NPV
with a 95% CI ranging from 0.98 to 0.99.

The number of the actual and predicted outcomes according to
the level of KTAS is provided in Table 4. For the validation
data set, the baseline model correctly identified 469 patients
needing critical care in triage levels 1 and 2, which accounted
for 65.0% of all critical care outcomes. However, it overtriaged
2296 patients in these high acuity categories. Undertriaging
35% of patients in need of critical care, the conventional model
using a single variable of KTAS failed to predict all critical care
outcomes (253 cases) for triage levels 3 to 5. Compared to the
baseline model, the XGB model reduced false-positive cases
from 2296 to 1533 in KTAS levels 1 and 2 and the
false-negative cases from 253 to 80 in KTAS levels 3 to 5.

Table 2. Discrimination, reclassification, and calibration of critical care outcome prediction models for the validation cohort.

CalibrationReclassificationDiscriminationModel

H-Ld test, P valueP valueNRIc (95% CI)P valuebAUROCa (95% CI)

.80ReferenceReferenceReference0.796 (0.781-0.811)KTASe

.24<.0010.293 (0.219-0.366)<.0010.861 (0.848-0.874)XGBf

<.001<.0010.032 (0.024-0.041)<.0010.833 (0.819-0.848)DNNg

aAUROC: area under the receiver operating characteristic.
bP value for AUROC was calculated using DeLong’s test.
cNRI: net reclassification index.
dH-L: Hosmer-Lemeshow test.
eKTAS: Korean Triage and Acute Scale.
fXGB: extreme gradient boosting.
gDNN: deep neural network.
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Figure 2. Area under the receiver operating characteristic curve for validation data set. DNN: deep neural network; KTAS: Korean Triage and Acute
Scale; XGB: extreme gradient boosting.

Figure 3. Calibration plot for validation data set. DNN: deep neural network; H-L test: Hosmer-Lemeshow test; KTAS: Korean Triage and Acute
Scale; XGB: extreme gradient boosting. The observed probability of critical care with 95% CI is plotted against predicted probability by 10% interval.
The diagonal line, which is represented as ideal, means perfect prediction. Point size indicates the relative number of observations in each bin.

Table 3. Performance of critical care outcome prediction models in validation cohorts.

NPVf (95% CI)PPVe (95% CI)Specificity (95% CI)Sensitivity (95% CI)FNdTNcFPbTPaCutoff scoreModel

0.98 (0.98-0.98)0.17 (0.16-0.18)0.85 (0.84-0.86)0.65 (0.61-0.68)25313,06922964690.156hBaseline

KTASg

0.99 (0.99-0.99)0.12 (0.11-0.13)0.71 (0.70-0.72)0.85 (0.83-0.88)10610,88944766160.036XGBi

0.99 (0.99-0.99)0.10 (0.09-0.11)0.64 (0.64-0.65)0.85 (0.82-0.88)108989054756140.444DNNj

aTP: true positive.
bFP: false positive.
cTN: true negative.
dFN: false negative.
ePPV: positive predictive values.
fNPV: negative predictive values.
gKTAS: Korean Triage and Acute Scale.
hCutoff probability of 0.156 for the baseline model by logistic regression corresponds to KTAS score of 2.
iXGB: extreme gradient boosting.
jDNN: deep neural network.
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Table 4. The performance comparison of prediction models in validation cohorts according to the level of KTAS.

XGBb modelBaseline modelActual critical care, n (%)KTASa level

FNTNFPTPFNfTNeFPdTPc

23779600809898 (13.6)1: Resuscitation (n=178, 1.1%)

247601456347002216371371 (51.4)2: Emergent (n=2587, 16.1%)

7466932622170244931500244 (33.8)3: Urgent (n=9559, 59.4%)

63006297393303009 (1.2)4: Less urgent (n=3312, 20.6%)

04272400451000 (0.0)5: Nonurgent (n=451, 2.8%)

10610,889447661625313,0692296469722 (100)Total (n=16,086, 100%)

aKTAS: Korean Triage and Acute Scale.
bXGB: extreme gradient boosting.
cTP: true positive.
dFP: false positive.
eTN: true negative.
fFN: false negative.

Variable Importance and Partial Dependence Plot
We computed permutation-based variable importance for the
XGB and DNN model in Figure 4. The variable ranked as a top
priority was chief complaints for the XGB model and EMS use
for the DNN model. Despite the ranking difference in variable
importance between the XGB and DNN models, variables higher
in the list, including chief complaints, EMS use, age, AVPU,
PR, and RR, were identical.

For the XGB model defined as the final prediction model, the
relationship between each variable and the prediction outcome

for the validation data set is illustrated in Figure 5. The PDP
shows the marginal effect of a single variable on the prediction
outcome. The value of the y-axis on PDP is the predicted
probability for critical care. The nonlinear associations of all
vital sign variables to critical outcome predictions were
demonstrated. For age, RR, and SpO2, we found the pattern of
the critical care prediction in the XGB model, indicating the
probability of being classified as patients in need of critical care
increased with older age, higher RR, and lower SpO2. For SBP,
DBP, and PR, we observed a U-shaped relationship between
each vital sign and the critical care prediction.

Figure 4. Feature importance. The time interval denotes the time between onset and ED arrival. AUROC: area under the receiver operating characteristic
curve; AVPU: alert, verbal, painful, and unresponsive; BT: body temperature; DBP: diastolic blood pressure; DNN: deep neural network; ED: emergency
department; EMS: emergency medical service; PR: pulse rate; RR: respiratory rate; SBP: systolic blood pressure; SpO2: oxygen saturation; XGB:
extreme gradient boosting.
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Figure 5. Partial dependence plot. A. gender, B. age, C. time interval between onset and ED arrival, D. EMS use, E. reason of ED visit, F. SBP, G.
DBP, H. PR, I. RR, J. BT, K. SpO2, L. AVPU, and M. chief complaints. The partial dependence plot shows the marginal effect of a single variable on
the prediction outcome; the value of the y-axis is the predicted probability for critical care. AVPU: alert, verbal, pain, and unresponsive; BT: body
temperature; DBP: diastolic blood pressure; ED: emergency department; PR: pulse rate; RR: respiratory rate; SBP: systolic blood pressure; SpO2:
oxygen saturation; XGB: extreme gradient boosting.

Discussion

Principal Findings
In this study, based on the data of 80,433 ED adult patients, we
applied two modern machine learning approaches (ie, XGB and
DNN) to the routinely collected triage information (age, gender,
mode of ED arrival, the time interval between onset and ED
arrival, reason of ED visit, chief complaints, six vital signs, and
level of consciousness) for the critical care outcome prediction
in ED. The prediction models demonstrated superior
performance of discrimination from AUROC 0.833 to AUROC
0.861 for the validation cohort and net reclassification compared
to the conventional baseline model using KTAS (AUROC
0.796). The XGB model showed better discriminating power
(AUROC 0.861) than the DNN model. We revealed that the
XGB model was well-calibrated in predicting critical care
outcomes (Hosmer-Lemeshow test; P>.05).

The objective of this study was to accurately differentiate
high-risk patients from the less urgent patients at the triage stage
in the ED. Expedited evaluation and ED care of patients with
critical illnesses are crucial for maximizing clinical outcomes,
providing a strong rationale for their prediction at triage [7,42].
Previous studies have documented that current five-level triage
systems (eg, ESI, MTS, and KTAS) have a suboptimal ability
to identify patients at high risk, low inter-rater agreement, and
high variability within the same triage level [4,6-10]. Hence,
machine learning models incorporating variables of
demographics, mode of ED arrival, chief complaints, and vital
signs extracted from triage information have been investigated
to support accurate and rapid decision-making of ED clinicians.
This study extends the earlier research. The discriminative
performance gains of the critical care outcome prediction were
obtained from the XGB algorithm, which has the excellence to
handle nonlinear interactions between variables and the
prediction outcome.
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In this study, a large number (85.5%) of the patients without a
need of critical care were classified into KTAS levels 3 to 5
(83.2% of the entire population), while the majority (64.8%) of
the critically ill patient group was assigned into KTAS level 1
and 2 (16.8 % of all patients). We demonstrated that the XGB
model correctly detected critically ill patients who were
undertriaged into lower-acuity KTAS levels 3 to 5 in the
baseline model. The ability to reduce false-negative cases
provides a strong rationale for adopting the machine learning
algorithm model at ED triage, where the accurate and rapid
identification of patients at high risk is a matter of the utmost
importance. Furthermore, we observed that the XGB model
reduced the number of false-positive cases that were overtriaged
into high-acuity levels 1 to 2 in the baseline model, which may
prevent excessive resource utilization in ED practices.

This research proved that the XGB model had agreement
between the predicted probability and the observed proportion
of critical care occurrences. The calibration plot in Figure 3
visualized how well the forecast probabilities from the XGB
model were calibrated. Despite the importance of calibration in
the prediction model to support clinician decision, systematic
reviews have found that calibration is assessed far less than
discrimination [24,25,27], which is problematic since poor
calibration can make predictions misleading [24,26-28].
Machine learning algorithms are vulnerable to overfitting
[24,33,43]. Due to overfitting, most machine learning
algorithms, especially neural networks, are known to produce
poor calibration when validated with new data [24,33,44,45].
However, XGB controls the model complexity by embedding
a regularization term into the objective function to avoid
overfitting [40,46,47]. Our findings suggest that the probabilities
of the XGB model for predicting patients at high risk in ED
were reliable.

Explaining the predictions of block-box machine learning has
become highlighted. For the global interpretation of the model,
we visualized the nonlinear relationship between a variable and

outcome results in predicting critically ill patients using PDPs
(Figure 5). The XGB algorithm interpreted that, on average,
higher RR and lower SpO2 are associated with a high probability
of critical care outcomes, and there was a U-shaped relationship
between SBP, DBP, and PR and the outcome results. The
interpretation of the XGB model clearly reflected the
characteristics of vital signs and was in line with medical
knowledge. There are several interpretation techniques for global
and local levels of machine learning interpretation. A future
study of the multilevel interpretation of machine learning
algorithm predictions is warranted.

Using triage information and the XGB algorithm, the artificial
intelligent model for predicting patients at high risk in this study
can be implemented in the ED setting without additional burden,
which may support prompt and accurate clinician
decision-making at the early stage of ED triage, leading to the
improvement of patients’ health outcomes and contributing to
efficient ED resource allocation.

Limitations
This study has several limitations. First, we used the data from
a single ED of a tertiary-care university hospital; therefore,
external validation is needed for the generalization of the results.
Second, this study did not address how the prediction model
could be deployed into the clinical pathway; therefore, future
studies applying the prediction model during triage are
warranted.

Conclusions
This study demonstrated that using initial triage information
routinely collected in the ED, the machine learning model
improved the discrimination and net reclassification for
predicting patients in need of critical care in ED compared to
the conventional approach with KTAS. Moreover, we
demonstrated that the XGB model was well-calibrated and
interpreted nonlinear characteristics of vital sign predictors in
line with medical knowledge.
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Abstract

Background: Over the last decade, increasing numbers of emergency department attendances and an even greater increase in
emergency admissions have placed severe strain on the bed capacity of the National Health Service (NHS) of the United Kingdom.
The result has been overcrowded emergency departments with patients experiencing long wait times for admission to an appropriate
hospital bed. Nevertheless, scheduling issues can still result in significant underutilization of bed capacity. Bed occupancy rates
may not correlate well with bed availability. More accurate and reliable long-term prediction of bed requirements will help
anticipate the future needs of a hospital’s catchment population, thus resulting in greater efficiencies and better patient care.

Objective: This study aimed to evaluate widely used automated time-series forecasting techniques to predict short-term daily
nonelective bed occupancy at all trusts in the NHS. These techniques were used to develop a simple yet accurate national health
system–level forecasting framework that can be utilized at a low cost and by health care administrators who do not have statistical
modeling expertise.

Methods: Bed occupancy models that accounted for patterns in occupancy were created for each trust in the NHS. Daily
nonelective midnight trust occupancy data from April 2011 to March 2017 for 121 NHS trusts were utilized to generate these
models. Forecasts were generated using the three most widely used automated forecasting techniques: exponential smoothing;
Seasonal Autoregressive Integrated Moving Average; and Trigonometric, Box-Cox transform, autoregressive moving average
errors, and Trend and Seasonal components. The NHS Modernisation Agency’s recommended forecasting method prior to 2020
was also replicated.

Results: The accuracy of the models varied on the basis of the season during which occupancy was forecasted. For the summer
season, percent root-mean-square error values for each model remained relatively stable across the 6 forecasted weeks. However,
only the trend and seasonal components model (median error=2.45% for 6 weeks) outperformed the NHS Modernisation Agency’s
recommended method (median error=2.63% for 6 weeks). In contrast, during the winter season, the percent root-mean-square
error values increased as we forecasted further into the future. Exponential smoothing generated the most accurate forecasts
(median error=4.91% over 4 weeks), but all models outperformed the NHS Modernisation Agency’s recommended method prior
to 2020 (median error=8.5% over 4 weeks).
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Conclusions: It is possible to create automated models, similar to those recently published by the NHS, which can be used at
a hospital level for a large national health care system to predict nonelective bed admissions and thus schedule elective procedures.

(JMIR Med Inform 2021;9(9):e21990)   doi:10.2196/21990

KEYWORDS

bed occupancy; clinical decision-making; forecasting; health care delivery; models; time-series analysis

Introduction

Background and Rationale
Between 2011-2012 and 2019-2020, patient attendances at major
(Type 1) emergency departments (EDs) in the National health
Service (NHS) of the United Kingdom increased by
approximately 20%. There was an even greater increase in the
number of patients admitted to hospital from the ED during that
time. Such admissions grew by more than one-third and now
account for nearly three-fourth of all nonelective admitted
patients (Figure 1).

The resulting strain on the bed capacity of the NHS resulted in
overcrowding of EDs and long wait times for patients before
admission to an inpatient ward. By 2019-2020, over 3.2% of
all patients in the ED remained in the ED for more than 12 hours
from their time of arrival [1]. Such long delays are known to
cause poor patient outcomes, including an increase in all-cause
30-day mortality [2].

For health care systems to meet the increasing needs of the
populations they serve, as well as to provide better care, it is
imperative to optimize the allocation of existing health care
resources, including hospital beds. Health forecasting, a novel
area of forecasting, can facilitate this by providing health service

providers with the hospital bed occupancy forecasts that will
allow them to minimize risks and manage demand [3].

Current models, including NHS-recommended systems, predict
hospital bed utilization with a significant degree of error and
with marked variability among different hospitals. More accurate
and reliable long-term prediction of bed requirements will
facilitate the anticipation of a local population’s needs [4] with
resulting gains in both efficiency and patient outcomes.

Many studies have attempted to conduct time-series analyses
to forecast bed occupancy levels days or weeks in advance [5].
Most of these models use estimates of length of stay [6] or ED
admissions [7-9]. We developed models using a more direct
time-series–based approach, which utilizes historic admissions
data without any identifying patient information, to model
nonelective hospital bed requirements. Knowledge of future
nonelective bed occupancy allows for proper scheduling of
elective procedures to optimize both capacity and resource
allocation [6]. In addition, no previous study, to our knowledge,
has generated accurate models for an entire national health care
system. In this study, we created a modeling framework that is
automated and generalizable across the NHS of the United
Kingdom. It can be used by administrators and key
decision-makers, who have minimal knowledge of statistical
techniques, to evaluate and respond more efficiently to clinical
demand.

Figure 1. Growth in the admission rate of all nonelective admitted patients. ED: emergency department. Data source: NHS Hospital Episode Statistics
for Accident & Emergency and for admitted patient care data, 2012-2020 [10].
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Objectives
We aimed to (1) test and compare a set of widely used
automated time-series forecasting techniques to predict
short-term (up to 42 days) nonelective bed occupancy on a daily

basis and (2) develop a simple yet accurate system-level
forecasting and modeling framework that could be used to
predict emergency bed occupancy during different seasonal
patterns of admission. A summary of the study rationale and
objectives is provided in Textbox 1.

Textbox 1. Summary of the study objectives and rationale.

What is already known

Current statistical models that forecast bed occupancy days or weeks in advance across all trusts in the National Health Service (NHS) of the United
Kingdom, including the previously recommended NHS method, predict hospital bed utilization with significant errors and variability among hospitals.

What this study adds

We created a modeling framework, following advanced forecasting techniques recommended by the NHS in January 2020, which generates similar
forecasts of bed occupancy levels weeks in advance for all trusts in the NHS. In addition, because it is automated and generalizable, this model can
be used by administrators and key decision-makers who have a minimal statistical background.

Methods

Data
Our data set contained daily nonelective midnight trust
occupancy data from April 2011 to March 2017 for 121 NHS
trusts located in each region of England. We acknowledge that
this is not the same as peak occupancy, which often occurs in
the middle of the working day. No personal information on
patients or staff was provided. Since these data did not contain
any identifying patient information, ethics approval from the
institutional review board was not required. In addition,

administrative data were utilized, and patients and the public
were not involved in our study. We performed all analyses using
RStudio (version 1.1.442, RStudio Inc). All generated forecasts
accounted for patterns in occupancy or seasonality, resulting
from the day of the week being forecasted. One forecast also
factored in the day of the year, incidence of public holidays,
and historical bed availability.

Study Design
Data preparation and analysis were performed in 4 steps for
each forecasting technique employed (Figure 2).

Figure 2. Methodology employed to develop models and generate forecasted nonelective occupancy for each trust in the NHS. ES: exponential
smoothing, NHS: National Health Service, SARIMA: Seasonal Autoregressive Integrated Moving Average, and TBATS: Trigonometric, Box-Cox
transform, autoregressive moving average errors, and Trend and Seasonal components.

Data Curation
We extracted daily nonelective occupancy data for 121 trusts
in the NHS. To limit our data to general and acute bed
occupancy, we excluded admissions in which the consultant’s

specialty was related to mental health, learning disabilities, or
maternity. The first 10 days’ and last 20 days’ worth of
occupancy data for each trust were removed from our data set
to account for any edge effects creating inaccuracies in data
reporting. The following supporting variables were also
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included, as they were likely to produce fluctuations or
seasonality, in bed occupancy [11]: (1) day of the week, (2) day
of the year, (3) public holidays, and (4) historical bed
availability.

Separation of Data
Each trust’s hospital occupancy data were divided into 2
seasonal data sets for summer and winter each, given that
hospitals are more burdened during winter months, and this
may introduce complications in the forecasting process. Each
seasonal data set was further subsetted into a training data set
that was used to develop the models and a validation data set
that was used to cross-validate the models. The validation data
sets for the summer season contained the last 6 weeks of
occupancy data for mid-July to mid-August 2016 and those for
winter contained the last 6 weeks of occupancy data for February
to mid-March 2017. The derivation data sets contained all
remaining data from April 2011 to the start date of the validation
data sets and were used to develop the models.

Model Generation and Evaluation
We developed a set of models for each trust by using the three
most widely used, automated forecasting techniques: exponential
smoothing (ES); Seasonal Autoregressive Integrated Moving
Average (SARIMA); and Trigonometric, Box-Cox transform,
autoregressive moving average errors, and Trend and Seasonal
components (TBATS) (Table 1). Details regarding this model
are provided in Multimedia Appendix 1. These models are in
line with the NHS Modernisation Agency’s newly released
overview of advanced forecasting techniques that can be used
to model NHS services [12]. We also replicated the NHS
Modernisation Agency’s previously recommended, albeit dated,
forecasting method [13].

Therefore, we developed 4 models for each of the 121 trusts in
the NHS. A program was developed in R to automate the entire
process to minimize repetition and maximize efficiency. Two
tests were applied for each forecast: the Ljung-Box test output
(Multimedia Appendix 2) to measure for residual patterns of
the models’ errors that could be corrected for with additional
modeling parameters, and root-mean-square error (RMSE)
values from cross-validation. Absolute RMSE values were then
converted to percentage errors, representing the average
prediction error irrespective of sign (Multimedia Appendix 2).
The numerator was the median RMSE of the forecasting method,
and the denominator was the total number of general and acute
beds in the hospital. The denominator, therefore, was the same
for all methods. A comparative analysis of forecast accuracy
was performed by comparing forecasted daily nonelective
occupancy with actual nonelective occupancy in the
out-of-sample data set for each week forecasted.

Forecasts were generated for the summer and winter. Given that
summer school holidays in the United Kingdom usually occur
from late July until early September and NHS data for England
suggest that winter pressures mostly last from early January
until the end of March, we forecasted the time periods within
those timeframes. Summer forecasts were obtained from July
to mid-August 2016 and winter forecasts were obtained from
mid-February to mid-March 2017. Forecasts were compared to
each other as well as to those derived from the NHS
Modernisation Agency’s recommended method.

We did not generate models using Prophet and artificial neural
networks, which are 2 additional models recommended in the
Modernisation Agency’s overview, because these cannot be
automated and applied across multiple trusts [12].

Table 1. Descriptive characteristics of automated time-series forecasting techniques used.

Models generatedCharacteristics

Method recommended by
the National Health Service
Modernisation Agency

Trend and Seasonal Compo-
nents

Seasonal Autoregressive In-
tegrated Moving Average

Exponential smoothing

Forecast is the mean value
of the past 6 weeks’ bed oc-
cupancy for the day of the
week being forecasted

State space reconstructionCombines auto-regression
and moving average models

Exponential weighted sum
of previous observations

Statistical methods em-
ployed

WeeklyWeeklyWeekly, yearly, monthly,
public holidays, and histori-
cal bed availability

WeeklySeasonality taken into ac-
count

NoneNoneSuspected model may be
more accurate for trusts that
do not approach maximum
occupancy (occupan-
cy=<95%); percent occupan-
cy was introduced as a sea-
sonal component

LThe Ljung-Box test provid-
ed information on residual
patterns of error; this was
addressed by creating a
model of the residuals of the
forecast

Additional modifications
performed

Results

A total of 484 models (n=4 per trust) were automatically
developed using our modeling framework (Figure 3). Our

Ljung-Box tests validated that autocorrelation is minimal, thus
validating our choice of model.

The accuracy of our models varied on the basis of the season
during which we forecasted occupancy. Percent RMSE values
for each model remained relatively stable across the 6 weeks
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forecasted in the summer, indicating that the summer period is
predictable (Figure 4). In addition, only our TBATS model
(median error=2.45% for 6 weeks) outperformed the NHS
Modernisation Agency’s recommended method (median
error=2.63% for 6 weeks). TBATS yielded a median error of
1.98% for the first forecasted week and 3.01% for the sixth,
while the NHS Modernisation Agency’s recommended method
yielded a median error of 2.32% for the first forecasted week
and 3.17% for the sixth.

In contrast, percent RMSE values increased as we forecasted
further into the future during winter (Figure 5). Therefore, our
study suggests that we are only able to generate relatively
accurate forecasts 4 weeks into the future during winter.
Significant weather events and disease outbreaks may contribute
to this unpredictability. However, as current weather forecasting
methods are unable to predict significant events accurately
beyond 10 days, accounting for weather beyond this is
impractical. ES performed the best (median error=4.91% over
4 weeks), but all models outperformed the NHS Modernisation
Agency’s recommended method (median error=8.5% over 4

weeks). ES yielded a median error of 2.17% for the first
forecasted week and 9.38% for the fourth, while the NHS
Modernisation Agency’s recommended method yielded a
median error of 5.12% for the first forecasted week and 13.62%
for the sixth.

Five or fewer trusts failed to pass the Ljung-Box test of
autocorrelation for the TBATS and SARIMA models, which
suggested that the models could not be improved much further
for accuracy. However, as a large proportion of trusts failed to
pass for the ES model (40% for summer forecasts and 42% for
winter forecasts), we developed a TBATS model to forecast the
residuals of our predictions and incorporated these forecasted
residuals into our original model. This modification, however,
did not significantly improve forecast accuracy. We also
suspected that forecasts may be more accurate for trusts that do
not reach their maximum bed availability (less than 95% of total
beds are occupied). Therefore, we subsetted trusts on the basis
of maximum bed availability and generated separate SARIMA
forecasts for each group. This increased each forecast accuracy
for the winter but did not affect forecasts much for the summer.

Figure 3. Sample time series and TBATS forecasts generated for summer and winter for two trusts: Gateshead Health (A-C) and Mid Essex Hospital
Services (D-F). (A) and (D) show plots of nonelective bed occupancy through the time period in the data set. In (B)-(C) and (E)-(F), the black lines
represent the training data sets, the red lines represent the out-of-sample datasets, and the blue lines represent the occupancy forecasted by TBATS.
TBATS: Trigonometric, Box-Cox transform, autoregressive moving average errors, and Trend and Seasonal components.
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Figure 4. Distribution of error values for summer forecasts displayed by model (A) and by week (B). Outliers have been suppressed in (B) for better
visualization of error spread. ES: exponential smoothing, NHS: National Health Service, RMS: root-mean-square, SARIMA: Seasonal Autoregressive
Integrated Moving Average, TBATS: Trigonometric, Box-Cox transform, autoregressive moving average errors, and Trend and Seasonal components.

Figure 5. Distribution of error values for winter forecasts displayed by model (A) and by week (B). Outliers have been suppressed in (B) for better
visualization of error spread. ES: exponential smoothing, NHS: National Health Service, RMS: root-mean-square, SARIMA: Seasonal Autoregressive
Integrated Moving Average, TBATS: Trigonometric, Box-Cox transform, autoregressive moving average errors, and Trend and Seasonal components.

Discussion

Principal Findings
Our results show that it is possible to create automated models
to predict nonelective bed admissions with a higher degree of
accuracy and reliability than the method previously
recommended by the NHS Modernisation Agency.

Utilization of the NHS-recommended method has led to the
lack of capacity and procedures being canceled at the last minute
(Figure 3). Although some of these problems are inevitable in
such a large and diffusely managed system, the frequency of
such cancellations can be reduced with improved forecasting
methods such as the one described in this study.

Other groups that focused on hospitals in England have
generated forecasting models for either a single site or a group
of trusts, or for specific hospital services such as the emergency

department, which is more easily predictable [14]. However, to
our knowledge, none of them have utilized the data of the entire
NHS to generate more accurate forecasting models [14].
Although individual, site-specific models have the potential to
outperform national models, we believe that the majority of
hospitals do not have the resources, time, or expertise required
to generate their own predictive methodology. Therefore, a more
universal and easily implemented—albeit slightly less
accurate—modeling framework is preferable. Moreover, our
models are automated and require minimal effort for consistent
execution.

Even with a simplified approach and appropriate end-user
education, several barriers to implementation could limit the
use of the developed national forecasting models. In the NHS
system, staffing rotas lack the flexibility required to reduce staff
at short notice. While an incorrect forecast predicting an
increased demand would result in financial losses, an erroneous
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prediction of a reduction could lead to adverse clinical events.
Therefore, caution dictates that users are more likely to respond
to forecasts of increased demand rather than those predicting
the reverse. Routine forecasting would therefore be likely to
increase costs, at least in the initial phase.

If such modeling frameworks are to be incorporated into policy,
it is essential to consider whether effective implementation is
possible. A recent study of ED escalation plans [15] to support
patient care in times of increased demand reported that there
can be a significant gap between managerial intentions and
actual implementation.

Limitations
Potential bias may have arisen from inaccurate data collection
and reporting at a local level. In addition, our occupancy data
were collected as a midnight census rather than during the day,
when hospital occupancy peaks. This may limit the applicability
of the model. Although our models took into account various
temporal models, we did not explicitly consider meteorological
conditions such as weather or air pollution—factors that could
have an impact on predictive accuracy [16,17].

Another limitation of our study is that we were not able to model
demand for outpatient services or elective procedures, which
may have a significant impact on the availability of inpatient
resources, including health care professionals themselves [18].
Nevertheless, this is an area that clinicians and managers can
control to a large extent [13]. In addition, there is a need for
caution when predicting the real-world implications of total bed
utilization from models in which maximum capacity is

approached, as small random effects may have unpredictable
consequences.

As these models require automation, we have not utilized the
most advanced predictive techniques available. The self-exciting
threshold autoregressive model and artificial neural networks
would be likely to produce more accurate predications once
fully optimized. We explored this model but ultimately rejected
it because of the high degree of personalization that the
self-exciting threshold autoregressive system required for correct
usage. This would thus be impractical for hospital staff with
limited statistical knowledge—or the time to acquire it—for
effective implementation.

Conclusions
There is no sign of an imminent reduction in the demand for all
hospital services. Therefore, improvements in the efficiency of
health care resource utilization are of paramount importance.
We believe that, to our knowledge, this is the first study to
generate accurate forecasting models for an entire health care
system. In addition, our models are automated and require
minimal effort to execute consistently and accurately; thus, they
are in parallel with the NHS Modernisation Agency’s latest
guidelines on advanced forecasting techniques [12]. With
increased predictive accuracy of nonelective bed occupancy,
more reliable elective procedure schedules can be produced by
hospital managers. This increased efficiency should lead to
better care for patients, together with a more consistent
workflow pattern for health care staff. We believe that a similar
methodology can be applied to hospital systems other than the
NHS, in other countries including the United States, and we
hope to apply these models more widely in the future.
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Abstract

Background: Collaboration is vital within health care institutions, and it allows for the effective use of collective health care
worker (HCW) expertise. Human-computer interactions involving electronic health records (EHRs) have become pervasive and
act as an avenue for quantifying these collaborations using statistical and network analysis methods.

Objective: We aimed to measure HCW collaboration and its characteristics by analyzing concurrent EHR usage.

Methods: By extracting concurrent EHR usage events from audit log data, we defined concurrent sessions. For each HCW, we
established a metric called concurrent intensity, which was the proportion of EHR activities in concurrent sessions over all EHR
activities. Statistical models were used to test the differences in the concurrent intensity between HCWs. For each patient visit,
starting from admission to discharge, we measured concurrent EHR usage across all HCWs, which we called temporal patterns.
Again, we applied statistical models to test the differences in temporal patterns of the admission, discharge, and intermediate
days of hospital stay between weekdays and weekends. Network analysis was leveraged to measure collaborative relationships
among HCWs. We surveyed experts to determine if they could distinguish collaborative relationships between high and low
likelihood categories derived from concurrent EHR usage. Clustering was used to aggregate concurrent activities to describe
concurrent sessions. We gathered 4 months of EHR audit log data from a large academic medical center’s neonatal intensive care
unit (NICU) to validate the effectiveness of our framework.

Results: There was a significant difference (P<.001) in the concurrent intensity (proportion of concurrent activities: ranging
from mean 0.07, 95% CI 0.06-0.08, to mean 0.36, 95% CI 0.18-0.54; proportion of time spent on concurrent activities: ranging
from mean 0.32, 95% CI 0.20-0.44, to mean 0.76, 95% CI 0.51-1.00) between the top 13 HCW specialties who had the largest
amount of time spent in EHRs. Temporal patterns between weekday and weekend periods were significantly different on admission
(number of concurrent intervals per hour: 11.60 vs 0.54; P<.001) and discharge days (4.72 vs 1.54; P<.001), but not during
intermediate days of hospital stay. Neonatal nurses, fellows, frontline providers, neonatologists, consultants, respiratory therapists,
and ancillary and support staff had collaborative relationships. NICU professionals could distinguish high likelihood collaborative
relationships from low ones at significant rates (3.54, 95% CI 3.31-4.37 vs 2.64, 95% CI 2.46-3.29; P<.001). We identified 50
clusters of concurrent activities. Over 87% of concurrent sessions could be described by a single cluster, with the remaining 13%
of sessions comprising multiple clusters.
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Conclusions: Leveraging concurrent EHR usage workflow through audit logs to analyze HCW collaboration may improve our
understanding of collaborative patient care. HCW collaboration using EHRs could potentially influence the quality of patient
care, discharge timeliness, and clinician workload, stress, or burnout.

(JMIR Med Inform 2021;9(9):e28998)   doi:10.2196/28998

KEYWORDS

collaboration; electronic health records; audit logs; health care workers; neonatal intensive care unit; network analysis; clustering;
visualization; concurrent interaction; human-computer interaction; survey instrument; informatics framework; secondary data
analysis

Introduction

The measurement of coordinated collaboration in health care
systems has proven to be important for providing better quality
care [1-9]. Numerous studies have correlated collaboration with
quality of care [1-3], patient safety [4-6], and clinical outcomes
[7,8]. No universal guidelines exist to study collaboration in
health care organizations (HCOs). Existing studies approached
collaboration by relying on surveys, written reports, and
interviews as a basis for gauging collaboration [1-9]. Further,
they examined communication, teamwork, and problem-solving
in HCOs, noting that interprofessional team functions are often
suboptimal [3,7]. In addition, these studies identified barriers
to successful interprofessional collaboration, including power
dynamics, poor communication patterns, and incomplete
understanding of roles and responsibilities [1-9]. However,
existing studies seldom examine collaborative activities in the
context of electronic health record (EHR) system usage. EHR
systems provide a virtual environment for a diverse collection
of health care workers (HCWs) to exchange accurate, detailed,
and timely information electronically [10-12].

As EHRs have grown in adoption, the proportion of
collaboration among HCWs involving EHR systems has
increased as well [13-15]. For instance, a respiratory therapist
noted, in an EHR, that a patient had an increased need for
oxygen. At the same time, a nurse documented the same
patient’s vital signs and noted the presentation of tachypnea.
Next, an attending physician reviewed the vitals and respiratory
rate, and prescribed the patient a diuretic [16]. Here, three HCWs
experienced latent (inexplicit) collaboration through the EHR
system that may not have been flagged by HCOs. HCWs may
spend a considerable amount of time in latent collaborations in
caring for patients through EHR systems [17-19]. The
relationships among latent collaborations, care quality, and
patient safety, however, have been understudied due to a lack
of metrics or concepts describing collaboration of this nature.

Highly granular and widely available EHR audit logs document
HCW activities occurring within EHRs [20-23] and can be used
to model latent collaboration among HCWs and the respective
interactions between HCWs and EHR systems [13,16,24-29].
Typically, each event documented in an audit log includes a

timestamp, the type of action involved, the involved HCW and
patient IDs, and further metadata, such as HCW specialties,
patient demographics, and health conditions [13,16,20-29]. EHR
audit logs have been widely used to measure health care
organizational structures [20,25], clinical workflows [20,30,31],
trauma care team structures [13,20,26], and intensive care unit
care structures [16,27-29]. Existing studies have investigated
audit log data at a coarse-grained level to build connections
between HCWs [13,16,20-31], and thus, much of the contextual
information (eg, HCW-EHR system interactions) is lost. For
instance, coarse-grained latent interactions between HCWs have
previously been defined by shared interactions with the same
patients on the same day or during the same patient encounter
[26-29]. We demonstrate that audit logs enable the study of
latent collaborative activities at a highly granular level.

In this study, we propose a robust framework for the
investigation of latent collaboration through concurrent EHR
utilization. Using this framework, we describe a case study
showcasing its usage in the neonatal intensive care unit (NICU)
of a large academic medical center consisting of neonatologists,
neonatal fellows, neonatal frontline providers, neonatal nurses,
respiratory therapists, consultants, ancillary staff, and support
staff. In the NICU, the density of audit logs per patient episode
is very high, and it is an ideal environment for investigating
latent collaboration [16,28].

Methods

Overview
In this section, we describe how we defined and calculated
individual intervals, concurrent intervals, and concurrent
sessions from the audit log data. We defined the core
components of our proposed framework for measuring latent
collaboration and its characteristics, via audit log data, which
involve concurrent intensity (proportion of concurrent intervals
and time spent on those intervals), latent collaborative HCW
relationships, temporal patterns (weekday vs weekend or
admission vs discharge temporal trends of concurrent EHR
usage), and the complexity of concurrent sessions. Figure 1
shows the workflow of learning latent collaboration and its
characteristics from the audit log data.
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Figure 1. A workflow diagram showing our framework on learning concurrent intensity, latent collaborative HCW relationships, temporal trends of
concurrent EHR usage, and concurrent session complexity from EHR audit log data. EHR: electronic health record; HCW: health care worker.

Events in EHR Audit Logs
An event is a single row of an audit log entry containing the
HCW ID, patient ID, action ID, and time stamp. Thus, an event
describes an action that an HCW performed on an EHR of a
patient at a specific time. The action ID corresponds to the type
of action performed, such as typing a progress note, accessing

patient demographics, refilling medications, reviewing
cholesterol test results, and so on. Table 1 shows a list of events
performed by two HCWs (anonymized IDs A and B) on EHRs
of two patients (anonymized IDs 1 and 2). These events are
retrieved from EPIC EHR audit logs. Further definitions of the
events can be found at Epic’s EHR UserWeb [32].

Table 1. Examples of events by health care workers.

TimestampEvent actionPatient IDHealthcare worker ID

4/5/2020 2:14:25FLOWSHEETS DATA SAVED1A

4/5/2020 2:15:00CHART REVIEW ENCOUNTERS TAB SELECTED1A

4/5/2020 2:18:23CHART REVIEW OTHER ORDERS TAB SELECTED1A

4/5/2020 2:19:53HISTORY ACTIVITY ACCESSED1A

4/5/2020 2:21:32FLOWSHEETS DATA COPIED FORWARD1A

4/5/2020 2:22:23CHART REVIEW MEDICATIONS TAB SELECTED1A

12/3/2020 06:31:27VISIT NAVIGATOR TEMPLATE LOADED2B

12/3/2020 06:33:11SNAPSHOT REPORT VIEWED2B

12/3/2020 06:34:41CHART REVIEW NOTES2B

12/3/2020 06:36:27CHART REVIEW ENCOUNTER2B

12/3/2020 06:37:33CHART REVIEW RESULTS2B

12/3/2020 06:39:27CHART REVIEW OTHER ORDERS2B

Creating Intervals From Events
We defined an interval as an ordered list of events that occur
sequentially until two events are spaced in time by more than
a certain cutoff (note that these events must be from the same
HCW and the same patient). Each interval has start and stop
times, corresponding to the first event and last event times in

the interval. Intervals also have a duration metric, which is
simply the difference between the start and stop times. Figure
2A provides a more detailed example using 2 minutes as a
cutoff. This interval definition aims to divide an HCW’s EHR
actions into a set of segments, similar to an order session or a
series of orders placed by a clinician for a single patient, defined
in a previous report [33].
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Figure 2. Examples of creating intervals from events (A) and defining a concurrent session based on overlapped intervals (B).

A “knee point” finding algorithm, described by Satopaa et al,
was used to estimate the cutoff used [34]. Our previous study
used such a strategy and identified clinically meaningful
intervals for the sessionization of audit logs [35]. This strategy
has been used before in finding the operating points of complex
systems and is defined more formally, for any continuous
function f, as follows:

Kf (x) = f′′(x) / (1 + f′(x)2)1.5(1)

Kf (x) represents the closed form of the curvature f at any point
as a function of its first and second derivatives. We find x
through the Kneedle algorithm, which maximizes this curvature
[34].

Creating Concurrent Sessions From Intervals
We defined a concurrent session as a set of temporally
overlapping intervals performed by different HCWs on EHRs
of the same patient. We assumed that concurrent sessions can
indicate who works with whom given that they are
simultaneously performing EHR actions to manage a single
patient. A concurrent interval is any interval that is part of a
concurrent session; likewise, an individual interval is any
interval that is not a part of any concurrent session. Concurrent
intervals of a session have overlaps that are greater than zero.
Figure 2B provides a more detailed example of a concurrent
session made up of four concurrent intervals.

Workday Definition
We found that sometimes HCWs spend only a small amount of
time (eg, 5 minutes per 24 hours) interacting with the EHRs of
patients. We denoted these lower activity days as inactive EHR
workdays and assumed that such workdays have little impact
on measuring latent collaboration and its characteristics. Thus,
we only investigated active EHR days in this study. An active
EHR day was defined as a day (24 hours) where the sum of all
the HCW interval durations in that day exceeds a certain amount
of time, or the workday time cutoff. This cutoff value is
determined by different clinical settings (eg, NICU or primary
care) and the respective HCW time spent interacting with EHRs.
We relied on expert knowledge in EHR utilization to determine
the workday cutoff value.

Creating Intermediate Data Matrices
Based on the concurrent sessions, we generated eight
intermediate matrices (Figure 1) describing latent collaboration
and its characteristics. For instance, the associations between
concurrent intervals and actions were stored in the concurrent
interval-action matrix, and the associations between concurrent
intervals and concurrent sessions were stored in the concurrent
interval-concurrent session matrix. The intermediate data were
used in the following analysis.

Measuring the Concurrent Intensity of an HCW
Given the definitions previously discussed, we can create
attributes for each HCW. These attributes include HCW
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specialty (eg, neonatologist and neonatal nurse), individual
intervals, concurrent intervals, durations of both individual and
concurrent intervals, EHR workdays, and the durations of these
EHR workdays. We leveraged these attributes to measure the
proportion of concurrent intervals over all recorded intervals
and the proportion of time spent on concurrent intervals. These
two attributes comprise the concurrent intensity of an HCW.
We measured the concurrent intensity per day, excluding
inactive EHR workdays. The daily concurrent intensity, along
with EHR time on active EHR workdays, was used to describe
the time characteristics of an HCW in EHR systems. We used
Spearman rank correlation to measure the association between
daily time in EHRs and daily time spent on concurrent intervals
for HCWs affiliated with the same specialty attribute. This tests
the null hypothesis that there is no association between daily
time spent on concurrent intervals and daily time spent on EHRs
across all HCWs affiliated with the same specialty. Moreover,
we applied a one-way analysis of variance (ANOVA) to test
the significance of differences in the concurrent intensity and
EHR time on active workdays between specialties at a
significance level of .05. The null hypothesis is that there are
no significant differences in the concurrent intensity/EHR time
between HCWs with disparate specialties. All statistical
analyses, including those in the following sections, were
performed using R 4.0.4 (R Foundation for Statistical
Computing). The four matrices, as shown in Figure 1, were used
to quantify concurrent intensity for each HCW.

Measuring and Validating Latent Collaborative
Relationships Between HCWs
The HCW-concurrent session matrix was leveraged to measure
relationships between HCWs with respect to their participation
in concurrent sessions. In this study, we used the number of
co-affiliated sessions between pairs of HCWs to measure the
relationship’s strength. Based on these weightings between
HCWs, we created a network of HCWs to describe their latent
collaborations. We used K-core analyses to identify a subgraph
depicting core latent collaboration among HCWs in EHR
systems. Each HCW within the K-core subgraph is connected
to at least K other HCWs, and each respective HCW is
considered as one core of the whole collaboration network.
Gephi, an open-sourced network analysis and visualization tool,
was used in this study [36].

We assumed that if the learned classes of the collaborative
relationships (high and low strength) are consistent with the
psychological expectations of HCWs, our approaches measuring
latent collaborative relationships are plausible. To assess if
HCWs can distinguish between likelihoods of collaborative
relationships derived from EHRs, we divided putative
collaborative relationships into the following two groups: high
and low likelihoods. We randomly selected a set of collaborative
relationships from the high and low groups, which were assessed
by invited experts in an online survey. The experts who
responded to the survey were asked questions like “To what
extent do you believe [a neonatal nurse] interacts with [a
neonatologist] in the electronic health record system to manage
a patient?” This is asked for each collaborative relationship,
and respondents are blind to the EHR-learned likelihood. The
professionals were asked to choose one of the following five

answers: “Not at all likely,” “Slightly likely,” “Moderately
likely,” “Very likely,” and “Completely likely.” For statistical
analysis, these survey responses were encoded as integer values
(Likert score) in the range 1 to 5 (eg, “Not at all likely” is
mapped to 1). The Likert scores were used to quantify an
expert’s psychological expectations of latent collaborative
relationships.

These surveys were distributed through the REDCap
management system [37] and expert responses were requested
after review and approval from the Vanderbilt Institutional
Review Board (approval number: 191892). Using the survey
results, we tested the following hypothesis: experts can
distinguish latent collaborative relationships between high and
low likelihood categories. We applied a linear regression model,
shown in the following equation, to determine the Likert score
for high and low likelihood relationships.

Likert Score=α+θ×β (2)

where θ {1 (high likelihood), 0 (low likelihood)} represents the
high and low likelihoods of collaborative relationships identified
from EHRs. Under this model, the Likert score for a low
likelihood collaboration is α (θ=0) and for a high likelihood
collaboration is α + β (θ=1). As such, the value of β corresponds
to the difference of Likert scores for high and low likelihood
collaborative relationships.

We used the Likert scores as observations to infer β via linear
regression models. We then used ANOVA to test the
significance of β≠0 against a null hypothesis β=0. We tested
the hypothesis at the two-sided α=.05 significance level.

Mining Weekday and Weekend Temporal Trends of
Concurrent EHR Usage
We analyzed when (eg, shifts) concurrent sessions occur in
EHRs. We assumed HCWs have different EHR interaction
patterns during weekdays and weekends, and that those patterns
are also different in the phases of a patient’s stay in the NICU.
Therefore, we modeled weekday- and weekend-temporal trends
of concurrent EHR usage, which we called temporal patterns,
and focused on the following three specific phases of a patient’s
hospital stay: admission, discharge, and intermediate phases.

Since all investigated patients had admission and discharge
dates, we learned temporal patterns 24 hours after admission
and 24 hours before discharge based on all those patients. We
created the following four patient groups: (1) patients admitted
during weekdays, (2) patients admitted during weekends, (3)
patients discharged during weekdays, and (4) patients discharged
during weekends. For a single patient in a patient group, we
measured the number of concurrent intervals performed by
HCWs on EHRs of that patient in each hour during the 24-hour
window. Next, we calculated the average number in each hour
for all patients in a group to form a temporal pattern. We used
Wilcoxon rank-sum test to measure differences in the temporal
patterns between weekdays and weekends because the Wilcoxon
rank-sum test is based solely on the order in which the
observations from the two patterns fall.

We chose days surrounding the middle of a patient’s hospital
stay to represent the intermediate phase for the measurement
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of temporal patterns. We also separated patient stay into the
following two subgroups: weekday and weekend stay. We
measured the average number of concurrent intervals for each
hour and used the Wilcoxon rank-sum test to assess the
differences between weekday and weekend temporal patterns.

We also compared the differences between weekdays and
weekends in the degree of concurrent EHR usage during the
admission, discharge, and intermediate phases of hospital stay
using t tests. This was done to determine if there was a
significant difference between the means of two patterns,
without the consideration of pattern observation order.

Clustering Concurrent Intervals to Describe a
Concurrent Session
The concurrent interval-action matrix recorded the number of
times an action appeared in a concurrent interval. This matrix
was used to learn similarities between concurrent intervals and
concurrent sessions in terms of their affiliated action types. We
performed principal component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), and K-means clustering
to aggregate intervals described by a cluster-concurrent interval
matrix. The cluster-concurrent interval matrix was used jointly
with the concurrent interval-concurrent session matrix to
determine if a concurrent session contains intervals assigned to
the same cluster or different clusters. This joint analysis was
performed by calculating the dot product of the matrices. Such
an analysis can highlight the complexity (eg, a concurrent
session affiliated with a single cluster or multiple clusters) of a
concurrent session.

Availability of Data
The data sets that were generated and analyzed in this study are
not publicly available because they include patients’ private
information. However, the data sets can be obtained from the
corresponding author upon reasonable request.

Results

Case Studies in the NICU
We gathered 4 months of EHR audit log data from a large
academic medical center’s NICU. The data set contained

2,840,249 actions performed by 3303 HCWs (approximately
22,319 HCWs in the VUMC EHR system) to EHRs of 382
NICU patients. In this case study, we identified 2 minutes as
the cutoff threshold in creating intervals from series of events;
this was the point of maximum curvature, or “knee point,”
determined through the Kneedle algorithm (as shown in
Multimedia Appendix 1). We used 15 minutes as the threshold
to separate inactive and active workdays, as determined through
NICU expert questionnaires regarding EHR utilization. From
these thresholds, we created 624,192 concurrent intervals, each
of which comprised of consecutive sequences of 650 unique
actions. There were 173,436 concurrent sessions created from
the concurrent intervals.

Examining Differences in the Concurrent Intensity
Between NICU HCWs
We compared the concurrent intensities across the top 13
specialties having the highest average EHR times on active
workdays. The 13 specialties consisting of 552 HCWs are listed
in Table 2, along with their mean values and 95% CIs for
concurrent intensity and EHR time. The concurrent intensity
was calculated after excluding activities on inactive workdays.
The statistical test results showed that there were significant
differences in the EHR time (from mean 23.38, 95% CI
21.97-24.80, to mean 54.78, 95% CI 40.43-69.13; P<.001) and
concurrent intensity (from mean 0.07, 95% CI 0.06-0.08, to
mean 0.36, 95% CI 0.18-0.54; P<.001 with respect to the
proportion of concurrent intervals and from mean 0.32, 95%
CI 0.20-0.44, to mean 0.76, 95% CI 0.51-1.00; P<.001 with
respect to the proportion of EHR time spent on concurrent
intervals) between the 13 investigated specialties. We found
that there were no significant relationships between EHR time
and the proportion of time spent on concurrent intervals, except
for extracorporeal membrane oxygenation (ECMO) respiratory
therapists (P<.001). ECMO respiratory therapists had positive
associations between time spent in EHRs and the proportion of
time spent on concurrent intervals. This indicates that ECMO
respiratory therapists work (76% of their EHR time) in a highly
concurrent environment.
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Table 2. Data for health care workers affiliated with 13 specialties.

Proportion of EHR time
spent on concurrent inter-
vals, mean (95% CI)

Proportion of concurrent
intervals, mean (95% CI)

Number of event actions
per day, mean (95% CI)

EHRa time (min), mean
(95% CI)

Specialty

0.51 (0.17-0.85)0.25 (0.07-0.44)66.49 (54.82-78.16)54.78 (40.43-69.13)MRIb-technologists

0.60 (0.39-0.80)0.36 (0.18-0.54)72.53 (62.64-82.41)50.06 (39.77-60.35)Diagnostic radiology-technologists

0.59 (0.48-0.69)0.13 (0.08-0.18)144.03 (134.77-153.29)49.35 (45.02-53.69)Pediatric cardiac ICUc-registered
nurse

0.40 (0.37-0.44)0.07 (0.06-0.08)98.86 (96.95-100.77)36.56 (35.17-37.95)NICUd-registered nurse

0.63 (0.55-0.71)0.08 (0.05-0.11)121.58 (114.72-128.45)34.03 (30.71-37.36)Pediatrics-resident physician

0.32 (0.20-0.44)0.09 (0.02-0.15)86.33 (75.05-97.62)33.47 (26.06-40.88)Float pool-registered nurse

0.66 (0.58-0.75)0.14 (0.09-0.18)131.74 (124.82-138.66)31.36 (28.75-33.98)Inpatient-nurse practitioner

0.70 (0.39-1.00)0.21 (0.04-0.38)91.88 (75.31-108.46)30.73 (21.93-39.52)ECMOe-registered nurse

0.76 (0.51-1.00)0.28 (0.06-0.50)93.31 (77.85-108.77)30.62 (22.58-38.65)ECMO-respiratory therapist

0.68 (0.40-0.96)0.16 (0.07-0.26)90.43 (58.77-122.08)27.89 (20.50-35.27)Perioperative services-registered
nurse

0.75 (0.52-0.98)0.12 (0.07-0.18)58.16 (53.18-63.14)26.27 (20.22-32.33)Rx inpatient core-pharmacist

0.63 (0.38-0.89)0.15 (0.06-0.23)105.08 (88.39-121.78)24.91 (19.86-29.96)Anesthesiology-nurse anesthetist

0.57 (0.46-0.69)0.11 (0.07-0.15)103.87 (98.58-109.16)23.38 (21.97-24.80)Pediatrics-respiratory therapist

aEHR: electronic health record.
bMRI: magnetic resonance imaging.
cICU: intensive care unit.
dNICU: neonatal intensive care unit.
eECMO: extracorporeal membrane oxygenation.

Examining Latent Collaboration Networks in the NICU
We identified a collaboration network consisting of 857 HCWs
with 4242 edges connecting them. The 857 HCWs were
affiliated with 406 unique specialties. Figures 3 and 4 show the
collaboration network of HCWs and its 15-core subnetwork,
where each node is an HCW. The 15-core subnetwork was made
up of 61 core HCWs, with 748 edges connecting those HCWs.
Within the 15-core subnetwork, each HCW collaborated with
at least 15 other HCWs. Compared with the full collaborative
network (centered by a neonatal nurse), the 15-core subnetwork
was centered by ancillary staff (latent collaboration with NICU
professionals: neonatal nurses, neonatal frontline providers,
neonatal fellows, neonatologists, and respiratory therapists). To
interpret these collaborations among NICU HCWs, NICU
experts categorized 406 specialties into the following eight
roles: neonatologists, neonatal fellows, neonatal frontline
providers (eg, nurse practitioners, physician assistants,
hospitalists, and resident physicians), neonatal nurses,

respiratory therapists, consultants (eg, surgeons, OB/GYN
physicians, hematology physicians, radiology physicians,
anesthesiologists, and genetics counselors), ancillary staff (eg,
registered dietitians, social workers, case managers, technicians,
and phlebotomists), and support staff (eg, clerks, information
technology staff, coordinators, and medical assistants). The
collaboration network, as shown in Figure 5, was visualized at
the level of roles. The mappings between the eight roles and
406 specialties are presented in Multimedia Appendix 2.

Overall, ancillary staff and consultants had higher concurrent
intensity (larger node size) than HCWs with other roles (Figure
3). Supporting this was the observation that ancillary staff nodes
were distributed across the 15-core subnetwork (Figure 4).
Figure 5 indicates the latent collaborative relationships among
the eight professional roles. The relationships between ancillary
HCWs, consultants, neonatal nurses, and neonatal frontline
providers were strong. Neonatal nurses were very active in the
network, often collaborating with HCWs from ancillary staff,
which was the most collaborative role.
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Figure 3. The latent collaboration network of HCWs. Each HCW is coded as a color based on their affiliated role category. The size of the node is
determined by the proportion of time spent on the concurrent intervals over all intervals. A larger node size is associated with a higher proportion of
time for concurrent EHR usage. EHR: electronic health record; HCW: health care worker.
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Figure 4. The 15-core HCW subnetwork. Each node is an HCW labeled by the roles. The size of the node is determined by the proportion of time spent
on the concurrent intervals over all intervals. A larger node size is associated with a higher proportion of time for concurrent EHR usage. EHR: electronic
health record; HCW: health care worker.
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Figure 5. The collaboration network of the eight role categories. The nodes are roles. The weight of the edge indicates the strength of the collaboration.

Collaboration Validation Results
We sampled 12 (12/28) collaborative relationships (six of high
and six of low likelihood), and generated a survey containing
12 questions (Multimedia Appendix 3). The total number of
NICU experts who accepted the invitation and participated in
the survey was 13, with four neonatologists, three neonatal
fellows, three neonatal nurses, two nurse practitioners, and one
respiratory therapist. The 13 experts, including neonatal
attendings, nurses, nurse practitioners, residents, fellows, and
respiratory therapists, were representatives of the expertise in
the NICU. The average number of years those experts have been

working at the NICU is 5.65. All 13 responding NICU experts
completed the survey (100% response rate). The number of
years of experts working in the NICU is depicted in Multimedia
Appendix 4. The results of the Likert scores are shown in
Multimedia Appendix 5. Our assumption of using a linear
regression model was confirmed by the quantile-quantile plot,
as shown in Figure S2 in Multimedia Appendix 5. Overall,
NICU experts could distinguish collaborative relationships
between high and low likelihoods (β=.88, Likert score: 3.54,
95% CI 3.31-4.37 vs 2.64, 95% CI 2.46-3.29; P<.001). The
Likert scores of the 12 collaborations surveyed from NICU
experts are shown in Table 3.

JMIR Med Inform 2021 | vol. 9 | iss. 9 | e28998 | p.117https://medinform.jmir.org/2021/9/e28998
(page number not for citation purposes)

Li et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Likert scores of the 12 investigated collaborative relationships.

Likert score from NICUa professionalsIndex and collaborative relationship

Collaborative relationships with high likelihoods learned from EHRsb

3.851: Neonatal front line provider ↔ Consultant

2.232: Ancillary staff ↔ Consultant

4.463: Neonatal nurse ↔ Consultant

4.084: Neonatal front line provider ↔ Ancillary staff

3.465: Ancillary staff ↔ Neonatal nurse

3.156: Support staff ↔ Neonatal nurse

Collaborative relationships with low likelihoods learned from EHRs

3.157: Neonatal front line provider ↔ Neonatologist

2.078: Ancillary staff ↔ Support staff

3.079: Neonatal nurse ↔ Neonatal fellow

2.8410: Neonatal front line provider ↔ Neonatal fellow

3.0711: Ancillary staff ↔ Neonatal fellow

1.6912: Support staff ↔ Neonatal fellow

aNICU: neonatal intensive care unit.
bEHR: electronic health record.

Temporal Trends of Concurrent EHR Usage
Figure 6 shows the temporal patterns 24 hours after admission
(6A and 6B) and 24 hours before discharge (6C and 6D). These
patterns were separated by weekday or weekend status. The
temporal patterns were significantly different for both admission
(average number of concurrent intervals per hour: 11.60 vs 0.54,

P<.001) and discharge days (4.72 vs 1.45, P<.001), but not for
the intermediate phase of hospital stay.

Expectedly, there was more concurrent EHR usage between
HCWs on weekdays than weekends across all three phases of
hospital stay (average number of concurrent intervals per hour:
9.56 vs 2.34, P<.001).
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Figure 6. Concurrent EHR usage temporal trends 24 hours after admission (A and B), 24 hours before discharge (C and D), and consecutive intermediate
days of hospital stay. The trends are measured from weekdays and weekends. EHR: electronic health record; NICU: neonatal intensive care unit.

Clusters of Concurrent Intervals and the Composition
of a Concurrent Session
We clustered the concurrent intervals using their constituent
actions as features. We used PCA to reduce the dimensionality
to the top 10 components, which explained 97% of the variance.
We then applied t-SNE on the 10 PCA components to further
reduce the data to two dimensions. Finally, we used the k-means
clustering algorithm to form 50 clusters, as shown in Figure 7.
This K of 50 was determined by minimizing the total
within-cluster sum of squared errors (WSS). The squared error
for each point was the square of the distance of the point from
its predicted cluster center. The WSS score was the sum of these
squared errors for all the points. The plot of WSS versus k is
depicted in Figure S1 in Multimedia Appendix 6. As shown in
Figure 7, the 50 clusters were well separated. Concurrent
intervals within each cluster shared similar actions.

Using the clusters visualized in Figure 7, we examined
intercluster relationships, as shown in Figure S2 in Multimedia

Appendix 6. The calculated intercluster network described the
pairwise relationship of each of the concurrent sessions.

Figure 8 shows the distribution of concurrent sessions in terms
of the number of clusters affiliated. We showed that over 87%
of concurrent sessions could be unambiguously assigned into
a single unique cluster, indicating that most HCWs perform
similar actions in a concurrent session. About 13% of concurrent
sessions, consisting of concurrent intervals, came from multiple
clusters.

Our unsupervised learning framework could identify and
quantify concurrent EHR usage from audit log data. Based on
concurrent EHR usage, we could determine the proportion of
concurrent activities, the proportion of time spent on those
activities, HCWs who participate in concurrent or latent
interactions, the temporal trends of concurrent EHR usage on
weekdays and weekends in the three phases of hospital stay,
and the complexity of concurrent activities (single cluster vs
multiple clusters).
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Figure 7. A visualization of the 50 clusters of concurrent intervals. Each node is a concurrent interval, and each color indicates the cluster group to
which an interval belongs. The axes are t-distributed stochastic neighbor embedding–reduced components.

Figure 8. The distribution of concurrent sessions as a function of the number of clusters that concurrent intervals are affiliated with.

Discussion

Principal Findings
We presented a novel framework to measure latent collaboration
from EHR audit logs, and we established novel metrics, which

may be useful for the analysis of latent HCW collaboration.
EHR system usage is pervasive and still increasing. While there
are studies that measured collaboration, few targeted the growing
paradigm of latent collaboration among HCWs. We
demonstrated the use of our informatics framework in the
analysis of latent collaboration. We examined the concurrent
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intensity across various HCW specialties and found that there
was a statistically significant difference in the proportion of
concurrent activities and the proportion of time spent on those
activities. It was noted that in some settings, clinicians shared
the same workstation or computer terminal. Concurrent EHR
usage may have highly variable ergonomics between health
care settings, for example, in some instances, HCWs may have
to share one workstation, making concurrent EHR usage
impossible. In this study, we identified latent collaboration
among HCWs coming from various departments, and thus, there
was a low probability for HCWs sharing the same workstation
or computer terminal. If latent collaboration is identified among
HCWs from the same department or unit, it would be better for
HCOs to allocate more workstations or computer terminals to
HCWs within the department/unit to achieve high performing
collaboration in EHR systems.

We examined networks that represented the collaborative
relationships between HCWs (Figure 2). By using our
framework, we identified HCW relationships between defined
role categories in the NICU. We assessed our framework in a
NICU setting, and it demonstrated the effectiveness of using
concurrent EHR usage measuring latent collaboration. Based
on the observations from Figures 3 to 5, EHR vendors or HCOs
may need to establish communication channels in EHR systems
for ancillary staff to collaborate with other HCWs (eg, NICU
nurses) to deliver high quality care for neonates.

Strikingly, strong collaborative relationships between
consultants, ancillary staff, and neonatal nurses are described
by our framework (Figure 4), though NICU experts do not
consistently assign collaborative relationships between them
(eg, collaborative relationship between ancillary staff and
consultants) (Table 3). One potential reason for this discrepancy
is that our survey respondents were not part of ancillary staff
or consultant roles, thus limiting the description of these specific
collaborations. Recruiting HCWs from these roles as survey
respondents remains high priority, but is challenging due to
their assignments to heterogeneous departments and care units.
We believe a large scale study is required to formally assess
latent collaborative relationships between ancillary staff and
consultants.

We examined concurrent EHR usage patterns in the admission,
discharge, and intermediate phases of hospital stay, finding
significant differences in patterns between weekdays and
weekends. This suggests that HCWs act differently on weekdays
and weekends, which may assist HCOs in using different
staffing strategies optimizing latent collaboration on weekdays
and weekends.

We clustered the concurrent intervals of HCWs and highlighted
their interconnectivity (Multimedia Appendix 6). These clusters
and their neighbors may be used to reduce the search space for
the analysis of audit log data. Potentially, this enables higher
throughput process mining or the targeting of specific dominant
HCW roles.

Scope of This Study and Its Limitations
This was a pilot study, and we would like to acknowledge some
limitations that may guide prospective latent

collaboration-related studies. Using concurrent HCW activity
can help HCOs or EHR vendors identify potential collaborative
relationships among HCWs; however, such relationships need
to be further validated when optimizing or refining EHR
systems. Moreover, causative explanations for these latent
relationships are not determined. We believe that describing
the causes for certain collaborations would require additional
data and further investigations on the HCW-EHR system
interaction workflow. This study does not describe the cause
of this phenomenon, but highlights its existence and provides
an avenue of hypothesis generation for future work.

There are multiple forms of collaboration between HCWs [26].
Collaboration may consist of direct and explicit physical
communication or latent interactions through digital platforms,
but our study focused on latent interactions involving EHR
systems. Learning broader forms of collaboration requires the
integration of a broader range of data resources.

We investigated when concurrent EHR usage occurs, but did
not investigate the underlying causes for the observed
differences. Our focus on concurrent EHR usage may not be
able to detect collaborative activities that do not have time
overlaps. Further, we acknowledge that not every piece of
concurrent HCW activity indicates a latent collaboration. It is
possible that overlapping usage of the same target patient EHR
is coincidental. For instance, some HCWs may simply have
overlapping shifts, which may be detected as false positives
with our framework, thus requiring further validation to flag
these scenarios.

Since interval durations were calculated through the difference
of timestamps, we did not capture the duration of interval-ending
actions. Potential remedies in logging the durations of these
types of actions include the use of video monitoring to track
HCW activities in EHRs.

NICU experts distinguished latent collaborative relationships
between high and low likelihoods learned from EHRs; however,
we did not assess the plausibility of each inferred latent
collaborative relationship at the level of the EHR user (edges
in Figure 3).

Finally, we used a threshold determined by experts to define
active EHR workdays. Activities occurring on inactive EHR
workdays may also contribute evidence for measuring latent
collaborative relationships. Moreover, categorization of 406
specialists named by the Epic system into eight general roles
was conducted by NICU experts, which may be biased according
to their expertise and experiences.

Conclusion
We presented an informatics framework relying on concurrent
EHR usage to learn latent collaboration. We explored the
advantages of the framework by conducting the following four
types of analyses: (1) quantifying time spent interacting with
EHRs and on concurrent usage, (2) investigating the latent
collaborative relationships among HCWs engaging in highly
concurrent EHR usage, (3) measuring temporal trends of
concurrent EHR usage on weekdays and weekends in the three
phases of hospital stay, and (4) clustering EHR activities to
describe the complexity of concurrent EHR usage. We assessed
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the effectiveness of our framework through a case study and
anticipated that its generalizability will further enable the

analysis of how latent collaborative interactions affect patient
care, discharge times, and clinician workload, stress, or burnout.
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Abstract

Background: Emergency department boarding and hospital exit block are primary causes of emergency department crowding
and have been conclusively associated with poor patient outcomes and major threats to patient safety. Boarding occurs when a
patient is delayed or blocked from transitioning out of the emergency department because of dysfunctional transition or bed
assignment processes. Predictive models for estimating the probability of an occurrence of this type could be useful in reducing
or preventing emergency department boarding and hospital exit block, to reduce emergency department crowding.

Objective: The aim of this study was to identify and appraise the predictive performance, predictor utility, model application,
and model utility of hospital admission prediction models that utilized prehospital, adult patient data and aimed to address
emergency department crowding.

Methods: We searched multiple databases for studies, from inception to September 30, 2019, that evaluated models predicting
adult patients’ imminent hospital admission, with prehospital patient data and regression analysis. We used PROBAST (Prediction
Model Risk of Bias Assessment Tool) and CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews
of Prediction Modeling Studies) to critically assess studies.

Results: Potential biases were found in most studies, which suggested that each model’s predictive performance required further
investigation. We found that select prehospital patient data contribute to the identification of patients requiring hospital admission.
Biomarker predictors may add superior value and advantages to models. It is, however, important to note that no models had
been integrated with an information system or workflow, operated independently as electronic devices, or operated in real time
within the care environment. Several models could be used at the site-of-care in real time without digital devices, which would
make them suitable for low-technology or no-electricity environments.

Conclusions: There is incredible potential for prehospital admission prediction models to improve patient care and hospital
operations. Patient data can be utilized to act as predictors and as data-driven, actionable tools to identify patients likely to require
imminent hospital admission and reduce patient boarding and crowding in emergency departments. Prediction models can be
used to justify earlier patient admission and care, to lower morbidity and mortality, and models that utilize biomarker predictors
offer additional advantages.

(JMIR Med Inform 2021;9(9):e30022)   doi:10.2196/30022
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Introduction

Background
The delivery of timely quality care in emergency departments
has become increasingly challenging due to crowding [1,2].
Emergency department crowding is an international problem
[3-5] that has been of continuing concern for the last two
decades and is expected to become more problematic with
population growth and an aging population whose life
expectancy is increasing. The magnitude of the crowding
problem has been demonstrated by decades of research into
emergency department efficiency interventions that aimed to
reduce crowding by improving throughput and processes, such
as triage, diagnosis, and treatment, that affect the flow of care
[6,7]. However, these measures primarily promoted efficiency
in portions of the emergency department care continuum and
had little effect in reducing crowding, because they did not
address the source of the problem at a system level [8].

Rigorous analysis suggests that exit block and emergency
department boarding are the main causes of emergency
department crowding [6,9-12]. Boarding is the retention of
patients who have already been admitted to the hospital in the
emergency department because they await assignment to an
inpatient hospital bed [5]. Exit block is the delay that occurs
when patients cannot be transitioned into the hospital for
admission or discharged (home, rehabilitation, etc) in a timely
manner [5,8]. Exit block results in emergency department
boarding and is a system issue [8,13]. Both boarding and the
resulting overcrowding have been conclusively associated with
poor patient outcomes and threats to patient safety [5,14-17].

Predictive Modeling
Predictive modeling that can be used to address emergency
department crowding is an emerging field of study. Predictive
modeling is used to anticipate which factors will bring about a
particular outcome [18]. In health care, models use specific data
to estimate the probability that a condition or disease is already
present (a diagnostic model) or the probability that an outcome
will occur in the future (a prognostic model) [18]. Recent studies
[19-28] of models utilizing these techniques estimate patient
risk for health conditions and patient–provider encounters (eg,
suicide attempts or intentional acts of self-harm) [19], acute
kidney injury (ie, sudden kidney failure or damage) [20],
hospital readmissions (ie, readmission to a hospital within 30
days of discharge, regardless of cause) [23,24,26,27], and
perioperative mortality (ie, deaths within 30 days of surgery)
[21], emergency department return visits (ie, return emergency
department visits within 72 hours for any reason) [28], return
visits after hospital discharge (ie, return emergency department
visits within 30 days of hospital discharge for any reason) [25],
and emergency department crowding or demand (ie, the
availability of space for patients relative to the volume of
patients that need to be seen) [22]) to improve health care

delivery and patient outcomes. A subsection of this area of study
focuses on predicting which emergency department patients are
likely to require imminent hospital admission. This area of
research is important because of its direct and immediate
potential to lower patient morbidity and mortality by helping
emergency department patients receive care earlier in the
emergency department care continuum.

While more prediction models have been developed in recent
years [18], external validation studies of published prediction
models have not kept pace [29]. There is often no consensus
about the best, most effective model for a particular purpose,
leaving providers and policy makers unable to choose a model
with confidence. In the case of hospital admission prediction,
most models have not been externally validated or tested in a
live emergency department environment. Furthermore,
systematic reviews have received scrutiny for their lack of rigor
[30-32]. Hence, a rigorous systematic review of studies of
admission prediction models is needed to synthesize findings
that researchers and decision-makers can rely on with confidence
to address localized emergency department boarding, crowding,
and exit block, as well as system-wide implications.

Systematic Review Validation
Rigorous systematic reviews follow accepted approaches.
PROBAST (Prediction Model Risk of Bias Assessment Tool)
[33] can be used to identify potential sources of bias in
individual prediction model studies, and CHARMS (Checklist
for Critical Appraisal and Data Extraction for Systematic
Reviews of Prediction Modelling Studies) [34] can also be used
to identify potential sources of bias, organize information, and
identify relevant information used to evaluate the prediction
modeling studies. While the systematic review of clinical trials
is generally a well-established field, the fields of health care
prediction modeling and systematic review of such studies are
not as well established, despite growth in these fields. For
example, a search of Google Scholar for “systematic review”
AND “prediction” AND “healthcare” demonstrated an increase
of 410% in publications between decades (from n=45,900 in
2000-2010 to n=234,000 in 2010-2020). As the number of
prediction modeling publications continue to grow, the need
exists to apply the same rigor to systematic reviews of health
care–related prediction modeling as that which has been applied
to clinical trial and other types of systematic reviews through
the use of tools, such as PROBAST and CHARMS, to facilitate
quality assessment for individual prediction model studies using
standardized guidelines [30,33]. Only two systematic reviews
[35,36] that have focused on increasing overall throughput by
decreasing emergency department boarding and systemic exit
block in health systems applied the rigorous PROBAST and
CHARMS methodologies, with both reporting a high degree of
bias in the studies that they examined.
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Logistic Regression for Systematic Reviews
Logistic regression is a technique for understanding the
relationships between predictor variables and outcomes and is
one of the most commonly used methods for forecasting [37].
There are a variety of techniques that can be used to model data;
each is designed to accommodate types of data, number of
predictors, and study aims, and each has advantages and
disadvantages. Logistic regression is only used for data with a
binary outcome and multiple predictors and accommodates
predictors of multiple data types, such as continuous and
categorical data; therefore, data types do not need to be
modified, which can introduce potential bias. Logistic regression
produces a mathematical form—a weighted combination of
variables that predict the outcome variable [37].

We aimed to better understanding predictive modeling’s role
in addressing the emergency department crowding problem by
examining model predictive performance, the utility of the
contribution of prehospital patient data to model prediction,
applications of models, and the utility of models.

Methods

Study Design
We applied PROBAST and CHARMS to rigorously assess
studies of models designed to predict adult patient imminent
hospital admission using prehospital patient data collected early
in the emergency department visit or during ambulance transport
to the emergency department. We searched databases for papers

published from inception through September 30, 2019. Data
were organized and analyzed in Excel (version 2016, Microsoft
Inc). This study did not require institutional review board
authorization.

Data Sources and Search Strategy
We reviewed database content descriptions for 99 health science,
public health, and medical databases to determine their relevance
to our topic of interest, and 13 databases were found to be
relevant: EBSCO Database (includes Medline database and
Academic Search Complete database), CINAHL Plus with Full
Text, Cochrane Library, Health and Safety Review, ProQuest
Central, Scopus, BMJ Journals, JAMA, Journals at Ovid, PLOS,
SAGE Journals, ScienceDirect, and NIHR/PROSPERO.

The Title, abstract, or keyword option was used with the
following search string: “model or strategy and hospital* and
predict* or risk.” (Asterisks were used to capture hospital,
hospitalization, hospitalisation, hospitalized, hospitalized and
predict, predicts, predicted, predictor, predictive.) If no results
were initially produced, the search was expanded by removing
all filters and searching for the terms anywhere in the document.
Sources that did not allow for truncation were searched multiple
times with multiple word combinations. Additionally, the
internet was searched with the following combined terms:
“model predict hospital admission,” “risk of hospital admission,”
“hospital admission model,” “admission risk,” “emergency
model,” and “hospital admission.” Reference lists were also
reviewed (Figure 1).

Figure 1. Search flow diagram of included studies.

Inclusion and Exclusion Criteria
We included full-text peer-reviewed English-language studies
that evaluated strategies or models using prehospital patient
data to predict imminent hospital admission of primarily adult
general medicine patients with regression.

Studies in which the setting was not an emergency department,
data were not collected early in the emergency department visit,
or either models or logistic regression were not used and that

focused on pediatric (<16 years of age), psychiatric, or specific
health conditions were excluded.

Data Quality Assessment
We used PROBAST to assess risk of bias for each study.
Shortcomings in a study’s design, conduct, or analysis can cause
systematic errors that result in flawed or distorted results and
hamper internal validity [18]. Assessment of the quality of
studies, including risk of bias and model applicability to the
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target settings and populations, is an essential component of
systematic reviews and their evidence synthesis. The first step
in applying PROBAST was the identification of a clear and
focused review question about the intended use of the model,
targeted participants, predictors used in the modeling, and
predicted outcome [33]. The second step was the identification
and assessment of potential sources of bias in 4 domains
(participants, predictors, outcomes, analysis). Key qualities
assessed for each study included the appropriateness of the data
source, whether predictors were similarly measured and defined,
whether outcomes were measured similarly for all participants,
and whether missing data were appropriately handled and
reported.

Data Extraction and Data Synthesis
We used CHARMS to identify key items in 11 domains (eg,
source of data, sample size, model development, model
performance, results) in individual studies (and in their
PROBAST reports) in order to evaluate potential sources of
bias and issues that may affect the applicability of results in
relation to the intended use of the model. Key information was
organized by relevant domains (Multimedia Appendix 1).

Results

General
Searches produced 1164 citations, from which 47 were selected
for full review; 11 studies met inclusion criteria. Each model
was critically assessed with PROBAST (Multimedia Appendix
2) and CHARMS.

CHARMS Study Characteristics

Data Source, Participants, and Outcome CHARMS
Domains 1, 2, and 3
Of the 11 studies, 3 used a prospective observational cohort
[38-40], and the remaining 8 used a retroactive observational
cohort [22,41-47]. There was good diversity, in terms of the
countries in which studies took place (South Africa [38],
Scotland [41], the United States [22,42,44,45], the Netherlands
[40,43], Australia [39], and Singapore [46,47]). Sampling ranged
from 14 days [40] to 10 years [46], with most study durations
between 3 and 27 months [38,39,41-43,45,47]. Two studies
were 2 months in length [22,44].

Most studies utilized clinical and administrative patient
information collected early in the emergency visit
[22,38-43,46,47]; 2 studies used data collected during ambulance
transport to the emergency department [44,45]. Additionally,
all studies evaluated 1 or more models’ abilities to predict
patient imminent need for hospital admission and defined
outcome event by patient final disposition, and measured
outcome by patient hospital admission or discharge from the
emergency department. Furthermore, all studies corresponded
to the outcome definition of the systematic review question,
which reduced the potential for bias from different outcome
definitions and measurement methods that can lead to
differences in study results and would be a source of
heterogeneity across studies [34].

Candidate Predictors CHARMS Domain 4
Candidate predictors included all predictors investigated in a
given study for predictive performance and not the finalized
predictors included in model analysis. Candidate predictors
ranged from 5 to 14 per study (Multimedia Appendix 3): under
10 predictors [22,38,39,45], over 10 predictors
[40,41,43,44,46,47], and did not report [42]. Overall, 52
candidate predictors had been evaluated, and 34 predictors were
retained in models (across all studies).

Sample Size CHARMS Domain 5
Consideration of sample size is important to ensure adequate
numbers of data events are collected to achieve meaningful
results. Sample sizes ranged from 401 to 864,246. None reported
sample size calculation, estimation, or rationale. One study [40]
did, however, perform a sample size calculation for its
validation. All studies described efforts to avoid overfitting,
which included model comparison to validation models
[22,38,40,41,43,44,46,47], model comparison to multiple site
outcomes [45], model comparison to published models [42],
and model comparison to triage nurse prediction of patient final
disposition [39]. Overfitting describes when findings in the
development sample do not exist in the relevant population
resulting in a model that too closely fits the development data
set and produces findings that are not reproducible [37].
Overfitting is a primary concern in prediction modeling
development that can be mitigated by performing sample size
estimates during study design [34].

Missing Data CHARMS Domain 6
Infrequently is value attributed to missing data in the missing
state [48]; instead, the missing values are either imputed or
disregarded completely [49,50]. Four studies described a process
for handling missing data: 3 used multiple imputation [39,41,43],
and 1 study reported “missing predictors were replaced with
missing values” [42]; it was unknown whether this referred to
blank (ie, missing) identifiers or whether missing values were
imputed. Of the remaining 7 studies, 1 study reported 30% of
data were missing and did not describe how missing data were
handled (ie, whether the patient events were included or
excluded) [38], and 6 studies did not mention missing data at
all [22,40,44-47].

Model Development CHARMS Domain 7
Two studies also developed models using other techniques
(gradient boosting and deep neural network [42], and naive
Bayes [22]) in addition to models using logistic regression.
Most studies selected predictors using univariate analysis
[22,39,40,42,43,46,47], but 4 studies used multivariate modeling
[38,41,44,45].

Model Performance CHARMS Domain 8
Model predictive performance was gauged via the percentage
of patients actually admitted, the percentage of patients predicted
to be admitted, and goodness of fit tests that assessed model
discrimination and model calibration (Table 1).
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Table 1. Model performance predicting patient hospital admission.

Model performanceReference

Goodness of fit testsAdmission

CalibrationbDiscrimination, AUROCa (95% CI)Predicted, %Actual, n (%)

———c469 (59)Burch et al [38]

—0.88 (0.88-0.88)——Cameron et al [41]

—0.86(0.86-0.87)—60,277 (29.7)Hong et al [42]

Performed, not reported0.80 (0.80-0.80)—38,695 (38.6)Kim et al [39]

Reported to be good0.87 (0.85-0.89)31.1400 (31.7)Kraaijvanger et al [40]

Reported to be good0.86 (0.85-0.87)21.42912 (27)Lucke et al [43]

Performed, not reported0.80 (—)32132 (33)Meisel et al [44]

—0.83 (—)39.8440 (24.8)Meisel et al [45]

Reported to be good0.83 (0.82-0.83)—334,115 (38.7)Parker et al [46]

r2=0.58 moderate to poor0.89 (—)——Peck et al [22]

Reported to be good0.85 (0.85-0.85)3095,909 (30.2)Sun et al [47]

aAUROC: area under the receiver operating characteristics curve.
bStudies used several formulas to evaluate calibration, to include Hosmer-Lemeshow, threshold probability, and r2.
cNot reported.

Discrimination is a model’s ability to distinguish between
patients who do and do not experience the outcome of interest
and is most commonly assessed with the area under the receiver
operating characteristics (AUROC) [51]. The AUROC
represents the performance of a classification model that has a
categorical outcome, producing a score representing a proportion
of times the model correctly discriminated between groups, for
example, those at high risk and low risk. The higher the
AUROC, the better the model discriminates between the 2
groups (0.5-0.6 represents not better than chance, 0.6-0.7
represents poor, 0.7-0.8 represents fair, 0.8-0.9 represents good,
and 0.9-1.0 represents excellent discrimination [52]). Eight
studies reported good discrimination [22,40,47], 2 reported fair
discrimination [39,53], and 1 study did not report any
performance measurement [38].

Calibration is the extent to which model predicted risk compares
to observed outcomes (ie, difference between rates of observed
events and predicted events for groups [54]. Calibration is
usually reported graphically by plotting observed against
predicted event rates [55] and is commonly measured with the
Hosmer-Lemeshow statistical test for binary categorical
outcomes [54]. Most studies that measured calibration
statistically, reported good agreement between predicted and
observed hospital admission. Seven models evaluated calibration
using Hosmer-Lemeshow [44,47,43,39], threshold probability

of admission [46], or R2 [22], 1 did not report which statistic
was used [40], and 2 of these 7 studies did not report results
[39,44]. Four studies did not measure calibration [38,41,42,45].

Model Evaluation: Domain 9
Utility of predictive models depends on their external
validation—performance evaluation on an independent data set.
External validation took a variety of forms: different settings

with different samples [40], same locations with different
samples [43,45,46], and nurse opinion on likely patient
admission [22,39]. Five models were internally validated
[38,41,42,44,47].

Model Results: Domain 10
Predictive accuracy and precision drive model performance and
the extent to which it can estimate the probability of individual
patient outcomes, as well as model suitability for clinical and
administrative uses.

The models in the 11 studies were not operational (no apps
developed and no integration with information systems or
workflow) and were not tested in environments in which they
would be used, which compromised the evaluation of model
feasibility. Operational models would identify patients likely
to require hospital admission; thus, there is a great amount of
utility and potential for models to improve patient care and
hospital operations, including by reducing hospital exit block,
emergency department boarding, and ultimately emergency
department crowding.

Interpretation and Discussion: Domain 11
The utility of select prehospital patient data to act as predictors
and as data-driven, actionable tools to identify patients requiring
hospital admission was shown. The models utilizing biomarker
predictors (eg, blood pressure, heart rate) [38,43,45] may
provide advantages due to standardized definition, measurement,
and interpretation of these biomarker measures. Models that
use only biomarker predictors may be widely applicable and
robust, and their results may be generalizable to populations
and environments. Models that did not include patient history
variables (eg, chronic conditions, number of prior emergency
department visits) [22,38,40,47] may have greater applicability
because the model does not rely on the availability of medical
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record information or patient reports. The predictors in these
models—prehospital patient data collected early in the
emergency department visit or during ambulance transport—are
not the only options for predicting patient admission but are
likely the best options for making timely predictions using data
collected in the early stages of an urgent care visit.

AUROC values suggested fair to good ability to distinguish
between outcome groups (admitted, not admitted), and thus, to
predict patient imminent need for hospital admission. Likewise,
the utility of the variables as predictors for the identification of
patients likely to require imminent hospital admission was
shown.

Risk of Bias Assessment
Data transformation can increase risk of bias by satisfying
assumptions without changing the scale of representation [56].
Five studies did not transform raw data [38,44-47]. On the other
hand, 6 studies transformed predictors, such as, by categorizing
continuous variables and dichotomizing continuous variables
[22,39-43].

Evaluation of heterogeneous predictors across studies introduces
bias if they are treated as identical. In 2 studies, bias was low,
because standardized, frequently calibrated equipment was used
to measure predictors (eg, blood pressure, laboratory analysis,
etc), which produces measurements that are comparable across
studies, required no manipulation (eg, dichotomized,
categorized), and offer more likelihood of retaining reliability
when applied to new populations [38,43]. Age has been shown
to inject bias, for example, the same model can appear to
perform better when applied to a sample with a wide age range
than when applied to a sample with a narrow age range [57].
Nine models included age [22,39-41,43-47], with only 2 studies
indicating age >60 years [44,45].

Estimating sample size during study design minimizes model
overfitting and includes calculating events-per-variable.
Events-per-variable, generally, is poorly reported in prediction
model studies [34] and was not reported in any of the included
studies. However, events-per-variable can be calculated from
other study information to aid assessment of study quality. The
appropriateness of most studies’sample size could be evaluated
by calculating study events-per-variable, the number of data
events needed per predictor variable to achieve meaningful
results [37]. This ratio was calculated using study limiting
sample size, the portion of outcome events (admitted or not
admitted) that is smaller [37]. The focus is on the smaller portion
of outcome events, because the total sample size is not directly
relevant in binary models [37]. The limiting sample size is
divided by the number of candidate predictors to produce the
limiting events-per-variable ratio.

In 10 studies [22,39-47], the limiting sample size was the
number of admitted patients, but in 1 study [38] the limiting
sample size was the number of patients who were not admitted
(ie, more patients were admitted than discharged). Limiting
events-per-variable could not be calculated for 3 models because
either the proportion of admitted patients or the number of
candidate predictors was not reported [22,41,42]. The limiting
sample size range of studies was 132.3 to 334,115, producing

a limiting events-per-variable range of 9 to 30,374. The limiting
events-per-variable was sufficient in most studies to obtain
meaningful results and avoid bias from an overfitted model.
However, at 9 events-per-variable, 1 model [44] was below the
recommended 10 to 15 events-per-variable [42,58,59] and was
in jeopardy of bias.

Missing data handling can inject bias. To mitigate against bias
with imputation, 3 studies used multiple imputation [39,41,43],
substituting missing observations with plausible estimated values
derived from analysis of available data, which is the preferred
method for handling missing data in prediction research [34,60].
One study [42] reported replacing missing values but did not
disclose how these missing values were placed, and the
remaining 7 studies did not describe the handling of missing
data [22,38,40,44-47], which suggested there was an element
of risk of bias. Data are usually not missing at random and
instead are related to other observed participant data and, as a
consequence, participants with complete data are different from
those with incomplete data [34,61].

Per PROBAST definition, a model that is internally validated
is a development-only study—not a development and validation
study. A model must be externally validated to be considered
a development and validation study. While 6 of the models were
externally validated [22,39,40,43,45,46], 2 studies used nurses’
opinions [22,39] and were not validated with data.

Inclusion of false predictors increases the likelihood of model
overfitting because the model corresponds too closely to its
derivation data set and fails to fit other relevant data sets or
predict future observations reliably [62], resulting in overly
optimistic predictions of model performance for new data sets
[34]. In univariate analysis, each predictor is tested individually
for its association with the outcome, and the most statistically
significant predictors are included in the model. However,
univariate analysis is not the preferred method because it
commonly introduces selection bias when predictors selected
for model inclusion have a large but false association with the
outcome [18,63]. In small samples, predictors could initially
show no association with outcome, but after adjustment for
other predictors, may show association with the outcome [34].
Conversely, multivariate modeling is preferred for predictor
selection because there is no selection bias since all predictors
are prespecified. Only 4 of the models used multivariate
modeling for predictor selection [38,41,44,45], and the
remaining models used univariate analysis
[22,39,40,42,43,46,47].

Discussion

Principal Findings
This study showed the utility of select, prehospital patient data
to act as predictors to model identification of patients likely to
require hospital admission and that models produced information
that could be used to improve patient care and hospital
operations. Ten studies reported model discrimination with
AUROC: 8 studies reported values [22,40-43,45-47] that suggest
good ability to distinguish between outcome groups (admitted,
not admitted), and thus, to predict patients’ imminent need for
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hospital admission. An example of model application for patients
who are predicted to require admission is earlier bed request
giving managers more time to secure a patient bed. This
forewarning could result in operations procedures to decrease
exit block and increase patient flow out of the emergency
department [13].

Potential sources of bias that may cause flawed or distorted
model predictions were found in every model, for example,
from minor (not reporting handling of missing values
[38,39,43,44,47], univariate predictor selection [39,47]) to
potentially damaging (dichotomized continuous variables
[22,41,43], low events-per-variable [44], no external validation
[38,41,42,44,47]), which suggest that study reports of models’
abilities to predict outcomes have the potential to be flawed.
This is consistent with other evaluations of prediction modeling
studies [34], including evaluations applying CHARMS and
PROBAST in the emergency department setting [35,36].

Overall, model performances were reportedly good, with most
models showing good ability to discriminate between patients
who do and do not require imminent hospital admission
[22,40-43,45-47], and almost half reporting good calibration to
detect differences between observed and predicted admission
rates [40,43,46,47]. Although several studies did not measure
calibration [38,41,42,45], the remainder did
[22,39,40,43,44,46,47]. However, all [38-47] but 1 study [22]
poorly reported its measurement. Findings of neglected
calibration measures, with an overreliance on discrimination
measures, are consistent with those of other reports [34].
Assessing and reporting discrimination and calibration are
important in prediction model evaluation. No models were found
to have operated through an app, and none had been integrated
with an information system. However, to function as intended,
most models required development of an electronic app to
receive patient data, operate the algorithm, and produce results.
Most also required app integration with an information system
to produce real-time admission prediction. Studies also did not
describe a process to achieve app development or system
integration.

Biomarker predictors may contribute superior value and
advantage to a model due to their lack of variability in definition,
measurement, and interpretation, and freedom from the confines
of patient histories, resulting in a widely applicability.

The quantity of candidate predictors demonstrated the breadth
of potential influences on patients’ imminent need for hospital
admission. However, the number of predictors across studies
did not reflect the quantity accurately because, across studies,

multiple names were used for the same predictor—identically
named predictors were defined differently, data collection and
evaluation varied, and predictors composed of multiple variables
were not specified

Models have the potential to facilitate hospital admission,
subsequently reducing or ending hospital exit block, emergency
department boarding, and emergency department crowding but
none had been implemented or tested.

To develop models with the most potential, future investigations
must address deficiencies, avoid risk of bias in model design
and investigation, verify the utility of biomarker predictors and
the most useful predictor combination, evaluate real-time utility
of admission prediction on hospital operations, compare
performance of technology enabled versus intuition, and verify
longitudinal model impact on patient care and hospital
operations.

Limitations
Although the findings of this review are valuable and add to
the current literature on artificial intelligence models in the
emergency department setting, this study has several limitations.
First, this was a critique of the methodologies used in the
models; we did not consider the feasibility of the models
examined. Second, the selection of studies and PROBAST
assessments were performed by one researcher, with a second
researcher providing oversight. The use of multiple researchers
would have ensured intercoder reliability and mitigated
systematic errors. Additionally, only studies in English and
conducted with emergency department setting data were
included. That being said, this study closely adhered to the
CHARMS methodology for study evaluation.

Comparison With Prior Work
We applied both CHARMS and PROBAST to studies that used
logistic regression and data from emergency department settings.
Our findings are consistent with those of previous systematic
reviews [35,36,64,65] that applied PROBAST and CHARMS
methodologies to evaluate health care prediction models, in
terms of risk of bias. We attempted to be focused and provide
depth of analysis by identifying and appraising hospital
admission prediction models that utilized prehospital patient
data in a defined setting (emergency department). Four
healthcare prediction model studies were reviewed for their use
of PROBAST and CHARMS methodologies. However, while
2 [35,36] were set in the emergency department, evaluation
variables and outcome of interest differed for all 4 studies
[35,36,64,65].
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Abstract

Background: Current health information understandability research uses medical readability formulas to assess the cognitive
difficulty of health education resources. This is based on an implicit assumption that medical domain knowledge represented by
uncommon words or jargon form the sole barriers to health information access among the public. Our study challenged this by
showing that, for readers from non-English speaking backgrounds with higher education attainment, semantic features of English
health texts that underpin the knowledge structure of English health texts, rather than medical jargon, can explain the cognitive
accessibility of health materials among readers with better understanding of English health terms yet limited exposure to
English-based health education environments and traditions.

Objective: Our study explores multidimensional semantic features for developing machine learning algorithms to predict the
perceived level of cognitive accessibility of English health materials on health risks and diseases for young adults enrolled in
Australian tertiary institutes. We compared algorithms to evaluate the cognitive accessibility of health information for nonnative
English speakers with advanced education levels yet limited exposure to English health education environments.

Methods: We used 113 semantic features to measure the content complexity and accessibility of original English resources.
Using 1000 English health texts collected from Australian and international health organization websites rated by overseas tertiary
students, we compared machine learning (decision tree, support vector machine [SVM], ensemble tree, and logistic regression)
after hyperparameter optimization (grid search for the best hyperparameter combination of minimal classification errors). We
applied 5-fold cross-validation on the whole data set for the model training and testing, and calculated the area under the operating
characteristic curve (AUC), sensitivity, specificity, and accuracy as the measurement of the model performance.

Results: We developed and compared 4 machine learning algorithms using multidimensional semantic features as predictors.
The results showed that ensemble classifier (LogitBoost) outperformed in terms of AUC (0.858), sensitivity (0.787), specificity
(0.813), and accuracy (0.802). Support vector machine (AUC 0.848, sensitivity 0.783, specificity 0.791, and accuracy 0.786) and
decision tree (AUC 0.754, sensitivity 0.7174, specificity 0.7424, and accuracy 0.732) followed. Ensemble classifier (LogitBoost),
support vector machine, and decision tree achieved statistically significant improvement over logistic regression in AUC, sensitivity,
specificity, and accuracy. Support vector machine reached statistically significant improvement over decision tree in AUC and
accuracy. As the best performing algorithm, ensemble classifier (LogitBoost) reached statistically significant improvement over
decision tree in AUC, sensitivity, specificity, and accuracy.

Conclusions: Our study shows that cognitive accessibility of English health texts is not limited to word length and sentence
length as had been conventionally measured by medical readability formulas. We compared machine learning algorithms based
on semantic features to explore the cognitive accessibility of health information for nonnative English speakers. The results
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showed the new models reached statistically increased AUC, sensitivity, and accuracy to predict health resource accessibility for
the target readership. Our study illustrated that semantic features such as cognitive ability–related semantic features, communicative
actions and processes, power relationships in health care settings, and lexical familiarity and diversity of health texts are large
contributors to the comprehension of health information; for readers such as international students, semantic features of health
texts outweigh syntax and domain knowledge.

(JMIR Med Inform 2021;9(9):e29175)   doi:10.2196/29175

KEYWORDS

health education materials; Chinese language; cognitive accessibility; readability; semantic features; health education; machine
learning; prediction; accessibility; health text; cognition; accessibility; semantic; algorithm; health information

Introduction

Readability Matters
Health education materials provide important educational
interventions to help increase the awareness of health risks. The
recent outbreaks of the COVID-19 pandemic highlight the need
to develop accessible health information, as health information
appraisal has emerged as an issue in high-income countries [1].
The efficiency of health education materials largely depends
on the readability and cognitive accessibility of the materials
[2]. As such, the World Health Organization recommends
several principles for developing health education materials
regarding readability [3]. It is suggested that the readability
level of medical information be lower than sixth grade for the
public, and there should be easier material design for people
with poor understanding capabilities [4-7]. However, studies
indicate that many health education materials are more difficult
than expected, leaving the layman readers encountering
difficulties to comprehend the materials, which will inevitably
compromise the efficiency of the health risk intervention [8-11].

Enhanced readability will improve the accessibility of health
educational resources. Widely used readability assessment tools
are medical readability formulas [12]. medical readability
formulas measure health information readability based on word
length or sentence length, assuming that the longer words and
sentences are, the more difficult the health content is. These
formulas are challenged by scholars due to its oversimplified
factors considered in the calculations and inconsistency
assessment results [13,14]. For health education texts, the
cognitive difficulty in understanding medical information is
caused not only by medical jargon and complex sentences but
also by semantic meanings, which cannot be directly represented
by word and sentence length alone [15-17]. However, readability
estimation tools considering semantic features are few and
underexplored. Readability estimation tools considering
semantic features are in urgent need, especially for readers with
better understanding of health terms yet limited exposure to
English health education materials. These types of readers,
represented by nonnative English speakers living in
English-speaking countries, like the United States, Australia,
New Zealand, or Canada, make up a large quantity of the
population whose health education is of concern for the society
[18-21]. These readers pose new challenges for medical
readability assessment, as they normally have sufficient
understanding of health terms yet limited exposure to English
health education materials. In these cases, semantic features of

English health texts rather than medical jargon would be suitable
to estimate the cognitive accessibility of health materials.

Our study will address the challenges of using existing medical
readability formulas to provide valid effective assessment of
health information for readers with bilingual proficiency yet
limited exposure to English health education traditions. We will
introduce semantic features as indicators in cognitive
accessibility evaluation. Compared with previous approaches
that focus on morphological and syntactic features, we will
explore the validity and effectiveness of using multidimensional
semantic features (especially lexis related to English health
education cultures) to analyze, model, and predict the cognitive
accessibility of English health education materials. Improving
cognitive accessibility of health education materials will provide
a cost-effective approach to public health education.
Improvement in cognitive accessibility of health education
materials will contribute to social and health quality among
readers from nonnative English speaking backgrounds [22].

Data Sets and Feature Extraction

Material Collection and Classification
This paper collected health education materials in English from
government, health agencies, and not-for-profit organizations
in Australia, considering Australia is a typical migrant country
with a large amount of nonnative English speakers living in the
country. The source of the health education materials includes
Department of Health in state governments like Western
Australia, New South Wales, and Victoria, and not-for-profit
organizations [23-26]. The topic of the materials is about
infectious diseases like COVID-19, Ebola, plague, or Zika, as
infectious disease education is urgent in need with the
background of pandemic outbreaks in recent years. In total,
1000 health education articles were collected with a size of over
500,000 words. The types of materials are patient guidelines,
fact sheets, and health topics, which are health education
resources accessible by the public to improve their health
awareness or health knowledge. For classification, we invited
4 international students studying in Australian universities as
labelers to rate the readability of the collected materials. The
labelers were aged between 25 and 30 years, nonnative English
speakers with advanced English skills (International English
Language Testing System test score 6.5 or greater), and they
were born and grew up in non-English speaking countries with
limited exposure to English health education materials. They
were asked to classify the collected health texts independently
into easy versus hard to understand categories, and the interrater
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agreement was high (Cohen kappa 0.705). The final
classification contained two sets of texts: easy (n=495) versus
difficult (n=505; original annotated data sets in Multimedia
Appendix 1).

Material Annotation and Semantic Feature Extraction
The UCREL (University Centre for Computer Corpus Research
on Language) Semantic Analysis System (USAS) was adopted
to annotate health education materials and extract semantic
features [27]. The system relies on several disambiguation
methods including part-of-speech tagging, general likelihood
ranking, multiword expression extraction, domain of discourse
identification, and contextual rules, providing high annotation
accuracy of English texts. USAS categorizes English words
into 21 semantic groups, including general and abstract terms
(group A); physical condition and bodily processes (group B);
emotions (group D); food and drinks (group F); governmental
activities (group G); residence, buildings, and habitats (group
H); work and employment (group I); entertainment, sports, and
activities (group K); life and living things (group L); movement,
location, and transport (group M); numbers and measurements
(group N); substances, materials, objects, and equipment (group
O); education (group P); linguistic actions, states, and processes
(group Q); social states, actions, and processes (group S); time
(group T); geographical terms (group W); psychological actions,
states, and processes (group X); science and technology (group
Y); and names and grammatical words (group Z). With USAS,
we collected 113 semantic features. In this study, we extracted
these semantic features automatically from specialized English
health materials to provide additional text information for
developing machine learning algorithms.

Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts
Multimedia Appendix 1 shows the results of a logistic regression
of the entire annotated database. A total of 26 of the 113
semantic features were identified as statistically significant
features contributing to the binary classification of health texts
in terms of their understandability to the target readerships,
international students in tertiary education. Several semantic
features contributing to the higher understandability of health
texts were identified. First, informational coherence through
pronouns (Z8) is a large contributor to the cognitive accessibility
of English health texts among non-English readers, even those
with advanced English language skills. The P and the effect
size of the semantic feature Z8 were <.001 and .91, respectively,
suggesting a very significant difference between easy and
difficult health texts in terms of the use of pronouns. The mean
score of Z8 in health texts of higher understandability was 52.84,
this dropped to 20.48 in health texts of low understandability.
Further, in the logistic regression analysis, the odds ratio of Z8
(ratio of odds between difficult and easy texts, with easy text
as the reference text class) was 0.928 (95% CI 0.905-0.951),
indicating, with the increase of 1 standard unit of Z8, the odds
of the health text being a difficult health reading over the odds
of the text being an easy reading was 0.928. In terms of
percentage change, the odds of the health text being a difficult
text was 0.031 lower than the odds of the text being an easy
reading for the target readers. Semantic features related to the

logical structure (Z7 conditional expressions such as if) were
identified as statistically significant (P=.01). The odds ratio of
Z7 was 0.86 (95% CI 0.767-0.964), indicating that holding other
textual features unchanged, with the increase of one word in
the Z7 class, the odds of the health text being a difficult text
was 86% over the odds of the text being an easy reading.

The logistic regression result (Multimedia Appendix 1) also
identified 12 semantic features as statistically significant
contributors to the perceived difficulty of English health texts.
Typical examples were B3 (medicines and medical treatment;
odds ratio Exp(B) 1.041, 95% CI 1.012-1.071; P=.005), Z99
(out-of-dictionary words; odds ratio Exp(B) 1.011, 95% CI
1.004-1.018; P=.001), L2 (living creatures: animals,
microorganism, virus, bacteria, etc; odds ratio Exp(B) 1.080,
95% CI 1.005-1.162; P=.036), and W5 (environmental terms:
pollutants, carcinogens, inhalable particles, etc.; odds ratio
Exp(B) 2.441, 95% CI 1.173-5.077; P=.017). These semantic
features measured lexical familiarity and diversity of English
health texts, which is another important dimension of the
assessment of medical and health lexis understandability. For
example, the relatively large odds ratios (2.441, 95% CI
1.173-5.077) of W5 encompassing terms related to
environmental exposure and health risks indicates that, with the
increase of one word in this particular category, the odds of a
health text being a difficult text over the odds of the text being
an easy text for the target readers was 2.441, or in terms of
percentage change, this represents an increase of 144.1% of the
text from an easy text to a very difficult health reading. To a
lesser extent, the odds ratio of 1.080 of L2 (living creatures
including microorganisms) indicates that with the increase of
one word in this class, the perceived difficulty level
(hard-to-understand class) of the health text increased by a mean
8.0% (95% CI 0.5%-16.2%) depending on the vocabulary range
of English health terms of the readers. Semantic features relating
more abstract concepts and higher cognitive abilities were
detected as statistically significant contributors to the perceived
difficulty of health texts. These include A11 (abstract terms
denoting importance, significance, noticeability, or markedness;
odds ratio 1.219, 95% CI 1.070-1.388; P=.003). This means
that with the increase of one unit in the A11 class, the odds of
the health text being seen as a hard-to-understand text over the
text being seen as an easy text was 1.219, or an increase of
21.9%.

In the next section, we will use these predictor variables to
compare the performance of machine learning algorithms in
analyzing and predicting the cognitive accessibility of English
health materials for the intended readership of international
tertiary students.

Methods

Using machine learning algorithms and natural language
processing tools to analyze and predict the understandability
levels of health information has been gaining momentum. Zheng
and Yu [28] used surface text features and word embeddings
to support vector machine (SVM) algorithms to assess and rank
the readability levels of electronic health records and Wikipedia
articles. Venturi et al [29] also applied SVM to evaluate and
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predict the cognitive difficulty of medical informed consent
forms in Italian. They used natural language features such as
part of speech, type token ratio, noun verb ratio, average parse
tree depth, main versus subordinate clauses distribution,
distribution of verbal roots with explicit subject, and other
syntactic and grammatical features related to Italian linguistic
complexity. However, few existing studies have explored the
effects of semantic features on the understandability of health
information as our study did.

The four machine learning methods used in this study were
ensemble classifier, SVM, decision tree classifier, and logistic
regression classifier. Ensemble classifier (LogitBoost), SVM,
and decision tree are optimizable models, as their
hyperparameters can be fine-tuned through automatic grid

searches to achieve minimal classification errors. For a decision
tree classifier, the best-point hyperparameters (Figure 1) were
the maximum number of tree splits (n=22) based on maximum
deviance reduction. The observed minimal classification error
of the optimized decision tree model was 0.215. For an ensemble
classifier, the best-point hyperparameters (Figure 2) reached an
observed minimum classification error of 0.168. The optimized
hyperparameters were the ensemble method (LogitBoost),
number of learners (n=210), learning rate (0.1), and maximum
number of splits (n=22). For SVM, the best-point
hyperparameters (Figure 3) were box constraint level (0.1),
kernel function (cubic). The observed minimum classification
error was 0.1944, lower than the optimized decision tree model
(with a difference of 0.0206) but higher than the optimized
ensemble classifier (with a difference of 0.0264).

Figure 1. Hyperparameter tuning (decision tree).

Figure 2. Hyperparameter tuning (ensemble classifier).
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Figure 3. Hyperparameter tuning (support vector machine).

Results

The predictive performance of the four machine learning
algorithms using multidimensional semantic features as predictor
variables is shown in Table 1, and the results of the pairwise
corrected resampled t test are shown in Tables 2-5. The mean
scores and standard deviations of the area under the operating
characteristic curve (AUC), sensitivity, specificity, and accuracy

were obtained through 5-fold cross-validation. The
cross-validation divided the entire data set into 5 folds of equal
size. In each iteration, 4 folds were used for the training data,
and the remaining fold was used as the testing data. As a result,
on completion of the 5-fold cross-validation, each fold was used
as the testing data exactly once. We used paired-sample
comparisons to investigate the area under the operating
characteristic curve (AUC), sensitivity, specificity, and accuracy
differences of four machine learning algorithms (n=6; α=.05).

Table 1. Performance of the machine learning models using multidimensional semantic features as predictors.

Accuracy, mean (SD)Specificity, mean (SD)Sensitivity, mean (SD)AUCa, mean (SD)Algorithm

0.6010 (0.0523)0.5724 (0.0733)0.6282 (0.0597)0.614 (0.0554)LRb

0.7860 (0.0153)0.7910 (0.0420)0.7830 (0.0368)0.848 (0.0172)SVMc

0.732 (0.0317)0.7424 (0.0589)0.7174 (0.0719)0.754 (0.0377)DTd

0.802 (0.032)0.813 (0.046)0.787 (0.057)0.858 (0.041)ENSe

aAUC: area under the operating characteristic curve.
bLR: logistic regression.
cSVM: support vector machine.
dDT: decision tree.
eENS: ensemble classifier (LogitBoost).
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Table 2. Pairwise corrected resampled t test of area under the curve differences (using multidimensional semantic features as predictor variables).

P valuet test (df)95% CIStandard error meanMean difference (SD)Pairs

.001–7.817 (4)–0.3171 to –0.15090.0299–0.2340 (0.0669)LRa vs SVMb

.004–5.931 (4)–0.2144 to –0.07770.0246–0.1460 (0.0551)LR vs DTc

.001–9.675 (4)–0.3140 to –0.17400.0252–0.2440 (0.0564)LR vs ENSd

.00110.230 (4)–0.0641 to 0.11190.00860.0880 (0.0192)SVM vs DT

.582–0.598 (4)–0.0565 to –0.03650.0167–0.0100 (0.0374)SVM vs ENS

<.001–11.392 (4)–0.1219 to –0.07410.0086–0.0980 (0.0192)DT vs ENS

aLR: logistic regression.
bSVM: support vector machine.
cDT: decision tree.
dENS: ensemble classifier (LogitBoost).

Table 3. Pairwise corrected resampled t test of sensitivity differences (using multidimensional semantic features as predictor variables).

P valuet test (df)95% CIStandard error meanMean difference (SD)Pairs

<.001–11.429 (4)–0.1924 to –0.11720.0135–0.1548 (0.0303)LRa vs SVMb

.036–3.111 (4)–0.1896 to –0.01080.0322–0.1002 (0.0720)LR vs DTc

.020–3.756 (4)–0.2761 to –0.04140.0423–0.1588 (0.0945)LR vs ENSd

.1551.752 (4)–0.0319 to 0.14110.03120.0546 (0.0697)SVM vs DT

.922–0.105 (4)–0.1102 to –0.10220.0382–0.0040 (0.0855)SVM vs ENS

.024–3.535 (4)–0.1046 to –0.01260.0166–0.0586 (0.0371)DT vs ENS

aLR: logistic regression.
bSVM: support vector machine.
cDT: decision tree.
dENS: ensemble classifier (LogitBoost).

Table 4. Pairwise corrected resampled t test of specificity differences (using multidimensional semantic features as predictor variables).

P valuet test (df)95% CIStandard error meanMean difference (SD)Pairs

.007–5.047 (4)–0.3389 to –0.09840.0433–0.2186 (0.0968)LRa vs SVMb

.009–4.679 (4)–0.2741 to –0.06990.0368–0.1720 (0.0822)LR vs DTc

.001–7.959 (4)–0.3251 to –0.15690.0303–0.2410 (0.0677)LR vs ENSd

.3810.984 (4)–0.0849 to 0.17810.04740.0466 (0.1059)SVM vs DT

.614–0.545 (4)–0.1364 to –0.09160.0411–0.0224 (0.0918)SVM vs ENS

.010–4.619 (4)–0.1105 to –0.02750.0149–0.0690 (0.0334)DT vs ENS

aLR: logistic regression.
bSVM: support vector machine.
cDT: decision tree.
dENS: ensemble classifier (LogitBoost).
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Table 5. Pairwise corrected resampled t test of accuracy differences (using multidimensional semantic features as predictor variables).

P valuet test (df)95% CIStandard error meanMean difference (SD)Pairs

.001–8.152 (4)–0.2480 to –0.12200.0227–0.1850 (0.0507)LRa vs SVMb

.003–6.360 (4)–0.1968 to –0.07710.0215–0.1370 (0.0482)LR vs DTc

.001–8.182 (4)–0.2692 to –0.13280.0246–0.2010 (0.0549)LR vs ENSd

.0223.639 (4)0.0114 to 0.08460.01320.0480 (0.0295)SVM vs DT

.384–0.976 (4)–0.0615 to 0.02950.0164–0.0160 (0.0366)SVM vs ENS

.001–9.704 (4)–0.0823 to –0.04570.0066–0.0640 (0.0148)DT vs ENS

aLR: logistic regression.
bSVM: support vector machine.
cDT: decision tree.
dENS: ensemble classifier (LogitBoost).

Table 2 shows that, in terms of AUC, ensemble classifier
(LogitBoost), decision tree, and SVM reached statistically
improved AUC over logistic regression (0.614): ensemble
classifier (0.858; P=.001), decision tree (0.754; P=.004), and
SVM (0.848, P=.001). In terms of sensitivity (Table 3),
ensemble classifier (0.787, P=.020), decision tree (0.7174,
P=.036), and SVM (0.783; P<.001) reached statistically
significant improvement over logistic regression (0.6282). In
terms of model specificity (Table 4), ensemble classifier,
decision tree, and SVM all reached statistically improved
specificity over logistic regression (0.5724): ensemble classifier
(0.813; P=.001), decision tree (0.7424; P=.009), and SVM
(0.791; P=.007). Lastly, with regard to model overall accuracy
(Table 5), again, LogitBoost, decision tree, and SVM
outperformed logistic regression (0.601): ensemble classifier
(0.802; P=.001), decision tree (0.732; P=.003), and SVM (0.786;
P=.001). Comparing SVM, ensemble classifier and decision

tree, the former two algorithms outperformed decision tree
consistently in AUC (P=.001 and P<.001, respectively), and
accuracy (P=.022 and P=.001, respectively). Only ensemble
classifier outperformed decision tree significantly in terms of
model sensitivity (P=.024), and specificity (P=.010), using the
paired-sample comparisons (n=6; α=.05). These results suggest
that, when using semantic features as predictor variables, the
most stable and highest-performing algorithm is ensemble
classifier (LogitBoost), followed by SVM. Ensemble classifier,
decision tree, and SVM all achieved statistically significant
improvement over logistic regression in AUC, specificity,
sensitivity, and accuracy. SVM did not improve significantly
over decision tree in terms of sensitivity and specificity, but
ensemble classifier did. Overall, the best AUC, sensitivity,
specificity, and accuracy were achieved by LogitBoost as an
ensemble classifier (Figure 4).

Figure 4. Mean ROC curve for machine learning algorithms. DT: decision tree; LR: logistic regression; ROC: receiver operating characteristic; SVM:
support vector machine.
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Discussion

Principal Findings
The understandability of health texts has long been assessed
using medical readability formulas. This has simplified and
limited the discussion of health information accessibility to two
known barriers (ie, medical jargon and syntactic features).
Existing research has been limited in exploring these issues
despite methodological innovation in applying and leveraging
machine learning algorithms and natural language processing
tools in this field. Our study explored health information
accessibility using semantic features of health information that
are less studied. This was in line with clinical insights into
patient-oriented health education, which identified multiple
textual features as highly relevant to the understanding of
specialized health information. However, few existing studies
have attempted to translate recent clinical guidelines and insights
to quantitative computational studies using linguistic features
related to the semantic content as exemplified in our study.
Using semantic annotation tools, we explored effects of various
semantic features on the understandability of health texts for
the target readers.

In the multiple machine learning algorithm comparison, the
importance of semantic features was verified. It was found that,
in the algorithm comparison experiments, using
multidimensional semantic features as predictor variables,
LogitBoost achieved the highest performance in terms of AUC,
sensitivity, specificity, and accuracy, which were statistically
significant large improvements (measured in pairwise resampled
t tests). Among the 4 algorithms used, AUCs, sensitivity,
specificity, and accuracy were consistently high when using
multidimensional semantic features as predictors variables. This
finding suggests that multidimensional semantic features are
large contributors to the cognitive accessibility of English health
texts among readers with English proficiency but limited
exposure to English health education traditions (indicated by
less familiarity of relevant health lexis and abstract concepts).

Considering that the readership under study were educated
international tertiary students who had less barriers to understand
and analyze complex English syntactic structures but had limited
exposure to English-based health education environments, our
study shows that, for readers from this background of health
literacy and education level, informational coherence and logical
structure were large contributors to the ease of health texts.
Features of health-related lexical familiarity and diversity or
those indicating abstract concepts or requiring higher cognitive
abilities can significantly increase the difficulty of English health

information for readers from non-English speaking and distinct
health education backgrounds, despite their English proficiency
from tertiary education.

In the development of effective reader-oriented health
educational resources, enhancing semantic features, which were
identified as large contributors to cognitive ease, can lead to
more beneficial reading experiences among the target readers.
Textual interventions can be effectively introduced to reduce
the cognitive load of health texts, such as health lexical diversity
(especially those of large odds ratios such as environmental
exposure and health risks), or those requiring higher cognitive
abilities, such as abstract terms denoting importance,
significance, noticeability or markedness of health events and
situations. These semantic features can significantly increase
the difficulty and inaccessibility of English health education
resources among international students, as these semantic
features require greater, more sustained exposure to English
public health education traditions.

Limitations and Future Research
Our study was based on a small group of international students
from native Chinese speaking backgrounds. Their rating of the
cognitive understandability of English health texts could have
been biased by their shared cultural backgrounds. This was,
however, intended to control for cultural demographic diversity
in our study. Whether this finding applies to other cohorts of
international tertiary students remains to be evaluated through
similar experiment design. Another considerable limitation of
our study is the lack of explanation by the machine
learning–based prediction. In future research, we aim to develop
more explainable machine learning models to increase the
interpretability of the prediction results.

Conclusion
Our study showed that cognitive accessibility of English health
texts is not limited to medical jargon and complex syntax such
as long words and sentences conventionally measured by
medical readability formulas. We compared machine learning
algorithms using multiple semantic features to explore the
cognitive accessibility of health information from multiple
semantic perspectives. The results showed the strength of our
models in terms of consistently high AUC, sensitivity,
specificity, and accuracy to predict health resource accessibility
for the target readers, indicating that semantics contribute to
the comprehension of health information and that, for readers
with advanced education, semantic features that underpin the
English-based health education can outweigh syntax and
specialized medical domain knowledge.
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Variables in the logistic regression of health text understandability membership.
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Abstract

Background: The rapid growth of the biomedical literature makes identifying strong evidence a time-consuming task. Applying
machine learning to the process could be a viable solution that limits effort while maintaining accuracy.

Objective: The goal of the research was to summarize the nature and comparative performance of machine learning approaches
that have been applied to retrieve high-quality evidence for clinical consideration from the biomedical literature.

Methods: We conducted a systematic review of studies that applied machine learning techniques to identify high-quality clinical
articles in the biomedical literature. Multiple databases were searched to July 2020. Extracted data focused on the applied machine
learning model, steps in the development of the models, and model performance.

Results: From 3918 retrieved studies, 10 met our inclusion criteria. All followed a supervised machine learning approach and
applied, from a limited range of options, a high-quality standard for the training of their model. The results show that machine
learning can achieve a sensitivity of 95% while maintaining a high precision of 86%.

Conclusions: Machine learning approaches perform well in retrieving high-quality clinical studies. Performance may improve
by applying more sophisticated approaches such as active learning and unsupervised machine learning approaches.

(JMIR Med Inform 2021;9(9):e30401)   doi:10.2196/30401

KEYWORDS

machine learning; bioinformatics; information retrieval; evidence-based medicine; literature databases; systematic review;
accuracy; medical literature; clinical support; clinical care

Introduction

Background and Significance
Evidence-based medicine (EBM) is identified by three key
elements: the best available clinical evidence, clinician expertise,
and application of the evidence with consideration of patients’

circumstances, values, and preferences [1]. EBM complements
or reduces reliance on expert opinion with a coherent and
structured framework for assessing and applying the best
evidence to patient care decisions [2]. An obvious and worsening
barrier to the implementation of EBM is the continuously
growing body of medical literature. According to the National
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Library of Medicine, over 900,000 new citations were indexed
in MEDLINE in 2020, very few of which were relevant to or
ready for clinical attention [3]. Searching for the best clinical
care evidence is a challenging task for researchers and clinicians,
and facilitation of the search process is a necessity [4].

Search Filters
Search filters, also referred to as hedges, allow researchers,
clinicians, and librarians to retrieve evidence from bibliographic
databases and journals by filtering searches to return reliable
and specific articles to address clinical questions, produce
systematic reviews, or inform clinical guidelines [5]. MEDLINE
search filters, for example, enable researchers to combine the
use of free text with controlled vocabularies like Medical Subject
Heading (MeSH) terms and other indexing features to improve
search results targeting the clinical question at hand [6,7]. There
are search filters that focus on the purpose of a study and its
methods or topical content areas [8]. Topical search filters help
identify articles based on particular clinical conditions using
terms related to that condition [8], while methodological search
filters comprise terms that identify articles based on their
research purpose [9]. For example, the Hedges project,
developed by the Health Information Research Unit at McMaster
University, provides search filters for MEDLINE, PsycINFO,
and EMBASE using the OVID syntax for a range of purpose
categories of articles such as treatment, diagnosis, and prognosis
and include methodological terms [4,10,11]. For searches
seeking articles on a treatment (purpose), the search hedge
includes methodological terms related to clinical or randomized
controlled trials (RCTs), while the diagnosis search hedge
includes methodological terms including sensitivity and
specificity [12].

These search filters were developed to identify high-quality
studies based on established critical appraisal criteria for
methodological rigor [13-15]. This was done by annotating
articles as meeting or not meeting criteria and using the
annotated dataset to evaluate the performance of search terms
to optimally retrieve the high-quality studies. For RCTs,
applying the Cochrane risk for bias tool includes assessing
randomization method, allocation concealment, follow-up data
for at least 80% of participants, blinding of participants, and
outcome assessors [14]. For the Hedges project, the criteria
applied to articles by purpose are available online [15].

Clinical search filters are intended to help clinicians, researchers,
and policymakers quickly access relevant studies and systematic
reviews in a way that can be tailored to the user’s demand [8].
The filters differ in their sensitivity and specificity according
to the terms used, databases searched, and precision of the filter
[16]. Some filters offer high specificity, which limits the
proportion of off-target articles that are retrieved. This is useful
for busy clinicians who value the most efficient use of their
time in finding relevant evidence quickly. Search filters may
also have the option to maximize sensitivity and identify all
potentially relevant articles at the cost of including a higher
proportion of off-target articles [17], an approach more suited
to the conduct of systematic literature reviews.

Although search filters, such as Clinical Queries in PubMed,
have been used since 1990 and have continued to work well

over the years [18], they have some limitations. One limitation
is their partial dependence on MeSH indexing terms, as the
process of indexing of articles within MEDLINE can take up
to a year for some articles [19]. For diagnostic studies, there is
large variability in designs and methods, which may result in
largely incomplete literature searches [7]. When applied in the
context of conducting a systematic review, the highly specific
filters result in missing evidence [7], and the high sensitivity
search filters will only partially reduce the time-consuming task
of screening retrieved titles and abstracts [20].

Overview of Machine Learning Applied for Text
Processing
Machine learning is a subset of artificial intelligence that refers
to a series of computational methods using experience to
improve performance or achieve accurate and precise
predictions. Experience, in this context, refers to the information
made available to the machine for the analysis [21]. A more
detailed definition was provided by Mitchell [22]: “A computer
program is said to learn from experience (E) with respect to
some class of tasks (T) and performance measure (P), if its
performance at tasks in T, as measured by P, improves with
experience E.”

Machine learning applications have become increasingly popular
and essential in health care [23], as the system generates an
enormous amount of data every day [24]. Machine learning can
identify relevant relations in large health care–generated datasets
and derive algorithms that generate accurate predictions [25,26].
For example, machine learning has been used to predict the risk
for nosocomial infection by leveraging data from electronic
health records [27-29]. A machine learning classifier is a
mathematical procedure responsible for identifying the patterns
and performing the prediction task on the dataset, while a
machine learning model is the output of the algorithm [30]. A
machine learning model represents the complete learning process
including the training of the algorithm and the used set of
features [30].

Another application of machine learning in the health care and
biomedical literature is text mining, which refers to the
discovery of previously unknown information from unstructured
textual data [31]. This is done by converting the text to
structured analyzable data using natural language processing
(NLP) [32]. With the exponential increase in the amount of
information available for clinicians and researchers, both in
biomedical literature and electronic health records [33], text
mining has been applied for text summarization [34], literature
retrieval [35], and evidence grading [36]. Machine learning has
also been applied to automate the screening process for
systematic reviews, identifying relevant articles while decreasing
workload and increasing efficiency [20,37,38]. Semantic
analysis, the process of understanding text by interpreting
meanings from the unstructured text [39], has been applied to
information extraction from the biomedical literature [40].

There are several types of machine learning determined by their
mathematical approach [41]. The basic machine learning
strategies are supervised learning, unsupervised learning, and
reinforced learning [41,42]. Supervised learning relies on a
prelabeled training dataset to provide the machine with the
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necessary input to make accurate predictions [41]. Decision tree
(DT), naïve Bayes (NB), and support vector machine (SVM)
are common supervised machine learning algorithms [43].
Unsupervised learning does not use labeled data and is mainly
used for structuring and organizing data rather than classification
[43]. In reinforced learning, the algorithm learns by reacting to
its environment and reaches predictions via a reward system
[42]. A common machine learning technique is ensemble
learning, which combines more than one classifier to perform
an individual prediction task. Boosting is one of the commonly
used ensemble learners, which combines multiple weak
classifiers and converts them into one strong classifier [41].
Neural networks are multilayer mathematical structures
consisting of an input layer, an output layer, and a hidden layer
(commonly more than one layer) in between [44]. In each layer
a series of calculations occurs, leading to better performance
[44]. Due to the multilayer nature of neural networks, their field
of study is known as deep learning. Neural networks can be
supervised, unsupervised, or reinforced [45].

Another appealing application of machine learning approaches
to the biomedical literature is to improve retrieval of clinically
relevant articles, building on and hopefully overcoming the
limitation faced by Boolean searching. Several studies have
been conducted to assess the performance of machine learning
classifiers to identify specific categories of published articles.
For example, Marshall and colleagues [46] applied machine
learning to identify RCTs. Del Fiol and colleagues [35] used
machine learning to extract only scientifically sound treatment
studies from PubMed. However, no systematic review of studies
objectively assessing the performance of such machine learning
models, ideally comparing their performance to traditional
evidence retrieval methods such as validated Boolean search
filters or manual critical appraisal by experts in the field, has
been performed to date. Such a systematic review would be of
critical value in driving future machine learning research aimed
at improving the delivery of relevant evidence to the point of
care.

Objective
The objective of this systematic review is to summarize the
nature (methods and approaches) and comparative performance
(eg, recall and precision) of machine learning approaches that
have been applied to retrieve high-quality evidence for clinical
consideration from the biomedical literature. High-quality is
defined as articles that meet established methodological critical
appraisal criteria, with annotated datasets that apply these criteria
considered the gold standard.

Methods

The following subsections describe in detail the steps that were
conducted to identify, screen, and abstract data from the included
studies.

Search Strategies
Nine databases were searched from inception to July 8, 2020,
to identify relevant articles: Web of Science (title, abstract);
MEDLINE; Embase; PsychINFO (title, abstract, keyword,
subject terms); Wiley Online Library; ScienceDirect (title,

abstract, keyword); CINAHL; IEEE (title, abstract, keywords),
and Association of Computer Machinery digital library (title,
abstract). The Multidisciplinary Digital Publishing Institute
(title, abstract) database was searched on November 17, 2020.
The search strategy was developed with a librarian (TN). Search
terms related to 4 concepts—machine learning, literature
retrieval, high research quality, and biomedical literature—were
combined using the AND Boolean operator. The OVID
MEDLINE search included the following terms, which were
translated for the other databases (mp = multipurpose, searching
within the title, original title, abstract, subject heading, name
of substance, and registry word fields):

• Machine learning: (neural networks/ or machine learning/
or natural language processing/ or data mining/ or support
vector machine/ or (“text categorization” or “text
classification” or “text analysis” or “literature mining” or
“text mining”).mp)

• Study objective or goal: (“Abstracting and Indexing”/ or
“information storage and retrieval”/ or (“article retrieval”
or “literature surveillance” or “literature screening” or
“article screening” or “evidence search” or “evidence
screening” or “evidence review” or “information retrieval”
or “literature survey” or “document classification” or
“review efficiency” or “citation screening” or “literature
databases”).mp.)

• High-quality: (“Sensitivity and Specificity”/ or
evidence-based medicine/ or (“quality” or “evidence” or
“high-quality” or “clinical trial” or “random*” or
“randomized controlled trial” or “sensitivity or specificity”
or “accuracy” or “precision”).mp.)

In the Association of Computer Machinery digital library and
Multidisciplinary Digital Publishing Institute search queries,
terms related to the biomedical literature were included:
(“PubMed” or “MEDLINE” or “medical literature” or
“Biomedical literature”).

Study Selection
Articles retrieved by our search queries were collected in a
single Research Information Systems file using JabRef software.
Deduplication was conducted using both JabRef automatic
deduping and Covidence automatic deduplication. We included
articles that met the following criteria:

• Reported on the use of a machine learning approach for the
retrieval of single studies or systematic reviews concerning
the management of health care problems in large biomedical
bibliographic databases such as MEDLINE and EMBASE

• Classified retrieved articles based on quality (using a gold
standard)

• Used a textual analysis machine learning approach
• Evaluated the performance of the machine learning

approach (ie, they present a comparison of retrieval methods
or other ways of appraising the performance of the machine
learning approach)

• Conducted within the biomedical literature domain
• Published in the English language
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Abstract and Full-Text Screening
Titles and abstracts of all the retrieved articles were screened
independently in Covidence.org by two members of the study
team. Articles were assessed as relevant, irrelevant, or maybe
relevant. The full texts of relevant and maybe relevant articles
were then reviewed in duplicate, with conflicts adjudicated by
a third team member.

Data Extraction
A data extraction spreadsheet was developed to gather data
regarding the methods of the machine learning approaches as
detailed by the survey by Agarwal and Mittal [47] and included
details on preprocessing steps, text representation, feature
selection, feature extraction, and classifiers used. Additionally,
we extracted data specific to the retrieval of high-quality articles
such as the quality gold standard, the comparators used to test

the machine learning models, and the performance of the
developed algorithms.

Results

Study Selection
Our search queries retrieved 3918 articles after 472 duplicates
were removed; 3632 were excluded during the title and abstract
screening for not applying a machine learning approach to
biomedical articles. A total of 286 were selected for full-text
screening, and 10 articles met our eligibility criteria (Figure 1)
[48]. Due to the heterogeneity in the population (retrieved
articles), index method (machine learning algorithm used), gold
standard, and outcomes (definition of high-quality study), we
did not perform a quantitative synthesis of the results.

Figure 1. PRISMA flow diagram of the studies identification process for the systematic review [48].

Quality Gold Standard
Each study used a quality gold standard database of original
studies or systematic reviews that were manually reviewed and
annotated by experts based on their scientific soundness and
clinical relevance (Table 1). Datasets of articles that met or did
not meet standards for quality and relevance were used to train

the machine learning models. Four studies used the American
College of Physicians (ACP) Journal Club as their quality gold
standard [49-52], 3 studies used the Clinical Hedges dataset
[4,35,36,53], 2 studies considered articles that were included
in treatment clinical guidelines as high quality [54,55], and 1
article used the Cochrane Library as their gold standard [56].
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Table 1. The quality standard used as the training dataset for developing the classifiers in the included studies.

Quality gold standardAuthor

ACPa Journal Club (treatment class)bAphinyanaphongs et al [49]

ACP Journal Club (treatment, diagnosis, etiology, prognosis)bAphinyanaphongs et al [50]

ACP Journal Club (treatment, diagnosis, etiology, prognosis)bAphinyanaphongs et al [51]

Clinical HedgesbKilicoglu et al [53]

ACP Journal Club (unspecified classes of articles)bLin et al [52]

Clinical HedgesbAfzal et al [36]

Articles cited in 11 clinical guidelines on the treatment of cardiac, autoimmune, and respiratory
diseases

Bian et al [54]

Clinical HedgesbDel Fiol et al [35]

Articles cited in 11 clinical guidelines on the treatment of cardiac, autoimmune, and respiratory
diseases

Bian et al [55]

Cochrane Library ReviewsAfzal et al [56]

aACP: American College of Physicians.
bHand searches of articles from approximately 125 clinical journals that were assessed by critical appraisal criteria; articles meeting criteria were then
judged by clinicians for clinical relevance. ACP Journal Club includes additional reviews by clinicians.

Preprocessing Methods
A matrix of the preprocessing steps that were applied to the
dataset before developing the classifiers as reported in the
included studies is presented in Table 2. Seven of the included
studies provided details of their preprocessing steps
[35,36,49-51,53,56], which included the conversion of text to

lowercase, word-stemming, and removal of stop words.
Additionally, 6 studies applied a term weighting method
[36,49-51,53,56] to express the importance of a word in each
document based on its frequency. Afzal et al [36] used
vocabulary pruning by removing off topic-specific frequent
terms and rarely occurring terms. Three studies did not specify
the steps for their preprocessing steps [52,54,55].

Table 2. Preprocessing steps applied to article data for preparing the datasets for machine learning algorithm development.

Unique preprocessing
considered

Weighting methodPorter- stemmingRemoval of
stop words

Removal of punctu-
ation

Text converted to
lowercase

Author

NRbLog frequency with
redundancy

✓✓✓✓aAphinyanaphongs et al
[49]

NRLog frequency with
redundancy

✓✓✓✓Aphinyanaphongs et al
[50]

Removed infrequent
words

Log frequency with
redundancy

✓✓✓✓Aphinyanaphongs et al
[51]

Removed infrequent
words

Information gain
measure

✓✓NR✓Kilicoglu et al [53]

NRNRNRNRNRNRLin et al [52]

Vocabulary pruningTF-IDFc✓✓NR✓Afzal et al [36]

NRNRNRNRNRNRBian et al [54]

Removed articles
without abstracts,
concatenated title, and
abstract words

NRNR✓NR✓Del Fiol et al [35]

NRNRNRNRNRNRBian et al [55]

Removed articles with
missing values

TF-IDFNRNRNR✓Afzal et al [56]

aApplied.
bNR: not reported.
cTF-IDF: term frequency–inverse document frequency.
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Feature Selection
Most of the included articles relied on the text as their features
(Multimedia Appendix 1). Seven articles used words from titles
and abstracts as their features [35,36,49-51,53,56]. Kilicoglu
et al [53] and Afzal et al [36] used article metadata features,
Unified Medical Language System features, SemRep semantic
prediction, and MeSH terms in combination with the words of
titles and abstracts features. Lin et al [52] selected specific
features from the citation dataset: journal impact factor, MeSH
terms, sample size, P value, and confidence intervals. Bian et
al [54,55] relied on MEDLINE metadata as well as bibliometric
features, which included citation count, journal impact factor,
number of comments on PubMed, Altmetric score, study sample
size, registration in ClinicalTrials.gov, and article age, and
assessed how each feature contributed to the classification. The
experiment by Bian et al [55] used only time-agnostic features
(features available at the time of an article’s publication), which
are journal impact factor, sample size, number of grants, number
of authors, number of clinically useful sentences, scientific
impact of authors’ institution, numbers of references, page count,
registration in ClinicalTrials.gov, and publication in PubMed
Central. Afzal et al [56] used automatic feature engineering
with RapidMiner software for the title and abstract text feature
extraction as part of the multilayer perceptron model.

Machine Learning Classifier
The majority of the included studies developed multiple
algorithms and selected the top-performing one for their main
classification tasks (Table 3). Aphinyanaphongs et al [49,50],
initially reported their results using SVM, NB, and boosting
algorithms in both their 2003 and 2005 experiments; however,
they ended up selecting SVM as their top-performing classifier
in a separate study [51]. Bian et al [54,55] and Afzal et al [36]
compared the performance of multiple classifiers (SVM, NB,
DT, k-nearest neighbors, random forest, multilayer perceptron)
and selected the best performing for their experiment in the
context of the same study (NB, DT, and SVM, respectively).
We refer to the classifier that was selected for the classification
task as the main classifier.

From the included articles, SVM was the most used classifier.
Five studies used an SVM algorithm as one of their main
experiment classifiers (Table 3), 2 studies used a neural network
as their main classifier; Del Fiol et al [35] used a convolutional
neural network (CNN), while Afzal et al [56] used a multilayer
feed-forward artificial neural network (ANN). DT algorithms
were used in 2 studies for their main text classification function
[52,55]. Four of the included studies applied multiple classifying
approaches [36,49,50,53].

Table 3. Types of machine learning classifiers used in the main experiment to assess performance in each of the included studies.

Neural networkEnsembleDecision treeSVMaNaïve BayesAuthor

StackingBoosting

N/AN/A✓N/Ac✓✓bAphinyanaphongs et al [49]

N/AN/A✓N/A✓✓Aphinyanaphongs et al [50]

N/AN/AN/AN/A✓N/AAphinyanaphongs et al [51]

N/A✓✓N/A✓✓Kilicoglu et al [53]

N/AN/AN/A✓N/AN/ALin et al [52]

N/AN/AN/AN/A✓N/AAfzal et al [36]

N/AN/AN/AN/AN/A✓Bian et al [54]

✓N/AN/AN/AN/AN/ADel Fiol et al [35]

N/AN/AN/A✓N/AN/ABian et al [55]

✓N/AN/AN/AN/AN/AAfzal et al [56]

aSVM: support vector machine.
bApplied.
cNot applied.

Comparator for Evaluating the Performance of the
Classifiers
As per our inclusion criteria, to evaluate the performance of the
machine learning method to classify articles appropriately,
articles had to report a comparison of their applied machine
learning model to a gold standard method such as gold standard
high-quality articles retrieval method, for example, search filters,
a manually annotated high-quality articles’dataset, or a baseline
machine learning model for high-quality articles retrieval (Table
4). Aphinyanaphongs et al [49-51] used Clinical Query filters
with sensitivity and specificity optimization [57]. The

experiment conducted by Kilicoglu et al [53] evaluated their
machine learning approach by applying it in a new dataset
annotated by experts. The NB high-quality algorithm by
Kilicoglu et al [53] was considered a comparator on its own for
its high recall and was used as such by Bian and colleagues
[54,55], who also used PubMed’s best match as a comparator.
Lin et al [52] used accuracy and k-value performance metrics
in comparison to the results of the critical appraisal process by
experts in the field. Also, Lin et al [52] has applied a comparison
between their classifier, which was a DT, to other known text
classifiers like SVM and ANN. Afzal et al [36] have used a
SVM model for quality articles retrieval and compared its
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performance to the SVM model proposed by Sarker et al [58],
reporting that their classifier achieved a higher performance
with their reported features selected.

Del Fiol et al [35] was the first study to incorporate the use of
deep learning in quality articles retrieval, relying on a CNN.
Del Fiol and colleagues [35] compared their proposed classifier
to the PubMed Clinical Queries broad filter since it achieves a
nearly perfect recall. Also, they compared their proposed model
to McMaster textword search and McMaster balanced search

filter created by the Clinical Hedges group to evaluate the
capabilities of their model of retrieving recently published
evidence and achieving a balance between recall and precision
[35]. Afzal et al [36], in their experiment using ANN, compared
their model’s results to the CNN results of Del Fiol et al [35],
the DT results of Bian et al [55], and their prior experiment
using an SVM for quality articles retrieval [35,56]. Also, Afzal
et al [56] compared their proposed ANN to well-known
algorithms used in the literature like NB, SVM, DT, and gradient
boosted trees.

Table 4. The gold standard comparator used for evaluating machine learning models in the included studies.

ComparatorAuthor

Aphinyanaphongs et al [49-51] • PubMed Clinical Query filter [57]

Kilicoglu et al [53] • Testing dataset of 2000 articles annotated by experts (held-out testing dataset to test model’s
generalization)

Lin et al [52] • Critical appraisal by domain expert
• SVMa

• Artificial neural network

Afzal et al [36] • SVM proposed in Sarker et al [58]

Bian et al [54] • Kilicoglu [53] high-quality classifier
• PubMed’s relevance sort

Del Fiol et al [35] • PubMed Clinical Query filter
• McMaster textword search
• McMaster balanced filter

Bian et al [55] • Kilicoglu et al [53] high-quality classifier
• PubMed relevance sort
• High-impact classifier with time-sensitive features included by Bian et al [54]

Afzal et al [56] • Well-known algorithms used in the literature: NBb, SVM, DTc, GBTd

• Models from past research by Del Fiol et al [35], Afzal et al [36], and Bian et al [55]

aSVM: support vector machine.
bNB: naïve Bayes.
cDT: decision tree.
dGBT: gradient boosted trees.

Performance Metrics
All included articles applied a supervised machine learning
model. Validation by applying a resampling k-fold approach
was used in 7 studies. Five used 10-fold cross-validation
[35,36,49,52,53], and 2 studies relied on 5-fold cross-validation
[50,51]. The most common performance metrics used in the
included studies were sensitivity (recall), specificity, accuracy,
area under the curve (AUC), F-measure, and precision (Table
5). The recall was generally high, above 85%, across all
experiment classifiers except the SVM by Kilicoglu et al [53],
and the NB and DT reported by Bian et al [54] and Bian et al
[55], respectively, as both had a recall below 30%. Precision
ranged from 9% to 86%, with the neural network of Afzal et al

[56] and the SVM by Kilicoglu et al [53] the highest. AUC was
measured in all studies and ranged from 0.73 to 0.99. Lin et al
[52] and Bian et al [54,55] used novel performance metrics in
their approaches. In the 2 studies by Bian and colleagues [54,55],
performance was primarily determined by calculating the top
20 precision which is the measure of the percentage of true
positive citations among the first 20 retrieved citations. Lin et
al [52] used Cohen kappa (k-value) as their performance metric,
which is the agreement between machine performance (observed
value) and gold standard (expected value) [59,60]. Bian et al
[54,55] reported a top 20 precision of 34% with their 2017 NB
classifier and 24% in their 2019 experiment using a DT
classifier. Lin et al [52] reported a k-value of 0.78 in their
experiment.

JMIR Med Inform 2021 | vol. 9 | iss. 9 | e30401 | p.152https://medinform.jmir.org/2021/9/e30401
(page number not for citation purposes)

Abdelkader et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Highest reported performance characteristics of the main classifier algorithms reported in the included studies.

AccuracyfAUCeF-scoredPrecisioncSpecificitybRecallaClassifier and author

Support vector machine

0.8930.980.29g0.1690.870.967Aphinyanaphongs et al [49]

NRh0.970.30g0.180.860.96Aphinyanaphongs et al [50]

NR0.950.47g0.3050.880.98Aphinyanaphongs et al [51]

NR0.960.360.865NR0.229Kilicoglu et al [53]

0.7850.730.87NRNRNRAfzal et al [36]

Naïve Bayes

0.7870.950.17g0.0910.760.967Aphinyanaphongs et al [49]

NR0.95NRNRNRNRAphinyanaphongs et al [50]

NR0.820.240.138NR0.975Kilicoglu et al [53]

NRNR0.210.33NR0.23Bian et al [54]

Boosting

0.8040.960.18g0.0990.7860.967Aphinyanaphongs et al [49]

NR0.94NRNRNRNRAphinyanaphongs et al [50]

NR0.970.770.823NR0.729Kilicoglu et al [53]

Neural network

NRNR0.510.346NR0.969Del Fiol et al [35]

0.9730.990.90.863NR0.951Afzal et al [56]

Decision tree

0.854NRNRNRNRNRLin et al [52]

NRNR0.140.39NR0.09Bian et al [55]

Stacking

NR0.980.8010.747NR0.864Kilicoglu et al [53]

aRecall: proportion of correctly identified positives among the real positive.
bSpecificity: the proportion of actual negatives, which got predicted as the negative (or true negative).
cPrecision: proportion of correctly identified positives among all classified positives.
dF-score: harmonic mean of the precision and recall. F-score is equivalent to F1-score and used interchangeably.
eAUC: area under the curve traced out by graphing the true positive rate against the false positive rate. The higher the AUC, the better the classifier
prediction.
fAccuracy: number of correctly predicted documents out of all classified documents.
gCalculated as F-measure=(2*precision*recall)/(precision+recall) using recall and precision when available from the articles.
hNR: not reported.

Discussion

Summary
To our knowledge, this is the first systematic review of machine
learning approaches used to classify scientifically sound and
clinically relevant studies from the biomedical literature. All
included studies followed a supervised machine learning
technique in which the learning algorithm depends on prelabeled
data provided for training [41]. Despite the technological
advancements from 2003 to 2020 when the studies were
published, none reported applying unsupervised or active
learning approaches for the classification of articles based on
quality. Active learning is a subtype of machine learning in

which the learning algorithm is allowed to select the data from
which it learns by querying a human operator and can achieve
a performance comparable to the standard supervised learning
algorithms with fewer labeled data [21]. For example, active
learning was used in the recent work by Gates et al [61] and
Tsou et al [62], who used Abstrackr, a freely available active
machine learning tool that automates the screening of titles and
abstracts [63]. Abstrackr achieved 100% sensitivity after
screening only 31.8% of the citations in the dataset [63].

There is a limited range of quality standards comprising the
prelabeled training datasets across the included articles. ACP
Journal Club and the Clinical Hedges follow the same inclusion
and exclusion criteria for high-quality evidence [4].
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Aphinyanaphongs et al [49] considered an article as high-quality
if it were included in ACP Journal Club but considered only
those classified as treatment, which limits their results to RCTs.
The authors expanded their inclusion to articles tagged as
treatment, diagnosis, prognosis, and etiology in their subsequent
studies [50,51]. Having consistency across gold standard
databases in classifier development strengthens our ability to
compare performance. There are, however, limited manually
annotated datasets available as these are time consuming and
expensive to develop and require consistency and highly skilled
people. Using studies that are included in guidelines and
systematic reviews, as done by Bian et al [54,55] and Afzal et
al [56], leverages screening work that has already been
completed to a high standard; however, citations in guidelines
may include lower quality evidence in the training process [64].

The limited availability of high-quality dataset options was
highlighted by Afzal et al [56], and finding the ideal gold
standard training dataset was the most reported limitation in the
included studies. In our opinion, the ideal gold standard training
dataset should cover some criteria to overcome the limitations
reported in the articles. First, the gold standard should be defined
by precise criteria for methodological rigor that is created and
recognized by experts in the field [50]. Selection criteria for the
gold standard should be unbiased. Aphinyanaphongs et al [50]
described their concern toward the possibility of a selection bias
by the ACP Journal Club editors in a particular year toward a
certain topic. Second, the gold standard training dataset should
cover a large enough sample of the high-quality class to properly
train the model and overcome the class imbalance bias toward
the majority class of studies that are not of high quality [63,65].
Third, the gold standard training set should cover multiple health
care domains, as Lin et al [52] reported their high-quality dataset
was limited only to cardiovascular diseases and would not
perform as well if applied to another medical domain. Fourth,
the gold standard training dataset should be up to date as much
as possible, which was a limitation reported in both studies by
Bian et al [54] and Afzal et al [56].

Another possible constraint affecting accurate prediction is the
feature selection process. Del Fiol et al [35] stated that using
MeSH-based features instead of the sole reliance on text features
in their experiment could have improved the precision of their
neural network. In consensus with the recommendation of Del
Fiol et al [35], some of the included studies provided evidence
that the use of a combination of features improves the overall
performance of the classifiers. For example, in the experiment
by Afzal et al [36], the combination of publication type and
MeSH term features in addition to title and abstract features
produced the best and the most stable results. Also, Kilicoglu
et al [53] proved that the incorporation of MEDLINE citation
metadata and Unified Medical Language System features in
addition to words of titles and abstracts yielded the best
performance. Such important features may not be immediately
available at the time of indexing in MEDLINE [19], which
poses a challenge in identifying recently published evidence
[52,54].

There was a higher rate of incorporating SVM algorithms in
the experiments by the study authors. SVMs are known for their
high accuracy [66] and their low classification error [41],

making them ideal for linear classification. Afzal et al [56]
developed an ANN algorithm that had higher accuracy when
compared with their previous SVM classifier [36]. Further
applications of newer machine learning approaches will advance
the knowledge base on these quickly evolving methods. While
SVMs currently have good accuracy and low error rates,
emerging approaches may well outperform them.

The main purpose of using machine learning in the classification
of high-quality articles is to decrease the workload on those
performing manual classification without losing relevant articles
in the process. Recall, the proportion of correctly identified
high-quality articles from the high-quality pool, is the most
important metric to be used, followed by precision, the
proportion of correctly identified positive articles among all
those classified as positive. The included studies reported a
range of recall and precision some of which would not meet the
objective of identifying the high-quality articles correctly. For
example, the NB classifier developed by Bian et al [54]
performed significantly less than the NB by Kilicoglu et al [53]
and PubMed Best Match in terms of recall (23% vs 55% and
65%, respectively). Despite performing worse in recall, their
classifier achieved a higher precision (33% vs 5% and 4%) [54].

Additionally, accuracy, the number of correctly predicted
documents out of all classified documents, is considered a
common metric for evaluating classifiers; however, its use is
considered inappropriate to evaluate imbalanced dataset
classification [67]. For example, a classifier labeling all entries
as false (given that false is the majority class) would have high
accuracy but would fail to perform the needed task of accurately
classifying the passing articles (rare class), making it useless
[68]. The harmonic mean of the recall and precision
measurements is the F-score, and it is used to evaluate the
machine learning algorithms implemented on unbalanced
datasets [67]. F-score was first used in the study by Kilicoglu
et al [53] where the performance of the classifiers was reported
using recall, precision, F-score, and AUC, without including
accuracy. Additionally, Afzal et al [36] did not rely on recall to
compare between multiple classifiers; instead, they used the
F-score, precision, and accuracy. Also, they have applied a novel
approach to compare between the classifiers, in which they
summed the metrics for a classifier with a higher sum reflecting
better performance [36].

The highest reported recall in our review was 98% with the
SVM developed by Aphinyanaphongs and Aliferis [51],
however, the algorithm had low precision of 30.5%. The best
balance between recall and precision was achieved by the ANN
approach used by Afzal et al [56], which reported a high recall
of 95.1% and a high precision of 86.3%, thereby achieving the
target of not losing quality literature while decreasing the manual
classification workload.

The experiment by Kilicoglu et al [53] assesses the effect of
applying 3 different machine learning classifiers (SVM, NB,
boosting, and ensemble) trained using the same Clinical Hedges
dataset on the overall performance of the resulting models.
Using multiple feature set combinations, the highest recall was
achieved by the NB classifier, and the highest F-scores were
achieved by ensemble (0.80) and text-boosting (0.77) based
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models [53]. Only the studies by Aphinyanaphongs and
colleagues [49,50] and Kilicoglu et al [53] incorporated
ensemble techniques in the development of their main classifiers,
and their results suggest that using multiple classifiers in
combination can improve the balance between recall and
precision (the F-score).

Strengths and Limitations
This is the first systematic review to characterize the machine
learning approaches in high-quality article retrieval. When
narrowing our research question, we excluded other text
summarization and text categorization approaches being used
in the biomedical literature. These include but are not limited
to studies concerned with the automation of the systematic
review process [69,70], biomedical literature summarization
[71], and semantic models’ applications in the biomedical
literature [72]. Given the technical nature of the application of
machine learning approaches for text classification, we expanded
our search beyond clinical bibliographic databases to include
those which index technical articles.

Across the included studies, some steps were not fully reported
in the methods, including preprocessing steps, cross-validation
folds, and features selected. To our knowledge, there are no
reporting guidelines for machine learning approaches being
applied for literature retrieval. The Equator Network includes
6 reporting guidelines for machine learning approaches;
however, all 6 are focused on articles applying machine learning
in clinical settings [73]. For example, the most recently
published guideline focuses on the reporting of interventions
involving artificial intelligence in clinical trial protocols [74].
The lack of reporting guidance for the NLP component of
machine learning being applied in the biomedical literature
creates a noticeable gap in reporting the steps of the applied
approach, features used and justification for their use, and
inconsistency in the reported performance achieved by the
machine. As a result, there was a lack of consistency in the
reporting of results and methods provided by the authors, which
also limits our ability to compare the performance of the
classifiers. Also, one of the limitations developing the review

was the inability to directly compare the performance of the
models across the included studies because of the different
training datasets and the applied settings. Finally, a challenge
with machine learning is that the algorithms are considered as
being derived in a black box; an enigmatic interpretation that
the machines provide findings and predictions without any
accompanying explanation [75].

Conclusion
Despite the longevity of research for the identification of
high-quality literature using machine learning, evidence is still
scarce and slowly progressing over time, and determining the
most reliable approach is difficult as the field is quickly
evolving. This slow progression in the field may have been
caused by the lack of publicly available standard benchmarks
for the identification of high-quality articles biomedical literature
to compare the performance of the proposed methods. A similar
problem was addressed in the molecular machine learning
domain by creating MolecularNet, a large-scale, open-source,
and high-quality benchmark for molecular learning algorithms
[76]. Our review provides a summary of current approaches
and performance of machine learning models applied to retrieve
high-quality evidence for clinical consideration from the
biomedical literature and highlights the importance of selecting
optimal quality gold standard data for training. The findings
include that the use of different feature sets in combination with
text features is likely to improve the performance of machine
learning models. There is a lack of reporting consistency in the
literature which makes replication of the experiments difficult.
Supervised machine learning has been the focus to date. The
rapid development in the field of NLP and the availability of
new state of the art techniques such as Bidirectional Encoder
Representations from Transformers (BERT) for language
understanding [77] and bio-BERT for biomedical text mining
[78] hold promise for future advances in the field of information
extraction from the biomedical literature. Considering the
increasingly available data to apply these approaches to, we
anticipate that the performance of classifiers to identify
high-quality evidence will continue to grow.
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In “Predicting Health Material Accessibility: Development of
Machine Learning Algorithms” (JMIR Med Inform
2021;9(9):e29175) the authors noted some errors. The following
changes have been made to correct these errors:

Author Metadata

In the originally published paper, Affiliation 1 appeared as
follows:

School of Languages and Culture, The University of
Sydney, Sydney, Australia

It is now corrected as follows:

School of Languages and Cultures, The University of
Sydney, Sydney, Australia

Abstract

• Under "Methods," the phrase "We applied 10-fold
cross-validation on the whole data set..." has been replaced
by "We applied 5-fold cross-validation on the whole data
set...."

• Under "Results," the sentences "The results showed that
ensemble tree (LogitBoost) outperformed in terms of AUC
(0.97), sensitivity (0.966), specificity (0.972), and accuracy
(0.969). Decision tree (AUC 0.924, sensitivity 0.912,
specificity 0.9358, and accuracy 0.924) and SVM (AUC
0.8946, sensitivity 0.8952, specificity 0.894, and accuracy
0.8946) followed closely. Decision tree, ensemble tree, and
SVM achieved statistically significant improvement over
logistic regression in AUC, specificity, and accuracy. As
the best performing algorithm, ensemble tree reached
statistically significant improvement over SVM in AUC,
specificity, and accuracy, and statistically significant

improvement over decision tree in sensitivity" have been
replaced by "The results showed that ensemble classifier
(LogitBoost) outperformed in terms of AUC (0.858),
sensitivity (0.787), specificity (0.813), and accuracy (0.802).
Support vector machine (AUC 0.848, sensitivity 0.783,
specificity 0.791, and accuracy 0.786) and decision tree
(AUC 0.754, sensitivity 0.7174, specificity 0.7424, and
accuracy 0.732) followed. Ensemble classifier (LogitBoost),
support vector machine, and decision tree achieved
statistically significant improvement over logistic regression
in AUC, sensitivity, specificity, and accuracy. Support
vector machine reached statistically significant
improvement over decision tree in AUC and accuracy. As
the best performing algorithm, ensemble classifier
(LogitBoost) reached statistically significant improvement
over decision tree in AUC, sensitivity, specificity, and
accuracy."

Introduction

• Under "Material Collection and Classification," the last
sentence "The final classification contained two sets of
texts: easy (n=499) versus difficult (n=501;..." has been
replaced by "The final classification contained two sets of
texts: easy (n=495) versus difficult (n=505;...."

• Under "Material Annotation and Semantic Feature
Extraction," the sentence "With USAS, we collected 108
semantic features" has been replaced by "With USAS, we
collected 113 semantic features."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the first
paragraph, the sentence "A total of 29 of the 113 semantic
features were identified as statistically significant…" has
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been replaced by "A total of 26 of the 113 semantic features
were identified as statistically significant...."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the first
paragraph, the sentence "The mean score of Z8 in health
texts of higher understandability was 52.91, this dropped
to 20.15 ..." has been replaced by "The mean score of Z8
in health texts of higher understandability was 52.84, this
dropped to 20.48...."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the first
paragraph, the sentence "…was 0.929 (95% CI
0.905-0.953)...easy reading was 0.929..." has been replaced
by "...was 0.928 (95% CI 0.905-0.951)… easy reading was
0.928...."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the first
paragraph, the sentence "…were identified as statistically
significant (P=.005)" has been replaced by "...were
identified as statistically significant (P=.01)."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the first
paragraph, the sentence "The odds ratio of Z7 was 0.845
(95% CI 0.751-0.951),… a difficult text was 84.5%..." has
been replaced by "The odds ratio of Z7 was 0.86 (95% CI
0.767-0.964), …a difficult text was 86%...."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the first
paragraph, the sentence "The large semantic category X2
(mental actions and process) was detected as a large
contributor to the cognitive accessibility of health texts
(odds ratio Exp(B) 0.92, 95% CI 0.852-0.995; P=.04).
Typical expressions included in the X2 class were English
expressions related to reasoning and thinking and levels
of belief or skepticism. Terms of knowledge acquisition,
perception, and retrospection were included in this broad
category, such as familiarize, forget, reflect, or become
aware" has been deleted.

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the second
paragraph, the first sentence "The logistic regression result
(Multimedia Appendix 1) also identified 13 semantic
features..." has been replaced by "The logistic regression
result (Multimedia Appendix 1) also identified 12 semantic
features...."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the second
paragraph, the sentence "Typical examples were B3
(medicines and medical treatment; odds ratio Exp(B) 1.042,
95% CI 1.012-1.073; P=.005), Z99 (out-of-dictionary
words; odds ratio Exp(B) 1.01, 95% CI 1.004-1.017;
P=.003), L2 (living creatures: animals, microorganism,
virus, bacteria, etc; odds ratio Exp(B) 1.082, 95% CI
1.003-1.167; P=.04), and W5 (environmental terms:
pollutants, carcinogens, inhalable particles, etc; odds ratio
Exp(B) 2.244, 95% CI 1.11-4.538; P=.02)" has been
replaced by "Typical examples were B3 (medicines and
medical treatment; odds ratio Exp(B) 1.041, 95% CI
1.012-1.071; P=.005), Z99 (out-of-dictionary words; odds

ratio Exp(B) 1.011, 95% CI 1.004-1.018; P=.001), L2
(living creatures: animals, microorganism, virus, bacteria,
etc; odds ratio Exp(B) 1.080, 95% CI 1.005-1.162; P=.036),
and W5 (environmental terms: pollutants, carcinogens,
inhalable particles, etc.; odds ratio Exp(B) 2.441, 95% CI
1.173-5.077; P=.017)."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the second
paragraph, the sentence "For example, the relatively large
odds ratios (mean 2.244, 95% CI 1.11-4.538) of W5
encompassing terms related to environmental exposure and
health risks indicates that, with the increase of one word
in this particular category, the odds of a health text being
a difficult text over the odds of the text being an easy text
for the target readers was 2.244, or in terms of percentage
change, this represents an increase of 124.4% of the text
from an easy text to a very difficult health reading" has
been replaced by "For example, the relatively large odds
ratios (2.441, 95% CI 1.173-5.077) of W5 encompassing
terms related to environmental exposure and health risks
indicates that, with the increase of one word in this
particular category, the odds of a health text being a
difficult text over the odds of the text being an easy text for
the target readers was 2.441, or in terms of percentage
change, this represents an increase of 144.1% of the text
from an easy text to a very difficult health reading."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the second
paragraph, the sentence "To a lesser extent, the odds ratio
of 1.082 of L2 (living creatures including microorganisms)
indicates that with the increase of one word in this class,
the perceived difficulty level (hard-to-understand class) of
the health text increased by a mean 8.2% (95% CI
0.3%-16.7%) depending on the vocabulary range of English
health terms of the readers" has been replaced by "To a
lesser extent, the odds ratio of 1.080 of L2 (living creatures
including microorganisms) indicates that with the increase
of one word in this class, the perceived difficulty level
(hard-to-understand class) of the health text increased by
a mean 8.0% (95% CI 0.5%-16.2%) depending on the
vocabulary range of English health terms of the readers."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the second
paragraph, the sentence "These include A2 (general or
abstract terms denoting the propensity for changes, such
as adapt, adjust for, conversion, and alter; odds ratio 1.057,
95% CI 1.005-1.111; P=.03), A7 (abstract terms of
modality, such as possibility, necessity, and certainty; odds
ratio 1.099, 95% CI 1.006-1.2; P=.04), A11 (abstract terms
denoting importance, significance, noticeability, or
markedness; odds ratio 1.164, 95% CI 1.003-1.351;
P=.045)" has been replaced by "These include A11 (abstract
terms denoting importance, significance, noticeability, or
markedness; odds ratio 1.219, 95% CI 1.070-1.388;
P=.003)."

• Under "Statistical Analysis of Multidimensional Semantic
Features in English Educational Health Texts," in the second
paragraph, the sentence "This means that with the increase
of one word in the A11 class, the odds of the health text
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being seen as a hard-to-understand text over the text being
seen as an easy text was 1.164, or an increase of 16.4%"
has been replaced by "This means that with the increase of
one unit in the A11 class, the odds of the health text being
seen as a hard-to-understand text over the text being seen
as an easy text was 1.219, or an increase of 21.9%."

Methods

• Under "Methods," in the second paragraph, the sentences
" For a decision tree classifier, the best-point
hyperparameters (Figure 1) were the maximum number of
tree splits (n=22) based on Gini diversity index (minimum
parent node size n=10). The observed minimal classification
error of the optimized decision tree model was 0.203. For
an ensemble classifier, the best-point hyperparameters
(Figure 2) reached an observed minimum classification
error of 0.14091. The optimized hyperparameters were the
ensemble method (LogitBoost), number of learners (n=302),
learning rate (0.15456), and maximum number of splits
(n=9). For SVM, the best-point hyperparameters (Figure
3) were box constraint level (0.014832; kernel function:
linear). The observed minimum classification error was
0.18722, lower than the optimized decision tree model
(0.203) but higher than the optimized ensemble classifier
(0.14091)" have been replaced by " For a decision tree
classifier, the best-point hyperparameters (Figure 1) were
the maximum number of tree splits (n=22) based on
maximum deviance reduction. The observed minimal
classification error of the optimized decision tree model
was 0.215. For an ensemble classifier, the best-point
hyperparameters (Figure 2) reached an observed minimum
classification error of 0.168. The optimized
hyperparameters were the ensemble method (LogitBoost),
number of learners (n=210), learning rate (0.1), and
maximum number of splits (n=22). For SVM, the best-point
hyperparameters (Figure 3) were box constraint level (0.1),
kernel function (cubic). The observed minimum
classification error was 0.1944, lower than the optimized
decision tree model (with a difference of 0.0206) but higher
than the optimized ensemble classifier (with a difference
of 0.0264)."

Results

• Under "Results," in the first paragraph, the sentences "The
mean scores and SDs of the area under the operating
characteristic curve (AUC), sensitivity, specificity, and
accuracy were obtained through 10-fold cross-validation.
The cross-validation divided the entire data set into 10 folds
of equal size. In each iteration, 9 folds were used for the
training data, and the remaining fold was used as the testing
data. As a result, on completion of the 10-fold
cross-validation, each fold was used as the testing data
exactly once. We used pairwise corrected resampled t test
to counteract the issue of multiple comparisons. As the
result, the significance level was adjusted to .008 (n=6;
α=.05) using Bonferroni correction" have been replaced
by "The mean scores and standard deviations of the area
under the operating characteristic curve (AUC), sensitivity,
specificity, and accuracy were obtained through 5-fold

cross-validation. The cross-validation divided the entire
data set into 5 folds of equal size. In each iteration, 4 folds
were used for the training data, and the remaining fold was
used as the testing data. As a result, on completion of the
5-fold cross-validation, each fold was used as the testing
data exactly once. We used paired-sample comparisons to
investigate the area under the operating characteristic
curve (AUC), sensitivity, specificity, and accuracy
differences of four machine learning algorithms (n=6;
α=.05)."

• Under "Results," the second paragraph " Table 2 shows
that, in terms of AUC, ensemble classifier (LogitBoost),
decision tree, and SVM reached statistically improved AUC
over logistic regression (0.802): LogitBoost (0.97; P<.001),
decision tree (0.924; P<.001), and SVM (0.8946, P=.002).
In terms of sensitivity, only LogitBoost (0.966; P<.001)
reached statistically significant improvement over logistic
regression (0.8364), whereas decision tree (0.9122) and
SVM (0.8952) had similar sensitivity as logistic regression.
In terms of model specificity, LogitBoost, decision tree, and
SVM all reached statistically improved specificity over
logistic regression (0.7694): LogitBoost (0.972; P=.002),
decision tree (0.9358; P=.003), and SVM (0.894; P=.004).
Lastly, with regard to model overall accuracy, again,
LogitBoost, decision tree, and SVM outperformed logistic
regression (0.8029): LogitBoost (0.969; P<.001), decision
tree (0.924; P<.001), and SVM (0.8946; P=.002).
Comparing LogitBoost, decision tree, and SVM, the former
two algorithms outperformed SVM consistently in AUC
(P=.001), sensitivity (P=.007), and accuracy (P=.001),
and LogitBoost and SVM outperformed decision tree in
terms of model specificity (P=.003), using the adjusted .008
as the significance level of paired-sample comparisons
(Bonferroni correction: n=6; α=.05). These results suggest
that, when using semantic features as predictor variables,
the most stable and highest-performing algorithm is
ensemble classifier (LogitBoost), followed by optimized
decision tree. LogitBoost, decision tree, and SVM all
achieved statistically significant improvement over logistic
regression in AUC, specificity, and accuracy. Decision tree
and SVM did not improve over logistic regression in terms
of sensitivity, but LogitBoost did. Overall, the best AUC,
sensitivity, specificity, and accuracy were achieved by
LogitBoost as an ensemble classifier (Figure 4)" has been
replaced by " Table 2 shows that, in terms of AUC, ensemble
classifier (LogitBoost), decision tree, and SVM reached
statistically improved AUC over logistic regression (0.614):
ensemble classifier (0.858; P=.001), decision tree (0.754;
P=.004), and SVM (0.848, P=.001). In terms of sensitivity
(Table 3), ensemble classifier (0.787, P=.020), decision
tree (0.7174, P=.036), and SVM (0.783; P<.001) reached
statistically significant improvement over logistic regression
(0.6282). In terms of model specificity (Table 4), ensemble
classifier, decision tree, and SVM all reached statistically
improved specificity over logistic regression (0.5724):
ensemble classifier (0.813; P=.001), decision tree (0.7424;
P=.009), and SVM (0.791; P=.007). Lastly, with regard to
model overall accuracy (Table 5), again, LogitBoost,
decision tree, and SVM outperformed logistic regression
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(0.601): ensemble classifier (0.802; P=.001), decision tree
(0.732; P=.003), and SVM (0.786; P=.001). Comparing
SVM, ensemble classifier and decision tree, the former two
algorithms outperformed decision tree consistently in AUC
(P=.001 and P<.001, respectively), and accuracy (P=.022
and P=.001, respectively). Only ensemble classifier
outperformed decision tree significantly in terms of model
sensitivity (P=.024), and specificity (P=.010), using the
paired-sample comparisons (n=6; α=.05). These results
suggest that, when using semantic features as predictor
variables, the most stable and highest-performing algorithm
is ensemble classifier (LogitBoost), followed by SVM.
Ensemble classifier, decision tree, and SVM all achieved
statistically significant improvement over logistic regression
in AUC, specificity, sensitivity, and accuracy. SVM did not
improve significantly over decision tree in terms of
sensitivity and specificity, but ensemble classifier did.
Overall, the best AUC, sensitivity, specificity, and accuracy
were achieved by LogitBoost as an ensemble classifier
(Figure 4)."

Discussion

• Under "Principal Findings," in the second paragraph, the
sentence "…(measured in pairwise resampled t tests, with
P value adjusted to .008 using Bonferroni correction)" has
been replaced by "…(measured in pairwise resampled t
tests)."

• Under "Principal Findings," in the last paragraph, the
sentence "…or those requiring higher cognitive abilities,

such as assessing the propensity for changes and
expressions of modality describing possibility, necessity,
and certainty of health events and situations" has been
replaced by "…or those requiring higher cognitive abilities,
such as abstract terms denoting importance, significance,
noticeability or markedness of health events and situations."

Authors' Contributions

In the originally published paper, the following "Authors'
Contributions" section was not included.

MJ and TH were responsible for overall research
design; MJ was responsible for paper writing and
revision, and YL was responsible for formal analysis
and data curation.

Multimedia Appendices

The information presented in the Multimedia Appendix 1
entitled "Variables in the logistic regression of health text
understandability membership" has been updated. The originally
published Multimedia Appendix 1 is in Multimedia Appendix
2.

Figures and Tables

Figures 1-4 have been replaced and can be viewed below. The
originally published Figures 1-4 are in Multimedia Appendix
3. Tables 1-5 have been updated and can be viewed below. The
originally published Tables 1-5 are in Multimedia Appendix 4.

Figure 1. Hyperparameter tuning (decision tree).
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Figure 2. Hyperparameter tuning (ensemble classifier).

Figure 3. Hyperparameter tuning (support vector machine).
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Figure 4. Mean receiver operating characteristic (ROC) curve for machine learning algorithms. LR: logistic regression; SVM: support vector machine;
DT: decision tree; ENS: ensemble classifier (LogitBoost); ROC: receiver operating characteristic.

Table 1. Performance of the machine learning models using multidimensional semantic features as predictors.

Accuracy, mean (SD)Specificity, mean (SD)Sensitivity, mean (SD)AUCa, mean (SD)Algorithm

0.6010 (0.0523)0.5724 (0.0733)0.6282 (0.0597)0.614 (0.0554)LRb

0.7860 (0.0153)0.7910 (0.0420)0.7830 (0.0368)0.848 (0.0172)SVMc

0.732 (0.0317)0.7424 (0.0589)0.7174 (0.0719)0.754 (0.0377)DTd

0.802 (0.032)0.813 (0.046)0.787 (0.057)0.858 (0.041)ENSe

aAUC: area under the operating characteristic curve.
bLR: logistic regression.
cSVM: support vector machine.
dDT: decision tree.
eENS: ensemble classifier (LogitBoost).

Table 2. Pairwise corrected resampled t test of area under the curve differences (using multidimensional semantic features as predictor variables).

P valuet test (df)95% CIStandard error meanMean difference (SD)Pairs

.001–7.817 (4)–0.3171 to –0.15090.0299–0.2340 (0.0669)LRa vs SVMb

.004–5.931 (4)–0.2144 to –0.07770.0246–0.1460 (0.0551)LR vs DTc

.001–9.675 (4)–0.3140 to –0.17400.0252–0.2440 (0.0564)LR vs ENSd

.00110.230 (4)–0.0641 to 0.11190.00860.0880 (0.0192)SVM vs DT

.582–0.598 (4)–0.0565 to –0.03650.0167–0.0100 (0.0374)SVM vs ENS

<.001–11.392 (4)–0.1219 to –0.07410.0086–0.0980 (0.0192)DT vs ENS

aLR: logistic regression.
bSVM: support vector machine.
cDT: decision tree.
dENS: ensemble classifier (LogitBoost).
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Table 3. Pairwise corrected resampled t test of sensitivity differences (using multidimensional semantic features as predictor variables).

P valuet test (df)95% CIStandard error meanMean difference (SD)Pairs

<.001–11.429 (4)–0.1924 to –0.11720.0135–0.1548 (0.0303)LRa vs SVMb

.036–3.111 (4)–0.1896 to –0.01080.0322–0.1002 (0.0720)LR vs DTc

.020–3.756 (4)–0.2761 to –0.04140.0423–0.1588 (0.0945)LR vs ENSd

.1551.752 (4)–0.0319 to 0.14110.03120.0546 (0.0697)SVM vs DT

.922–0.105 (4)–0.1102 to –0.10220.0382–0.0040 (0.0855)SVM vs ENS

.024–3.535 (4)–0.1046 to –0.01260.0166–0.0586 (0.0371)DT vs ENS

aLR: logistic regression.
bSVM: support vector machine.
cDT: decision tree.
dENS: ensemble classifier (LogitBoost).

Table 4. Pairwise corrected resampled t test of specificity differences (using multidimensional semantic features as predictor variables).

P valuet test (df)95% CIStandard error meanMean difference (SD)Pairs

.007–5.047 (4)–0.3389 to –0.09840.0433–0.2186 (0.0968)LRa vs SVMb

.009–4.679 (4)–0.2741 to –0.06990.0368–0.1720 (0.0822)LR vs DTc

.001–7.959 (4)–0.3251 to –0.15690.0303–0.2410 (0.0677)LR vs ENSd

.3810.984 (4)–0.0849 to 0.17810.04740.0466 (0.1059)SVM vs DT

.614–0.545 (4)–0.1364 to –0.09160.0411–0.0224 (0.0918)SVM vs ENS

.010–4.619 (4)–0.1105 to –0.02750.0149–0.0690 (0.0334)DT vs ENS

aLR: logistic regression.
bSVM: support vector machine.
cDT: decision tree.
dENS: ensemble classifier (LogitBoost).

Table 5. Pairwise corrected resampled t test of accuracy differences (using multidimensional semantic features as predictor variables).

P valuet test (df)95% CIStandard error meanMean difference (SD)Pairs

.001–8.152 (4)–0.2480 to –0.12200.0227–0.1850 (0.0507)LRa vs SVMb

.003–6.360 (4)–0.1968 to –0.07710.0215–0.1370 (0.0482)LR vs DTc

.001–8.182 (4)–0.2692 to –0.13280.0246–0.2010 (0.0549)LR vs ENSd

.0223.639 (4)0.0114 to 0.08460.01320.0480 (0.0295)SVM vs DT

.384–0.976 (4)–0.0615 to 0.02950.0164–0.0160 (0.0366)SVM vs ENS

.001–9.704 (4)–0.0823 to –0.04570.0066–0.0640 (0.0148)DT vs ENS

aLR: logistic regression.
bSVM: support vector machine.
cDT: decision tree.
dENS: ensemble classifier (LogitBoost).

The authors confirm that the results and conclusions of the
corrected data are consistent with those in the originally
published version.

These corrections will appear in the online version of the paper
on the JMIR website on September 21, 2021, together with the

publication of this correction notice. Because this was made
after submission to PubMed, PubMed Central, and other full-text
repositories, the corrected article has also been resubmitted to
those repositories.
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Multimedia Appendix 1
Variables in the logistic regression of health text understandability membership.
[DOCX File , 34 KB - medinform_v9i9e33385_app1.docx ]

Multimedia Appendix 2
Originally published Multimedia Appendix 1.
[DOCX File , 34 KB - medinform_v9i9e33385_app2.docx ]

Multimedia Appendix 3
Originally published Figures 1-4.
[PDF File (Adobe PDF File), 542 KB - medinform_v9i9e33385_app3.pdf ]

Multimedia Appendix 4
Originally published Tables 1-5.
[PDF File (Adobe PDF File), 1428 KB - medinform_v9i9e33385_app4.pdf ]
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