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Abstract

Background: Ontology matching seeks to find semantic correspondences between ontologies. With an increasing number of
biomedical ontologies being developed independently, matching these ontologies to solve the interoperability problem has become
a critical task in biomedical applications. However, some challenges remain. First, extracting and constructing matching clues
from biomedical ontologies is a nontrivial problem. Second, it is unknown whether there are dominant matchers while matching
biomedical ontologies. Finally, ontology matching also suffers from computational complexity owing to the large-scale sizes of
biomedical ontologies.

Objective: To investigate the effectiveness of matching clues and composite match approaches, this paper presents a spectrum
of matchers with different combination strategies and empirically studies their influence on matching biomedical ontologies.
Besides, extended reduction anchors are introduced to effectively decrease the time complexity while matching large biomedical
ontologies.

Methods: In this paper, atomic and composite matching clues are first constructed in 4 dimensions: terminology, structure,
external knowledge, and representation learning. Then, a spectrum of matchers based on a flexible combination of atomic clues
are designed and utilized to comprehensively study the effectiveness. Besides, we carry out a systematic comparative evaluation
of different combinations of matchers. Finally, extended reduction anchor is proposed to significantly alleviate the time complexity
for matching large-scale biomedical ontologies.

Results: Experimental results show that considering distinguishable matching clues in biomedical ontologies leads to a substantial
improvement in all available information. Besides, incorporating different types of matchers with reliability results in a marked
improvement, which is comparative to the state-of-the-art methods. The dominant matchers achieve F1 measures of 0.9271,
0.8218, and 0.5 on Anatomy, FMA-NCI (Foundation Model of Anatomy-National Cancer Institute), and FMA-SNOMED data
sets, respectively. Extended reduction anchor is able to solve the scalability problem of matching large biomedical ontologies. It
achieves a significant reduction in time complexity with little loss of F1 measure at the same time, with a 0.21% decrease on the
Anatomy data set and 0.84% decrease on the FMA-NCI data set, but with a 2.65% increase on the FMA-SNOMED data set.

Conclusions: This paper systematically analyzes and compares the effectiveness of different matching clues, matchers, and
combination strategies. Multiple empirical studies demonstrate that distinguishing clues have significant implications for matching
biomedical ontologies. In contrast to the matchers with single clue, those combining multiple clues exhibit more stable and
accurate performance. In addition, our results provide evidence that the approach based on extended reduction anchors performs
well for large ontology matching tasks, demonstrating an effective solution for the problem.
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Introduction

Background
In recent years, various biomedical ontologies, such as National
Cancer Institute (NCI) Thesaurus [1], Foundation Model of
Anatomy (FMA) [2], Systemized Nomenclature of Medicine
(SNOMED-Clinical Terms [SNOMED-CT]) [3], have been
widely used in various fields, such as for medical data formats
standardization [4], medical or clinical knowledge representation
and integration [5], and medical decision making [6]. With the
continuous evolution of biomedical data, biomedical
terminology is characterized by complexity and ambiguity,
which further complicates intelligent biomedical applications.
Furthermore, emerging biomedical ontologies are built
independently, with various ways of defining same biomedical
components, resulting in heterogeneous problems. To implement
the interoperability across biomedical ontologies, the
establishment of meaningful connections between heterogeneous
biomedical concepts is critically important [7]. Ontology
matching is a solution to such semantic heterogeneity problem
by determining the correspondences between concepts in
different biomedical ontologies.

Because constructing alignments manually is time-consuming
and labor-intensive, especially for large ontologies with
thousands of concepts, some matching methods have been
proposed to automatically generate ontology mappings [8].
These methods can be divided into 3 categories: terminological,
structural, and external. Terminological methods are string based
and designed to match names or name descriptions of ontology
elements. Structural methods exploiting various types of
ontology information, such as elements names, comments, and
structural hierarchies, are proposed to compensate for the
morphological differences between identical elements [8-14].
External methods obtain semantic mappings between
syntactically dissimilar ontologies using auxiliary sources, such
as taxonomies, dictionaries, and thesauri [15-18]. With the
advancement of deep learning, there also exist some studies
(eg, DeepAlignment [19], SCBOW + DAE(O) [20]) that try to
discover alignments with representation learning based on deep
learning. In the biomedical domain, some ontology matching
methods based on deep learning have demonstrated the potential
to facilitate the interoperability between ontologies [20-22].

Meanwhile, among the various matching techniques, to the best
of our knowledge, there are surprisingly few systematic studies
about the extraction and combination of matching clues and
methods. As achieving satisfactory ontology alignments with
a single technique is difficult, a composite approach is more
efficient where different criteria or properties are considered
within a single dimension. A composite approach, by contrast,
that incorporates the results of some individual matchers may
be simple or hybrid. This allows for high flexibility, as there is
the potential for selecting the match algorithms to be executed
based on the biomedical matching tasks. Moreover, there are
different possibilities for combining the individual matching

results. This paper attempts to empirically investigate and
analyze the effectiveness of matching clues and the hybrid
matching approaches.

Additionally, the inherent heterogeneity and large scale of
biomedical ontologies have made discovering alignments a
computationally intensive task. The divide and conquer approach
[23,24] and ontology modularization [25] techniques have been
proposed to decompose a large matching problem into some
smaller submatching tasks. It does, however, have 2 limitations.
First, most existing ontology partitioning approaches are unable
to control the size of modules [23]. Consequently, many
unproportionate modules (either too small or too large), which
are inappropriate for matching, may be generated. Second,
partitioning ontologies into modules may lead to the loss of
valuable semantic information regarding the boundary elements.
As a consequence, the quality of ontology matching may be
impacted. Therefore, we extend Reduction Anchors [26], our
previous method for dealing with large-scale ontology matching,
to improve the performance of matching large-scale biomedical
ontologies. Extended positive reduction anchors utilize the
concept hierarchy to predict the ignorable similarity calculations,
while the negative reduction anchors obtain the ignorable
similarity calculations based on the locality of matching. The
proposed method has 2 advantages over previous studies. First,
it does not need to partition ontologies while maintaining the
high performance as the divide and conquer approaches. Second,
it is indeed a general large ontology matching framework, in
which most existing matching techniques could be used.

Our main contributions in this paper are as follows:

• We provide several kinds of individual matchers with the
utilization of different matching atomic clues. In order to
investigate the effect of different clues in different
dimensions, various combination strategies are studied to
match biomedical ontologies.

• We represent multiple matchers in 4 dimensions:
terminology, structure, external knowledge, and
representation learning. To systematically examine and
compare the effectiveness of different hybrid matchers, we
design various matching strategies and combine the
individual matchers for biomedical ontology matching tasks.

• We propose the extended reduction anchors-based approach
for matching large-scale biomedical ontologies. It not only
solves the scalability problem, but also achieves good
performance with a significant reduction of execution time.
Our approach achieves F1 measures of 0.925, 0.820, and
0.523 on Anatomy, FMA-NCI, and FMA-SNOMED,
respectively, and reduces the matching time by nearly
one-tenth. The high coverage (minimal information loss)
achieved, combined with the reduction of the search space
and the decreasing computation times, indicates that the
extended reduction anchors are efficient.

Related Work
In recent years, ontology matching has become a popular
research field. Euzenat and Shvaiko [8] present a comprehensive
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overview of matching approaches and categorize techniques as
terminological, structural, external, and representation learning
dimensions [8]. We will focus on discussing related work on
ontology matching of the biomedical domain.

Biomedical Ontology Matching
According to the features used in ontology matching, matching
approaches can be classified into 4 categories:
terminology-based approach, structure-based approach, external
knowledge–based approach, and representation learning–based
approach.

Terminology-Based Approach
In the biomedical domain, discovering alignments relying on
dictionaries and similarities of terms and labels is a typical
ontology matching approach, which is still widely used [8]. In
some matching systems such as ASMOV [15], SAMBO [27],
Falcon [28], and AgreementMakerLight [16], the terminological
matcher is exploited as a basic matching method. However, the
terminology-based approach often provides good precision but
a low recall because it is difficult to deal with variations in the
form of terms or labels (eg, equivalence between hindlimb bone
and bone of the lower extremity).

Structure-Based Approach
According to the intuition that elements of 2 distinct ontologies
are similar when their adjacent elements are similar,
structure-based matchers utilize property attributes and
taxonomy hierarchy structure [29]. CroMatcher [30] focuses
on the aggregation of distinct matchers in structural level:
super-element matcher, subelement matcher, domain matcher,
and range matcher. Similarity flooding [29] presents a structural
algorithm based on fixpoint computation and propagation of
similarities along with the property relationships between
elements that are usable across different scenarios, including
biomedical applications. Falcon-AO [28] uses a linguistic
matcher combined with a technique that represents the structure
of the ontologies to be matched as a bipartite graph. Besides,
the similarities between domain elements and between
statements in ontologies are computed by recursively
propagating similarities in the bipartite graphs. FCA-Map [31]
constructs relation-based formal context to describe the
biomedical elements in taxonomic, partonomic, and disjoint
relationships with the anchors, and then uses the context to
validate the initial lexical mappings. LogMap [17] combines
the structural indexation to represent the extended class
hierarchy. Contexts for the same anchor are expanded by using
the class hierarchies of the input biomedical ontologies to
discover new mappings.

External Knowledge–Based Approach
Matching strategies based on external knowledge provide
additional lexical or structural information, allowing for the
obtaining of new alignments. Biomedical ontology matching
systems explore potential resources or auxiliary knowledge,
such as upper-level ontology, WordNet [32], UMLS [33], and
BioPortal [34], to find synonyms, spelling variants, and
annotations for the concepts to be matched. Systems such as
LogMap-Bio [35] and AgreementMakerLight [16] exploit a set
of ontologies as background knowledge to generate equivalent

mappings. In addition to the anchoring mappings related to the
same background ontology, Annane et al [36] utilize alignments
produced by matching intermediate ontology between each
other. Faria et al [37] present a novel approach based on building
the specific mapping graph as background knowledge and take
into account the limitation of the selection and the combination
of heterogeneous existing mappings stored in a biomedical
repository. It allows getting high-quality alignments between
biomedical ontologies without using complex lexical and
structural measures.

Representation Learning–Based Approach
Representation learning is so far rare in ontology matching,
particularly in biomedical ontologies. There are a few
approaches exploring unsupervised representation learning
techniques to capture the interactions among element’s
descriptions within biomedical ontologies. Zhang et al [38]
investigated the use of representation learning for ontology
matching and presented a hybrid method to incorporate word
embeddings into the computation of semantic similarities among
elements. Wang et al [39] proposed a neural architecture for
biomedical ontology matching called OntoEmma [39]. It
encodes a variety of descriptions, and derives large amounts of
labeled data from biomedical thesaurus for training the model.
Considering the problem of distinguishing semantic similarity
and descriptive association on rare phrases, Kolyvakis et al [20]
proposed a representation learning method: SCBOW+DAE(O)
[20]. This approach is a representation framework based on
terminological embeddings, in which the refinement of
pretrained word vectors is introduced and learned by the domain
knowledge encoded in ontologies and semantic lexicons.
However, there still exist the limitations of the sparsity problem
of structural relations and heavy dependence on pretraining.
MultiOM [22] models the matching process by embedding
techniques from multiple views and then optimizes the vector
of concepts through a novel proposed negative sampling skill
designed for structural relations in biomedical ontology.

Generally, multiple kinds of ontological clues are available, but
matching biomedical ontologies based on a single category is
constrained to achieve ideal performance. Consequently, most
current matching systems, such as [15-17], focus on the hybrid
and composite combination of various clues and matchers. Most
composite methods, however, are confined to the customized
combination of different matching clues and algorithms. By
contrast, we attempt to study and evaluate multiple individual
matchers with different combinations of matching clues and
methods using different strategies. In addition, a systematic
comparison of different matching clues and their integrations
based on well-defined description clues does not exist so far.

Large-Scale Biomedical Ontology Matching
Many matching systems cannot work well when dealing with
large matching problems. These systems perform an
all-against-all comparison between concepts of the input

ontologies, which requires quadratic complexity n2 of similarity
computing. To avoid the Cartesian product of the concept pairs
of the source and the target ontologies, reduction of search space
is indispensable.
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Ontology modularization [40-42] aims to extract modules from
a large and complex ontology, which is self-contained and
logically consistent and can speed up the reasoning process and
optimize memory utilization. Modular ontology is a popular
way to partition large ontologies. However, existing modular
ontology methods focus on the correctness and completeness
of logics but cannot control the size of modules [23,27,43,44],
that is, they would generate too large or too small modules.
Algergawy et al [45] developed a seeding-based partitioning
approach (OAPT) and introduced an information theoretic model
selection method. It makes use of Bayesian information criterion
(BIC) to determine the optimal number of modules that should
be generated. However, the size of partitioned module remains
uncertain.

Malasco [46] and Falcon-AO [28] are based on the divide and
conquer approach that partitions a large ontology into a set of
small clusters or blocks. Malasco employs 3 ontology
partitioning algorithms: naive algorithm based on Resource
Description Framework (RDF) sentences, structure-based
algorithm [47], and ontology modularity based on ε-connection
[40] for matching. Falcon-AO utilizes structural clustering to
initially partition the ontologies into relatively small and disjoint
blocks.

Although the modularization and divide and conquer approaches
are effective to reduce the execution time, they still suffer from
the contradiction between semantic completeness and
information loss. After partitioning, ontology elements near
boundaries of modules may lose some essential semantics,
lowering the quality of alignments [26]. To overcome this
problem, we introduce 2 kinds of reduction anchors to mitigate
the impact of boundary loss, and simultaneously are able to
reduce the number of entity pairs for which the similarity should
be calculated during ontology matching.

Methods

Problem Formulation
An ontology is composed of triples like <s, p, o>, where s, p,
and o stand for the subject, predicate, and object, respectively.

There are 3 kinds of ontology resources: uniform resource
identifier (URI) resources, literals, and blank nodes. In a triple,
the subject can be URIs resources or blank nodes but not literals,
and the predicate must be URI resources.

Ontology
Let O be the RDFS (RDF Schema) or OWL (Ontology Web
Language) ontology represented by a set of RDF triples T. The
RDF triple t(t·T) denotes a statement in the form of <subject,
predicate, object>. Any node in an RDF triple may be a URI
with an optional local name, a literal, or a blank node. An
ontology can be represented as O = (C, R, I), where C, R, and
I denote sets of atomic concepts, relations (also named
properties), and individuals, respectively. For simplicity, the
set of concepts and properties is indicated by E.

We follow the work in [8] and give a formal definition for the
ontology matching problem.

Ontology Matching
The matching between 2 ontologies O1 and O2 is M = {mk|mk

= <ei, ej, r, s>}, where M is an alignment; mk denotes a
correspondence with a tuple <ei, ej, r, s>; ei and ej represent the
expressions which are composed of elements from O1 and O2,
respectively; r is the semantic relation between ei and ej; r could

be equivalence (=), generic/specific ( / ), disjoint (⊥), and

overlap ( ), etc.; and s is the confidence about an alignment
and typically in the [0,1] range. Therefore, an alignment M is
a set of correspondences mk.

Figure 1 shows an example of alignments between a mouse
anatomy ontology and the NCI Thesaurus. <hindlimb bone,
Bone_of_Lower_Extremity,=,0.7> and <limb bone,
Bone_of_the_Extremity,=, 0.8> are equivalent correspondences.
In this paper, we only focus on identifying one-to-one
equivalence correspondences between 2 concepts belonging to
different ontologies.
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Figure 1. An example of biomedical ontology matching.

Biomedical Ontology Matching Framework
Figure 2 depicts an overview of our biomedical ontology
matching framework, which includes 3 steps: (1) constructing
matching clues in different dimensions: terminology, structure,
external knowledge, representation learning, and building
different matchers based on the extracted clues to calculate the
similarities between elements; (2) constructing and updating
the extended reduction anchor set iteratively through the
similarity results of each matching computation and skipping
the ignorable computations based on the anchors set; and (3)
combining similarity matrices of different matchers assigned
with different weights to obtain the alignments. For each element

in input ontologies, we first create matching clues in the form
of virtual documents based on the re-defined dimensions, and
then single matchers are built based on the extracted clues in
each dimension. Then, the similarity matrix is measured by the
similarity between corresponding documents of elements.
According to the similarity of each pair of elements, extended
reduction anchors sets are updated and optimized continuously,
which are helpful to skip meaningless similarity computations
and minimize time complexity as well as search space. After
obtaining similarity matrices, predefined weights are assigned
to each single matcher and the matching results are combined
based on re-defined superiority. Finally, the alignments are
obtained through filtering processing with a given threshold.

Figure 2. Overview of biomedical ontology matching. PAE: extended positive anchors; NAE: extended negative anchors.

Matching Clues
Generally, biomedical ontology generalizes and summarizes
the categories of elements in the biomedical domain. Beyond
names, ontology is concerned with the principled definition of
biological classes and the relations between them. Apart from
the knowledge contained in the ontologies, some external

resources and semantic models can be exploited to enrich the
element, potentially improving ontology matching efficiency.
In this section, we describe the atomic clues available for
ontology matching followed by the composite clues.
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Atomic Clues

Overview

The atomic clues in ontology matching are given in Table 1,

and are divided into 4 types: terminological clues, structural
clues, external clues, and representation learning clues. For the
nodes declared in an OWL/RDF ontology, we construct virtual
documents to define their clues.

Table 1. Atomic clues for ontology matching.

DescriptionClues and their sources

Terminological

Words in the local name of eLocal name

Words in the rdfs:label of eLabel

Words in the rdfs:comment of eComment

Words in the synonym statements such as {owl: sameAs} and {rdfs: seeAlso}Synonym

Structural

Property attributes of concepts: property name, domain, range, and constraintsProperty

Hierarchical context of concepts or properties, containing ancestors, descendants, siblings, and disjoint elementsHierarchy

External

Retrieval of alternative labels and synonyms from general dictionaries such as WordNet, BabelNetGeneral dictionary

Cross-searching synonyms as well as cross-references from specific-domain thesauriLexicon

Representation learning

The embeddings of elements via general pretrained language models such as Word2Vec and BERTaGeneral model

The embeddings via domain-specific pre-trained models such as BioBERTSpecialized model

aBERT: Bidirectional Encoder Representations from Transformers.

Terminological Clues

The terminological clues are generally the direct and
representative information that distinguishes between elements.
As shown in Figure 1, the concepts foot bone and metatarsal
bone in source ontology are equivalent to Foot_Bone and
Metatarsal_Bone in target ontology, respectively. It illustrates
that terms of elements are important clues for ontology
matching. The terminological clues include the words in local
names, comments, labels, and synonyms in triples with the
predicates: rdfs:seeAlso, owl:sameAs, owl:hasExactSynonym,
and owl:hasRelatedSynonym.

Structural Clues

While lacking sufficient and consistent linguistic information
about the elements, ontology structure is a piece of useful
information for finding alignments. In Figure 1, for hindlimb
bone of source ontology and Bone_of_Lower_Extremity of target
ontology, it is difficult to discover the mapping through the
terminological representations. But they have similar neighbors,
foot bone and Foot_Bone, based on which we can infer that the
2 concepts would be similar. For the structural clues, they could
be divided into property clues and hierarchy clues.

The property clues contain the properties attributes of concepts.
The properties are represented with name, domain, and range.
Some constraints might be associated with these properties, for
instance, the notion of functional property.

The hierarchy clues are the context of the corresponding
elements, which are reflected by ancestors, descendants, siblings,
and disjoint nodes. The direct children reflect its basic structure,

while the leaves reflect its semantic context. (1) The ancestor
context of a node ni could be the descriptions of upper nodes
that directly link to ni or parent nodes within a given hierarchical
depth. For a blank node, likewise, we obtain the ancestor context
through recursively forward traversing until the occurrence of
the nonblank nodes. (2) The descendant context of a node ni

could be the set of basic and extensional descriptions of its
nearest subelements or leave nodes of the subtrees of the node.
Because the context of a blank node is an empty set, we could
recursively obtain the context from the set of leaf nodes of
subtrees rooted at node ni. (3) The sibling context of a node ni

is defined as a set of linguistic descriptions of nodes in the same
hierarchy with ni, and these nodes share the same parent with
node ni. (4) The disjoint context of ni is defined as the collection
of linguistic descriptions of nodes that are disjoint with ni.

External Clues

To compensate for the lack of structure and lexical information,
some auxiliary knowledge and external representations are used
to extract further alignments.

We retrieve alternative labels for elements to be mapped from
general dictionaries (ie, WordNet). In addition, considering the
specialization of biomedical ontology matching, domain-specific
ontologies such as UBERON [48] and UMLS [33] are employed
as auxiliary information. These ontologies are exploited to
extract the cross-references and alternative synonyms, which
are available to identify additional anchors.
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Representation Learning Clues

Apart from the features of terminological, structural, and
external resources, representation learning also has the potential
to bring more semantics to biomedical ontology matching.

Word embedding can represent the implicit semantics behind
elements. The general pretrained models, for example,
Bidirectional Encoder Representations from Transformers
(BERT) [49], trained on the large text corpus could be used to
encode the element and then compute the alignments.
Domain-specific language representation models are more
preferable to obtain the embeddings of elements within
biomedical ontologies. BioBERT [50], a domain-specific
language representation model pretrained on large-scale
biomedical corpora, might perform better in capturing the
semantic of biomedical classes than the general models.
Furthermore, fine-tuning BioBERT with synonym
marginalization algorithm presented in [51] is expected to
improve the quality of element representation.

Composite Clues
The composite clues are the combinations of atomic clues with
different weights. The composite clues of the element e are
constructed as follows:

Clue(e)= α1 * Term(e) + α2 * Struc(e) + α3 * Ext(e)
+ α4 * Rps(e)

where α1,α2,α3, and α4 are weights in [0,1], and Term(e),
Struct(e), Ext(e), and Rps(e) denote the terminological clues,
structural clues, external clues, and representation learning clues
of e, respectively.

Matching Process
In this section, we describe in detail the overall biomedical
ontology matching process.

Name Matcher
Element names represent an important information for accessing
similarities. However, in some ontologies, the local names of
elements are represented in the form of ID, such as NCI_C12269
in NCI Thesaurus and MA_0000216 in MA ontology, which is
meaningless. Consequently, we first simply obtain the mapping
results through comparing the label sets of the pairs of elements.
The normalized edit distance similarity metric is applied to
compute linguistic similarities between label sets:

SIMname = DNE(s,t) = [DE(s,t)]/[DE(s,t) + SE(s,t)]

SE(s,t) = [(|s| + |t| – DE(s,t))]/2

where DE(s,t) denotes the edit distance between string s and t,
and SE(s,t) denotes the edit similarity between s and t. The
normalized edit distance similarity is denoted as DNE(s,t), and
the function |x| denotes the length of x. After that, mapping
results are generated through a given threshold filtering and
similarity ranking.

Terminology Matcher
Biomedical ontologies are characterized by terminological
components in the form of names and various types of synonyms
along with comments. We combine the labels with
corresponding extensional clues to get the similarity between

2 elements. We chose term frequency-inverse document
frequency (TF-IDF) to measure the similarity between the
terminological documents of element es from source ontology
and element et from target ontology:

SIM(x, y) = TF*IDF

TF = w/W

IDF = 1/2*(1+log2[N/n])

SIMterm(es,et) = SIM(Term[es], Term[et])

For each description document, w denotes the refined word
occurrence; and W denotes the total refined occurrence among
all the words in a specific document. And finally, we select the
matching pairs with maximum similarity values.

Structure Matcher
The structural clues, including hierarchies (subclass, superclass,
sibling class, disjoint class) and property attributes (domain,
range), allow more possible candidate mappings to be
discovered. The structural similarity of the element relies on
the similarity of context descriptions. The extracted context set
of each node may contain the terminological clues of direct
neighbors, of adjacent nodes within local graph, that is, extracted
semantic subgraph [52], or adjacent nodes in global graph. The
similarity value of structural clues between each pair of nodes
is initially measured by TF-IDF similarity between the structural
documents:

SIMstruc(es,et)=SIM(Struct[es],Struct[et])

External Matcher
Two kinds of external resources are used to further promote the
matching. From the general dictionary, synonyms are retrieved
by the name of element. Meanwhile, from the domain-specific
repository, equivalent classes are obtained based on terms of
elements, and then discovering the synonyms of the discovered
classes. In addition, cross-references are extracted based on the
property DbXref. The extracted synonyms are viewed as the
extensional comments of corresponding elements, and
cross-references are used as the reference alignments. TF-IDF
is used to determine the degree of each pair of collections of
thesaurus information, respectively:

SIMext(es,et)=SIM(Ext[es],Ext[et])

Representation Learning Matcher
For the chosen pretrained language models, either BERT or
BioBERT, and refined models, the input is a mention–synonym
pair, and the outputs of the last hidden layer are concatenated
to represent the mention. After getting the embeddings of
ontological terms, we then use the cosine distance over the pairs
of embedding representations as the similarity score:

SIMrps(es,et)=SIM(Rps[es],Rps[et])

Hybrid Matcher
To obtain more accurate similarity values, the hybrid matchers
are constructed through a fixed combination of simple matchers
and other hybrid matchers. A straightforward strategy is
summing up the values of all match results and getting the
averages to denote the similarity between each pair of elements.
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However, it may introduce lots of wrong mappings due to the
neglect of differences between matchers. Therefore, we combine
the similarity matrices by assigning varying weights to reflect
their importance.

Matching Large Biomedical Ontologies

P-Anchors and N-Anchors
To deal with the scalability problem of large biomedical
ontology matching, this paper extends the matching method
based on reduction anchors with related nodes. The reduction
anchors–based approach [26] is desirable for matching large
ontologies. It utilizes positive reduction anchor (P-Anchors),
based on the coherence of structural hierarchy of ontology
alignment, and negative reduction anchor (N-Anchors), based
on the locality characteristic of matching, to reduce undesirable
comparisons. However, because matching based on P-Anchors
is highly dependent on the hierarchical depth of ontology while
usually the average depth of biomedical ontologies is typically
limited, the matching cannot achieve the ideal high performance.
Therefore, we extend reduction anchors with the related nodes
to refine the matching. In this section, we first introduce the
definition of our improved extended reduction anchors and then
present the matching method based on extended reduction
anchors.

Reduction Anchors

Extended Positive Reduction Anchor (P-AnchorE)

Given a concept ai in ontology O1 with equivalent concept set
ai1, ai2, …, aim, let the similarities between ai and concepts b1,
b2, …, bn in ontology O1 be Si1, Si2, …, Sin, respectively. If Sij

is larger than the predefined threshold ptValue, the concept pair
(ai, bj) is a positive reduction anchor, and all positive reduction
anchors about ai are denoted by PA(ai) = {bj|Sij > ptValue}.
Then, the extended positive reduction anchor of ai is

.

Extended Negative Reduction Anchor (N-AnchorE)

Given a concept ai in ontology O1 with equivalent concept set
ai1, ai2, …, aim, let the similarity values between ai and concepts
b1, b2, …, bn in ontology O2 be Si1, Si2, …, Sin, respectively. If
Sij is smaller than the predefined threshold ntValue, the concept
pair (ai, bj) is a negative reduction anchor, and all negative
reduction anchors about ai are denoted by NA(ai) = {bj|Sij <
ntValue}. Then, the extended negative reduction anchors of ai

are as follows:

LOM-PE: Large Ontology Matching Algorithm Based
on P-AnchorsE
Let PSE(ai), the extended positive reduction set of ai, be all the
ignorable similarity calculations predicted by PAE(ai). If
|PAE(ai)| > 0, we select the top-k P-AnchorsE with maximum
similarities. Let PS(ai) be the initial positive reduction set about
a P-AnchorE (ai, bj), which is calculated as follows:

Meanwhile, the reduction computation can be propagated to
the concepts that are highly similar to sub(ai). Therefore, sub(ai)
can be extended as follows:

Plus, sup(ai), sub(bj), and sup(bj) can be calculated analogously.
Then the extended reduction set of PSE(ai|bj) is:

If PSE(ai) = {b1, b2, …, bk}, the corresponding extended
reduction set can be calculated as follows:

where lub() and glb() are the functions to obtain the least upper
bound and greatest lower bound, respectively. The formula
above indicates that smaller top-k will generate larger PSE(ai).
In our implementation, top-k is assigned a value from 1 to 4.
The total positive reduction set during matching is:

Multimedia Appendix 1 presents a large ontology matching
algorithm based on P-AnchorsE (LOM-PE). Here,
LOMPE-Algorithm() is the main function, ComputerSim()
matches elements on the hierarchy path recursively, and
GetPAnchorsE() obtains top-k P-AnchorsE.

The time complexity of the LOM-PE algorithm is analyzed as
follows: Given 2 matched ontologies, if all concepts are on a
hierarchy path, the matching process can generate n(n–2) size
valid positive reduction set, and it just needs 2n similarity
calculations, that is, the algorithm has the best time complexity
O(2n). However, such an ideal case almost does not exist in the
real world. Suppose there are m hierarchy paths, then the average

depth of the ontology is . Consequently, we can derive the
time complexity of Multimedia Appendix 1 as follows:

LOM-NE: Large Ontology Matching Algorithm Based
on N-AnchorsE
The set of all ignorable similarity calculations predicted by
N-AnchorsE is called the extended negative reduction set. Let
Nb(ai) = {ax|d(ax,ai) <= nScale} be the neighbors with nScale
distance to ai. Therefore, the initial negative reduction set
generated by ai is:

According to the formula, NAE(ai) will be propagated to
neighbors of ai. And there are 3 constraints being introduced to
reduce the risk of low credible negative reduction set: (1) all
N-AnchorsE must be obtained in similarity calculating; (2) all
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N-AnchorsE of ai can only be propagated to the neighbors in
the semantic subgraph of ai; and (3) all N-AnchorsE of ai can
be propagated only if the description document of ai contains
more than t items.

Similar to LOM-PE, the reduction computation can also be
propagated to the concepts that are highly similar with Nb(ai).
Therefore, the extended neighbors set is as follows:

Then, the final extended negative reduction set can be denoted
as:

where the extended set NSE() should also comply with above
3 constraints.

Multimedia Appendix 2 presents a large ontology matching
algorithm based on N-AnchorsE (LOM-NE). All concepts are
sorted by their degrees (line 2). If a similarity s is smaller than
ntValue and satisfies 3 constraints (line 9), an N-AnchorE (line
10) is used to get the extended negative reduction set (line 12).
After refining the extended negative reduction set, we obtain
the valid extended negative reduction set (line 13). The time

complexity of the algorithm is O([1–wλ]n2), where w is the
average degree and λ is determined by ntValue and constraints.
The bigger w and λ are, the higher performance the algorithm
has.

LOM-Hybrid: Hybrid Large Ontology Matching
Algorithm
We use a hybrid algorithm, called LOM-Hybrid, to combine
the LOM-PE and LOM-NE algorithms to obtain as large a valid
reduction set as possible. It can be a benefit for the LOM-PE
algorithm if the LOM-NE algorithm that calculates the elements
with large degree is implemented first: (1) Because the average
depth of a real ontology is often small, while LOM-PE relies
on the depth of concept hierarchy, the LOM-PE might not have
an ideal performance. (2) The elements with large degree, most
of which are located in the middle of hierarchy, would be
calculated first by LOM-NE, and it can benefit the LOM-PE.
Therefore, the LOM-Hybrid algorithm is mainly based on the
framework of the LOM-NE algorithm, in which the LOM-PE
algorithm is embedded. LOM-Hybrid can generate the valid
positive reduction set and negative reduction set. Theoretically,
the time complexity of LOM-Hybrid is between the complexity
of LOM-NE and the complexity of LOM-PE. Indeed, it is very
close to LOM-NE. However, in the real-world cases, the actual
time complexity is indeed close to that of LOM-NE.

Results

Overview
We performed a comprehensive evaluation of the match
processing strategies on real-word ontologies. The main goal

is to investigate the impact of different combination strategies,
that is, selection and aggregation of clues, on match quality,
and to compare the effectiveness of different matchers, that is,
single matcher and different combinations of individual
matchers. We used Java to implement our approaches and
conduct the experiments on a computer with an Intel Xeon 4110
CPU and 64-GB memory.

Data Set
Our experiments are conducted on 4 ontologies that appear in
the Ontology Alignment Evaluation Initiative (OAEI). Two of
them (the Adult Mouse Anatomy Ontology and the Foundational
Model of Anatomy) are pure anatomical ontologies, while the
other 2 (SNOMED-CT and NCI Thesaurus) are broader
biomedical ontologies.

Adult Mouse Anatomy is a structured dictionary that provides
standardized nomenclature for anatomical terms in the postnatal
mouse and organizes anatomical structures for the postnatal
mouse spatially and functionally [53].

Foundational Model of Anatomy (FMA) is an evolving
computer-based knowledge source for biomedical informatics.
The FMA is a domain ontology of the concepts and relationships
that pertain to the structural organization of the human body
[2].

NCI Thesaurus (NCI) provides reference terminology for many
NCIs and other systems. It covers vocabulary for clinical care,
translational and basic research, public information, and
administrative activities [1].

SNOMED-CT is a systematically organized
computer-processable collection of medical terms providing
codes, terms, synonyms, and definitions used in clinical
documentation and reporting [3].

The detailed statistics of each ontology matching task are
presented in Table 2. For Anatomy, there are 2737 concepts in
source ontology and 3298 concepts in target ontology,
simultaneously including many labels and synonyms but only
the PART_OF property with both ontologies. FMA-NCI task
selects a small part of FMA and NCI ontology, with 3696
concepts from FMA and 6488 concepts from NCI, and
FMA-SNOMED also selects a fragment of these ontologies
with tens of thousands of concepts, 10,157 concepts in the
source ontology FMA and 13,412 concepts in the target ontology
SNOMED. For FMA-NCI and FMA-SNOMED, there exists
no synonym within the ontologies but some properties to define
the relations between entities, 24 properties for FMA, 63
properties for NCI, and 18 properties for SNOMED. For each
concept, there are almost several aliases (labels) that are
important for the alignments of heterogeneous ontologies. The
evaluation of tasks is summarized through the MELT (Matching
EvaLuation Toolkit) framework supported in OAEI. Actually,
the alignments of tasks FMA-NCI and FMA-SNOMED are
conducted on a small fragment of the aforementioned ontologies.
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Table 2. Summary statistics of the biomedical ontology matching tasks.

#Triples#Properties#Synonyms#Labels#ConceptsTask and ontology

Anatomy

15,958234430842737MA

35,3541524694033298NCIa

FMA-NCI

16,91924091423696FMAb

64,85763017,1096488NCI

FMA-SNOMED

47,73024026,98910,157FMA

110,02918013,43113,412SNOMED

aNCI: National Cancer Institute.
bFMA: Foundation Model of Anatomy.

Measures
In order to measure the performance of the matching system,
we selected precision, recall, and F-measure adapted for
ontology matching evaluation.

We compare the mapping M, which consists of all those
correspondences generated by our system, against reference
mapping R to compute precision p, recall r, and F1-measure F.
The standard measures for evaluating mappings are denoted as
follows:

p(M,R)=(|M∩R|)/M

r(M,R)=(|M∩R|)/R

F(M,R)=[2·p(M,R)·r(M,R)]/[p(M,R) + r(M,R)]

Experiment Settings
We define several hybrid matchers in different combinations
of atomic clues and matching dimensions. The details of
designed matchers are listed in Table 3. For the clues in this
table, syn means the sets of synonyms of concepts, prop is the
abbreviations of property, dh denotes direct hierarchy utilizing

the nearest neighbors, lh is the local hierarchy using structural
clues within corresponding semantic subgraphs, and gh
represents the global hierarchy that uses global structure based
on transitive rules. In addition, WN denotes the general
dictionary WordNet selected in our notion, and Udic denotes the
domain-specific dictionaries, UBERON and UMLS, in our
experiments. For the representation learning clues, we choose
BERT as the general model; and BioBERT and fine-tuned
BioBERT denoted as fBio as the specialized representation
models.

There are 3 terminological matchers, 5 structural matchers, 2
external matchers, and 3 representation learning matchers. The
comment is absent in the data sets, so we eliminate it in atomic
clues. In the ontologies of the Anatomy task, the local names
of elements are in the form of ID, and for the largebio tasks, the
names are wholly contained in labels. Thus, we mainly focus
on the comparison of labels instead of names. Owing to the
crucial role of terminological clues in ontology matching, the
terminological matcher is constructed as the basis of matchers
in the other dimensions.
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Table 3. Relations between clues and matchers.

ClueMatcher

fBioBioBERTBERTaUdicWNghlhdhpropsynLabelName

Terminological

✓M 1

✓M 2

✓✓M 3

Structural

✓✓✓M 4

✓✓✓M 5

✓✓✓✓M 6

✓✓✓M 7

✓✓✓M 8

External

✓✓✓M 9

✓✓✓M 10

Representation learning

✓✓M 11

✓✓✓M 12

✓✓✓M 13

aBERT: Bidirectional Encoder Representations from Transformers.

Research Questions
We attempted to investigate the following research questions
to understand the influence of different aggregations of ontology
clues, to compare the effectiveness of different matcher
combinations, and to verify the practical usefulness of extended
reduction anchors.

Research Question 1 (Influence of the Combination
Strategies of Clues): How Do the Different Combination
Strategies of the Clues Perform in Ontology Matching?
The purpose of research question 1 is to investigate how a
combination strategy influences the matching performance.
There are generally several kinds of available clues in a single
dimension. For instance, in the point of structure, there are intra
structure and extra structure. However, some part of them may
have a negative effect on the matching results. The study of
research question 1 could help discover the influence of key
clues during matching.

Research Question 2 (Effectiveness of Matcher
Combinations): How Effective Are the Combinations of
Matchers Implemented in Ontology Matching?
The purpose of research question 2 is to investigate whether
utilizing the different aggregations of matchers could promote
the matching effect, and to explore which combinations could
be useful to match ontology. The study of research question 2

aims to learn how the integration of matchers influences the
matching results.

Research Question 3 (Scalability of Reduction Anchors):
What Is the Performance of Extended Reduction
Anchors While Matching Large Biomedical Ontologies?
The purpose of research question 3 is to verify the effectiveness
of our reduction anchors. Because of the large scale of
biomedical ontologies, the matching is time-consuming and
acquires amounts of space. As a result, there is a strong need
to eliminate meaningless computations to reduce time and space
complexity. The study of research question 3 is dedicated to
demonstrate the effectiveness of resolving the scalability
problem brought by the reduction anchor–based approach.

Results of Terminology-Based Matcher
In the initial phase, we examine the matcher with the direct
linguistic description of concepts: name, labels, synonyms, and
comments.

Table 4 shows the matching results by utilizing terminological
clues in the ontologies. For the task of Anatomy, there is no
matching to be obtained for the name being in ID format. It can
be observed that labels act as a strong distinguishing feature for
matching biomedical ontologies, and relying on the string
similarity of labels can achieve a fundamental precision and F1
measure, particularly for Anatomy and FMA-NCI. Besides,
integrating internal synonyms to get the name variants can
further improve the performance of system. Although it slightly
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decreases the precision of alignments, it can increase the recall
and F1 measure distinctly. For the tasks FMA-NCI and
FMA-SNOMED, there is no change in the metrics owing to the
absence of synonyms in the input ontologies. In addition, we
can find that the terminological matchers result in a substantial
difference in the matching performance of different tasks. The
terminological matcher achieves precision of 0.9658 and 0.9001
on Anatomy and FMA-NCI, respectively. But the precision on

FMA-SNOMED is 0.3549. The Anatomy ontologies mainly
focus on the anatomical terms of adult mouse anatomy and
human anatomy whose terminological names are highly similar.
By contrast, for the tasks of FMA-NCI and FMA-SNOMED,
the ontologies cover a variety of topics and name the objects in
different criteria, which cause the difference between their
phenotypic representations.

Table 4. Results of terminology-based matcher.a

FMA-SNOMEDFMAb-NCIcAnatomyMethod

F1 (%)R (%)P (%)F1 (%)R (%)P (%)F1 (%)R (%)P (%)

26.6028.1425.2266.2353.7486.30—00M 1

36.0336.5935.4979.3270.9090.0180.4068.8796.58M 2

36.0336.5935.4979.3270.9090.0182.2274.1492.28M 3

aValues in bold indicate best experimental results.
bFMA: Foundation Model of Anatomy.
cNCI: National Cancer Institute.

Results of Structure-Based Matcher
There are 5 structure-based matchers which consider different
structural clues of ontologies. First, we measured the effect of
property and hierarchy, respectively, while only the nearest
neighbors are considered in the hierarchy. Then, we evaluated
the results using a combination of both. In addition, the transitive
closure is taken into account to get the global structure with
predefined decay coefficients. Furthermore, we assess the results
of the structural matcher which has the local structure within
the constructed semantic subgraph for each concept.

Table 5 shows the matching results of different combination
strategies of structural atomic clues. Specifically, we use G to
denote the F1 measure difference between structure-based
matchers and the best terminology–based matcher. Overall, G
demonstrates that the structure has a positive impact on matching
performance. In the Anatomy task, the property information
slightly degrades the mapping results, the reason is that there
are only 2 properties, UNDEFINED_is_a and
UNDEFINED_part_of, which bring valueless information. It
is evident that the hierarchical structure has a positive effect,
which improves the F1 score by about 4%. When we choose

the entire hierarchies extended with transitive rules, the recall
and F1 measure fall a little compared with the direct structure
that combines the clues of direct nodes, for the reason that it
would bring about some redundancy and much more noise by
integrating too many hierarchical clues. Furthermore, the recall
achieves an impactful enhancement while utilizing extracted
semantic subgraphs to capture the real meaning of concepts,
but is accompanied by a decline in precision compared with
some other matchers. In the task of FMA-NCI, the local
structural clues can result in about 2% improvement. However,
there is hardly an obvious change when we combine other
different hierarchical information. Because of the relatively
obvious morphological difference between different ontologies,
utilizing the local structure to discover more semantically related
entities could result in better performance compared with direct
structural clues. Because of the large size of FMA-SNOMED,
which takes too much time to recursively retrieve global
structure and construct the semantic subgraphs, the results of
M7 and M8 are ignored in our experiments. However, utilizing
all clues cannot guarantee the improvement of mappings. For
instance, exploiting the property has a little positive effect than
extending clues with only the direct linking nodes.
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Table 5. Results of structure-based matcher.a

FMA-SNOMEDFMAb-NCIcAnatomyMethod

G (%)F1 (%)R (%)P (%)G (%)F1 (%)R (%)P (%)G (%)F1 (%)R (%)P (%)

+3.2439.2741.5937.21+0.5379.8572.8288.36–0.6681.5674.1490.66M 4

+3.3139.3441.6837.25+0.5679.8872.4888.96+4.0886.3081.4091.82M 5

+3.4539.4641.8837.29+0.7180.0372.2889.62+3.8186.0380.6192.23M 6

————d+1.7381.0574.9388.25+4.0586.2784.5688.04M 7

————+0.7180.0372.4989.36+3.5685.7880.4191.93M 8

aValues in bold indicate best experimental results.
bFMA: Foundation Model of Anatomy.
cNCI: National Cancer Institute.
dNot available.

Results of External-Based Matcher
This section studies the performance of external-based matchers
utilizing general dictionaries (WordNet) and external
domain-specific knowledge (UBERON and UMLS). The
experimental results of the 2 methods M9 and M10 are presented
in Table 6.

We obtain the precedent sense of names through WordNet to
enrich the synonyms of ontology concepts. Because WordNet
is difficult to get relevant synonyms unless the sense of the term
is known a priori and that compound terms are strongly covered,
it brings a negative influence on all the 3 tasks. Then, UBERON
and UMLS, which are related to biomedical science, are selected
to further enrich ontology descriptions. On the one hand, we
acquire all the correlative synonyms and cross-search references

about the input ontologies. On the other, a reverse synonym
lexicon is constructed, which is initiated by the idea that there
may be a lack of description Syn(b) = a while Syn(a) = b exists.
It can be observed that the specialized lexicon produces an
effective influence compared with the common repositories.
For Anatomy, specialized lexicon brings an increase of 8.3%,
while the common lexicon causes a 1.33% decrease in F1 score.
However, the domain-specific lexical brings about a much less
positive effect on mapping results of FMA-NCI with an increase
of 1.33%, and an increase of 8.3% and 13.49% for Anatomy
and FMA-SNOMED, respectively. The synonyms and
cross-search references are extracted from the auxiliary
knowledge with the terminological names directly. However,
there are a few available auxiliary clues for the mapping of
FMA and NCI, which accounts for the little rise of the
FMA-NCI task.

Table 6. Results of external-based matcher.a

FMA-SNOMEDFMAb-NCIcAnatomyMethod

G (%)F1 (%)R (%)P (%)G (%)F1 (%)R (%)P (%)G (%)F1 (%)R (%)P (%)

–1.7234.3136.4832.38–2.6676.6674.0179.50–1.3380.8973.4290.05M 9

+13.4949.5252.6046.78+1.3380.7573.4789.65+8.390.5288.4692.67M 10

aValues in bold indicate best experimental results.
bFMA: Foundation Model of Anatomy.
cNCI: National Cancer Institute.

Results of Representation Learning–Based Matcher
We select 3 pretrained language models to study the influence
of word embedding. Table 7 shows the comparison of different
word embedding techniques applied to biomedical ontology
matching. Surprisingly, although BERT is trained by amounts
of general corpora, it still has resulted in a slight decline in the
results. It seems that capturing implicit semantics in a specific
domain could be more difficult than we imagined. BioBERT is
a domain-specific language representation model pretrained on
large-scale biomedical corpora. It shows a slightly better
performance than BERT, indicating that incorporating
domain-specific language representation can be valuable to

ontology matching. The fine-tuned BioBERT is trained on the
correspondence between concepts and synonyms within
UBERON which is much more relevant to the tasks. The results
show that the fine-tuned BioBERT is able to produce much
more positive influence on capturing the semantics in ontologies.
In fact, the cost of representation learning technique outweighs
the benefit that it can bring to our mapping tracks. Especially
for the FMA-NCI, it results in a negative effect on the mapping
performance for the reason that the training corpora is less
relevant to FMA-NCI. In addition, there are restrictive synonyms
within the ontologies of FMA-NCI and FMA-SNOMED, which
is insufficient for training of representative learning matchers.
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Table 7. Results of representation learning–based matcher.a

FMA-SNOMEDFMAb-NCIcAnatomyMethod

G (%)F1 (%)R (%)P (%)G (%)F1 (%)R (%)P (%)G (%)F1 (%)R (%)P (%)

–0.5635.4737.6633.54–0.4778.8571.4787.94–0.7881.4474.6889.55M 11

+0.0036.0337.0835.04–0.0979.2371.9388.19+0.4782.6976.3290.21M 12

+0.2636.2938.6334.22–0.0279.3072.9786.84+0.8 083.0274.3993.31M 13

aValues in bold indicate best experimental results.
bFMA: Foundation Model of Anatomy.
cNCI: National Cancer Institute.

Results of Matcher Combinations
After evaluating the single matchers in different dimensions,
we conducted a series of experiments to examine the
effectiveness of different combination strategies. For each
selection strategy, we choose the optimal parameter range, in
which the best match result is to be expected.

Table 8 shows the performance of hybrid matchers combined
with different matchers. There are 7 hybrid matchers used in
our experiments, where Term, Struc, Ext, and Rps represent the
terminological matcher, structural matcher, external matcher,
and representation learning matcher, respectively. Different

combinations have different influences on different tracks, and
integrating some matchers may thus exert negative effect on
matching. We can observe that the combination of all 4
matchers, that is, Term + Struc + Ext + Rps, can achieve the
best performance for Anatomy, while incorporating Term, Struc,
and Ext together leads to the best results for FMA-NCI and
FMA-SNOMED. As the representation learning matcher is
trained with the synonym marginalization algorithm while there
are less synonym clues within the ontologies of FMA-NCI and
FMA-SNOMED compared with Anatomy, the Rps may be less
helpful than the other 3 matchers for FMA-NCI and
FMA-SNOMED.

Table 8. Results of hybrid matcher.a

FMA-SNOMEDFMAb-NCIcAnatomyMethod

F1 (%)R (%)P (%)F1 (%)R (%)P (%)F1 (%)R (%)P (%)

36.0336.5935.4979.3270.9090.0182.2274.1492.28Term

39.4641.8837.2981.0574.9388.2586.0380.6192.23Term + Struc

49.5252.6046.7880.7573.4789.6590.5288.4692.67Term + Ext

35.4737.6633.5478.8571.4787.9483.0274.3993.31Term + Rps

50.0052.2147.9782.1875.1790.6492.0890.4493.78Term + Struc + Ext

45.7047.8343.7680.1472.9588.9090.2288.9291.56Term + Ext + Rps

49.6652.0147.5281.5274.4790.0492.7190.5794.95Term + Struc + Ext + Rps

aItalicized values indicate best experimental results.
bFMA: Foundation Model of Anatomy.
cNCI: National Cancer Institute.

Performance Evaluation of Matchers
Here we present the metrics of precision and recall along with
F1 measure of each matcher and analyze the correlation between
them. In general, the higher the precision, the lower is the recall.
However, there are also some exceptions when the similarity
threshold is high enough. In Figure 3, the comparisons in the
precision–recall space over 4 aspects of Anatomy and FMA-NCI
track are depicted. From Figure 3, the terminological matcher
that combines labels and synonyms could achieve the best
results. For the structural matchers, most of them perform

similarly and there is no obvious difference among them. For
the FMA-NCI task, there is slightly a little difference in
matching performance between most matchers. As for the
external matchers, M10 utilizing domain-specific lexical has a
significant difference with M9. However, for the matchers that
are using the method based on representation learning, the
precision–recall curve is obviously similar. This is because
similar names may refer to different objects, while names in
different morphologies may refer to the same object. Therefore,
exploiting only the semantic representations remains hard to
capture the true meaning for these elements of specific domain.
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Figure 3. Comparison in PR space.

Effectiveness of Extended Reduction Anchor
To examine the validity of the extended reduction anchors, we
conduct comparison and evaluation through integrating extended
reduction anchors with the best performing matchers. The results
are indicated in Table 9.

We can learn from the table that our improved reduction anchors
could benefit the time complexity during matching. According
to the results shown in Table 9, the reduction anchors are more

comparative while the ontology size is much larger. For
Anatomy, reduction anchors–based approach does not
demonstrate distinct advantages with the middle-size ontologies.
However, for the track of FMA-NCI, especially for
FMA-SNOMED, the runtime has been notably reduced
compared with the other matchers. Besides, reduction anchors
barely bring metric loss while simultaneously promoting the
efficiency of matching. While integrating the reduction anchors
together, it is effective to skip large numbers of ignorable
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similarity computations and is efficient to reduce the time
complexity.

Table 10 presents the comparison of LOM-RAE with LOM-RA,
which demonstrates the superiority of our extended reduction
anchors compared with previous reduction anchors. From Table
10, we can observe that RAE is effective to skip much more
similarity computations than RA. Because the similarity
threshold is set properly high and the reduction set is obtained
through strictly abiding by the defined constraints, it is evident
there is almost little or no loss in performance with considerable
matching comparisons being omitted.

In addition, to examine the practicability of the extended
reduction anchors, we compare our matching approach based

on RAE with some other systems participating in OAEI, for
example, AML [16], LogMap [35], Wiktionary [54], and
ALOD2Vec [55]. The execution times of these systems are
shown in Table 11. In contrast to the matching systems utilizing
modulization and clustering, such as AML and LogMap, the
reduction set is generated dynamically based on the similarity
calculations of entity pairs, which require much more time
during matching. Nevertheless, it can be observed that our
proposed approach can still achieve promising performance
among these matching systems, which demonstrates that RAE
is practicable and effective for large-scale ontology matching
scenario.

Table 9. Effectiveness of extended reduction anchors.a,b

Time (minutes)F1 (%)R (%)P (%)Task and matcher

Anatomy

1.582.2274.1492.28Term

3.086.3081.4091.82Term + Struc

4.990.5288.4692.67Term + Ext

2.883.0274.3993.31Term + Rps

7.192.0890.4493.78Term + Struc + Ext

8.992.7190.5794.95Term + Struc + Ext + Rps

0.792.5090.3694.74Term + Struc + Ext + RAE

FMAc-NCId

11.479.3270.9090.01Term

47.980.8873.8789.36Term + Struc

18.690.5288.4692.67Term + Ext

12.883.0274.3993.31Term + Rps

56.882.8076.9289.65Term + Struc + Ext

65.982.8476.7190.04Term + Struc + Ext + Rps

2.882.0075.5689.65Term + Struc + Ext + RAE

FMA-SNOMED

64.436.0336.5935.49Term

85.639.2741.5937.21Term + Struc

113.449.5252.6046.78Term + Ext

117.183.0274.3993.31Term + Rps

161.050.0052.2147.97Term + Struc + Ext

227.549.6652.0147.52Term + Struc + Ext + Rps

12.552.3151.2553.41Term + Struc + Ext + RAE

aThe best performing matcher is italicized.
bValues in bold indicate best experimental results.
cFMA: Foundation Model of Anatomy.
dNCI: National Cancer Institute.
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Table 10. Effectiveness of extended reduction anchors.a

Time (minutes)F1 (%)R (%)P (%)Task and matcher

Anatomy

2.292.9690.6495.41LOM-RA

0.792.5090.3694.28LOM-RAE

FMAb-NCIc

10.482.1875.6190.01LOM-RA

2.882.0075.5689.65LOM-RAE

FMA-SNOMED

42.752.2950.8953.77LOM-RA

12.552.3151.2553.41LOM-RAE

aItalicized values indicate best experimental results.
bFMA: Foundation Model of Anatomy.
cNCI: National Cancer Institute.

Table 11. Execution time (minutes) of systems.a

FMA-SNOMEDFMAb-NCIcAnatomyMatching system

1.680.630.48AML

0.870.030.01LogMap

11.624.31.08Wikitionary

—2.973.93ALOD2Vec

12.52.80.7LOM-RAE

aItalicized values indicate best experimental results.
bFMA: Foundation Model of Anatomy.
cNCI: National Cancer Institute.

Performance of Extended Reduction Anchors
There is a need to analyze the influence of key parameters of
our proposed reduction anchors. Here we use a new metric
called benefit rate (G) to measure how much an LOM algorithm
can improve the performance: G = N/(n1 * n2), where N is the
size of the total reduction set; and n1 and n2 represent the number
of concepts in 2 ontologies. The larger the value of G, fewer
the times of similarity calculations required and the higher the
efficiency of the algorithm.

The LOM-NE algorithm has 4 important parameters: ntValue,
nScale, SDD constraint, and SSG constraint. We evaluate these
parameters on the Anatomy data set. Figure 4 shows the relation
between ntValue and F1 measure on different nScales. Figure
5 shows the relation between benefit rate and ntValue under

different nScales. We observe that (1) ntValue has a certain
effect on matching quality and efficiency, that is, different
ntValues will lead to some fluctuation of matching quality.
Meanwhile, LOM-NE also causes a higher benefit rate with an
increase of ntValue. (2) nScale also affects matching quality
and efficiency. As nScale increases, matching quality will
decrease, but the benefit rate will increase to a certain extent.
Results also show that ntValue = 0.15 and nScale = 3 will lead
to a good matching quality and benefit rate. Figures 6 and 7
show the influences of SDD and SSG on matching quality and
benefit rate. The W/A constraint represents the results without
any constraint. We can see that (1) under 3 constraints, the
matching quality will increase, but the benefit rate will decrease;
(2) the SDD constraint has a higher influence on matching
quality and benefit rate.
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Figure 4. ntValue-nScale-matching quality.

Figure 5. ntValue-nScale-benefit rate.

Figure 6. SDD-SSG-matching quality.
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Figure 7. SDD-SSG-benefit rate.

Discussion

Principal Findings
In this section, we discuss our experimental results according
to the research questions. First, we will analyze the influence
of the matchers in a single dimension. Second, we will report
on how information imposes an effect on the final performance
compared with the distinguishing clues of concepts. Finally,
we will illustrate the practical benefits of adopting reduction
anchors in large biomedical ontology matching.

How Do the Different Combination Strategies of the
Clues Perform in Ontology Matching?
After analyzing the results of matchers in 4 predefined
dimensions separately, it is obvious that there are some parts
playing an inessential role in the matching process. According
to the results presented in Table 5, it can be observed that
property degrades the performance in the Anatomy track, and
using the transitive rule in hierarchy to gain more structural
presentations would also input noise to mappings. For all these
3 tracks, the structural clues play a significant role in the
matching process and bring about a positive improvement.
While using external knowledge as auxiliary resources, the
general dictionary, such as WordNet, has resulted in a less
positive impact than the biomedical lexical, such as UBERON,
as illustrated in Table 6. WordNet is a dictionary that works in
the general domain, and may be deficient in synonymy for
biomedical concepts or generate erroneous synonymy.

When one integrates the semantic embedding method into
biomedical ontology matching, results from Table 7 suggest
that despite the ability of the former to capture the underlying
potential semantic, it can also worsen the results. Besides, the
BERT model used in the common domain is incapable of
catching the semantic in biomedicine (Table 7). The fine-tuned
BioBERT model trained on data sets related to the test suite is
much more competent than BioBERT. Therefore, mining and
combining the key clues from ontologies and auxiliary sources
are more important compared with utilizing the whole sources.

How Effective Are the Combinations of Matchers
Implemented in Ontology Matching?
According to the results illustrated in Table 8, the combination
strategies of matcher have different levels of impact on the
tracks. It is evident that although large amounts of information
could be mined from ontologies, some may result in scarce
improvement and bring about an increase in time complexity
at the same time. It can be observed that incorporating the
structural matcher and the external matcher could have
momentous benefits to biomedical ontology matching. The
representation learning matcher is able to boost the performance
of Anatomy and FMA-BCI to some extent, but it causes a
decline in the performance of FMA-SNOMED. As a result,
combining all matchers is not helpful to promote mappings.
Thus, for different tasks, matchers may exert different effects,
either positive or negative.

What Is the Performance of the Proposed Reduction
Anchors While Matching Large Biomedical
Ontologies?
The results listed in Tables 9-11 demonstrate that reduction
anchors are effective in reducing the running time during large
ontology matching, with the superiority becoming more
comparative when the volume of ontology is much larger.
Reduction sets leverage the hierarchy concept to skip subsequent
matching between subconcepts of one concept and
super-concepts of the other concept, which also include the
extended highly related concept nodes. By contrast, if 2 concepts
have low similarity, based on the locality phenomenon of
matching, it can skip subsequent matching between 1 concept
and the neighbors of the other concept as well as the concepts
with high similarity. When the ontology is large, the structure
of ontology graph becomes complicated which would possess
deeper hierarchical levels. Therefore, extended reduction anchors
are able to and practicable to skip more unnecessary
computations.

Conclusions
In this paper, we presented an empirical study of biomedical
ontology matching based on a number of experiments performed
on terminology-based, structure-based, external
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knowledge–based, representation learning–based measures in
detail. Biomedical ontology matching relying on the
terminological description of elements, combined with a
structural, external knowledge, and embedding similarity
approach, is effective for the matching of ontologies to some
extent. According to our results, composite matchers are very
effective. Despite the imprecision of single matchers, their
combinations are impressive in improving the mapping quality,
and bring about more accurate and stable similarity for
biomedical ontologies. Structural and external clues are proved
to produce better match results and support good precision as
they could best compensate the shortcomings of single
terminological matchers.

We can also find that the knowledge information has either a
neutral or a negative impact on the F measure (as shown in
Tables 4-7), which suggests that this result is an artifact. It is
obvious that utilizing all the clues cannot always achieve best
performance in ontology matching. The hierarchical
interpretations play an important role in the matching task of

Anatomy, whereas in FMA-NCI, they exert little influence,
which relies rather much on terminologies. Using the WordNet
dictionary to retrieve alternative labels for concepts only has a
weak effect compared with domain-specific resources UBERON
and UMLS. Furthermore, representation learning techniques
are relatively effective to improve recall. However, it still needs
to be further deepened and enhanced. Based on the results
produced in the experiments, we can learn that utilizing credible
and distinguishable clues can effectively boost the ontology
matching process as compared with matching 2 ontologies with
all.

Moreover, we propose a new, efficient, large ontology matching
method based on extended reduction anchors. The proposed
approach is generic and could be applied to different fields.
RAE is applied to predict the ignorable similarity calculations
in ontology matching. Our experimental results also
overwhelmingly demonstrate that the proposed method presents
significant and encouraging improvement, especially in runtime
efficiency.
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