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Abstract

Background: Deep learning algorithms have been built for the detection of systemic and eye diseases based on fundus
photographs. The retina possesses features that can be affected by gender differences, and the extent to which these features are
captured via photography differs depending on the retinal image field.

Objective: We aimed to compare deep learning algorithms’ performance in predicting gender based on different fields of fundus
photographs (optic disc–centered, macula-centered, and peripheral fields).

Methods: This retrospective cross-sectional study included 172,170 fundus photographs of 9956 adults aged ≥40 years from
the Singapore Epidemiology of Eye Diseases Study. Optic disc–centered, macula-centered, and peripheral field fundus images
were included in this study as input data for a deep learning model for gender prediction. Performance was estimated at the
individual level and image level. Receiver operating characteristic curves for binary classification were calculated.

Results: The deep learning algorithms predicted gender with an area under the receiver operating characteristic curve (AUC)
of 0.94 at the individual level and an AUC of 0.87 at the image level. Across the three image field types, the best performance
was seen when using optic disc–centered field images (younger subgroups: AUC=0.91; older subgroups: AUC=0.86), and
algorithms that used peripheral field images had the lowest performance (younger subgroups: AUC=0.85; older subgroups:
AUC=0.76). Across the three ethnic subgroups, algorithm performance was lowest in the Indian subgroup (AUC=0.88) compared
to that in the Malay (AUC=0.91) and Chinese (AUC=0.91) subgroups when the algorithms were tested on optic disc–centered
images. Algorithms’ performance in gender prediction at the image level was better in younger subgroups (aged <65 years;
AUC=0.89) than in older subgroups (aged ≥65 years; AUC=0.82).

Conclusions: We confirmed that gender among the Asian population can be predicted with fundus photographs by using deep
learning, and our algorithms’ performance in terms of gender prediction differed according to the field of fundus photographs,
age subgroups, and ethnic groups. Our work provides a further understanding of using deep learning models for the prediction
of gender-related diseases. Further validation of our findings is still needed.
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Introduction

An individual’s gender is associated with a variety of systemic
and ocular diseases. Females have longer life expectancies
compared to those of males, regardless of their educational,
economic, political, and health statuses [1,2]. Decreased estrogen
production predisposes postmenopausal women to degenerative
conditions, including cataracts and age-related macular
degeneration [3-8]. In contrast, males are predisposed to
open-angle glaucoma [9], diabetic retinopathy [10], and pigment
dispersion glaucoma [11].

Deep learning algorithms have been developed for the detection
of systemic and eye diseases based on fundus photographs
[12-21]. By using deep neural networks, Poplin et al [12] found
that cardiovascular risk factors, including gender, can be
predicted with fundus images and obtained good classification
results with a data set comprising White individuals. More
recently, Gerrits et al [17] and Kim et al [22] also predicted
gender by using neural networks to analyze Qatari and South
Korean data sets, respectively.

This study builds on preexisting literature in three ways. First,
we predicted gender by using retinal fundus images from a
Southeast Asian data set. Second, we evaluated how differing
fundus photography fields could have an effect, if any, on gender
classification results. This is worth exploring because the retina
possesses features that can be affected by gender differences
(eg, vessel structure; optic nerve, fovea, and macular
morphology; and retinal pigmentation). Different fundus
photography fields (optic disc–centered, macula-centered, and
peripheral fields) capture these features to varying extents and
affect these features’ availability in a neural network. Rim et al
[22] reported the good generalizability of similar deep learning
algorithms that have been used to predict gender based on
fundus photographs; however, intracohort subgroup comparisons
were not performed. Understanding how model performance
differs based on different ethnic, age, and image field subgroups
will be useful [22].

Third, the diversity of our data set allowed for the comparison
of algorithm performance across age and ethnic subgroups
(Malay, Chinese, and Indian subgroups). The introduction of
artificial intelligence in clinical medicine has brought about
ethical concerns, of which one is problematic decision-making
by algorithms that reflect biases that are inherent in the data
used to train these algorithms [23]. Ensuring that our model
generalizes well across different ethnicities is essential for
avoiding inadvertent, subtle discrimination in health care
delivery [24]. Cross-cultural analysis is a unique feature of our
study—one that is lacking in existing literature on deep learning
in ophthalmology because few populations are inherently
diverse.

Methods

Ethics Statement
This retrospective cross-sectional study was approved by the
institutional ethical committee and adhered to the tenets of the
Declaration of Helsinki. The need to obtain written informed
consent was waived due to the use of anonymized and
deidentified data.

Study Population
The Singapore Epidemiology of Eye Diseases (SEED) study is
a population-based study that recruited subjects from the three
major ethnic groups (the Chinese, Malay, and Indian ethnic
groups) in Singapore. The SEED study’s baseline examinations
were conducted from 2004 through 2011, and subsequent
follow-up studies were performed, as follows: the Singapore
Malay Eye Study (baseline examination: 2004-2006; follow-up
examination: 2010-2013), the Singapore Indian Eye Study
(baseline examination: 2007-2009; follow-up examination:
2013-2016), and the Singapore Chinese Eye Study (baseline
examination: 2009-2011; follow-up examination: 2016-2018).
The detailed methodology of the SEED study was published
previously [25-28]. Briefly, an age-stratified random sampling
method was used to select subjects aged ≥40 years from each
ethnic group living across southwestern Singapore. In total,
3280 out of 4168 Malay individuals (78.7%), 3400 out of 4497
Indian individuals (75.6%), and 3353 out of 4606 Chinese
individuals (72.8%) agreed to participate in the study. As such,
an overall response rate of 75.6% was achieved. The entire data
set, which included both visits, was split and used for algorithm
development and testing.

Fundus Photography and Image Database
A digital, nonmydriatic retinal camera (Canon CR-1 Mark-II
nonmydriatic, digital retinal camera; Canon Inc) was used to
obtain fundus photographs according to Early Treatment for
Diabetic Retinopathy Study (ETDRS) standard fields 1 to 5.
This was done after performing pharmacological dilation with
1% tropicamide and 2.5% phenylephrine hydrochloride. A total
of 175,038 fundus photographs from 10,033 SEED study
participants were included in this study. Original fundus
photographs (3504×2336 pixels) were extracted in the JPEG
format, and the black space around the contours of each
photograph was removed. All images were reformatted to
300×300-pixel images.

Model Development
Separate models for 3 different focus fields of fundus
photographs were developed (optic disc–centered,
macula-centered, peripheral fields) [29]. Images without age
and gender information or those deemed ungradable were
excluded from the analysis. The gradeability of fundus
photographs was manually determined based on a modification
of the Wisconsin Age-Related Maculopathy Grading System
[30]. A total of 172,170 fundus photographs (from the 16,391
examinations of 9956 participants) were divided into a training
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set (137,511/172,170, 79.9%) for developing our models and a
test set (34,659/172,170, 20.1%), which was reserved to evaluate
model performance. The photographs were stratified according
to age groups, gender, and ethnic groups. Figure 1 and Table 1
describe this split in more detail. The test set was not used during
model development. This division of photographs was based
on the individual level rather than the image level to avoid class

imbalances. Dividing photographs at the individual level ensured
that there was an equal number of images for each individual,
thereby avoiding the potential skew of data. Data augmentation
(random rotation from −5 to 5 degrees and random brightness
adjustment) was performed to introduce invariance in our neural
network [31,32].

Figure 1. Flowchart depicting the inclusion and exclusion of study images and participants.
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Table 1. Population characteristics.

P valueTest set, n (%)Training set, n (%)Characteristics

Fundus photographs (N=175,038)a

.4514,231 (41.1)56,814 (41.3)Optic disc–centered photographs

N/Ab13,705 (39.5)53,863 (39.2)Macula-centered photographs

N/A6723 (19.4)26,834 (19.5)Other peripheral photographs

Examinations (N=16,517)c

.75Age group (years)

551 (16.8)2145 (16.4)40-49

1105 (33.8)4447 (33.9)50-59

915 (28)3772 (28.8)60-69

702 (21.5)2754 (21)≥70

>.99Gender

1678 (51.3)6725 (51.3)Female

1595 (48.7)6393 (48.7)Male

.80Ethnic groups

1024 (31.3)4067 (31)Malay

1161 (35.5)4609 (35.1)Chinese

1088 (33.2)4442 (33.9)Indian

aThe training set included a total of 137,511 fundus photographs, and the test set included a total of 34,659 fundus photographs.
bN/A: not applicable.
cThe training set included data on a total of 13,118 examinations, and the test set included data on a total of 3273 examinations.

Our deep learning model, which was based on the Visual
Geometry Group-16 neural network architecture [33], was
developed, trained, and evaluated in TensorFlow [34,35]. The
model had 13 convolutional layers after batch normalization
and a fully connected layer after compressing the feature vector
via global average pooling. The Adam optimizer with fixed
weight decay was used to train our model; the learning rate was
set to 0.0001 for 100 epochs. At the end of the neural network,
a prediction score was generated for binary classification. A
low prediction score was classified as “male,” while a high
prediction score was classified as “female.” With regard to
model explanation, saliency maps created via guided
gradient-weighted class activation mapping (Grad-CAM) [36,37]
were superimposed over input images to facilitate our
understanding of how our model predicted gender.

Reference Standard
Gender information (male or female) was collected from the
SEED study participants’ National Registration Identity Card,
which is provided to all Singapore citizens.

Subgroups
Age was calculated based on the birth date indicated on
participants’ National Registration Identity Card. The younger
subgroup included participants aged 40 to 65 years, while the
older subgroup included those aged ≥65 years. To classify the
three ethnic subgroups, our study used criteria that were set by
the Singapore census to define Malay, Chinese, and Indian
[25,27].

Statistical Analysis
Python packages, including NumPy, SciPy, matplotlib,
scikit-learn, were used to process the data [38]. Performance
was evaluated by using the internal validation set, which
included 34,659 fundus photographs (14,231 optic disc–centered
field images, 13,705 macula-centered field images, and 6723
peripheral field images). Receiver operating characteristic curves
for binary classification were plotted. The DeLong test for area
under the receiver operating curve (AUC) comparisons was
used [39]. Individual-based and image-based analyses were
conducted.

Results

A total of 172,170 fundus photographs, including 71,045 optic
disc–centered field images, 67,568 macula-centered field
images, and 33,557 peripheral field images, were distributed
among the training and test sets (Table 1). The mean age of
participants was 60.8 years (SD 10.3 years; minimum: 40.0
years; maximum: 91.3 years), and 48.7% (7988/16,391) of the
participants were male. The distribution of photographs between
the training and test sets was stratified according to gender, age
subgroups, and the three ethnic subgroups.

Upon validation, the model achieved an AUC of 0.94 (95% CI
0.93-0.95) at the individual level and an AUC of 0.87 (95% CI
0.87-0.87) at the image level (Figure 2). With regard to the age
subgroup analysis at the individual level, model performance
was better in the younger group (aged 40-65 years; AUC=0.96;
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95% CI 0.95-0.96) than in the older group (aged >65 years;
AUC=0.90; 95% CI 0.88-0.91; P<.001). At the image level,
model performance in the younger group also surpassed model

performance in the older group; AUCs of 0.89 (95% CI
0.89-0.90) and 0.82 (95% CI 0.82-0.83), respectively, were
achieved (P<.001).

Figure 2. ROC curves at the individual and image levels based on the internal test set. A: Individual level; total population. B: Image level; total images.
C: Individual level; age subgroups. D: Image level; age subgroups. Upon internal testing, the AUCs achieved were 0.937 and 0.870 at the individual
and image levels (A and B), respectively. The AUCs achieved in the younger subgroups (aged <65 years) were 0.955 and 0.893 at the individual and
image levels, respectively (P<.001). The AUCs achieved for the older subgroups were 0.895 and 0.823 at the individual and images levels, respectively
(P<.001). AUC: area under the receiver operating curve; ROC: receiver operating curve.

We examined the differences in the model’s predictions of
gender across the three fundus photography fields at the image
level. Figure 3 describes the corresponding AUC curves. The
model’s overall performance was better in the younger group
(Figure 3) than in the older group (Figure 3). In both age groups,
optic disc–centered images resulted in the best performance in
terms of gender prediction. In the younger age group, the AUC

was 0.91 (95% CI 0.91-0.92) for the optic disc–centered images,
0.89 (95% CI 0.89-0.90) for the macula-centered images, and
0.85 (95% CI 0.84-0.86) for the peripheral field images
(P<.001). In the older age group, the AUC was 0.86 (95% CI
0.85-0.87) for the optic disc–centered images, 0.83 (95% CI
0.81-0.84) for the macula-centered images, and 0.76 (95% CI
0.84-0.86) for the peripheral field images (P<.001).
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Figure 3. Comparison of the algorithms’ performance in gender prediction between the different fundus photograph fields (optic disc–centered,
macula-centered, and peripheral or other fields) A: Age<65 years. B: Age≥65 years. AUC: area under the receiver operating curve.

We also evaluated the model’s gender prediction performance
according to ethnic groups (the Malay, Chinese, Indian groups).
Figure 4 depicts our algorithms’ performance in analyzing
photographs at the image level; the model fared relatively well
for the Malay and Chinese ethnic groups but fared suboptimally
for the Indian ethnic group. The model’s overall performance
was better when using optic disc–centered images (Figure 4)
than when using macula-centered images (Figure 4). With regard
to the optic disc–centered image group, the AUC was 0.91 (95%
CI 0.90-0.92) for the Malay group, 0.91 (95% CI 0.90-0.92) for

the Chinese group, and 0.88 (95% CI 0.87-0.89) for the Indian
group (P<.001). With regard to the macular-centered image
group, the AUC was 0.890 (95% CI 0.88-0.90) for the Malay
group, 0.89 (95% CI 0.88-0.90) for the Chinese group, and 0.85
(95% CI 0.84-0.86) for the Indian group (P<.001). No significant
performance differences were observed between the Malay and
Chinese ethnic groups (optic disc–centered images: P=.98;
macula-centered images: P=.90). Precision-recall curves were
generated in addition to the receiver operating curves. These
are provided in Multimedia Appendix 1.

Figure 4. Comparison of the algorithms’performance in gender prediction between ethnic groups. A: Optic disc–centered photographs. B: Macula-centered
photographs. C: Overall. AUC: area under the receiver operating curve.

Saliency maps (heat maps) were generated via Grad-CAM for
model explanation. Fundus photographs and overlaid heat maps
that were strongly associated with males and females (extreme
binary classification prediction scores) are shown in Figure 5
and Figure 6, respectively. The optic disc and the surrounding
structures are activated in every heat map in Figure 5 and Figure
6. Selected heat maps of fundus images showing pathological

lesions are presented in Figure 7. These heat maps suggested
that the optic disc was an area of interest in gender prediction,
despite the presence of random distractive elements (laser scars,
diabetic retinopathy, hypertensive retinopathy, and age-related
macular degeneration). A similar trend was noted in the heat
maps of macula-centered images.
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Figure 5. Original fundus photographs (A) and overlaid heat maps (B) with the features that were most associated with the male gender.

Figure 6. Original fundus photographs (A) and overlaid heat maps (B) with the features that were most associated with the female gender.

Figure 7. Selected heat maps of fundus images showing pathological lesions (all images are optic disc–centered images). A: Images of diabetic
retinopathy. B: Images of hypertensive retinopathy. C: Images of age-related macular degeneration. D: Images of laser scars.
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Discussion

Principal Findings
In this study, our results demonstrated the following points: (1)
model performance was better in the younger subgroup (aged
40-65 years) than in the older subgroup (aged >65 years); (2)
optic disc–centered images provided the most accurate
predictions for gender, followed by macula-centered images;
(3) the model’s performance was better in the Malay and
Chinese ethnic subgroups than in the Indian ethnic subgroup;
and (4) the algorithms functioned well in the presence of
possibly distractive attributes.

The deep learning algorithm from Poplin and colleagues [12]
was developed based on 48,101 and 236,234 color fundus
photographs from the UK Biobank and Eye Picture Archive
Communication System (EyePACS) data sets, respectively. It
successfully predicted gender and achieved an AUC of 0.97
(95% CI 0.97-0.97) and 0.97 (95% CI 0.96-0.98) with the UK
Biobank and the EyePACS-2K validation sets, respectively.
Compared to the model developed by Poplin and colleagues
[12], our model, which achieved an AUC of 0.94 (95% CI
0.93-0.95), is slightly less precise. However, our model was
trained on and validated with a wider range of age groups than
those of Poplin et al [12], and this could explain the relatively
weaker performance of our algorithm; we confirmed that the
algorithms’ performance was lower in older subgroups.

The ability of neural networks to use greater abstractions and
tighter integrations comes at the cost of lower interpretability
[40]. Saliency maps, which are also called heat maps or attention
maps, are common model explanation tools that are used to
visualize model thinking by indicating areas of local
morphological changes within fundus photographs that carry
more weight in modifying network predictions. After using
saliency maps, which were created via Grad-CAM [36,37], we
believe that our algorithms mainly used the features of the optic
disc for gender prediction. This pattern is consistent with the
observations made by Poplin et al [12] in 2018. Deep learning
models that were trained by using images from the UK Biobank
and EyePACS data sets primarily highlighted the optic disc,
retinal vessels, and macula when soft attention heat maps were
applied, although there appeared to be a weak signal distributed
throughout the retina [12]. Given that the Poplin et al [12] study
predominantly used data sets of White (UK Biobank) and
Hispanic (EyePACS) individuals and our study used a Southeast
Asian population (ie, Malay, Chinese, and Indian individuals),
our results suggest that gender predictions based on fundus
photographs will likely generalize well across different ethnic
groups. Additional validations of our models based on other
global population data sets would strengthen these findings.

Figure 4 shows representative fundus photographs with the most
masculine and feminine features. The heat maps mainly
highlighted the optic discs and the surrounding areas. Our
algorithms work well even when there are obvious different
clinical characteristics, such as retinal hemorrhages, ghost
vessels, laser scars, and silicone oil tamponade eye. To further
confirm that the optic disc is an area of interest in gender
prediction, we performed an explorative analysis on a subset of

fundus images that did not capture the optic disc. Of the 6723
peripheral field images from the test set, 649 images had fields
that did not encompass the optic disc. The model validation
analysis based on these 649 peripheral field images that did not
capture the optic disc returned an AUC of 0.69 (95% CI
0.65-0.73). This explorative comparison found that the model’s
performance markedly decreased in the absence of features
provided by the optic disc. We can therefore suggest with greater
certainty that the optic disc is the main structure used by deep
learning algorithms for gender prediction. Kim et al [22]
explored this concept in a slightly different manner. They
reported a decreased AUC when predicting gender by using
subsets of artificially inpainted fundus images, in which either
the fovea or retinal vessels were erased. Optic disc omission
was not described, although their reported heat maps indicated
activations in the fovea, optic disc, and retinal vessels [22]. In
addition, Korot et al [41] reported poor performance when using
images with foveal pathologies and used this finding to suggest
that the fovea is an important input region for gender prediction.
However, their saliency maps strongly attributed their model’s
predictive power to the optic disc. This is similar to the findings
of our study. It is likely that both the fovea and optic disc
provide critical feature inputs for gender prediction models, but
we are unable to comment on their relative importance.

The consideration of clinical applicability is essential when
developing a useful deep learning algorithm. In a real-world
setting, clinicians often encounter a mixture of fundus
photographs with different fields, and it is common to observe
the incorrect sorting of fundus photographs within publicly
available data sets [42]. Our results showed that the most precise
predictions were obtained when using optic disc–centered
images as the model input in both the primary and subgroup
analyses. Researchers should be aware of the possible
performance differences that arise due to using different image
fields when predicting gender or gender-related systemic factors;
using optic disc–centered images alone or a combination of
macula-centered and optic disc–centered images may be the
most prudent approach. Based on our model’s suboptimal
performance when using peripheral field images, such images
are not ideal input data for gender prediction models.

A common ethical concern with regard to decision-making by
algorithms is that biases that are inherent in the data used to
train these algorithms will manifest during usage [23]. A study
of facial recognition software evaluated the performance of
three leading recognition systems (those of Microsoft
Corporation, IBM Corporation, and Megvii) in a gender
classification task based on human skin tones [43]. The results
showed that darker-skinned females were the most misclassified
group. The study reported error rates of up to 34.7% for this
group. However, a maximum error rate of 0.8% was achieved
for lighter-skinned males. The implications of this study raised
broad questions about the fairness and accountability of artificial
intelligence and contributed to the concept of algorithmic
accountability [44]. Based on the ethnic subgroup analysis in
our study, our model did not perform as well in predicting
gender in the Indian ethnic group (AUC=0.88; 95% CI
0.87-0.89) as it did in predicting gender in the Chinese
(AUC=0.91; 95% CI 0.90-0.92) and Malay (AUC=0.91; 95%
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CI 0.90-0.92) ethnic groups (P<.001). Given that our results
have shown an undesired disparity in performance among the
three ethnic groups, efforts will be needed to refine the model
so that gender prediction accuracies across different ethnic
groups are reasonably on par. Ensuring that our model
generalizes well across different ethnicities is essential for
avoiding inadvertent, subtle discrimination in health care
delivery [24].

A study limitation is that our model was developed and trained
with data from a single center; therefore, the model was exposed
to the inadvertent incorporation of systemic error. Ideally, an
external validation data set that includes photographs that were
taken by using the ETDRS standard fields should also be used
to evaluate the algorithms. However, photographs that include
only 1 field (eg, only macula-centered photographs) cannot be
used alone for comparisons because of the systemic error
involved. We were unable to find a well-organized data set that
included images with different fundus photography fields for
external validation. Training the model by using diverse,
independent data sets that are captured by using different
instruments and come from a variety of populations and clinical
settings will also enhance the model’s generalizability [45].

Another limitation is our algorithms’ limited applicability to
younger populations, as our study only included images from
individuals aged ≥40 years.

Conclusions
In summary, our study is, to the best of our knowledge, the first
to predict gender based on retinal fundus photographs of a
Southeast Asian population. The ethnic diversity of our data set
allowed us to make intercultural comparisons. The model’s
performance was better in the Malay and Chinese subgroups
than in the Indian ethnic subgroup, and more work is required
to refine the model and avoid an undesired disparity in
performance among different ethnic groups. Our analysis of 3
different retinal fields provides evidence that the optic disc is
a critical feature that is used by deep learning models for gender
prediction. Algorithms that used peripheral field images had
the lowest performance, followed by those that used
macula-centered photographs. Algorithms that used optic
disc–centered photographs had the best performance. Our work
provides a further understanding of using deep learning models
for the prediction of gender-related diseases, and we recommend
using external validation sets to replicate our results.
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