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Abstract

Background: Previously, we constructed a deep neural network (DNN) model to estimate low-density lipoprotein cholesterol
(LDL-C).

Objective: To routinely provide estimated LDL-C levels, we applied the aforementioned DNN model to an electronic health
record (EHR) system in real time (deep LDL-EHR).

Methods: The Korea National Health and Nutrition Examination Survey and the Wonju Severance Christian Hospital (WSCH)
datasets were used as training and testing datasets, respectively. We measured our proposed model’s performance by using 5
indices, including bias, root mean-square error, P10-P30, concordance, and correlation coefficient. For transfer learning (TL),
we pretrained the DNN model using a training dataset and fine-tuned it using 30% of the testing dataset.

Results: Based on 5 accuracy criteria, deep LDL-EHR generated inaccurate results compared with other methods for LDL-C
estimation. By comparing the training and testing datasets, we found an overfitting problem. We then revised the DNN model
using the TL algorithms and randomly selected subdata from the WSCH dataset. Therefore, the revised model (DNN+TL)
exhibited the best performance among all methods.

Conclusions: Our DNN+TL is expected to be suitable for routine real-time clinical application for LDL-C estimation in a
clinical laboratory.

(JMIR Med Inform 2021;9(8):e29331) doi: 10.2196/29331
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Introduction

Low-density lipoprotein cholesterol (LDL-C) is a major marker
of cardiovascular disease (CVD) because of its role in the
pathophysiology of atherosclerosis [1]. The contemporary

reference measurement procedure for LDL-C is
ultracentrifugation [2]. However, owing to the difficulty in
applying this in a clinical setting, LDL-C levels have mostly
been estimated by other means [3-6].
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Friedewald et al [3] observed that most plasma samples are
comprised of chylomicrons and that most triglycerides (TGs)
in plasma are present in very low-density lipoprotein cholesterol
(VLDL-C) at a ratio of 5:1, while the chylomicrons are
undetectable. This observation led to the 1972 Friedewald (FW)
equation, which is used to estimate LDL-C [3]. Martin et al [4]
showed in 2014 that VLDL-C levels estimated by simply
dividing the TG level by 5 may inaccurately predict LDL-C
levels, specifically in hypertriglyceridemia. They divided
subjects according to the levels of TG and non–high-density
lipoprotein cholesterol (non-HDL-C), yielding 180 groups
(clusters) [4]. For those, 180 equations were established and
integrated into the novel estimation method. More recently,
Sampson et al [5] used the interaction between TG and

non-HDL-C and a correction factor (TG2) to estimate LDL-C,
resulting in the National Institutes of Health (NIH) method.

Deep learning techniques, specifically deep neural networks
(DNNs), provide multilayer stacks of simple networks (eg,
perceptrons or modules) with nonlinear functions applied
between each layer [7]. The numerous perceptrons and the
nonlinearity between them allow researchers to represent
complex real data in a way that solves a variety of challenging
tasks such as classification and regression. We previously
established a deep learning model to estimate LDL-C, including
180 perceptrons [6], motivated by the model of Martin et al [4].
This yielded accurate results for LDL-C estimation.

Additionally, DNNs are easy to apply in clinical settings and
hospital databases. Several studies have adopted linear
regression to estimate LDL-C using fewer than 5 trained weights
(parameters) [8,9]. With such a low number, it is possible to
adapt the linear model–based LDL estimator to a hospital
database without having to rebuild the system. With the DNN
proposed by Lee et al [6], approximately 4600 trained weights
were established as a matrix. Although it had many weights, it
was applicable to clinical settings and hospital databases using
matrix calculation. Moreover, if the independent DNN

application server is present, it is easy to apply and upgrade
without rebuilding the system.

Transfer learning (TL) is a method of transferring knowledge
from a previously trained task to a new but related one [10]. In
a clinical setting, it is enormously difficult to collect real patient
data and preprocess them to analyzable forms (structured data).
Moreover, for these analyses, a great deal of effort is needed to
resolve ethical issues and receive board approval for data
collection. The difficulty of preparing an analyzable dataset
presents an enormous obstacle for training because it typically
requires an enormous dataset to train numerous perceptrons [7].
However, TL adopts a pretrained model learned from publicly
available or large-scale datasets. Hence, it is considered to be
a powerful method when it comes to small-scale dataset training
requirements.

Over the past decade, enormous volumes of medical data have
been stored in electronic health records (EHRs) (ie, electronic
medical records [EMRs]) from which many studies have
compiled patient information for secondary use for health care
tasks and medical decisions (eg, disease prediction). Shickel et
al [11] reviewed the current research that applied deep learning
to EHRs. Although there have been many studies that
constructed models using data obtained from EHR data, very
few were found to have performed real-time clinical applications
of the established model [12]. This study aimed to remedy this
by applying previously constructed models to an EHR system.
Hence, we performed the following 3 tasks for this study. First,
we applied the DNN model from Lee et al [6] to the Wonju
Severance Christian Hospital (WSCH) EHR system to generate
real-time results for estimated LDL-C (deep LDL-EHR; Figure
1). Second, we measured performance based on several accuracy
indices for the estimated LDL-C levels provided by the real-time
application of our DNN model (deep LDL-EHR) and compared
them to those of other LDL estimation methods. Third, we
revised the DNN model by using TL, a multitask learning
algorithm (Figure 2).
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Figure 1. Overall workflow of deep LDL-EHR: Steps 3, 7, and 8 provide input- or output-value transfers between 2 platforms; the (Tomcat)a web

server was established using Apache Tomcat [13] on a JAVA server page and servlet application; the (Flask)b web server was established using the
Flask framework [14], a lightweight web application framework based on TensorFlow and Keras in Python. DNN: deep neural network; EMR: electronic
medical record; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; TC: total cholesterol; TG: triglyceride.
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Figure 2. Transfer learning: For the task in the source domain, the deep neural network (DNN) model has the same structure and data as those previously
trained by Lee et al [6], while ours is trained and saved on the DNN application server. For the task in the target domain, the DNN model saved in the
DNN application server is loaded and retrained (fine-tuned) using Wonju Severance Christian Hospital (WSCH) data (30% randomly selected subjects)
on a local computer. KNHANES: Korea National Health and Nutrition Examination Survey; LDL: low-density lipoprotein.

Methods

Application of Our DNN Model in a Clinical
Laboratory
Experts in various fields (ie, clinical pathologists, database
administrators, cardiologists, and computer scientists) have
collaborated to construct a deep LDL-EHR model that we are
using to provide LDL-C estimations for hospital patients. The
application of our DNN model (ie, the deep LDL-EHR) in a
clinical laboratory consists of 2 main subsystems: the EMR and
a DNN application server. The EMR system is responsible for
receiving and storing patient medical data (eg, levels of total
cholesterol [TC], HDL-C, and TG) and transferring them to the
DNN application server. The following core components are
part of the EMR system: a user interface that receives data from
users and stores them in the EMR database; a web server that
hosts the application that permits users to see laboratory results
and estimates via a web browser; a database that stores all data,
including laboratory markers (input data) and results estimated
by deep learning; and a physical server that runs these software
components. The web service was developed using JAVA Server
Pages (JSP) and a servlet application [15], and the user interface
is based on the hypertext markup language, cascade style sheets,
and JavaScript [16]. The web server was established in Apache
Tomcat [13] based on JSP and servlets. We used a Sybase
relational database management system for its construction [17].

The DNN application server hosts the DNN application, which
is built upon a Python environment running separately from the
EMR system. It is responsible for performing the estimation of
LDL-C values based on the received data (TC, HDL-C, TG)
from the EMR system and for transferring the estimated values
of LDL-C back to the EMR system (Figure 1). This application
server is comprised of several core components, including a
flask-based web server [14] built using the flask framework (ie,
a lightweight web application framework on Python), which

receives data from the EMR system and transfers estimated
LDL-C values back to the EMR system. It is also comprised of
an application that calculates LDL-C values using the data
received from the EMR system, a TensorFlow [18] framework
that provides various Python application programming interfaces
(APIs) that execute high-performance DNN analysis, a Keras
[19] neural network library installed atop a Microsoft cognitive
toolkit, TensorFlow, and Theano, which provides high-level
easy-to-use APIs for creating neural networks. Although the 2
libraries are technically separate, TensorFlow and Keras are
typically used in a unified manner.

Note that the optimization of weights or parameters is performed
on a local computer and is saved in the form of a matrix; the
DNN application server processes only the matrix operations
using previously trained weights in the local computer.

Data Collection
From July 2020 to December 2020, we obtained 11,125
estimated LDL results from a real-time system. Because these
results were obtained from inpatients and outpatients from all
departments (eg, cardiology, gastroenterology, endocrinology,
oncology, and health check-up centers) in real time, we could
not trace whether examinations were performed before or after
fasting. The TC, TG, HDL-C, and LDL-C data were analyzed
using the modular Diagnostic de Performance Énergétique
system (Roche Diagnostics, Basel, Switzerland).

We collected 2009-2015 Korea National Health and Nutrition
Examination Survey (KNHANES) datasets to replicate the DNN
model of Lee et al [6] Note that results in Multimedia Appendix
1 refer to the DNN model of Lee et al [6], and those in Figure 4
refer to the replicated DNN model. Subjects missing TC,
HDL-C, TG, and LDL-C data were excluded. Therefore, data
for 15,074 subjects were analyzed for this study, nearly the same
as the number used in the previous study [6]. All participants
were tested for lipid profiles after at least 12 hours of fasting.
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Lipid profiles (ie, TC, HDL-C, TG, and LDL-C) were measured
using the Hitachi 7600 analyzer (Hitachi, Tokyo, Japan).

Other LDL-C Estimation Methods
There have been numerous studies on the estimation of LDL-C,
and they largely used linear regression methods [20,21]. Among
them, we empirically selected some representative methods,
including FW, Novel, and NIH methods [3-5]. The FW method
estimates LDL-C by subtracting levels of HDL-C and TG/5
from TC. The Novel method integrates clustering and linear
regression, initially arranging a sample into one of 180
subgroups previously determined by TG and non-HDL-C levels.
Afterward, a case of 180 linear regression equations is applied
to the sample. The NIH method uses TC, HDL-C, TG, and their

combinations, including the square of TG (TG2) and a
multiplication value between TG and non-HDL-C. The source
code for these equations is available at our GitHub homepage
[22].

DNN and TL
The DNN model included 6 hidden layers with 30 hidden nodes
in each. We used a rectified linear unit as an activation function
to implement nonlinearity between the hidden layers. The details
of this model are described in the study by Lee et al [6].

We used TL [10] to upgrade this DNN model [6]. TL includes
a source domain that is typically a large-scale dataset alongside
a small-scale target domain that contains more specific data
compared with those of the source domain [10]. As described
in Figure 2, from the source task (ie, KNHANES dataset), we
extracted the desired information (ie, trained weights). From
the target task (ie, subset of the WSCH dataset), we retrained
(fine-tuned) the DNN. The source code for the DNN+TL is
available at our GitHub homepage [22].

Performance Measurement
To assess and compare the accuracy of each LDL-C estimation
method, we measured the following 5 indices: bias (estimated
LDL-C [eLDL-C] – measured LDL-C [mLDL-C]), root mean
square error (RMSE), P10 to P30, concordance, and correlation
coefficient.

Jeong et al [23] implemented the one-sample t test to compare
the average bias between true and estimated values from a
regression task. Motivated by this, we used the one-sample t
test to measure the degree of average bias of each estimation
method differing from zero.

Numerous studies have implemented RMSE to measure the
degree of accuracy for LDL-C estimation methods [4-6,23].
Hence, we decided to use the RMSE for the estimation
accuracies of each method as follows.

P30 has been implemented to measure the clinical accuracy of
estimation methods for glomerular filtration rate [23]. This study
used P10 and P30, and we expanded these indices as Pn (n =
10, 15, 20, 25, and 30), measured as the ratio of samples from
which LDL-C was estimated using each method within mLDL-C
± n% divided by all samples.

In studies that provided the estimation method for LDL-C [4,5],
concordance has been used to examine the classification
accuracy between mLDL-C and eLDL-C. In detail, both
mLDL-C and eLDL-C values are categorized as 6 subgroups
based on the National Cholesterol Education Program (NCEP)
Adult Treatment III guideline cutoffs that other studies used
[24,25]. Concordance was measured as follows:

where A are samples with mLDL-C within a specific range and
B are samples with eLDL-C in the same interval as mLDL-C.

Several methods of correlation have been used to measure the
degree of consistency between true and estimated values (ie,
mLDL-C and eLDL-C) [5,23]. Specifically, we used Pearson
correlation coefficient, a normalized measurement of the
covariance of 2 lists of values (ie, mLDL-C and eLDL-C)
divided by the product of their standard deviation.

Jacob and Speed [26] suggested that the selected features and
their predictive performances should be examined based on a
random sampling perspective for generalization. In other words,
the samples selected for the training model (ie, DNN+TL)
greatly affect its performance. Therefore, we performed the
following tasks considering the random sampling perspective.
In step 1, we made a pair of random sample datasets, including
training and testing, which were randomly divided at a ratio of
0.3 and 0.7, respectively. In step 2, we established a DNN+TL
model using the randomly selected training set and measured
the t value and RMSE of the DNN+TL model for the testing
set. We also measured the t value and RMSE of other models
(ie, FW, Novel, NIH, and DNN) for the testing set. In step 3,
we iterated Steps 1 to 2 at 1000 times, and 2 matrices consisting
of 5 columns (5 LDL-C estimation methods) and 1000 rows (#
of iterations) were generated, including the t value and RMSE.
We compared 2 indices (ie, t value and RMSE) among the 5
methods based on one-way analysis of variance and performed
multiple comparisons using the Bonferroni post hoc test.

Variance Importance
We implemented permutation importance [27] and Shapley
addictive explanations (SHAP) [28] to identify the contribution
of each feature (ie, TC, HDL-C, and TL) to the final output of
the DNN model. Permutation importance is a heuristic method
used to measure normalized feature importance by measuring
the decrease in a model’s performance when a feature is
permuted [27]. SHAP is an addictive feature attribution method
used to determine feature importance by measuring a weighted
average value of all possible differences between 2 sets of
outputs that are resulted from models with and without the
feature [28]. The permutation importance was measured using
the permutation_importance function in the sklearn package
[29], and the SHAP was calculated using the DeepExplainer
function in the SHAP package [28].
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Statistics
Statistical analyses were performed using the R programming
language (v.3.6.4). For a comparison of continuous variables
based on 2 groups, we used the t test and the Mann Whitney U
test. For categorical variables, we used the Chi-squared test,
and a P value of <.05 was considered to be statistically
significant.

Results

From the real-time application (Figure 1), we obtained 11,125
LDL values estimated using the DNN model. The distribution
of bias (box plot) and RMSE (bar plot) of each LDL estimation
method are illustrated in Multimedia Appendix 1. The estimated
LDL-C values using the Novel method differed least from zero,
and the values using the FW equation method were biased the

most from zero. The eLDL-C levels using the DNN application
system had, from among the 4 methods, the second most biased
distribution from zero among the difference values between
eLDL-C and mLDL-C (Multimedia Appendix 1). When
comparing the RMSE of each method, the FW method resulted
in the highest RMSE, followed by the DNN application system.
In all the P10 to P30, the FW method showed the lowest ratio,
and the DNN application system showed the second lowest ratio
(Figure 3C; Multimedia Appendix 1). We compared
concordances between groups stratified by mLDL-C and
eLDL-C levels obtained from the 4 methods (Figure 3D).
Therefore, the novel method showed the highest concordance
from 70 to 129 of the mLDL-C levels, and the NIH method
showed the highest concordance from 130 to the maximum
mLDL-C levels (Multimedia Appendix 1). Collectively, the
DNN application generated inaccurate results compared with
the others.

Figure 3. Performance of 5 LDL estimation methods: (A) upper and lower numbers indicate the average and one-sample t value, respectively, while
the black bars, upper or lower margins, and maximum or minimum lines for each boxplot indicate 1 SD and 1.96 SDs, respectively; (B) numbers in bar
plots indicate real values of RMSE; (C) P10 to P30; (D) concordance of each LDL-C estimation method. Stars in each plot indicate the model with the
best performance. Note that the deep neural network (DNN) method was the replicated model for the DNN model. FW: Friedewald equation; NIH:
National Institutes of Health; RMSE: root mean square error; TL: transfer learning.
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We compared the lipid profiles of the KNHANES dataset with
those of the WSCH dataset (Table 1). All 4 variables differed
significantly between the 2 datasets. We concluded that
differential characteristics between the training set (KNHANES)
and the testing set (WSCH) triggered inaccurate results from
the DNN application system. In other words, an overfitting
problem existed in the deep LDL-EHR model. To overcome

this limitation, we adopted the TL method [10]. Using the
2009-2015 KNHANES datasets, we trained the DNN model
using the same structure and hyperparameters as those of the
model proposed by Lee et al [6], yielding a pretrained DNN
model. Next, we randomly selected 30% of the WSCH dataset,
which was used to fine-tune the pretrained DNN model (Figure
2).

Table 1. General characteristics of and comparisons between the Korea National Health and Nutrition Examination Survey (KNHANES) and Wonju
Severance Christian Hospital (WSCH) datasets.

P valueWSCH (n=11,125)KNHANES (n=15,074)Variable

<.001a59.4 (15.5)45.5 (18.2)Age (years), mean (SD)

<.001b60 (51-70)46 (32-60)Age (years), median (IQR)

<.001c6435 (57.8)7507 (49.8)Male, n (%)

<.001a156.4 (41.6)188.8 (37.7)Total cholesterol (mg/dL), mean (SD)

<.001b152 (128-182)186 (162-212)Total cholesterol (mg/dL), median (IQR)

<.001a50.2 (14.2)48.7 (12.1)HDLd cholesterol (mg/dL), mean (SD)

<.001b48 (40-58)47.3 (40.1-55.7)HDL cholesterol (mg/dL), median (IQR)

<.001a139.7 (126.2)160.2 (135.6)Triglyceride (mg/dL), mean (SD)

<.001b114 (83-163)120 (76-211)Triglyceride (mg/dL), median (IQR)

<.001a94.8 (35.9)112 (32.3)Measured LDLe cholesterol (mg/dL), mean (SD)

<.001b90 (68-117)109 (89-132)Measured LDL cholesterol (mg/dL), median (IQR)

aDetermined using a t test.
bDetermined using a Mann-Whitney U test.
cDetermined using a Chi-squared test.
dHDL: high-density lipoprotein.
eLDL: low-density lipoprotein.

We compared the performances of the 5 methods, including the
aforementioned 4 and DNN+TL methods (Figure 3). Based on
the bias and RMSE, the DNN+TL was biased least from zero
(mean 7.5; t7786=109.1) and had the lowest RMSE (Figures 3A
and 3B). In all of P10 to P30, the DNN+TL method had the
highest ratio among the other methods. Particularly in P10, the
superior performance of the DNN+TL method was notable
(Figure 3C). Regarding the concordance of the LDL-C
estimation methods, the DNN+TL method had the highest ratio
through most of the LDL-C range except for a section of LDL-C
from the minimum to 69 mg/dL (Figure 3D).

We illustrated correlation plots describing the distribution of
eLDL-C values and the matched LDL-C levels estimated by
the 5 methods, including FW, Novel, and DNN (Figure 4). In
DNN+TL, the LDL-C level is the most accurately estimated
among the other 4 methods based on the Pearson correlation
coefficient (Figure 4).

For the 5 LDL-C estimation methods, we generated distributions
of t values and RMSE, separately, by iterating the random
selection of training set at 1000 times (Figure 5). As a result,
DNN+TL exhibited the best performance for both bias from
zero (t value, Bonferroni-corrected P<.001 for DNN+TL vs

other methods) and absolute error (RMSE, Bonferroni-corrected
P<.001).

For input features (ie, TC, HDL-C, and TG) and their deep
learning models (ie, DNN and DNN+TL), we measured the
variance (global) importance by using permutation importance
and SHAP (Figure 6). In both DNN and DNN+TL, TC was the
best crucial feature based on 2 indices of the variance
importance. Moreover, TG and HDL-C comprised the
second-most important variable based on permutation
importance and SHAP, respectively (Figure 6A). In DNN+TL,
the second important feature was TG, based on all indices of
the variance importance (Figure 6B). Moreover, we illustrated
the distribution of the ratio of TG to VLDL-C in relation to TG
levels (Multimedia Appendix 2). VLDL-C, as analyzed in our
study, is not a measured value, but is instead the result calculated
by subtracting the values of HDL-C and eLDL-C (by the 5
methods) from TC. We found that the TG to VLDL-C ratio
estimated by 3 models had large variance at high TG levels
(Multimedia Appendix 2), which was similar with the results
in the study by Martin et al [4]. The distribution of the TG to
VLDL-C ratio estimated by the DNN+TL model looked like a
mixture between the ratios by mLDL-C and DNN (Multimedia
Appendix 2), indicating that the DNN+TL had fine-tuned the
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previous DNN model [6] to represent the characteristics of the
WSCH dataset by importantly considering the TG variable

(Figure 6).

Figure 4. Correlation plots and coefficients between measured low-density lipoprotein cholesterol (mLDL-C) and estimated LDL-C (eLDL-C) calculated
by 5 methods. The points on the scatterplots indicate the individual samples. A star indicates the highest Pearson correlation coefficient. DNN: deep
neural network; FW: Friedewald method; NIH: National Institutes of Health; TF: transfer learning.
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Figure 5. Comparison of performance based on a random sample perspective. A one-sample t test was used. DNN: deep neural network; FW: Friedewald
method; NIH: National Institutes of Health; TL: transfer learning.

Figure 6. Variance importance based on permutation importance and Shapley addictive explanations (SHAP). DNN: deep neural network; HDL-C:
high-density lipoprotein cholesterol; TC: total cholesterol; TG: triglyceride; TL: transfer learning.

Discussion

Principal Findings
We applied the DNN model for LDL-C estimation from EHR
(deep LDL-EMR) data to generate real-time results. However,
we found that our original deep LDL-EMR generated inaccurate
results compared with other LDL estimation methods. We
hypothesized that these inaccuracies may have been caused by
the batch effect between the 2 different datasets. We therefore
adopted a TL method to fine-tune the DNN model using local

data-specific characteristics. Therefore, the DNN+TL method
resulted in the most accurate results of all methods.

Approximately 15,000 subjects (KNHANES) were used to
construct the DNN, and about 3300 WSCH LDL-C results were
used for fine-tuning it. Martin et al [4] assigned approximately
900,000 subjects to develop the Novel method. Meeusen et al
[25] enrolled 23,055 individuals from the Mayo Clinic and
externally validated the Novel method. In 2020, Sampson et al
[5] used approximately 9000 LDL-C test results to develop the
NIH method while internally and externally validating it through
approximately 9000 LDL-C results and those of another 4

JMIR Med Inform 2021 | vol. 9 | iss. 8 | e29331 | p. 9https://medinform.jmir.org/2021/8/e29331
(page number not for citation purposes)

Hwang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


databases. Our DNN model was established using approximately
18,000 LDL-C results obtained from 2 different institutions,
and validation was established using approximately 77,000
LDL-C results, which was comparable to the validation in other
studies.

In the study by Martin et al [4] (the Novel method), the median
TG distribution was 115 (IQR 82-166). Research by Meeusen
et al [25] resulted in a median TG distribution of 131 (IQR
89-196). In a study by Sampson et al [5] (NIH method), the
median TG distribution was 149 (IQR 98-253). Our derivation
dataset (KNHANES) had a median TG of 120 (IQR 76-211),
and our validation dataset had a median TG of 114 (IQR
83-163). Although data from the Novel method had a TG
distribution more similar to our validation dataset than the TG
distribution from the NIH method, the performances obtained
from these methods were almost identical. However, we found
that our deep LDL-EHR model generated extremely accurate
results for the derivation set and comparably inaccurate results
for the testing dataset. In other words, an overfitting problem
occurred in our deep LDL-EHR model. Therefore, we adopted
a TL method to fine-tune (overall retainment with little change
in trained parameters) the deep LDL-EHR (DNN+TL) model,
yielding the best performance among all the methods.

Limitations and Future Work
The most important limitation of the present study is the
referenced homogenous method used to measure LDL-C.
Representative methods for estimating LDL-C [3-5] use the
heterogeneous method of ultracentrifugation (eg,
beta-quantification) [30,31]. Besides, we implemented the
homogeneous precipitation-based (direct) method as the
reference for establishing an LDL-C regression model. Nauck
et al [30] suggested that the homogenous method satisfied the

NCEP requirements and proposed accurate LDL-C results with
a coefficient of variation less than 4% and a bias less than 4%.
Moreover, the homogenous method seems to have better
classified subjects into NCEP criteria than the FW method [30].
The homogenous method does not require the preliminary
lipoprotein fractionation step (eg, ultracentrifugation). In other
words, it is easy to use and often provides improved precision;
therefore, it has gained rapid acceptance worldwide [31].
However, for high-risk CVD patients or groups, future studies
should analyze both beta-quantifications and direct methods to
provide more accurate and generalized estimates for decreasing
CVD-related mortality.

In future studies, we plan to update the trained weights in the
LDL-EHR model with optimized parameters using TL. Another
study is needed to evaluate the performance of an updated
version of the LDL-EHR (DNN+TL) model for the newly
selected samples. Furthermore, as suggested by other studies
[6,32], it is crucial to develop an LDL-C estimation method that
considers demographic, medical, anthropometric, and laboratory
phenotypes, such as age, obesity, chronic disease, and liver
profiles.

Conclusion
We applied a real-time deep learning model to estimate LDL-C
using EHR system data. However, we encountered several
unforeseen problems. When applying the DNN model to real
patients, our tool could not outperform the other LDL-C
estimation methods (ie, Novel and NIH). We overcame this by
upgrading our DNN using a TL algorithm (DNN+TL), resulting
in superior LDL-C estimation performance compared with the
other methods. Our study suggests that the revised version of
our deep LDL-EHR (DNN+TL) may contribute to future
accurate estimations for LDL-C in real clinical settings.
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