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Abstract

Background: Foodborne disease is a common threat to human health worldwide, leading to millions of deaths every year. Thus,
the accurate prediction foodborne disease risk is very urgent and of great importance for public health management.

Objective: We aimed to design a spatial–temporal risk prediction model suitable for predicting foodborne disease risks in
various regions, to provide guidance for the prevention and control of foodborne diseases.

Methods: We designed a novel end-to-end framework to predict foodborne disease risk by using a multigraph structural long
short-term memory neural network, which can utilize an encoder–decoder to achieve multistep prediction. In particular, to capture
multiple spatial correlations, we divided regions by administrative area and constructed adjacent graphs with metrics that included
region proximity, historical data similarity, regional function similarity, and exposure food similarity. We also integrated an
attention mechanism in both spatial and temporal dimensions, as well as external factors, to refine prediction accuracy. We
validated our model with a long-term real-world foodborne disease data set, comprising data from 2015 to 2019 from multiple
provinces in China.

Results: Our model can achieve F1 scores of 0.822, 0.679, 0.709, and 0.720 for single-month forecasts for the provinces of
Beijing, Zhejiang, Shanxi and Hebei, respectively, and the highest F1 score was 20% higher than the best results of the other
models. The experimental results clearly demonstrated that our approach can outperform other state-of-the-art models, with a
margin.

Conclusions: The spatial–temporal risk prediction model can take into account the spatial–temporal characteristics of foodborne
disease data and accurately determine future disease spatial–temporal risks, thereby providing support for the prevention and risk
assessment of foodborne disease.

(JMIR Med Inform 2021;9(8):e29433) doi: 10.2196/29433
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Introduction

Foodborne disease is caused by pathogenic bacteria that enter
the body due to ingestion of contaminated food, resulting in
symptoms such as diarrhea and abdominal pain [1]. According
to the World Health Organization, more than 600 million people
worldwide suffer from diseases caused by contaminated food
every year, of whom 4.2 million die of foodborne illness [2].
The high incidence of foodborne diseases seriously threatens
health and social economy. Most existing research efforts on
foodborne disease have mostly been concentrated in the fields
of medical science and food safety [3-6]; however, researchers
have turned their attention to exploiting machine learning
technologies to address foodborne disease–related topics, such
as analyzing the correlation between foodborne diseases and
food [7], discovering foodborne disease outbreak locations using
social media [8-10], analyzing foodborne disease pathogens
[11,12], and predicting foodborne disease outbreaks [13-15].
While considerable efforts have been made, an open challenge
remains—accurately predicting foodborne disease risk by
mining spatial–temporal patterns in historical disease records,
using similar methods to those used for flu prediction [16-18],
which is of great significance for public health management.
By providing estimates of the trends of foodborne disease in
future periods, accurate foodborne disease risk prediction can
support effective guidance for government epidemic prevention
policies. Because foodborne disease risk usually follows a
certain spatial–temporal pattern—for example, the incidence in
summer is higher than those in autumn and winter, and risk of
foodborne diseases in a region is similar to those in regions with
similar weather or urban functional structure—the prediction
of foodborne disease risk can be solved as a spatial–temporal
data modeling problem.

In the literature, a variety of methods for spatial–temporal data
modeling have been proposed, including traditional statistical
models [19,20] and deep learning methods, such as recurrent
neural network [21], long short-term memory (LSTM) [22],
convolutional neural network [23], graph convolutional network
[24], temporal graph convolutional network [25], and structural
recurrent neural network [26]. To solve the problem of
spatial–temporal data modeling, structural recurrent neural
networks use recurrent neural networks to model temporal
dependence and model spatial dependence with structural
recurrent neural networks on spatial–temporal graphs. Such
models possess scalability; however, models are limited to static
representations of spatial dependence by region proximity (ie,
the models lack dynamic spatial correlation representation).

Compared with COVID-19 [27], influenza [16-18], and other
infectious diseases [28], foodborne disease is spread through
food rather than people. Therefore, the data characteristics of
foodborne disease outbreaks are quite different from those
related to infectious diseases, for example, sparse data increase
the difficulty of predicting foodborne disease risk. Foodborne
disease risk prediction also differs from traffic prediction
[25,29-33]. Traffic problems require short-term prediction, while
foodborne disease risk problems require long-term prediction.

To address these challenges, in this paper, we propose the use
of a multigraph structural LSTM based spatial–temporal
prediction model to determine the risk of foodborne disease in
different regions in future periods, which considers various
spatial dependencies and uses a dynamic fusion method, with
multistep prediction using a encoder–decoder structure, to
support future disease prevention and control, and with attention
mechanisms in spatial and temporal dimensions, as well as
external features, to further improve performance. To the best
of our knowledge, this is the first study to focus on
spatial–temporal foodborne disease risk prediction and report
validation results using real-world data sets.

We propose a multistep spatial–temporal data prediction model
based on encoder–decoder structure and composed entirely of
LSTM modules, to address the problem of spatial–temporal
foodborne disease risk prediction; we propose a dynamic fusion
method to fuse region proximity, historical trend similarity,
regional function similarity and food exposure similarity, with
a spatial–temporal attention mechanism and external feature
embedding; and we validated our model with extensive
experiments on a long-term real-world foodborne disease data
set, with data from 2015 to 2019 in multiple provinces of China;
experimental results clearly demonstrated that our approach can
outperform other state-of-the-art methods, with a margin.

Methods

Problem Definition

Region Graph
We divide each city or region into irregular subregions by
administrative areas and organized them into an undirected
graph G=(v, e, A), where v is a set of nodes and each node
corresponds to a subregion, e is a set of edges with each edge
connecting 2 subregions defined by some rules, and A represents
the adjacency matrix of G. In particular, each vi in v=(v1, v2,...vn)
is the minimal spatial unit, where N is the total number of spatial
units, and eij is the edge that connects vi and vj.

Historical Data Sequence
To represent the historical data sequence, we calculated the
number of disease records at each prediction period, that is,
given a subregion vi, we defined the sequence of counts

to denote the historical data sequence in
subregion vi during the time window T.

Spatial–Temporal Graph
To represent spatial–temporal data characteristics, we organized
the historical data sequence and the spatial graph into
spatial–temporal graphs. Foodborne disease data at timestep t

in a subregion is represented as graph signal , and the entire

spatial–temporal graph is represented as 

Disease Risk
To evaluate the predicted disease risk intuitively, we divided
each region’s disease record count into 2 classes using a ratio,
which we determined by consulting domain experts: when the
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disease record count in a region at any given timestep exceeds
70% of the historical sequence of this region, the risk at that
timestep for that region is considered high risk or low risk.

Disease Risk Prediction
The risk of foodborne disease in a region is affected by its
historical data and by the risk of surrounding area and is,
therefore, a spatial–temporal prediction problem. Given the
historical disease record data from subregions v during time
period T, our task was to determine the unknown disease risk
level for each subregion in future time slots L. Formally, our
aim was to compute the following:

Model Framework

Model Overview
Our model is an encoder–decoder multigraph structural LSTM
(Figure 1). This model consists of 5 modules. The Data

Generation module comprises temporal sequence and multiple
spatial graph (geographic proximity, historical data similarity,
regional functional similarity, and foodborne disease exposure
food similarity) data processing. The Multigraph Fusion module
takes into account multiple spatial correlations and merges them
dynamically. The Encoder–Decoder module uses LSTM
networks to model temporal dependence and spatial dependence
of foodborne disease risk by using the edge LSTM and the node
LSTM, respectively, simultaneously in the encoder. In the
decoder, the node LSTM is used to predict foodborne disease
risk in each region in the 1 or more future timesteps. The
Spatial–Temporal Attention module takes spatial–temporal
relationship complexity into account and assigns temporal
importance values to timesteps and spatial importance values
to adjacent edges of nodes. The External Feature Embedding
module combines various external features (eg, holidays,
temperature) and merges external features into the encoder at
each timestep.

Figure 1. Foodborne disease spatial–temporal risk prediction model framework. LSTM: long short-term memory; POI: point of interest.

Data Generation
This module performs data processing of temporal sequence
and multiple spatial graph data (geographic proximity, historical
data similarity, regional functional similarity, and foodborne
disease exposure food similarity).

Temporal sequence data were collected from historical
foodborne disease records, from which disease record counts
were calculated. Due to the sparseness of data, we performed
data augmentation, with a sliding 1-month window by moving
the start of the unnatural month, which resulted in an expansion
of the data. Temporal sequence data were normalized (range
0-1), using minimum–maximum normalization.

Data were characterized by regional proximity because,
intuitively, adjacent regions will have similarity risks of disease
due to climate and geography, as well as from population
movement between regions. For graph G=(v, e, A), if vi and vj

are spatially adjacent, then is 1, otherwise is 0.

For each region, disease risk trends will follow a relatively fixed
pattern, and regions with similar historical disease risk trends
will have similar disease risk trends in future periods. We used
historical data sequence to calculate the pairwise historical
similarities between regions using Pearson correlation

coefficients. We set a threshold; the adjacency value 
between 2 nodes vi and vj with a similarity less than the threshold
is 0. The threshold is used to control the sparsity of edges.

Regions with similar urban functions will have similar
population and business structures, and thus, similar foodborne
disease risk. We used point-of-interest (POI) data from each
region to characterize this feature. POI can be divided by
function into 19 categories, the term frequency–inverse
document frequency can be used to embed these data as vectors
for every region, and the similarity between of POI vectors for
regions can be evaluated [34].
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Exposure food, the transmission medium of foodborne disease,
plays an important role in the prediction of foodborne disease
risk. Intuitively, exposure to foodborne diseases at different
timesteps and in different regions are different, and the impact
on the risk of foodborne diseases is also different. Therefore,
we counted the number of exposures for each food category (23
categories) in different regions at different timesteps, which
were represented as vectors using term frequency–inverse
document frequency. Similarities between exposure vectors for
regions at each timestep were calculated, representing spatial
correlations.

Multigraph Fusion
Our dynamic fusion method, for multiple spatial graphs
constructed by different spatial correlations, was designed to

merge adjacent matrices {A1, A2...Am}, where m represents the
number of constructed graphs. We defined 4 parameters, W1,
W2, W3, W4, and to obtain the dynamic merged graph,
element-wise products between the parameters and adjacent
matrices tare calculated to adjust the weights of the geographic
proximity, historical data similarity, region functional similarity,
and exposure food similarity graphs.

The parameters are continuously adjusted, through network
learning, to control the influences of multiple spatial
dependencies on the final inputs.

Encoder–Decoder
In order to model spatial dependence and temporal dependence
simultaneously and conduct multistep prediction, we organize
the historical temporal sequence data and the fused spatial graph
into the structure of spatial–temporal graph and construct a
graph structural LSTM model of encoder–decoder architecture
inspired by the structural recurrent neural network architecture
[26].

In the encoder, a structural LSTM network (Figure 2) was
constructed with node LSTMs and edge LSTMs to model
temporal dependence and spatial dependence. We divide nodes

v=(v1, v2,...vn) on the spatial graph into 2 categories in a
ratio according to the sum of values of each node at all timesteps
in the temporal dimension. The edges between nodes were
divided into 3 categories, according to connected nodes. Then,
we constructed node LSTMs and edge LSTMs for each category
of nodes and each category of edges (Figure 3). For each edge
LSTM, the input at each timestep was the concatenation of the
current node values connected by the edges of its category, and
for each node LSTM, the input at each timestep was the fusion
of the current outputs of edge LSTMs related to its node
category. It not only contained the information of the current
category of nodes but also contained the information of adjacent
node categories to model spatial dependence. The current state
of the node LSTM and edge LSTM was not only influenced by
the current input, but also by the previous timesteps, to model
temporal dependence.

In the decoder, for each node LSTM, we used the context vector
learned from the encoder to predict the value of 1 or more
timesteps in the future.

Figure 2. Structural long short-term memory (LSTM) details.
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Figure 3. Grouping nodes and edges in long short-term memory (LSTM) networks.

Spatial-Temporal Attention
In order to eliminate the influence of distance on temporal
dependence, and to fully consider temporal and spatial
correlations, we applied a spatial-temporal attention mechanism.
In the temporal dimension, we calculate the score between
hidden states with current spatial–temporal state, transformed
into a normalized value with softmax operation, then apply a
weighted summarization as

In the spatial dimension, we calculate the score of each edge
LSTM, normalized by softmax to assign different weight to
different edge LSTM every timestep.

External Feature Embedding
The risk of foodborne disease may be influenced by the change
of external factors (for example, people eating out on holidays
more often than working days, or high temperature and humid
weather being more likely to cause food spoilage). Therefore,
to incorporate external features into our model, we first
preprocess temperature data by filling the missing value and
computing the mean value for a month. For the holiday feature,
we calculated the number of holidays per month, which was
represented as a series of fixed-length vectors and concatenated

with the input sequence of node LSTMs in previous
timesteps to predict the future disease risk.

Model Validation

Data Set
We validated our model using a real-world data set (China
National Center for Food Safety Risk Assessment [35]), which
consisted of foodborne disease records reported by sentinel
hospitals in almost all provinces in China. Each record contains
information such as time of onset, place of eating, place of
living, symptoms of onset, and food information. We selected
all the records in the 4 provinces with best-quality data from
2015 to 2019—Beijing, Zhejiang, Shanxi, and Hebei. Due to
data acquisition limitations, we only obtain the POI information
for Beijing. Therefore, only 3 spatial dependencies were used
for Zhejiang, Shanxi, and Hebei. We collected temperature data
and holiday data from 2015 to 2019 to simulate the impact of
weather and holiday on the foodborne disease risk.

Comparison Models and Evaluation Metrics
We compared our model with historical average, autoregressive,
ARIMA (autoregressive integrated moving average), LSTM,
and spatial–temporal graph convolutional network models.
Historical average models estimate future results by computing
the average value of historical data, which is too simple to model
spatial-temporal dependence. Autoregressive models are
statistical time-series models that use a linear combination of
the values of several previous timesteps to describe future
values. ARIMA models, which as the name implies, use
autoregressive terms and moving average terms. Data must be
processed before applying the ARIMA model to ensure that
data are stationary. LSTM networks are mostly used for natural
language processing problems [22]. LSTM networks can learn
sequence dependence due to its chain structure. We applied
LSTM to every node of the graph and evaluated the model by
merging the results of all nodes. Spatial–temporal graph
convolutional network models are based on convolutional neural
networks but use graph convolutional networks instead of
traditional convolutional neural networks for spatial dimensions
and temporal convolutional neural network instead of recurrent
neural networks for temporal dimensions. Spatial–temporal
graph convolutional network models have achieved outstanding
results in traffic prediction [31].

Given that we used a binary definition of disease risk, to avoid
the effect of imbalances between 2 classes, we used

to evaluate model performance. In order to avoid the effect of
parameter initialization on the results, we performed 5 trials for
each model and averaged the results.

Results

Performance Comparison

Comparison With Other Methods
Table 1 and Figure 4 summarize foodborne disease risk
prediction performance results for 1, 2, and 3 months in each
of the 4 provinces. Our proposed model outperformed all other
models for all 4 provinces and achieved the highest F1 score
for every forecast period. Traditional statistical models, such
as autoregressive and ARIMA models, performed worse than
deep learning models for most provinces, indicating that
traditional methods were too simple to solve complex nonlinear
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spatiotemporal problems. LSTM networks modeled the temporal
dependence of each node on the spatial–temporal graph
independently and ignored the dynamic spatial correlation
between nodes, resulting in relatively poor performance. The
spatial–temporal graph convolutional network model used
convolution neural networks to model temporal dependence as
well as spatial dependence, with better performance than that
of the LSTM model for most provinces. Our proposed method
with a single graph (that is, a regional proximity graph)

simulated temporal dependence and spatial dependence
simultaneously with a reasonable attention mechanism, resulting
in better performance than those of the other methods. At most
timesteps, it had the second-best prediction results. By
accounting for rich spatial dependencies, our multigraph model
exhibited better performance than that of the single-graph model
for all 4 provinces, achieving the best results. The highest F1
score was 20% higher than the best results of the other models.

Table 1. Performance of different models using data from 4 provinces.

ModelProvince and forecast

period

Ours (multigraph)Ours (single graph)ST-GCNdLSTMcARIMAbARaHistorical
average

F1 score, mean
(SD)

F1 score, mean
(SD)

F1 score, mean (SD)F1 score, mean (SD)F1 scoreF1 scoreF1 score

Beijing

0.822 (0.011)0.811 (0.014)0.777 (0.034)0.750 (0.007)0.7340.7420.6791-month prediction

0.812 (0.017)0.785 (0.007)0.737 (0.023)0.744 (0.012)0.7200.7410.6752-month prediction

0.805 (0.021)0.768 (0.011)0.724 (0.041)0.743 (0.019)0.6640.7330.6743-month prediction

Zhejiang

0.679 (0.009)0.648 (0.021)0.651 (0.026)0.551 (0.021)0.5580.5970.4841-month prediction

0.660 (0.012)0.630 (0.019)0.604 (0.031)0.501 (0.017)0.4740.5620.4712-month prediction

0.645 (0.008)0.603 (0.020)0.544 (0.029)0.441 (0.015)0.4040.5310.4573-month prediction

Shanxi

0.709 (0.013)0.677 (0.011)0.582 (0.045)0.550 (0.022)0.3900.5590.3731-month prediction

0.699 (0.019)0.684 (0.015)0.583 (0.039)0.549 (0.027)0.3140.5480.3692-month prediction

0.695 (0.017)0.683 (0.012)0.585 (0.043)0.542 (0.017)0.2460.5410.3663-month prediction

Hebei

0.720 (0.006)0.692 (0.005)0.449 (0.027)0.553 (0.018)0.5310.6320.6821-month prediction

0.703 (0.010)0.683 (0.012)0.445 (0.048)0.532 (0.016)0.4940.6160.6752-month prediction

0.698 (0.012)0.668 (0.007)0.392 (0.033)0.513 (0.020)0.4520.5930.6663-month prediction

aAR: autoregressive.
bARIMA: autoregressive integrated moving average.
cLSTM: long short-term memory.
dST-GCN: spatial–temporal graph convolutional network.
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Figure 4. Performance in 4 provinces. AR: autoregressive; ARIMA: autoregressive integrated moving average; HA: historical average; LSTM: long
short-term memory; ST-GCN: spatial–temporal graph convolutional network.

Effect of Spatial Dependence
The results of the Beijing data set, using 4 different spatial
graphs to represent spatial dependence between regions and

multiple spatial graph fusion (Table 2), demonstrate that
different spatial dependence affects prediction: single spatial
dependence is not as effective as the fusion of multiple
dependencies.

Table 2. Performance of models with different spatial dependencies.

F1 scoreModel type

3-month prediction2-month prediction1-month prediction

Single-graph

0.7680.7850.813Proximity

0.7320.7760.800Time series similarity

0.7410.7050.797POI similarity

0.7430.7560.813Exposure food similarity

0.8050.8120.822Multigraph

Effect of External Features
Using the Beijing data set, the performance of models with
external features is slightly better than those of models without

external features for 1-, 2-, and 3-month predictions (Table 3),
which demonstrates that the external features affect the trend
of foodborne disease to some extent.

JMIR Med Inform 2021 | vol. 9 | iss. 8 | e29433 | p. 7https://medinform.jmir.org/2021/8/e29433
(page number not for citation purposes)

Du et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Performance of models with or without external features.

F1 scoreModel type

3-month prediction2-month prediction1-month prediction

0.8030.8100.818External features

0.8050.8120.822No external features

Effect of Attention Mechanism
For the Beijing data set, the removal of the attention mechanism
in the spatial dimension or in the temporal dimension reduced
the effectiveness of the model (Table 4). With the removal of

the attention mechanism in the temporal dimension, as the
prediction range increased, model performance decreased. This
also confirms that, in the multistep prediction, the use of an
attention mechanism can solve the distance problem in sequence
dependence.

Table 4. Performance of models with or without an attention mechanism.

F1 scoreModel type

3-month prediction2-month prediction1-month prediction

0.7880.8010.815Spatial attention only

0.7980.8050.807Temporal attention only

0.8050.8120.822With attention mechanism

Mapped Results
We selected 3 consecutive months in the Beijing data set
(October, November, and December 2019), for which we
mapped the predicted values and the ground truths (Figure 5).
Disease risks in most regions were correctly predicted, and only
1 or 2 regions had incorrect predictions for each prediction
range. Incorrect predictions were often affected by the value of
the surrounding region, which is also consistent with clustered
outbreak characteristics of foodborne diseases. To a certain
extent, this case suggests that our model is able to capture the
spatial–temporal correlations between data and can provide
accurate multistep prediction.

We use the same method to display the results of each province
in November 2019 (Figure 6), demonstrating that our model
can correctly predict disease risk in these 4 provinces to a large
extent. Due to the difference in the number of counties and cities
in each province, model prediction accuracies differed.
Provinces with more subregions had more incorrect predictions.
As in the previous case, most regions with incorrect predictions
were the values of surrounding regions. In general, our model
can achieve good results in predicting spatial–temporal
foodborne disease risk and has a certain degree of robustness.
It can achieve multistep disease risk prediction, which can
provide more information for the prevention and control of
foodborne disease.

Figure 5. Case study 1: The first row displays the predictions and the second row displays ground truths for Beijing in October, November, and
December in 2019.
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Figure 6. Case study 2: The first row displays predictions for Beijing, Zhejiang, Shanxi, and Hebei in November 2019, and the second row displays
the ground truths for Beijing, Zhejiang, Shanxi, and Hebei in November 2019.

Discussion

Principal Results
Our proposed model utilizes structural LSTM to model spatial
dependence and temporal dependence in data and takes into
account multiple spatial correlations rather than the single spatial
proximity. We also incorporated external features and
spatial–temporal attention mechanisms to refine the model. The
model was validated using the real-world foodborne disease
data sets.

The results demonstrate that our model performs better than
other models, for the 4 provinces that we selected, in
determining future foodborne disease risk. Our model with
multiple spatial graphs achieved the best prediction results for
all provinces and prediction ranges, and our model with a single
graph achieved the second-best prediction results in most cases,
which shows that compared to other prediction models,
including statistical models and deep learning models, our
method can model temporal and spatial dependence better.

We have a better understanding of the influence of each module
of the model on prediction from experiments with spatial
dependence, including external features, and including an
attention mechanism. Each spatial dependence has a different
effect on model prediction, and models that only use a single
spatial dependence are not as effective as models that use
multiple spatial dependencies. Models with external features
will have more accurate risk prediction results; we also use the
same method to conduct experiments to verify the influence of
spatial–temporal attention on the model, and the
spatial–temporal attention mechanism had a positive effect on
the model. Mapped results demonstrate that our model is
accurate, with long-term prediction advantages, and that our
model is robust, meaning that it can be used for nationwide
foodborne disease risk prediction. We found that most incorrect

predictions are clustered (and predicted to be the value of a
nearby area).

Limitations
This study has certain limitations. First, due to the difficulty in
obtaining multisource data and because model training takes a
long time, we only selected 4 provinces (those with the
best-quality data) to conduct experiments. Therefore, the
experimental results may not be representative of all provinces
in the country. In the future, we will conduct more experiments
in more provinces to validate the model. Second, our model
takes 4 spatial correlations into account, but real spatial
correlations may be more complicated. Therefore, in the future,
we will further analyze foodborne disease data and correlations
with other data, to refine our model. Third, our model uses
month as the temporal unit. Month-based risk prediction can
better estimate long-term disease risk; however, the use of finer
time-granularity disease risk prediction can provide more precise
guidance for disease risk prevention and control disease risk
prediction that uses smaller units can provide more
comprehensive support for the prevention of foodborne diseases.

Conclusions
We focused on foodborne disease risk prediction and proposed
a multigraph structural LSTM spatial–temporal prediction model
based on an encoder–decoder structure. Disease risk in each
region in the future was considered to be influenced by the
historical disease records as well as by disease risk in
surrounding areas. Moreover, in addition to proximity in space,
other spatial correlations that affect disease risk prediction were
taken into account by using an adaptive multigraph fusion
method to adjust the effect of spatial dependencies in different
circumstances. We also added a spatial–temporal attention
mechanism and external features to refine the model.

Applied to a real-world foodborne disease data set from Beijing,
Zhejiang, Shanxi, and Hebei, the model’s performance was
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better than those of other models, and highest F1 score was 20%
higher than the best results of the other models. Our model can
better predict the risk of foodborne diseases in the future and
can provide supporting data for risk assessment, prevention,
and control of foodborne diseases.

In the future, we will evaluate our model in more provinces,
consider more spatial correlations, with finer time granularity,
and construct an interactive foodborne disease risk prediction
system that can provide more intuitive and convenient
supporting data for the prevention of foodborne diseases.
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