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Abstract

Background: Prediction of diabetes remission is an important topic in the evaluation of patients with type 2 diabetes (T2D)
before bariatric surgery. Several high-quality predictive indices are available, but artificial intelligence algorithms offer the
potential for higher predictive capability.

Objective: This study aimed to construct and validate an artificial intelligence prediction model for diabetes remission after
Roux-en-Y gastric bypass surgery.

Methods: Patients who underwent surgery from 2007 to 2017 were included in the study, with collection of individual data
from the Scandinavian Obesity Surgery Registry (SOReg), the Swedish National Patients Register, the Swedish Prescribed Drugs
Register, and Statistics Sweden. A 7-layer convolution neural network (CNN) model was developed using 80% (6446/8057) of
patients randomly selected from SOReg and 20% (1611/8057) of patients for external testing. The predictive capability of the
CNN model and currently used scores (DiaRem, Ad-DiaRem, DiaBetter, and individualized metabolic surgery) were compared.

Results: In total, 8057 patients with T2D were included in the study. At 2 years after surgery, 77.09% achieved pharmacological
remission (n=6211), while 63.07% (4004/6348) achieved complete remission. The CNN model showed high accuracy for cessation
of antidiabetic drugs and complete remission of T2D after gastric bypass surgery. The area under the receiver operating characteristic
curve (AUC) for the CNN model for pharmacological remission was 0.85 (95% CI 0.83-0.86) during validation and 0.83 for the
final test, which was 9%-12% better than the traditional predictive indices. The AUC for complete remission was 0.83 (95% CI
0.81-0.85) during validation and 0.82 for the final test, which was 9%-11% better than the traditional predictive indices.

Conclusions: The CNN method had better predictive capability compared to traditional indices for diabetes remission. However,
further validation is needed in other countries to evaluate its external generalizability.

(JMIR Med Inform 2021;9(8):e25612) doi: 10.2196/25612
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Introduction

Bariatric surgery is an efficient and safe treatment for patients
with morbid obesity and type 2 diabetes (T2D) [1,2]. In obese
patients who also have T2D, more than three-fourths of patients
show remission after gastric bypass surgery [3,4]. Although
remission rates may differ across different surgical procedures,
high remission rates have been reported for Roux-en-Y gastric
bypass [1,3]. Despite many patients experiencing remission of
diabetes, duration and severity of disease, along with age, have
been presented as factors associated with reduced chance of
achieving remission [1,5]. Prediction of diabetes remission can
be helpful in clinical preoperative consultation and
decision-making, and several indices have been constructed for
this purpose. Scores like DiaRem [6], Ad-DiaRem [7], DiaBetter
[8], and the individualized metabolic surgery (IMS) score [9],
as well as the age, body mass index, C-peptide level, and
duration of T2D (ABCD) score [10] have been used for
predicting diabetes remission after bariatric surgery. Many of
the models based on the scores have high predictive capability
and may already provide clinical guidance [11]. These tools
might be helpful for personalized management of morbidly
obese individuals with diabetes when considering bariatric
surgery in routine care, ultimately contributing to precision
medicine [12]. However, the performance of the scores in
various studies is not consistent [7]. Previous prediction models
were either limited by small sample sizes or were not validated
using external data that were not seen by the models during
model construction. Therefore, both the performance and
validity of the models or scores need to be further evaluated
and improved using a larger bariatric surgery database. In recent
years, there have been a number of attempts to use artificial
intelligence (AI) algorithms, including support vector machine
[13], decision tree [14], random forest [15], and deep learning
algorithms, such as artificial neural networks [16,17], to
incorporate preoperative predictors in predicting outcomes of
bariatric surgery. Compared with the traditional statistical
regression models, AI algorithms have shown great promise in
the field of bariatric surgery [18,19]. However, to our
knowledge, none have thus far reached clinical practice.

The aim of this study was to construct a prediction model for
T2D remission using a deep learning AI algorithm (ie,
convolutional neural network [CNN)]) and to compare its
predictive capability with that of 4 widely used predictive scores.

Methods

Study Participants
The study used the data from the Scandinavian Obesity Surgery
Register (SOReg), a validated, national quality register covering
virtually all bariatric and metabolic surgical procedures in
Sweden [20]. By using the unique Swedish personal
identification number, we linked SOReg to the Swedish National
Patient Register, the Swedish National Death Register, the
Swedish Prescribed Drug Register, and Statistics Sweden to
obtain information on inpatient and outpatient hospital visits,
mortality, dispensed drugs, and individual socioeconomic data.
The inclusion criteria for patients registered in the SOReg were

included those operated on with a primary Roux-en-Y gastric
bypass procedure between 2007 and 2015 and those diagnosed
with T2D preoperatively, as defined by the American Diabetes
Association (ie, fasting plasma glucose ≥ 126 mg/L [7.0
mmol/L], hemoglobin A1c [HbA1c] ≥ 48 mmol/mol [6.5%], or
pharmacological treatment for diabetes) [21].

Outcome and Predictor Variables
The main outcome measure was complete remission of diabetes
2 years after surgery, defined as being without diabetes
medication within a time frame of +/- 6 months; that is, 18-30
months postoperatively with normal HbA1c value <42 mmol/mol
(6.0%) in accordance with the definitions of the American
Diabetes Association [22]. Due to loss of information of HbA1c

at follow-up, analyses of a secondary outcome, complete
remission, defined as discontinuance of pharmacological
treatment from 18-30 months, was performed.

The predictor variables were patients’ demographic and
socioeconomic information including age, sex, education level
(primary, secondary, higher education <3 years, and high
education ≥3 years), and region of residence characteristics
(large city, medium city or town, and small town or rural area);
preoperative BMI, HbA1c, and treatment information including
insulin treatment, metformin use, other noninsulin
pharmacological treatment, and number of antidiabetic drugs;
and preoperative comorbidities including sleep apnea,
hypertension, dyslipidemia, depression, and cardiovascular
comorbidity.

Descriptive Analysis
Continuous variables are presented as mean and SD, and ordered
and nominal variables are presented as median and interquartile
range (IQR) and count and percentage, respectively. For
comparison between 2 groups, the t test and Mann-Whitney test
were used for continuous and ordered variables, respectively,
while the Pearson chi-square test was used for categorical
variables. A 2-tailed P value <.05 was considered to be
statistically significant.

Multiple Imputation for Missing Values
Missing values were assumed missing at random and imputed
using a random forest algorithm, which has the desirable
properties of being able to handle mixed types of missing data,
being adaptive to interactions and nonlinearity, and having the
potential to scale to big data settings [23]. To allow for the
uncertainty of the imputation, 100 imputed data sets were
generated in the current study.

Data Normalization
Because the range of values of variables varies widely (such as
for age and BMI) in some machine learning (ML) algorithms,
objective function will not work properly [24]. Therefore, the
continuous and ordered variables were normalized to have a
mean of 0 and a standardization of 1, and the multicategory
nominal variables (education and residence) were converted
into several binary variables before they were entered into the
ML models [25].

JMIR Med Inform 2021 | vol. 9 | iss. 8 | e25612 | p. 2https://medinform.jmir.org/2021/8/e25612
(page number not for citation purposes)

Cao et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Predictive Model
In the current study, we used a 7-layer CNN model with two
1D convolution layers (with 100 filters for each), two 1D max
pooling layers, one flatten layer, and two dense layers (with
1000 computation units) [26,27]. The rectified linear unit
activation function was used for the two 1D convolution layers
and the first dense layers, and the sigmoid activation function
was used for the last dense layer. The binary cross-entropy loss
function and the adaptive moment estimation (Adam) optimizer
were used when compiling the model [28].

Model Training, Validation, and Test
The whole data set was randomly split into 2 parts: a training
data set with 80% (6446/8057) of the patients and a test data
set with 20% (1611/8057) of the patients. During the model
training stage, the training data set was further divided into 2
data sets: one data set with 64% (5156/8057) of the patients to
train the CNN model and another with 16.01% (1290/8057) of
the patients to validate the model. Finally, the model was tested
using the test data set that was never seen by the CNN model.
The CNN model was trained, validated, and tested with the 100
imputations (Figure 1).

Figure 1. Procedure for training, validation, and testing for the convolutional neural network model.

Indices of Predictive Ability
Predictive ability of the CNN model was evaluated using the
following indices: area under the receiver operating
characteristic (ROC) curve, sensitivity, specificity, and the
Youden J [29]. The terminology and derivations of the values
have been previously presented in detail [18]. The sensitivity
and specificity presented in this study are the values on the ROC
curve where the Youden J achieves the maximum value. The
acceptable, excellent, and outstanding predictive models were
defined as those with an area under the ROC curve (AUC)
greater than 0.7, 0.8, and 0.9, respectively [30,31]. The average
and the 95% CI of the indices were calculated based on 100
imputations.

Comparison Between the CNN Model and DiaRem,
Ad-DiaRem, DiaBetter, and IMS
We also evaluated the predictive capability of the currently used
indices, DiaRem, Ad-DiaRem, DiaBetter, and IMS, and
compared them with the CNN model. The DiaRem score is
calculated using insulin use, age, HbA1c value, and type of

antidiabetic drugs [32]. The Ad-DiaRem score is a modification
of the DiaRem score, calculated using insulin use, age, HbA1c

value, number of antidiabetic drugs, duration of diabetes, and
number of antidiabetic drugs [13]. The DiaBetter is calculated
using HbA1c, type of antidiabetic drugs, and duration of diabetes
[8]. The IMS score is calculated using the number of
preoperative diabetes medications, insulin use, duration of
diabetes, and HbA1c level [9].

The points on the nonparametric ROC curve of DiaRem,
Ad-DiaRem, DiaBetter, and IMS were generated using each
value as a classification cutoff point and computing the
corresponding sensitivity and one minus specificity. These
points were then connected by straight lines, and the AUC was
computed using the trapezoidal rule [33].

The same training and testing procedure used for the CNN
model was also applied for the 4 scores.

Software and Hardware
The descriptive analysis and evaluation for DiaRem,
Ad-DiaRem, DiaBetter, and IMS were conducted in Stata 16.1
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(StataCorp LLC). The CNN model was achieved in Python 3.6
(Python Software Foundation) using the Keras 2.4.0 and
Scikit-learn 0.23 packages. All the computation was operated
on a computer with 64-bit Windows 7 Enterprise operating
system (Service Pack 1, Microsoft Corporation), an Intel Core
TM i5-4210U 2.40-GHz CPU, and 16.0 GB installed random
access memory.

Ethics
The study was approved by the regional ethics committee in
Stockholm (reference #2013/535-31/5, #2014/1639-32, and
#2017/857-32). The study was conducted according to the
guidelines of the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) statement [34].

Results

Patient Characteristics
In total, 8112 patients met the inclusion criteria; after exclusion
of 55 patients who died within the first 2 years after surgery,
8057 patients remained in the analysis. Information on

pharmaceutical usage before and after surgery was available
for all patients. A postoperative weight was registered for 7268
patients at 1 year after surgery (90.21%), and 4996 patients at
2 years after surgery (62.01%). A postoperative glycosylated
HbA1c test result was available for 6989 patients (86.74%).
Baseline characteristics of the included patients are shown in
Table 1. Statistically significant differences were found for
almost all the predictor variables between the remission patients
and nonremission patients, except for depression and education
(Table 1), which implies the potential for using the predictor
variables to predict outcome. Preoperative HbA1c values were
missing for about one-seventh of the patients, indicating the
need for imputation since the predictive capability otherwise
would be significantly reduced and biased by excluding a
considerable proportion of the data with missing values. Patients
with a missing HbA1c value were more often males of marginally
higher age and longer duration of disease, and small differences
were also seen in terms of pharmacological treatment, education,
and residence (Supplementary Table S1, Multimedia Appendix
1). After multiple imputation, similar distributions of HbA1c

values were seen (Supplementary Figure S1, Multimedia
Appendix 1).
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Table 1. Characteristics of study participants with further stratification on remission of diabetes (N=8057)a.

P valuebRemission (n=6211)Nonremission (n=1846)Overall (n=8057)Characteristic

<.00146.6 (10.2)51.7 (8.7)47.7 (10.1)Age (years), mean (SD)

.001Sex, n (%)

3891 (62.65)1079 (58.45)4970 (61.68)Women

2320 (37.35)767 (41.55)3087 (38.32)Men

<.00142.53 (5.80)41.16 (5.44)42.22 (5.74)BMI (kg/m2), mean (SD)

<.00156.7 (16.5)67.4 (17.5)59.0 (17.3)Hemoglobin A1c (mmol/mol) mean, (SD)

<.0011.0 (0.0-4.0)6.0 (3.0-10.0)2.0 (0.0-6.0)Diabetes duration (years), median (IQR)

<.0011.0 (0.0-2.0)2.0 (1.0-2.0)1.0 (1.0-2.0)Number of drugs, median (IQR)

<.0011129 (18.18)1184 (64.14)2313 (28.71)Insulin, n (%)

<.0013992 (64.27)1618 (87.65)5610 (69.63)Metformin, n (%)

<.0011167 (18.79)745 (40.36)1912 (23.73)Other noninsulin treatment, n (%)

.031146 (18.45)383 (20.75)1529 (18.98)Sleep apnea, n (%)

<.0013259 (52.47)1287 (69.72)4546 (56.42)Hypertension, n (%)

<.001612 (9.85)305 (16.52)917 (11.38)Cardiovascular comorbidity, n (%)

<.0011663 (26.78)864 (46.80)2527 (31.36)Dyslipidemia, n (%)

.34986 (15.88)311 (16.85)1297 (16.10)Depression, n (%)

.40Education, n (%)

1214 (19.55)392 (21.24)1606 (19.93)Elementary education

3671 (59.10)1091 (59.10)4762 (59.10)Secondary education

659 (10.61)179 (9.70)838 (10.40)Higher education <3 years

623 (10.03)173 (9.35)796 (9.88)Higher education >3 years

.001Residence, n (%)

2047 (32.96)687 (37.22)2734 (33.93)Large city

2390 (38.48)671 (36.35)3061 (37.99Medium-sized town

1744 (28.08)487 (26.38)2231 (27.69)Small town or rural area

<.0015.0 (3.0-8.0)16.0 (8.0-18.0)6.0 (3.0-13.0)DiaRem, median (IQR)

<.0017.00 (4.0-9.0)12.0 (9.0-15.0)7.0 (5.0-11.0)Ad-DiaRem, median (IQR)

<.0013.0 (1.0-4.0)7.0 (5.0-8.0)3.0 (1.0-6.0)DiaBetter, median (IQR)

<.00128.6 (16.0-57.8)87.2 (59.9-107.2)39.8 (16.0-75.2)IMSc, median (IQR)

aIncluding all the baseline variables used in the study.
bP value comparing remission vs nonremission.
cIMS: individualized metabolic surgery.

Surgical Outcome

The mean BMI loss at 1 year after surgery was 12.2 kg/m2 (SD

4.0 kg/m2), with an excess BMI loss (100 × [initial BMI –
postoperative BMI]/[initial BMI – 25] %) of 74.0% (SD 22.5%),
and a total weight loss (100 × weight loss/preoperative weight%)
of 28.7% (SD 7.6%). Mean BMI loss at 2 years after surgery

was 12.0 kg/m2 (SD 4.53 kg/m2) with an excess BMI loss of
73.3% (SD 24.4%) and a total weight loss of 28.4% (SD 8.9%).

At 2 years after surgery, 77.09% (6211/8057) of the patients
were able to discontinue the pharmacological treatment of T2D,

while complete T2D remission was seen in 63.07% (n=4004)
of the 6348 patients who had been evaluated for complete
remission.

Predictive Capability of the CNN Model, DiaRem,
Ad-DiaRem, DiaBetter, and IMS
The predictive capability of the CNN model for the major
outcome (remission) is shown in Figure 2 and Table 2. In both
the training and validation, the CNN model presented good
predictive ability, with an AUC of 0.86 (95% CI 0.85-0.87) and
0.85 (95% CI 0.83-0.86), respectively (Table 2).
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Figure 2. Receiver operating characteristic (ROC) curves of the convolutional neural network model in one of the 100 trainings and validations (left;
because the 2 areas under the ROC curves are almost totally overlapping, the blended red and blue colors appear purple), and tests (right).

The DiaRem, Ad-DiaRem, DiaBetter, and IMS also showed
good predictive capability in the training with an AUC >0.8
(Figure 3 left and Table 2) but only acceptable predictive ability
in the validation (Table 2), with an AUC of 0.73 (95% CI
0.71-0.75), 0.72 (95% CI 0.69-0.74), 0.75 (95% CI 0.72-0.78),
and 0.76 (95% CI 0.73-0.79), respectively. In general, the
predictive capability of the CNN model was 16.4%, 18.1%,
13.3%, and 11.8% higher than that of DiaRem, Ad-DiaRem,

DiaBetter, and IMS, in terms of AUC, respectively. In the tests,
the AUC for the predictive ability of the CNN (AUC=0.83; 95%
CI 0.82-0.85) model was 10.6%, 12.2%, 12.2%, and 9.2% higher
than that of DiaRem (AUC=0.75; 95% CI 0.73-0.76),
Ad-DiaRem (AUC=0.74; 95% CI 0.71-0.77), DiaBetter
(AUC=0.74; 95% CI 0.72-0.76), and IMS (AUC=0.76; 95% CI
0.73-0.78), respectively (Figure 2 right and Figure 3 right).
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Table 2. Predictive capability of the CNN model and diabetes indices for the major outcome.

Value (95% CI)Models by index

ValidationTraining

AUCa

0.85 (0.83-0.86)0.86 (0.85-0.87)CNNb

0.73 (0.71-0.75)0.81 (0.79-0.82)DiaRem

0.72 (0.69-0.74)0.82 (0.81-0.83)Ad-DiaRem

0.75 (0.72-0.78)0.82 (0.81-0.83)DiaBetter

0.76 (0.73-0.79)0.84 (0.83-0.85)IMSc

Specificity

0.78 (0.72-0.85)0.78 (0.74-0.83)CNN

0.81 (0.78-0.85)0.76 (0.80-0.73)DiaRem

0.75 (0.70-0.79)0.70 (0.68-0.71)Ad-DiaRem

0.76 (0.71-0.80)0.76 (0.74-0.78)DiaBetter

0.77 (0.72-0.81)0.77 (0.72-0.82)IMS

Sensitivity

0.76 (0.70-0.83)0.77 (0.73-0.82)CNN

0.65 (0.62-0.67)0.75 (0.71,0.78)DiaRem

0.69 (0.67-0.72)0.79 (0.78-0.80)Ad-DiaRem

0.75 (0.72-0.78)0.75 (0.74-0.76)DiaBetter

0.75 (0.73-0.77)0.75 (0.70-0.80)IMS

Youden J

0.54 (0.50-0.59)0.56 (0.54-0.57)CNN

0.46 (0.42-0.50)0.51 (0.50-0.52)DiaRem

0.44 (0.39-0.49)0.48 (0.47-0.49)Ad-DiaRem

0.51 (0.45-0.56)0.51 (.049-0.54)DiaBetter

0.52 (0.47-0.57)0.52 (0.50-0.54)IMS

aAUC: area under the receiver operating characteristic curve.
bCNN: convolutional neural network.
cIMS: individualized metabolic surgery.

Figure 3. Receiver operating characteristic curves of diabetes indices in one of the 100 trainings (left), and tests (right). AUC: area under the curve.
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For the secondary outcome, complete remission, the CNN model
also presented a good predictive capability in both the training
and validation, with an AUC of 0.84 (95% CI 0.83-0.85) and
0.83 (95% CI 0.81-0.85), respectively (Supplementary Table
S4, Multimedia Appendix 1). Although DiaRem, Ad-DiaRem,
DiaBetter, and IMS showed good predictive ability in the
training with an AUC ≥0.80, they only showed acceptable
predictive ability in the validation with an AUC of 0.72 (95%
CI 0.69-0.75), 0.72 (95% CI 0.69-0.74), 0.74 (95% CI
0.72-0.77), and 0.74 (95% CI 0.72-0.76), respectively
(Supplementary Table S4, Multimedia Appendix 1). In general,
the predictive capability of the CNN model was 15.3%, 15.3%,
12.2%, and 12.2% higher than that of DiaRem, Ad-DiaRem,
DiaBetter, and IMS, in terms of AUC, respectively.

In the tests, the AUC for the predictive capability of the CNN
model (AUC=0.82; 95% CI 0.81-0.83) was 9.3%, 10.8%, 10.8%,
and 9.3% higher than that of DiaRem (AUC=0.75; 95% CI
0.73-0.78), Ad-DiaRem (AUC=0.74; 95% CI 0.73-0.75),
DiaBetter (AUC=0.74; 95% CI 0.71-0.76), and IMS
(AUC=0.75; 95% CI 0.73-0.77), respectively (Supplementary
Figure S2 right and S3 right, Multimedia Appendix 1).

Discussion

Principal Findings
The CNN model evaluated in this study showed high accuracy
for cessation of antidiabetic drugs and complete remission of
T2D after gastric bypass surgery, providing 9%-12% better
predictive indices compared to available scores.

The currently available and widely accepted predictive indices
for diabetes remission, including DiaRem, Ad-DiaRem,
DiaBetter, and IMS, were assessed in our study and are all
simple and easily available to clinicians for clinical decision
support. In addition, one other index, the ABCD score [35],
also includes c-peptide. This laboratory measure additionally
includes information of endogenous insulin production and
could thus potentially further enhance the effectiveness of a
prediction model. However, the ABCD score has not been
shown to have higher predictive capacity compared to other
available models, and it is highly possible that other measures
of severity of T2D disease, such as duration of disease, HbA1c

value, and type and number of drugs, may provide the same or
even better measures for a prediction model [11].

The main benefits of the CNN method, in comparison to the
scores based on traditional statistical methods, lie in its ability
to include a high number of variables and to learn over time. In
contrast to available models designed to offer simple entry and
calculations of the most important variables, it offers the ability
to handle variables in a more complex way, also including
variables of smaller impact. Furthermore, the model construction
is not limited by the statistical assumptions and distribution of
the data, which usually need to be fulfilled in the traditional
regression methods. Exposing the AI to a higher quantity of
real-world data also has the potential to further improve it with
cumulative learning.

Implications
The use of AI or machine learning techniques in medical
research and practice is currently an evolving field with great
potential. Although the exact role of AI in this setting remains
to be established, one potential area where the AI seems to
outperform traditional techniques is indeed in the construction
of prediction models for outcomes from surgical procedures
[36]. Previous studies on the construction of prediction models
for perioperative complications have reported discouraging
results, mainly as a direct consequence of the complexity and
diversity of causes for perioperative complications [18,27,37].
In contrast with safety outcomes, efficacy outcomes (in
particular those of highly standardized surgical methods such
as gastric bypass) may be more suited for adequate prediction
models since the factors influencing long-term effects are less
diverse. Remission of diabetes is one such outcome that is
largely influenced by a few specific factors, making prediction
models more easily available. The results of our study support
the promising results from previous studies with smaller sample
sizes using sparse support vector machine, decision tree, and
artificial neural networks to predict diabetes remission after
bariatric surgery [13,14,17].

Although our CNN model did not include postoperative weight
loss, a factor known to be associated with higher remission and
reduced relapse of diabetes [8], the model included measures
of patient-specific characteristics, information on duration and
severity of disease, and a few socioeconomic factors that all
should be easily available at the time of consultation before
surgery. Although it is likely that the model could have reached
a higher precision if postoperative results (such as early weight
loss or improvement in glucose homeostasis) were included,
these measures are not available in the preoperative setting and
their inclusion would therefore reduce the clinical usefulness
of the model [1,5,38]. Age, duration of diabetes, preoperative
HbA1c, and diabetes medications are all known predictive factors
[1,5]. In addition, the model identified sex, BMI, metabolic and
cardiovascular comorbidities, and place of residence as factors
influencing the chance of diabetes remission.

Although the disposition of adiposity and insulin resistance
appears to affect men and women differently [39], differences
between sexes may be highly influenced by other covarying
factors, such as obesity-related comorbidities, BMI, and age
[1]. Indeed, when adjustment is made for other factors, the
influence of sex on outcome tends to shift [1]. The influence of
BMI on remission rates is also controversial [40]. Patients with
higher BMI may have a greater degree of insulin resistance and
a higher expected total weight loss [41,42], and may thus benefit
more from the favorable metabolic effect of bariatric surgery.
However, the influence of BMI on remission can be related to
several other factors of relevance for both diabetes remission
and postoperative weight loss. Whether or not the influence of
BMI is strictly weight dependent or not remains to be answered.
Although no difference in remission dependent on educational
level was seen, place of residence was associated with the
chance of achieving diabetes remission. Residents of larger
cities may experience higher life stress and represent a more
diverse socioeconomic population [43]. Many socioeconomic
factors (such as education, income, profession, and ethnicity)
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have been reported to influence other efficacy outcomes, such
as weight loss, which in turn may contribute to these differences
[42].

Challenges and Limitations
In contrast to traditional regression models, we observed
significant improvement with the continuous training process.
When increasing amounts of data in the test data set were seen
by the CNN model (or more data in the test data set leaked into
the training data set), AUC, specificity, and sensitivity increased
gradually and eventually approximated 1 (Supplementary Figure
S5, Multimedia Appendix 1). From training with more available
data and decorrelating data with methods such as principal
component analysis, the predictive capability of the CNN model
could be improved even further, at least in the Swedish context.
To generalize the application of the CNN model, a multinational
registration consortium of gastric bypass surgery patients would
be needed for improved model training and validation. However,
the capacity of memory is also a limitation of the CNN because
it reduces the model’s flexibility to incorporate the information
from external unseen data, which results in overfitting to specific
past data or underfitting to the new data and impedes
generalization of the model [44]. Teaching neural networks to
strategically forget is an important task in ML. This highlights
one of the major challenge of ML techniques [45]. To fulfill
this task, incorporating long short-term memory units into CNN
networks has been attempted to process temporal sequences
and reduce model parameters in human face and activity
recognition, which has shown consistent superior performance
and good generalization [46,47]. Furthermore, the methods of
ML are less transparent and more complex than those of
traditional regression models, making their exact nature more
difficult to scrutinize [44]. In the absence of clear guidelines,
we have—to the best of our ability—conducted and reported
the study to match the requirements of the TRIPOD statement
and suggested modifications [34]. The programming code of
the study is available at the repository figshare website [48].

Furthermore, the study was only based on data from a single
country. For full use of the model, external validation would
also be needed in other parts of the world.

Finally, only Roux-en-Y gastric bypass procedures were
included in the model. The effects of sleeve gastrectomy on
diabetes remission may be expected to differ [40], and thus the
model is presently only suited for gastric bypass surgery.
Including other surgical methods in future development of the
model would further improve generalizability.

Despite these limitations, the CNN model outperformed the
currently available high-quality prediction models. It also
demonstrated better predictive ability than that mentioned in a
previous report on AI for diabetes remission [49]. The CNN
model may therefore find a place in the preoperative setting for
surgeons, bariatricians, or endocrinologists looking to quantify
the probability of diabetes remission in their decision-making
for bariatric surgery in a given patient. After further validation,
the AI model could be made available on a webpage or as a
mobile app to allow user-friendly and fully available use in the
clinical context.

Conclusions
Our CNN-based ML model performed well in identifying
morbidly obese patients with T2D who might benefit from
Roux-en-Y gastric bypass surgery. We also demonstrated the
model had better predictive capability compared with the current
widely used 4 comprehensive indices for diabetes remission
after gastric bypass surgery. Prospectively identifying this subset
of patients using data available at the time of preoperative
evaluation provides an opportune time window to intervene and
prevent or reduce the risk of morbidity and mortality, and may
potentially reduce the total cost of care. However, this model
should be further validated in future research using external
data in other countries before it is incorporated into clinical
practice.
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